1 //===- LoopVectorize.cpp - A Loop Vectorizer ------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This is the LLVM loop vectorizer. This pass modifies 'vectorizable' loops 10 // and generates target-independent LLVM-IR. 11 // The vectorizer uses the TargetTransformInfo analysis to estimate the costs 12 // of instructions in order to estimate the profitability of vectorization. 13 // 14 // The loop vectorizer combines consecutive loop iterations into a single 15 // 'wide' iteration. After this transformation the index is incremented 16 // by the SIMD vector width, and not by one. 17 // 18 // This pass has three parts: 19 // 1. The main loop pass that drives the different parts. 20 // 2. LoopVectorizationLegality - A unit that checks for the legality 21 // of the vectorization. 22 // 3. InnerLoopVectorizer - A unit that performs the actual 23 // widening of instructions. 24 // 4. LoopVectorizationCostModel - A unit that checks for the profitability 25 // of vectorization. It decides on the optimal vector width, which 26 // can be one, if vectorization is not profitable. 27 // 28 // There is a development effort going on to migrate loop vectorizer to the 29 // VPlan infrastructure and to introduce outer loop vectorization support (see 30 // docs/Proposal/VectorizationPlan.rst and 31 // http://lists.llvm.org/pipermail/llvm-dev/2017-December/119523.html). For this 32 // purpose, we temporarily introduced the VPlan-native vectorization path: an 33 // alternative vectorization path that is natively implemented on top of the 34 // VPlan infrastructure. See EnableVPlanNativePath for enabling. 35 // 36 //===----------------------------------------------------------------------===// 37 // 38 // The reduction-variable vectorization is based on the paper: 39 // D. Nuzman and R. Henderson. Multi-platform Auto-vectorization. 40 // 41 // Variable uniformity checks are inspired by: 42 // Karrenberg, R. and Hack, S. Whole Function Vectorization. 43 // 44 // The interleaved access vectorization is based on the paper: 45 // Dorit Nuzman, Ira Rosen and Ayal Zaks. Auto-Vectorization of Interleaved 46 // Data for SIMD 47 // 48 // Other ideas/concepts are from: 49 // A. Zaks and D. Nuzman. Autovectorization in GCC-two years later. 50 // 51 // S. Maleki, Y. Gao, M. Garzaran, T. Wong and D. Padua. An Evaluation of 52 // Vectorizing Compilers. 53 // 54 //===----------------------------------------------------------------------===// 55 56 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 57 #include "LoopVectorizationPlanner.h" 58 #include "VPRecipeBuilder.h" 59 #include "VPlan.h" 60 #include "VPlanHCFGBuilder.h" 61 #include "VPlanPredicator.h" 62 #include "VPlanTransforms.h" 63 #include "llvm/ADT/APInt.h" 64 #include "llvm/ADT/ArrayRef.h" 65 #include "llvm/ADT/DenseMap.h" 66 #include "llvm/ADT/DenseMapInfo.h" 67 #include "llvm/ADT/Hashing.h" 68 #include "llvm/ADT/MapVector.h" 69 #include "llvm/ADT/None.h" 70 #include "llvm/ADT/Optional.h" 71 #include "llvm/ADT/STLExtras.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallVector.h" 75 #include "llvm/ADT/Statistic.h" 76 #include "llvm/ADT/StringRef.h" 77 #include "llvm/ADT/Twine.h" 78 #include "llvm/ADT/iterator_range.h" 79 #include "llvm/Analysis/AssumptionCache.h" 80 #include "llvm/Analysis/BasicAliasAnalysis.h" 81 #include "llvm/Analysis/BlockFrequencyInfo.h" 82 #include "llvm/Analysis/CFG.h" 83 #include "llvm/Analysis/CodeMetrics.h" 84 #include "llvm/Analysis/DemandedBits.h" 85 #include "llvm/Analysis/GlobalsModRef.h" 86 #include "llvm/Analysis/LoopAccessAnalysis.h" 87 #include "llvm/Analysis/LoopAnalysisManager.h" 88 #include "llvm/Analysis/LoopInfo.h" 89 #include "llvm/Analysis/LoopIterator.h" 90 #include "llvm/Analysis/MemorySSA.h" 91 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 92 #include "llvm/Analysis/ProfileSummaryInfo.h" 93 #include "llvm/Analysis/ScalarEvolution.h" 94 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 95 #include "llvm/Analysis/TargetLibraryInfo.h" 96 #include "llvm/Analysis/TargetTransformInfo.h" 97 #include "llvm/Analysis/VectorUtils.h" 98 #include "llvm/IR/Attributes.h" 99 #include "llvm/IR/BasicBlock.h" 100 #include "llvm/IR/CFG.h" 101 #include "llvm/IR/Constant.h" 102 #include "llvm/IR/Constants.h" 103 #include "llvm/IR/DataLayout.h" 104 #include "llvm/IR/DebugInfoMetadata.h" 105 #include "llvm/IR/DebugLoc.h" 106 #include "llvm/IR/DerivedTypes.h" 107 #include "llvm/IR/DiagnosticInfo.h" 108 #include "llvm/IR/Dominators.h" 109 #include "llvm/IR/Function.h" 110 #include "llvm/IR/IRBuilder.h" 111 #include "llvm/IR/InstrTypes.h" 112 #include "llvm/IR/Instruction.h" 113 #include "llvm/IR/Instructions.h" 114 #include "llvm/IR/IntrinsicInst.h" 115 #include "llvm/IR/Intrinsics.h" 116 #include "llvm/IR/LLVMContext.h" 117 #include "llvm/IR/Metadata.h" 118 #include "llvm/IR/Module.h" 119 #include "llvm/IR/Operator.h" 120 #include "llvm/IR/Type.h" 121 #include "llvm/IR/Use.h" 122 #include "llvm/IR/User.h" 123 #include "llvm/IR/Value.h" 124 #include "llvm/IR/ValueHandle.h" 125 #include "llvm/IR/Verifier.h" 126 #include "llvm/InitializePasses.h" 127 #include "llvm/Pass.h" 128 #include "llvm/Support/Casting.h" 129 #include "llvm/Support/CommandLine.h" 130 #include "llvm/Support/Compiler.h" 131 #include "llvm/Support/Debug.h" 132 #include "llvm/Support/ErrorHandling.h" 133 #include "llvm/Support/InstructionCost.h" 134 #include "llvm/Support/MathExtras.h" 135 #include "llvm/Support/raw_ostream.h" 136 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 137 #include "llvm/Transforms/Utils/InjectTLIMappings.h" 138 #include "llvm/Transforms/Utils/LoopSimplify.h" 139 #include "llvm/Transforms/Utils/LoopUtils.h" 140 #include "llvm/Transforms/Utils/LoopVersioning.h" 141 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 142 #include "llvm/Transforms/Utils/SizeOpts.h" 143 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 144 #include <algorithm> 145 #include <cassert> 146 #include <cstdint> 147 #include <cstdlib> 148 #include <functional> 149 #include <iterator> 150 #include <limits> 151 #include <memory> 152 #include <string> 153 #include <tuple> 154 #include <utility> 155 156 using namespace llvm; 157 158 #define LV_NAME "loop-vectorize" 159 #define DEBUG_TYPE LV_NAME 160 161 #ifndef NDEBUG 162 const char VerboseDebug[] = DEBUG_TYPE "-verbose"; 163 #endif 164 165 /// @{ 166 /// Metadata attribute names 167 const char LLVMLoopVectorizeFollowupAll[] = "llvm.loop.vectorize.followup_all"; 168 const char LLVMLoopVectorizeFollowupVectorized[] = 169 "llvm.loop.vectorize.followup_vectorized"; 170 const char LLVMLoopVectorizeFollowupEpilogue[] = 171 "llvm.loop.vectorize.followup_epilogue"; 172 /// @} 173 174 STATISTIC(LoopsVectorized, "Number of loops vectorized"); 175 STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization"); 176 STATISTIC(LoopsEpilogueVectorized, "Number of epilogues vectorized"); 177 178 static cl::opt<bool> EnableEpilogueVectorization( 179 "enable-epilogue-vectorization", cl::init(true), cl::Hidden, 180 cl::desc("Enable vectorization of epilogue loops.")); 181 182 static cl::opt<unsigned> EpilogueVectorizationForceVF( 183 "epilogue-vectorization-force-VF", cl::init(1), cl::Hidden, 184 cl::desc("When epilogue vectorization is enabled, and a value greater than " 185 "1 is specified, forces the given VF for all applicable epilogue " 186 "loops.")); 187 188 static cl::opt<unsigned> EpilogueVectorizationMinVF( 189 "epilogue-vectorization-minimum-VF", cl::init(16), cl::Hidden, 190 cl::desc("Only loops with vectorization factor equal to or larger than " 191 "the specified value are considered for epilogue vectorization.")); 192 193 /// Loops with a known constant trip count below this number are vectorized only 194 /// if no scalar iteration overheads are incurred. 195 static cl::opt<unsigned> TinyTripCountVectorThreshold( 196 "vectorizer-min-trip-count", cl::init(16), cl::Hidden, 197 cl::desc("Loops with a constant trip count that is smaller than this " 198 "value are vectorized only if no scalar iteration overheads " 199 "are incurred.")); 200 201 // Option prefer-predicate-over-epilogue indicates that an epilogue is undesired, 202 // that predication is preferred, and this lists all options. I.e., the 203 // vectorizer will try to fold the tail-loop (epilogue) into the vector body 204 // and predicate the instructions accordingly. If tail-folding fails, there are 205 // different fallback strategies depending on these values: 206 namespace PreferPredicateTy { 207 enum Option { 208 ScalarEpilogue = 0, 209 PredicateElseScalarEpilogue, 210 PredicateOrDontVectorize 211 }; 212 } // namespace PreferPredicateTy 213 214 static cl::opt<PreferPredicateTy::Option> PreferPredicateOverEpilogue( 215 "prefer-predicate-over-epilogue", 216 cl::init(PreferPredicateTy::ScalarEpilogue), 217 cl::Hidden, 218 cl::desc("Tail-folding and predication preferences over creating a scalar " 219 "epilogue loop."), 220 cl::values(clEnumValN(PreferPredicateTy::ScalarEpilogue, 221 "scalar-epilogue", 222 "Don't tail-predicate loops, create scalar epilogue"), 223 clEnumValN(PreferPredicateTy::PredicateElseScalarEpilogue, 224 "predicate-else-scalar-epilogue", 225 "prefer tail-folding, create scalar epilogue if tail " 226 "folding fails."), 227 clEnumValN(PreferPredicateTy::PredicateOrDontVectorize, 228 "predicate-dont-vectorize", 229 "prefers tail-folding, don't attempt vectorization if " 230 "tail-folding fails."))); 231 232 static cl::opt<bool> MaximizeBandwidth( 233 "vectorizer-maximize-bandwidth", cl::init(false), cl::Hidden, 234 cl::desc("Maximize bandwidth when selecting vectorization factor which " 235 "will be determined by the smallest type in loop.")); 236 237 static cl::opt<bool> EnableInterleavedMemAccesses( 238 "enable-interleaved-mem-accesses", cl::init(false), cl::Hidden, 239 cl::desc("Enable vectorization on interleaved memory accesses in a loop")); 240 241 /// An interleave-group may need masking if it resides in a block that needs 242 /// predication, or in order to mask away gaps. 243 static cl::opt<bool> EnableMaskedInterleavedMemAccesses( 244 "enable-masked-interleaved-mem-accesses", cl::init(false), cl::Hidden, 245 cl::desc("Enable vectorization on masked interleaved memory accesses in a loop")); 246 247 static cl::opt<unsigned> TinyTripCountInterleaveThreshold( 248 "tiny-trip-count-interleave-threshold", cl::init(128), cl::Hidden, 249 cl::desc("We don't interleave loops with a estimated constant trip count " 250 "below this number")); 251 252 static cl::opt<unsigned> ForceTargetNumScalarRegs( 253 "force-target-num-scalar-regs", cl::init(0), cl::Hidden, 254 cl::desc("A flag that overrides the target's number of scalar registers.")); 255 256 static cl::opt<unsigned> ForceTargetNumVectorRegs( 257 "force-target-num-vector-regs", cl::init(0), cl::Hidden, 258 cl::desc("A flag that overrides the target's number of vector registers.")); 259 260 static cl::opt<unsigned> ForceTargetMaxScalarInterleaveFactor( 261 "force-target-max-scalar-interleave", cl::init(0), cl::Hidden, 262 cl::desc("A flag that overrides the target's max interleave factor for " 263 "scalar loops.")); 264 265 static cl::opt<unsigned> ForceTargetMaxVectorInterleaveFactor( 266 "force-target-max-vector-interleave", cl::init(0), cl::Hidden, 267 cl::desc("A flag that overrides the target's max interleave factor for " 268 "vectorized loops.")); 269 270 static cl::opt<unsigned> ForceTargetInstructionCost( 271 "force-target-instruction-cost", cl::init(0), cl::Hidden, 272 cl::desc("A flag that overrides the target's expected cost for " 273 "an instruction to a single constant value. Mostly " 274 "useful for getting consistent testing.")); 275 276 static cl::opt<bool> ForceTargetSupportsScalableVectors( 277 "force-target-supports-scalable-vectors", cl::init(false), cl::Hidden, 278 cl::desc( 279 "Pretend that scalable vectors are supported, even if the target does " 280 "not support them. This flag should only be used for testing.")); 281 282 static cl::opt<unsigned> SmallLoopCost( 283 "small-loop-cost", cl::init(20), cl::Hidden, 284 cl::desc( 285 "The cost of a loop that is considered 'small' by the interleaver.")); 286 287 static cl::opt<bool> LoopVectorizeWithBlockFrequency( 288 "loop-vectorize-with-block-frequency", cl::init(true), cl::Hidden, 289 cl::desc("Enable the use of the block frequency analysis to access PGO " 290 "heuristics minimizing code growth in cold regions and being more " 291 "aggressive in hot regions.")); 292 293 // Runtime interleave loops for load/store throughput. 294 static cl::opt<bool> EnableLoadStoreRuntimeInterleave( 295 "enable-loadstore-runtime-interleave", cl::init(true), cl::Hidden, 296 cl::desc( 297 "Enable runtime interleaving until load/store ports are saturated")); 298 299 /// Interleave small loops with scalar reductions. 300 static cl::opt<bool> InterleaveSmallLoopScalarReduction( 301 "interleave-small-loop-scalar-reduction", cl::init(false), cl::Hidden, 302 cl::desc("Enable interleaving for loops with small iteration counts that " 303 "contain scalar reductions to expose ILP.")); 304 305 /// The number of stores in a loop that are allowed to need predication. 306 static cl::opt<unsigned> NumberOfStoresToPredicate( 307 "vectorize-num-stores-pred", cl::init(1), cl::Hidden, 308 cl::desc("Max number of stores to be predicated behind an if.")); 309 310 static cl::opt<bool> EnableIndVarRegisterHeur( 311 "enable-ind-var-reg-heur", cl::init(true), cl::Hidden, 312 cl::desc("Count the induction variable only once when interleaving")); 313 314 static cl::opt<bool> EnableCondStoresVectorization( 315 "enable-cond-stores-vec", cl::init(true), cl::Hidden, 316 cl::desc("Enable if predication of stores during vectorization.")); 317 318 static cl::opt<unsigned> MaxNestedScalarReductionIC( 319 "max-nested-scalar-reduction-interleave", cl::init(2), cl::Hidden, 320 cl::desc("The maximum interleave count to use when interleaving a scalar " 321 "reduction in a nested loop.")); 322 323 static cl::opt<bool> 324 PreferInLoopReductions("prefer-inloop-reductions", cl::init(false), 325 cl::Hidden, 326 cl::desc("Prefer in-loop vector reductions, " 327 "overriding the targets preference.")); 328 329 static cl::opt<bool> PreferPredicatedReductionSelect( 330 "prefer-predicated-reduction-select", cl::init(false), cl::Hidden, 331 cl::desc( 332 "Prefer predicating a reduction operation over an after loop select.")); 333 334 cl::opt<bool> EnableVPlanNativePath( 335 "enable-vplan-native-path", cl::init(false), cl::Hidden, 336 cl::desc("Enable VPlan-native vectorization path with " 337 "support for outer loop vectorization.")); 338 339 // FIXME: Remove this switch once we have divergence analysis. Currently we 340 // assume divergent non-backedge branches when this switch is true. 341 cl::opt<bool> EnableVPlanPredication( 342 "enable-vplan-predication", cl::init(false), cl::Hidden, 343 cl::desc("Enable VPlan-native vectorization path predicator with " 344 "support for outer loop vectorization.")); 345 346 // This flag enables the stress testing of the VPlan H-CFG construction in the 347 // VPlan-native vectorization path. It must be used in conjuction with 348 // -enable-vplan-native-path. -vplan-verify-hcfg can also be used to enable the 349 // verification of the H-CFGs built. 350 static cl::opt<bool> VPlanBuildStressTest( 351 "vplan-build-stress-test", cl::init(false), cl::Hidden, 352 cl::desc( 353 "Build VPlan for every supported loop nest in the function and bail " 354 "out right after the build (stress test the VPlan H-CFG construction " 355 "in the VPlan-native vectorization path).")); 356 357 cl::opt<bool> llvm::EnableLoopInterleaving( 358 "interleave-loops", cl::init(true), cl::Hidden, 359 cl::desc("Enable loop interleaving in Loop vectorization passes")); 360 cl::opt<bool> llvm::EnableLoopVectorization( 361 "vectorize-loops", cl::init(true), cl::Hidden, 362 cl::desc("Run the Loop vectorization passes")); 363 364 /// A helper function that returns the type of loaded or stored value. 365 static Type *getMemInstValueType(Value *I) { 366 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 367 "Expected Load or Store instruction"); 368 if (auto *LI = dyn_cast<LoadInst>(I)) 369 return LI->getType(); 370 return cast<StoreInst>(I)->getValueOperand()->getType(); 371 } 372 373 /// A helper function that returns true if the given type is irregular. The 374 /// type is irregular if its allocated size doesn't equal the store size of an 375 /// element of the corresponding vector type at the given vectorization factor. 376 static bool hasIrregularType(Type *Ty, const DataLayout &DL, ElementCount VF) { 377 // Determine if an array of VF elements of type Ty is "bitcast compatible" 378 // with a <VF x Ty> vector. 379 if (VF.isVector()) { 380 auto *VectorTy = VectorType::get(Ty, VF); 381 return TypeSize::get(VF.getKnownMinValue() * 382 DL.getTypeAllocSize(Ty).getFixedValue(), 383 VF.isScalable()) != DL.getTypeStoreSize(VectorTy); 384 } 385 386 // If the vectorization factor is one, we just check if an array of type Ty 387 // requires padding between elements. 388 return DL.getTypeAllocSizeInBits(Ty) != DL.getTypeSizeInBits(Ty); 389 } 390 391 /// A helper function that returns the reciprocal of the block probability of 392 /// predicated blocks. If we return X, we are assuming the predicated block 393 /// will execute once for every X iterations of the loop header. 394 /// 395 /// TODO: We should use actual block probability here, if available. Currently, 396 /// we always assume predicated blocks have a 50% chance of executing. 397 static unsigned getReciprocalPredBlockProb() { return 2; } 398 399 /// A helper function that adds a 'fast' flag to floating-point operations. 400 static Value *addFastMathFlag(Value *V) { 401 if (isa<FPMathOperator>(V)) 402 cast<Instruction>(V)->setFastMathFlags(FastMathFlags::getFast()); 403 return V; 404 } 405 406 /// A helper function that returns an integer or floating-point constant with 407 /// value C. 408 static Constant *getSignedIntOrFpConstant(Type *Ty, int64_t C) { 409 return Ty->isIntegerTy() ? ConstantInt::getSigned(Ty, C) 410 : ConstantFP::get(Ty, C); 411 } 412 413 /// Returns "best known" trip count for the specified loop \p L as defined by 414 /// the following procedure: 415 /// 1) Returns exact trip count if it is known. 416 /// 2) Returns expected trip count according to profile data if any. 417 /// 3) Returns upper bound estimate if it is known. 418 /// 4) Returns None if all of the above failed. 419 static Optional<unsigned> getSmallBestKnownTC(ScalarEvolution &SE, Loop *L) { 420 // Check if exact trip count is known. 421 if (unsigned ExpectedTC = SE.getSmallConstantTripCount(L)) 422 return ExpectedTC; 423 424 // Check if there is an expected trip count available from profile data. 425 if (LoopVectorizeWithBlockFrequency) 426 if (auto EstimatedTC = getLoopEstimatedTripCount(L)) 427 return EstimatedTC; 428 429 // Check if upper bound estimate is known. 430 if (unsigned ExpectedTC = SE.getSmallConstantMaxTripCount(L)) 431 return ExpectedTC; 432 433 return None; 434 } 435 436 namespace llvm { 437 438 /// InnerLoopVectorizer vectorizes loops which contain only one basic 439 /// block to a specified vectorization factor (VF). 440 /// This class performs the widening of scalars into vectors, or multiple 441 /// scalars. This class also implements the following features: 442 /// * It inserts an epilogue loop for handling loops that don't have iteration 443 /// counts that are known to be a multiple of the vectorization factor. 444 /// * It handles the code generation for reduction variables. 445 /// * Scalarization (implementation using scalars) of un-vectorizable 446 /// instructions. 447 /// InnerLoopVectorizer does not perform any vectorization-legality 448 /// checks, and relies on the caller to check for the different legality 449 /// aspects. The InnerLoopVectorizer relies on the 450 /// LoopVectorizationLegality class to provide information about the induction 451 /// and reduction variables that were found to a given vectorization factor. 452 class InnerLoopVectorizer { 453 public: 454 InnerLoopVectorizer(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 455 LoopInfo *LI, DominatorTree *DT, 456 const TargetLibraryInfo *TLI, 457 const TargetTransformInfo *TTI, AssumptionCache *AC, 458 OptimizationRemarkEmitter *ORE, ElementCount VecWidth, 459 unsigned UnrollFactor, LoopVectorizationLegality *LVL, 460 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 461 ProfileSummaryInfo *PSI) 462 : OrigLoop(OrigLoop), PSE(PSE), LI(LI), DT(DT), TLI(TLI), TTI(TTI), 463 AC(AC), ORE(ORE), VF(VecWidth), UF(UnrollFactor), 464 Builder(PSE.getSE()->getContext()), 465 VectorLoopValueMap(UnrollFactor, VecWidth), Legal(LVL), Cost(CM), 466 BFI(BFI), PSI(PSI) { 467 // Query this against the original loop and save it here because the profile 468 // of the original loop header may change as the transformation happens. 469 OptForSizeBasedOnProfile = llvm::shouldOptimizeForSize( 470 OrigLoop->getHeader(), PSI, BFI, PGSOQueryType::IRPass); 471 } 472 473 virtual ~InnerLoopVectorizer() = default; 474 475 /// Create a new empty loop that will contain vectorized instructions later 476 /// on, while the old loop will be used as the scalar remainder. Control flow 477 /// is generated around the vectorized (and scalar epilogue) loops consisting 478 /// of various checks and bypasses. Return the pre-header block of the new 479 /// loop. 480 /// In the case of epilogue vectorization, this function is overriden to 481 /// handle the more complex control flow around the loops. 482 virtual BasicBlock *createVectorizedLoopSkeleton(); 483 484 /// Widen a single instruction within the innermost loop. 485 void widenInstruction(Instruction &I, VPValue *Def, VPUser &Operands, 486 VPTransformState &State); 487 488 /// Widen a single call instruction within the innermost loop. 489 void widenCallInstruction(CallInst &I, VPValue *Def, VPUser &ArgOperands, 490 VPTransformState &State); 491 492 /// Widen a single select instruction within the innermost loop. 493 void widenSelectInstruction(SelectInst &I, VPValue *VPDef, VPUser &Operands, 494 bool InvariantCond, VPTransformState &State); 495 496 /// Fix the vectorized code, taking care of header phi's, live-outs, and more. 497 void fixVectorizedLoop(VPTransformState &State); 498 499 // Return true if any runtime check is added. 500 bool areSafetyChecksAdded() { return AddedSafetyChecks; } 501 502 /// A type for vectorized values in the new loop. Each value from the 503 /// original loop, when vectorized, is represented by UF vector values in the 504 /// new unrolled loop, where UF is the unroll factor. 505 using VectorParts = SmallVector<Value *, 2>; 506 507 /// Vectorize a single GetElementPtrInst based on information gathered and 508 /// decisions taken during planning. 509 void widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, VPUser &Indices, 510 unsigned UF, ElementCount VF, bool IsPtrLoopInvariant, 511 SmallBitVector &IsIndexLoopInvariant, VPTransformState &State); 512 513 /// Vectorize a single PHINode in a block. This method handles the induction 514 /// variable canonicalization. It supports both VF = 1 for unrolled loops and 515 /// arbitrary length vectors. 516 void widenPHIInstruction(Instruction *PN, RecurrenceDescriptor *RdxDesc, 517 Value *StartV, VPValue *Def, 518 VPTransformState &State); 519 520 /// A helper function to scalarize a single Instruction in the innermost loop. 521 /// Generates a sequence of scalar instances for each lane between \p MinLane 522 /// and \p MaxLane, times each part between \p MinPart and \p MaxPart, 523 /// inclusive. Uses the VPValue operands from \p Operands instead of \p 524 /// Instr's operands. 525 void scalarizeInstruction(Instruction *Instr, VPValue *Def, VPUser &Operands, 526 const VPIteration &Instance, bool IfPredicateInstr, 527 VPTransformState &State); 528 529 /// Widen an integer or floating-point induction variable \p IV. If \p Trunc 530 /// is provided, the integer induction variable will first be truncated to 531 /// the corresponding type. 532 void widenIntOrFpInduction(PHINode *IV, Value *Start, TruncInst *Trunc, 533 VPValue *Def, VPValue *CastDef, 534 VPTransformState &State); 535 536 /// getOrCreateVectorValue and getOrCreateScalarValue coordinate to generate a 537 /// vector or scalar value on-demand if one is not yet available. When 538 /// vectorizing a loop, we visit the definition of an instruction before its 539 /// uses. When visiting the definition, we either vectorize or scalarize the 540 /// instruction, creating an entry for it in the corresponding map. (In some 541 /// cases, such as induction variables, we will create both vector and scalar 542 /// entries.) Then, as we encounter uses of the definition, we derive values 543 /// for each scalar or vector use unless such a value is already available. 544 /// For example, if we scalarize a definition and one of its uses is vector, 545 /// we build the required vector on-demand with an insertelement sequence 546 /// when visiting the use. Otherwise, if the use is scalar, we can use the 547 /// existing scalar definition. 548 /// 549 /// Return a value in the new loop corresponding to \p V from the original 550 /// loop at unroll index \p Part. If the value has already been vectorized, 551 /// the corresponding vector entry in VectorLoopValueMap is returned. If, 552 /// however, the value has a scalar entry in VectorLoopValueMap, we construct 553 /// a new vector value on-demand by inserting the scalar values into a vector 554 /// with an insertelement sequence. If the value has been neither vectorized 555 /// nor scalarized, it must be loop invariant, so we simply broadcast the 556 /// value into a vector. 557 Value *getOrCreateVectorValue(Value *V, unsigned Part); 558 559 void setVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 560 VectorLoopValueMap.setVectorValue(Scalar, Part, Vector); 561 } 562 563 void resetVectorValue(Value *Scalar, unsigned Part, Value *Vector) { 564 VectorLoopValueMap.resetVectorValue(Scalar, Part, Vector); 565 } 566 567 void setScalarValue(Value *Scalar, const VPIteration &Instance, Value *V) { 568 VectorLoopValueMap.setScalarValue(Scalar, Instance, V); 569 } 570 571 /// Return a value in the new loop corresponding to \p V from the original 572 /// loop at unroll and vector indices \p Instance. If the value has been 573 /// vectorized but not scalarized, the necessary extractelement instruction 574 /// will be generated. 575 Value *getOrCreateScalarValue(Value *V, const VPIteration &Instance); 576 577 /// Construct the vector value of a scalarized value \p V one lane at a time. 578 void packScalarIntoVectorValue(Value *V, const VPIteration &Instance); 579 580 void packScalarIntoVectorValue(VPValue *Def, const VPIteration &Instance, 581 VPTransformState &State); 582 583 /// Try to vectorize interleaved access group \p Group with the base address 584 /// given in \p Addr, optionally masking the vector operations if \p 585 /// BlockInMask is non-null. Use \p State to translate given VPValues to IR 586 /// values in the vectorized loop. 587 void vectorizeInterleaveGroup(const InterleaveGroup<Instruction> *Group, 588 ArrayRef<VPValue *> VPDefs, 589 VPTransformState &State, VPValue *Addr, 590 ArrayRef<VPValue *> StoredValues, 591 VPValue *BlockInMask = nullptr); 592 593 /// Vectorize Load and Store instructions with the base address given in \p 594 /// Addr, optionally masking the vector operations if \p BlockInMask is 595 /// non-null. Use \p State to translate given VPValues to IR values in the 596 /// vectorized loop. 597 void vectorizeMemoryInstruction(Instruction *Instr, VPTransformState &State, 598 VPValue *Def, VPValue *Addr, 599 VPValue *StoredValue, VPValue *BlockInMask); 600 601 /// Set the debug location in the builder using the debug location in 602 /// the instruction. 603 void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr); 604 605 /// Fix the non-induction PHIs in the OrigPHIsToFix vector. 606 void fixNonInductionPHIs(VPTransformState &State); 607 608 /// Create a broadcast instruction. This method generates a broadcast 609 /// instruction (shuffle) for loop invariant values and for the induction 610 /// value. If this is the induction variable then we extend it to N, N+1, ... 611 /// this is needed because each iteration in the loop corresponds to a SIMD 612 /// element. 613 virtual Value *getBroadcastInstrs(Value *V); 614 615 protected: 616 friend class LoopVectorizationPlanner; 617 618 /// A small list of PHINodes. 619 using PhiVector = SmallVector<PHINode *, 4>; 620 621 /// A type for scalarized values in the new loop. Each value from the 622 /// original loop, when scalarized, is represented by UF x VF scalar values 623 /// in the new unrolled loop, where UF is the unroll factor and VF is the 624 /// vectorization factor. 625 using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>; 626 627 /// Set up the values of the IVs correctly when exiting the vector loop. 628 void fixupIVUsers(PHINode *OrigPhi, const InductionDescriptor &II, 629 Value *CountRoundDown, Value *EndValue, 630 BasicBlock *MiddleBlock); 631 632 /// Create a new induction variable inside L. 633 PHINode *createInductionVariable(Loop *L, Value *Start, Value *End, 634 Value *Step, Instruction *DL); 635 636 /// Handle all cross-iteration phis in the header. 637 void fixCrossIterationPHIs(VPTransformState &State); 638 639 /// Fix a first-order recurrence. This is the second phase of vectorizing 640 /// this phi node. 641 void fixFirstOrderRecurrence(PHINode *Phi, VPTransformState &State); 642 643 /// Fix a reduction cross-iteration phi. This is the second phase of 644 /// vectorizing this phi node. 645 void fixReduction(PHINode *Phi, VPTransformState &State); 646 647 /// Clear NSW/NUW flags from reduction instructions if necessary. 648 void clearReductionWrapFlags(RecurrenceDescriptor &RdxDesc); 649 650 /// Fixup the LCSSA phi nodes in the unique exit block. This simply 651 /// means we need to add the appropriate incoming value from the middle 652 /// block as exiting edges from the scalar epilogue loop (if present) are 653 /// already in place, and we exit the vector loop exclusively to the middle 654 /// block. 655 void fixLCSSAPHIs(VPTransformState &State); 656 657 /// Iteratively sink the scalarized operands of a predicated instruction into 658 /// the block that was created for it. 659 void sinkScalarOperands(Instruction *PredInst); 660 661 /// Shrinks vector element sizes to the smallest bitwidth they can be legally 662 /// represented as. 663 void truncateToMinimalBitwidths(); 664 665 /// This function adds (StartIdx, StartIdx + Step, StartIdx + 2*Step, ...) 666 /// to each vector element of Val. The sequence starts at StartIndex. 667 /// \p Opcode is relevant for FP induction variable. 668 virtual Value *getStepVector(Value *Val, int StartIdx, Value *Step, 669 Instruction::BinaryOps Opcode = 670 Instruction::BinaryOpsEnd); 671 672 /// Compute scalar induction steps. \p ScalarIV is the scalar induction 673 /// variable on which to base the steps, \p Step is the size of the step, and 674 /// \p EntryVal is the value from the original loop that maps to the steps. 675 /// Note that \p EntryVal doesn't have to be an induction variable - it 676 /// can also be a truncate instruction. 677 void buildScalarSteps(Value *ScalarIV, Value *Step, Instruction *EntryVal, 678 const InductionDescriptor &ID, VPValue *Def, 679 VPValue *CastDef, VPTransformState &State); 680 681 /// Create a vector induction phi node based on an existing scalar one. \p 682 /// EntryVal is the value from the original loop that maps to the vector phi 683 /// node, and \p Step is the loop-invariant step. If \p EntryVal is a 684 /// truncate instruction, instead of widening the original IV, we widen a 685 /// version of the IV truncated to \p EntryVal's type. 686 void createVectorIntOrFpInductionPHI(const InductionDescriptor &II, 687 Value *Step, Value *Start, 688 Instruction *EntryVal, VPValue *Def, 689 VPValue *CastDef, 690 VPTransformState &State); 691 692 /// Returns true if an instruction \p I should be scalarized instead of 693 /// vectorized for the chosen vectorization factor. 694 bool shouldScalarizeInstruction(Instruction *I) const; 695 696 /// Returns true if we should generate a scalar version of \p IV. 697 bool needsScalarInduction(Instruction *IV) const; 698 699 /// If there is a cast involved in the induction variable \p ID, which should 700 /// be ignored in the vectorized loop body, this function records the 701 /// VectorLoopValue of the respective Phi also as the VectorLoopValue of the 702 /// cast. We had already proved that the casted Phi is equal to the uncasted 703 /// Phi in the vectorized loop (under a runtime guard), and therefore 704 /// there is no need to vectorize the cast - the same value can be used in the 705 /// vector loop for both the Phi and the cast. 706 /// If \p VectorLoopValue is a scalarized value, \p Lane is also specified, 707 /// Otherwise, \p VectorLoopValue is a widened/vectorized value. 708 /// 709 /// \p EntryVal is the value from the original loop that maps to the vector 710 /// phi node and is used to distinguish what is the IV currently being 711 /// processed - original one (if \p EntryVal is a phi corresponding to the 712 /// original IV) or the "newly-created" one based on the proof mentioned above 713 /// (see also buildScalarSteps() and createVectorIntOrFPInductionPHI()). In the 714 /// latter case \p EntryVal is a TruncInst and we must not record anything for 715 /// that IV, but it's error-prone to expect callers of this routine to care 716 /// about that, hence this explicit parameter. 717 void recordVectorLoopValueForInductionCast( 718 const InductionDescriptor &ID, const Instruction *EntryVal, 719 Value *VectorLoopValue, VPValue *CastDef, VPTransformState &State, 720 unsigned Part, unsigned Lane = UINT_MAX); 721 722 /// Generate a shuffle sequence that will reverse the vector Vec. 723 virtual Value *reverseVector(Value *Vec); 724 725 /// Returns (and creates if needed) the original loop trip count. 726 Value *getOrCreateTripCount(Loop *NewLoop); 727 728 /// Returns (and creates if needed) the trip count of the widened loop. 729 Value *getOrCreateVectorTripCount(Loop *NewLoop); 730 731 /// Returns a bitcasted value to the requested vector type. 732 /// Also handles bitcasts of vector<float> <-> vector<pointer> types. 733 Value *createBitOrPointerCast(Value *V, VectorType *DstVTy, 734 const DataLayout &DL); 735 736 /// Emit a bypass check to see if the vector trip count is zero, including if 737 /// it overflows. 738 void emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass); 739 740 /// Emit a bypass check to see if all of the SCEV assumptions we've 741 /// had to make are correct. 742 void emitSCEVChecks(Loop *L, BasicBlock *Bypass); 743 744 /// Emit bypass checks to check any memory assumptions we may have made. 745 void emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass); 746 747 /// Compute the transformed value of Index at offset StartValue using step 748 /// StepValue. 749 /// For integer induction, returns StartValue + Index * StepValue. 750 /// For pointer induction, returns StartValue[Index * StepValue]. 751 /// FIXME: The newly created binary instructions should contain nsw/nuw 752 /// flags, which can be found from the original scalar operations. 753 Value *emitTransformedIndex(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, 754 const DataLayout &DL, 755 const InductionDescriptor &ID) const; 756 757 /// Emit basic blocks (prefixed with \p Prefix) for the iteration check, 758 /// vector loop preheader, middle block and scalar preheader. Also 759 /// allocate a loop object for the new vector loop and return it. 760 Loop *createVectorLoopSkeleton(StringRef Prefix); 761 762 /// Create new phi nodes for the induction variables to resume iteration count 763 /// in the scalar epilogue, from where the vectorized loop left off (given by 764 /// \p VectorTripCount). 765 /// In cases where the loop skeleton is more complicated (eg. epilogue 766 /// vectorization) and the resume values can come from an additional bypass 767 /// block, the \p AdditionalBypass pair provides information about the bypass 768 /// block and the end value on the edge from bypass to this loop. 769 void createInductionResumeValues( 770 Loop *L, Value *VectorTripCount, 771 std::pair<BasicBlock *, Value *> AdditionalBypass = {nullptr, nullptr}); 772 773 /// Complete the loop skeleton by adding debug MDs, creating appropriate 774 /// conditional branches in the middle block, preparing the builder and 775 /// running the verifier. Take in the vector loop \p L as argument, and return 776 /// the preheader of the completed vector loop. 777 BasicBlock *completeLoopSkeleton(Loop *L, MDNode *OrigLoopID); 778 779 /// Add additional metadata to \p To that was not present on \p Orig. 780 /// 781 /// Currently this is used to add the noalias annotations based on the 782 /// inserted memchecks. Use this for instructions that are *cloned* into the 783 /// vector loop. 784 void addNewMetadata(Instruction *To, const Instruction *Orig); 785 786 /// Add metadata from one instruction to another. 787 /// 788 /// This includes both the original MDs from \p From and additional ones (\see 789 /// addNewMetadata). Use this for *newly created* instructions in the vector 790 /// loop. 791 void addMetadata(Instruction *To, Instruction *From); 792 793 /// Similar to the previous function but it adds the metadata to a 794 /// vector of instructions. 795 void addMetadata(ArrayRef<Value *> To, Instruction *From); 796 797 /// Allow subclasses to override and print debug traces before/after vplan 798 /// execution, when trace information is requested. 799 virtual void printDebugTracesAtStart(){}; 800 virtual void printDebugTracesAtEnd(){}; 801 802 /// The original loop. 803 Loop *OrigLoop; 804 805 /// A wrapper around ScalarEvolution used to add runtime SCEV checks. Applies 806 /// dynamic knowledge to simplify SCEV expressions and converts them to a 807 /// more usable form. 808 PredicatedScalarEvolution &PSE; 809 810 /// Loop Info. 811 LoopInfo *LI; 812 813 /// Dominator Tree. 814 DominatorTree *DT; 815 816 /// Alias Analysis. 817 AAResults *AA; 818 819 /// Target Library Info. 820 const TargetLibraryInfo *TLI; 821 822 /// Target Transform Info. 823 const TargetTransformInfo *TTI; 824 825 /// Assumption Cache. 826 AssumptionCache *AC; 827 828 /// Interface to emit optimization remarks. 829 OptimizationRemarkEmitter *ORE; 830 831 /// LoopVersioning. It's only set up (non-null) if memchecks were 832 /// used. 833 /// 834 /// This is currently only used to add no-alias metadata based on the 835 /// memchecks. The actually versioning is performed manually. 836 std::unique_ptr<LoopVersioning> LVer; 837 838 /// The vectorization SIMD factor to use. Each vector will have this many 839 /// vector elements. 840 ElementCount VF; 841 842 /// The vectorization unroll factor to use. Each scalar is vectorized to this 843 /// many different vector instructions. 844 unsigned UF; 845 846 /// The builder that we use 847 IRBuilder<> Builder; 848 849 // --- Vectorization state --- 850 851 /// The vector-loop preheader. 852 BasicBlock *LoopVectorPreHeader; 853 854 /// The scalar-loop preheader. 855 BasicBlock *LoopScalarPreHeader; 856 857 /// Middle Block between the vector and the scalar. 858 BasicBlock *LoopMiddleBlock; 859 860 /// The (unique) ExitBlock of the scalar loop. Note that 861 /// there can be multiple exiting edges reaching this block. 862 BasicBlock *LoopExitBlock; 863 864 /// The vector loop body. 865 BasicBlock *LoopVectorBody; 866 867 /// The scalar loop body. 868 BasicBlock *LoopScalarBody; 869 870 /// A list of all bypass blocks. The first block is the entry of the loop. 871 SmallVector<BasicBlock *, 4> LoopBypassBlocks; 872 873 /// The new Induction variable which was added to the new block. 874 PHINode *Induction = nullptr; 875 876 /// The induction variable of the old basic block. 877 PHINode *OldInduction = nullptr; 878 879 /// Maps values from the original loop to their corresponding values in the 880 /// vectorized loop. A key value can map to either vector values, scalar 881 /// values or both kinds of values, depending on whether the key was 882 /// vectorized and scalarized. 883 VectorizerValueMap VectorLoopValueMap; 884 885 /// Store instructions that were predicated. 886 SmallVector<Instruction *, 4> PredicatedInstructions; 887 888 /// Trip count of the original loop. 889 Value *TripCount = nullptr; 890 891 /// Trip count of the widened loop (TripCount - TripCount % (VF*UF)) 892 Value *VectorTripCount = nullptr; 893 894 /// The legality analysis. 895 LoopVectorizationLegality *Legal; 896 897 /// The profitablity analysis. 898 LoopVectorizationCostModel *Cost; 899 900 // Record whether runtime checks are added. 901 bool AddedSafetyChecks = false; 902 903 // Holds the end values for each induction variable. We save the end values 904 // so we can later fix-up the external users of the induction variables. 905 DenseMap<PHINode *, Value *> IVEndValues; 906 907 // Vector of original scalar PHIs whose corresponding widened PHIs need to be 908 // fixed up at the end of vector code generation. 909 SmallVector<PHINode *, 8> OrigPHIsToFix; 910 911 /// BFI and PSI are used to check for profile guided size optimizations. 912 BlockFrequencyInfo *BFI; 913 ProfileSummaryInfo *PSI; 914 915 // Whether this loop should be optimized for size based on profile guided size 916 // optimizatios. 917 bool OptForSizeBasedOnProfile; 918 }; 919 920 class InnerLoopUnroller : public InnerLoopVectorizer { 921 public: 922 InnerLoopUnroller(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 923 LoopInfo *LI, DominatorTree *DT, 924 const TargetLibraryInfo *TLI, 925 const TargetTransformInfo *TTI, AssumptionCache *AC, 926 OptimizationRemarkEmitter *ORE, unsigned UnrollFactor, 927 LoopVectorizationLegality *LVL, 928 LoopVectorizationCostModel *CM, BlockFrequencyInfo *BFI, 929 ProfileSummaryInfo *PSI) 930 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 931 ElementCount::getFixed(1), UnrollFactor, LVL, CM, 932 BFI, PSI) {} 933 934 private: 935 Value *getBroadcastInstrs(Value *V) override; 936 Value *getStepVector(Value *Val, int StartIdx, Value *Step, 937 Instruction::BinaryOps Opcode = 938 Instruction::BinaryOpsEnd) override; 939 Value *reverseVector(Value *Vec) override; 940 }; 941 942 /// Encapsulate information regarding vectorization of a loop and its epilogue. 943 /// This information is meant to be updated and used across two stages of 944 /// epilogue vectorization. 945 struct EpilogueLoopVectorizationInfo { 946 ElementCount MainLoopVF = ElementCount::getFixed(0); 947 unsigned MainLoopUF = 0; 948 ElementCount EpilogueVF = ElementCount::getFixed(0); 949 unsigned EpilogueUF = 0; 950 BasicBlock *MainLoopIterationCountCheck = nullptr; 951 BasicBlock *EpilogueIterationCountCheck = nullptr; 952 BasicBlock *SCEVSafetyCheck = nullptr; 953 BasicBlock *MemSafetyCheck = nullptr; 954 Value *TripCount = nullptr; 955 Value *VectorTripCount = nullptr; 956 957 EpilogueLoopVectorizationInfo(unsigned MVF, unsigned MUF, unsigned EVF, 958 unsigned EUF) 959 : MainLoopVF(ElementCount::getFixed(MVF)), MainLoopUF(MUF), 960 EpilogueVF(ElementCount::getFixed(EVF)), EpilogueUF(EUF) { 961 assert(EUF == 1 && 962 "A high UF for the epilogue loop is likely not beneficial."); 963 } 964 }; 965 966 /// An extension of the inner loop vectorizer that creates a skeleton for a 967 /// vectorized loop that has its epilogue (residual) also vectorized. 968 /// The idea is to run the vplan on a given loop twice, firstly to setup the 969 /// skeleton and vectorize the main loop, and secondly to complete the skeleton 970 /// from the first step and vectorize the epilogue. This is achieved by 971 /// deriving two concrete strategy classes from this base class and invoking 972 /// them in succession from the loop vectorizer planner. 973 class InnerLoopAndEpilogueVectorizer : public InnerLoopVectorizer { 974 public: 975 InnerLoopAndEpilogueVectorizer( 976 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 977 DominatorTree *DT, const TargetLibraryInfo *TLI, 978 const TargetTransformInfo *TTI, AssumptionCache *AC, 979 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 980 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 981 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 982 : InnerLoopVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 983 EPI.MainLoopVF, EPI.MainLoopUF, LVL, CM, BFI, PSI), 984 EPI(EPI) {} 985 986 // Override this function to handle the more complex control flow around the 987 // three loops. 988 BasicBlock *createVectorizedLoopSkeleton() final override { 989 return createEpilogueVectorizedLoopSkeleton(); 990 } 991 992 /// The interface for creating a vectorized skeleton using one of two 993 /// different strategies, each corresponding to one execution of the vplan 994 /// as described above. 995 virtual BasicBlock *createEpilogueVectorizedLoopSkeleton() = 0; 996 997 /// Holds and updates state information required to vectorize the main loop 998 /// and its epilogue in two separate passes. This setup helps us avoid 999 /// regenerating and recomputing runtime safety checks. It also helps us to 1000 /// shorten the iteration-count-check path length for the cases where the 1001 /// iteration count of the loop is so small that the main vector loop is 1002 /// completely skipped. 1003 EpilogueLoopVectorizationInfo &EPI; 1004 }; 1005 1006 /// A specialized derived class of inner loop vectorizer that performs 1007 /// vectorization of *main* loops in the process of vectorizing loops and their 1008 /// epilogues. 1009 class EpilogueVectorizerMainLoop : public InnerLoopAndEpilogueVectorizer { 1010 public: 1011 EpilogueVectorizerMainLoop( 1012 Loop *OrigLoop, PredicatedScalarEvolution &PSE, LoopInfo *LI, 1013 DominatorTree *DT, const TargetLibraryInfo *TLI, 1014 const TargetTransformInfo *TTI, AssumptionCache *AC, 1015 OptimizationRemarkEmitter *ORE, EpilogueLoopVectorizationInfo &EPI, 1016 LoopVectorizationLegality *LVL, llvm::LoopVectorizationCostModel *CM, 1017 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1018 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1019 EPI, LVL, CM, BFI, PSI) {} 1020 /// Implements the interface for creating a vectorized skeleton using the 1021 /// *main loop* strategy (ie the first pass of vplan execution). 1022 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1023 1024 protected: 1025 /// Emits an iteration count bypass check once for the main loop (when \p 1026 /// ForEpilogue is false) and once for the epilogue loop (when \p 1027 /// ForEpilogue is true). 1028 BasicBlock *emitMinimumIterationCountCheck(Loop *L, BasicBlock *Bypass, 1029 bool ForEpilogue); 1030 void printDebugTracesAtStart() override; 1031 void printDebugTracesAtEnd() override; 1032 }; 1033 1034 // A specialized derived class of inner loop vectorizer that performs 1035 // vectorization of *epilogue* loops in the process of vectorizing loops and 1036 // their epilogues. 1037 class EpilogueVectorizerEpilogueLoop : public InnerLoopAndEpilogueVectorizer { 1038 public: 1039 EpilogueVectorizerEpilogueLoop(Loop *OrigLoop, PredicatedScalarEvolution &PSE, 1040 LoopInfo *LI, DominatorTree *DT, 1041 const TargetLibraryInfo *TLI, 1042 const TargetTransformInfo *TTI, AssumptionCache *AC, 1043 OptimizationRemarkEmitter *ORE, 1044 EpilogueLoopVectorizationInfo &EPI, 1045 LoopVectorizationLegality *LVL, 1046 llvm::LoopVectorizationCostModel *CM, 1047 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI) 1048 : InnerLoopAndEpilogueVectorizer(OrigLoop, PSE, LI, DT, TLI, TTI, AC, ORE, 1049 EPI, LVL, CM, BFI, PSI) {} 1050 /// Implements the interface for creating a vectorized skeleton using the 1051 /// *epilogue loop* strategy (ie the second pass of vplan execution). 1052 BasicBlock *createEpilogueVectorizedLoopSkeleton() final override; 1053 1054 protected: 1055 /// Emits an iteration count bypass check after the main vector loop has 1056 /// finished to see if there are any iterations left to execute by either 1057 /// the vector epilogue or the scalar epilogue. 1058 BasicBlock *emitMinimumVectorEpilogueIterCountCheck(Loop *L, 1059 BasicBlock *Bypass, 1060 BasicBlock *Insert); 1061 void printDebugTracesAtStart() override; 1062 void printDebugTracesAtEnd() override; 1063 }; 1064 } // end namespace llvm 1065 1066 /// Look for a meaningful debug location on the instruction or it's 1067 /// operands. 1068 static Instruction *getDebugLocFromInstOrOperands(Instruction *I) { 1069 if (!I) 1070 return I; 1071 1072 DebugLoc Empty; 1073 if (I->getDebugLoc() != Empty) 1074 return I; 1075 1076 for (Use &Op : I->operands()) { 1077 if (Instruction *OpInst = dyn_cast<Instruction>(Op)) 1078 if (OpInst->getDebugLoc() != Empty) 1079 return OpInst; 1080 } 1081 1082 return I; 1083 } 1084 1085 void InnerLoopVectorizer::setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) { 1086 if (const Instruction *Inst = dyn_cast_or_null<Instruction>(Ptr)) { 1087 const DILocation *DIL = Inst->getDebugLoc(); 1088 if (DIL && Inst->getFunction()->isDebugInfoForProfiling() && 1089 !isa<DbgInfoIntrinsic>(Inst)) { 1090 assert(!VF.isScalable() && "scalable vectors not yet supported."); 1091 auto NewDIL = 1092 DIL->cloneByMultiplyingDuplicationFactor(UF * VF.getKnownMinValue()); 1093 if (NewDIL) 1094 B.SetCurrentDebugLocation(NewDIL.getValue()); 1095 else 1096 LLVM_DEBUG(dbgs() 1097 << "Failed to create new discriminator: " 1098 << DIL->getFilename() << " Line: " << DIL->getLine()); 1099 } 1100 else 1101 B.SetCurrentDebugLocation(DIL); 1102 } else 1103 B.SetCurrentDebugLocation(DebugLoc()); 1104 } 1105 1106 /// Write a record \p DebugMsg about vectorization failure to the debug 1107 /// output stream. If \p I is passed, it is an instruction that prevents 1108 /// vectorization. 1109 #ifndef NDEBUG 1110 static void debugVectorizationFailure(const StringRef DebugMsg, 1111 Instruction *I) { 1112 dbgs() << "LV: Not vectorizing: " << DebugMsg; 1113 if (I != nullptr) 1114 dbgs() << " " << *I; 1115 else 1116 dbgs() << '.'; 1117 dbgs() << '\n'; 1118 } 1119 #endif 1120 1121 /// Create an analysis remark that explains why vectorization failed 1122 /// 1123 /// \p PassName is the name of the pass (e.g. can be AlwaysPrint). \p 1124 /// RemarkName is the identifier for the remark. If \p I is passed it is an 1125 /// instruction that prevents vectorization. Otherwise \p TheLoop is used for 1126 /// the location of the remark. \return the remark object that can be 1127 /// streamed to. 1128 static OptimizationRemarkAnalysis createLVAnalysis(const char *PassName, 1129 StringRef RemarkName, Loop *TheLoop, Instruction *I) { 1130 Value *CodeRegion = TheLoop->getHeader(); 1131 DebugLoc DL = TheLoop->getStartLoc(); 1132 1133 if (I) { 1134 CodeRegion = I->getParent(); 1135 // If there is no debug location attached to the instruction, revert back to 1136 // using the loop's. 1137 if (I->getDebugLoc()) 1138 DL = I->getDebugLoc(); 1139 } 1140 1141 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 1142 R << "loop not vectorized: "; 1143 return R; 1144 } 1145 1146 /// Return a value for Step multiplied by VF. 1147 static Value *createStepForVF(IRBuilder<> &B, Constant *Step, ElementCount VF) { 1148 assert(isa<ConstantInt>(Step) && "Expected an integer step"); 1149 Constant *StepVal = ConstantInt::get( 1150 Step->getType(), 1151 cast<ConstantInt>(Step)->getSExtValue() * VF.getKnownMinValue()); 1152 return VF.isScalable() ? B.CreateVScale(StepVal) : StepVal; 1153 } 1154 1155 namespace llvm { 1156 1157 void reportVectorizationFailure(const StringRef DebugMsg, 1158 const StringRef OREMsg, const StringRef ORETag, 1159 OptimizationRemarkEmitter *ORE, Loop *TheLoop, Instruction *I) { 1160 LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I)); 1161 LoopVectorizeHints Hints(TheLoop, true /* doesn't matter */, *ORE); 1162 ORE->emit(createLVAnalysis(Hints.vectorizeAnalysisPassName(), 1163 ORETag, TheLoop, I) << OREMsg); 1164 } 1165 1166 } // end namespace llvm 1167 1168 #ifndef NDEBUG 1169 /// \return string containing a file name and a line # for the given loop. 1170 static std::string getDebugLocString(const Loop *L) { 1171 std::string Result; 1172 if (L) { 1173 raw_string_ostream OS(Result); 1174 if (const DebugLoc LoopDbgLoc = L->getStartLoc()) 1175 LoopDbgLoc.print(OS); 1176 else 1177 // Just print the module name. 1178 OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier(); 1179 OS.flush(); 1180 } 1181 return Result; 1182 } 1183 #endif 1184 1185 void InnerLoopVectorizer::addNewMetadata(Instruction *To, 1186 const Instruction *Orig) { 1187 // If the loop was versioned with memchecks, add the corresponding no-alias 1188 // metadata. 1189 if (LVer && (isa<LoadInst>(Orig) || isa<StoreInst>(Orig))) 1190 LVer->annotateInstWithNoAlias(To, Orig); 1191 } 1192 1193 void InnerLoopVectorizer::addMetadata(Instruction *To, 1194 Instruction *From) { 1195 propagateMetadata(To, From); 1196 addNewMetadata(To, From); 1197 } 1198 1199 void InnerLoopVectorizer::addMetadata(ArrayRef<Value *> To, 1200 Instruction *From) { 1201 for (Value *V : To) { 1202 if (Instruction *I = dyn_cast<Instruction>(V)) 1203 addMetadata(I, From); 1204 } 1205 } 1206 1207 namespace llvm { 1208 1209 // Loop vectorization cost-model hints how the scalar epilogue loop should be 1210 // lowered. 1211 enum ScalarEpilogueLowering { 1212 1213 // The default: allowing scalar epilogues. 1214 CM_ScalarEpilogueAllowed, 1215 1216 // Vectorization with OptForSize: don't allow epilogues. 1217 CM_ScalarEpilogueNotAllowedOptSize, 1218 1219 // A special case of vectorisation with OptForSize: loops with a very small 1220 // trip count are considered for vectorization under OptForSize, thereby 1221 // making sure the cost of their loop body is dominant, free of runtime 1222 // guards and scalar iteration overheads. 1223 CM_ScalarEpilogueNotAllowedLowTripLoop, 1224 1225 // Loop hint predicate indicating an epilogue is undesired. 1226 CM_ScalarEpilogueNotNeededUsePredicate, 1227 1228 // Directive indicating we must either tail fold or not vectorize 1229 CM_ScalarEpilogueNotAllowedUsePredicate 1230 }; 1231 1232 /// LoopVectorizationCostModel - estimates the expected speedups due to 1233 /// vectorization. 1234 /// In many cases vectorization is not profitable. This can happen because of 1235 /// a number of reasons. In this class we mainly attempt to predict the 1236 /// expected speedup/slowdowns due to the supported instruction set. We use the 1237 /// TargetTransformInfo to query the different backends for the cost of 1238 /// different operations. 1239 class LoopVectorizationCostModel { 1240 public: 1241 LoopVectorizationCostModel(ScalarEpilogueLowering SEL, Loop *L, 1242 PredicatedScalarEvolution &PSE, LoopInfo *LI, 1243 LoopVectorizationLegality *Legal, 1244 const TargetTransformInfo &TTI, 1245 const TargetLibraryInfo *TLI, DemandedBits *DB, 1246 AssumptionCache *AC, 1247 OptimizationRemarkEmitter *ORE, const Function *F, 1248 const LoopVectorizeHints *Hints, 1249 InterleavedAccessInfo &IAI) 1250 : ScalarEpilogueStatus(SEL), TheLoop(L), PSE(PSE), LI(LI), Legal(Legal), 1251 TTI(TTI), TLI(TLI), DB(DB), AC(AC), ORE(ORE), TheFunction(F), 1252 Hints(Hints), InterleaveInfo(IAI) {} 1253 1254 /// \return An upper bound for the vectorization factor, or None if 1255 /// vectorization and interleaving should be avoided up front. 1256 Optional<ElementCount> computeMaxVF(ElementCount UserVF, unsigned UserIC); 1257 1258 /// \return True if runtime checks are required for vectorization, and false 1259 /// otherwise. 1260 bool runtimeChecksRequired(); 1261 1262 /// \return The most profitable vectorization factor and the cost of that VF. 1263 /// This method checks every power of two up to MaxVF. If UserVF is not ZERO 1264 /// then this vectorization factor will be selected if vectorization is 1265 /// possible. 1266 VectorizationFactor selectVectorizationFactor(ElementCount MaxVF); 1267 VectorizationFactor 1268 selectEpilogueVectorizationFactor(const ElementCount MaxVF, 1269 const LoopVectorizationPlanner &LVP); 1270 1271 /// Setup cost-based decisions for user vectorization factor. 1272 void selectUserVectorizationFactor(ElementCount UserVF) { 1273 collectUniformsAndScalars(UserVF); 1274 collectInstsToScalarize(UserVF); 1275 } 1276 1277 /// \return The size (in bits) of the smallest and widest types in the code 1278 /// that needs to be vectorized. We ignore values that remain scalar such as 1279 /// 64 bit loop indices. 1280 std::pair<unsigned, unsigned> getSmallestAndWidestTypes(); 1281 1282 /// \return The desired interleave count. 1283 /// If interleave count has been specified by metadata it will be returned. 1284 /// Otherwise, the interleave count is computed and returned. VF and LoopCost 1285 /// are the selected vectorization factor and the cost of the selected VF. 1286 unsigned selectInterleaveCount(ElementCount VF, unsigned LoopCost); 1287 1288 /// Memory access instruction may be vectorized in more than one way. 1289 /// Form of instruction after vectorization depends on cost. 1290 /// This function takes cost-based decisions for Load/Store instructions 1291 /// and collects them in a map. This decisions map is used for building 1292 /// the lists of loop-uniform and loop-scalar instructions. 1293 /// The calculated cost is saved with widening decision in order to 1294 /// avoid redundant calculations. 1295 void setCostBasedWideningDecision(ElementCount VF); 1296 1297 /// A struct that represents some properties of the register usage 1298 /// of a loop. 1299 struct RegisterUsage { 1300 /// Holds the number of loop invariant values that are used in the loop. 1301 /// The key is ClassID of target-provided register class. 1302 SmallMapVector<unsigned, unsigned, 4> LoopInvariantRegs; 1303 /// Holds the maximum number of concurrent live intervals in the loop. 1304 /// The key is ClassID of target-provided register class. 1305 SmallMapVector<unsigned, unsigned, 4> MaxLocalUsers; 1306 }; 1307 1308 /// \return Returns information about the register usages of the loop for the 1309 /// given vectorization factors. 1310 SmallVector<RegisterUsage, 8> 1311 calculateRegisterUsage(ArrayRef<ElementCount> VFs); 1312 1313 /// Collect values we want to ignore in the cost model. 1314 void collectValuesToIgnore(); 1315 1316 /// Split reductions into those that happen in the loop, and those that happen 1317 /// outside. In loop reductions are collected into InLoopReductionChains. 1318 void collectInLoopReductions(); 1319 1320 /// \returns The smallest bitwidth each instruction can be represented with. 1321 /// The vector equivalents of these instructions should be truncated to this 1322 /// type. 1323 const MapVector<Instruction *, uint64_t> &getMinimalBitwidths() const { 1324 return MinBWs; 1325 } 1326 1327 /// \returns True if it is more profitable to scalarize instruction \p I for 1328 /// vectorization factor \p VF. 1329 bool isProfitableToScalarize(Instruction *I, ElementCount VF) const { 1330 assert(VF.isVector() && 1331 "Profitable to scalarize relevant only for VF > 1."); 1332 1333 // Cost model is not run in the VPlan-native path - return conservative 1334 // result until this changes. 1335 if (EnableVPlanNativePath) 1336 return false; 1337 1338 auto Scalars = InstsToScalarize.find(VF); 1339 assert(Scalars != InstsToScalarize.end() && 1340 "VF not yet analyzed for scalarization profitability"); 1341 return Scalars->second.find(I) != Scalars->second.end(); 1342 } 1343 1344 /// Returns true if \p I is known to be uniform after vectorization. 1345 bool isUniformAfterVectorization(Instruction *I, ElementCount VF) const { 1346 if (VF.isScalar()) 1347 return true; 1348 1349 // Cost model is not run in the VPlan-native path - return conservative 1350 // result until this changes. 1351 if (EnableVPlanNativePath) 1352 return false; 1353 1354 auto UniformsPerVF = Uniforms.find(VF); 1355 assert(UniformsPerVF != Uniforms.end() && 1356 "VF not yet analyzed for uniformity"); 1357 return UniformsPerVF->second.count(I); 1358 } 1359 1360 /// Returns true if \p I is known to be scalar after vectorization. 1361 bool isScalarAfterVectorization(Instruction *I, ElementCount VF) const { 1362 if (VF.isScalar()) 1363 return true; 1364 1365 // Cost model is not run in the VPlan-native path - return conservative 1366 // result until this changes. 1367 if (EnableVPlanNativePath) 1368 return false; 1369 1370 auto ScalarsPerVF = Scalars.find(VF); 1371 assert(ScalarsPerVF != Scalars.end() && 1372 "Scalar values are not calculated for VF"); 1373 return ScalarsPerVF->second.count(I); 1374 } 1375 1376 /// \returns True if instruction \p I can be truncated to a smaller bitwidth 1377 /// for vectorization factor \p VF. 1378 bool canTruncateToMinimalBitwidth(Instruction *I, ElementCount VF) const { 1379 return VF.isVector() && MinBWs.find(I) != MinBWs.end() && 1380 !isProfitableToScalarize(I, VF) && 1381 !isScalarAfterVectorization(I, VF); 1382 } 1383 1384 /// Decision that was taken during cost calculation for memory instruction. 1385 enum InstWidening { 1386 CM_Unknown, 1387 CM_Widen, // For consecutive accesses with stride +1. 1388 CM_Widen_Reverse, // For consecutive accesses with stride -1. 1389 CM_Interleave, 1390 CM_GatherScatter, 1391 CM_Scalarize 1392 }; 1393 1394 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1395 /// instruction \p I and vector width \p VF. 1396 void setWideningDecision(Instruction *I, ElementCount VF, InstWidening W, 1397 InstructionCost Cost) { 1398 assert(VF.isVector() && "Expected VF >=2"); 1399 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1400 } 1401 1402 /// Save vectorization decision \p W and \p Cost taken by the cost model for 1403 /// interleaving group \p Grp and vector width \p VF. 1404 void setWideningDecision(const InterleaveGroup<Instruction> *Grp, 1405 ElementCount VF, InstWidening W, 1406 InstructionCost Cost) { 1407 assert(VF.isVector() && "Expected VF >=2"); 1408 /// Broadcast this decicion to all instructions inside the group. 1409 /// But the cost will be assigned to one instruction only. 1410 for (unsigned i = 0; i < Grp->getFactor(); ++i) { 1411 if (auto *I = Grp->getMember(i)) { 1412 if (Grp->getInsertPos() == I) 1413 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, Cost); 1414 else 1415 WideningDecisions[std::make_pair(I, VF)] = std::make_pair(W, 0); 1416 } 1417 } 1418 } 1419 1420 /// Return the cost model decision for the given instruction \p I and vector 1421 /// width \p VF. Return CM_Unknown if this instruction did not pass 1422 /// through the cost modeling. 1423 InstWidening getWideningDecision(Instruction *I, ElementCount VF) { 1424 assert(VF.isVector() && "Expected VF to be a vector VF"); 1425 // Cost model is not run in the VPlan-native path - return conservative 1426 // result until this changes. 1427 if (EnableVPlanNativePath) 1428 return CM_GatherScatter; 1429 1430 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1431 auto Itr = WideningDecisions.find(InstOnVF); 1432 if (Itr == WideningDecisions.end()) 1433 return CM_Unknown; 1434 return Itr->second.first; 1435 } 1436 1437 /// Return the vectorization cost for the given instruction \p I and vector 1438 /// width \p VF. 1439 InstructionCost getWideningCost(Instruction *I, ElementCount VF) { 1440 assert(VF.isVector() && "Expected VF >=2"); 1441 std::pair<Instruction *, ElementCount> InstOnVF = std::make_pair(I, VF); 1442 assert(WideningDecisions.find(InstOnVF) != WideningDecisions.end() && 1443 "The cost is not calculated"); 1444 return WideningDecisions[InstOnVF].second; 1445 } 1446 1447 /// Return True if instruction \p I is an optimizable truncate whose operand 1448 /// is an induction variable. Such a truncate will be removed by adding a new 1449 /// induction variable with the destination type. 1450 bool isOptimizableIVTruncate(Instruction *I, ElementCount VF) { 1451 // If the instruction is not a truncate, return false. 1452 auto *Trunc = dyn_cast<TruncInst>(I); 1453 if (!Trunc) 1454 return false; 1455 1456 // Get the source and destination types of the truncate. 1457 Type *SrcTy = ToVectorTy(cast<CastInst>(I)->getSrcTy(), VF); 1458 Type *DestTy = ToVectorTy(cast<CastInst>(I)->getDestTy(), VF); 1459 1460 // If the truncate is free for the given types, return false. Replacing a 1461 // free truncate with an induction variable would add an induction variable 1462 // update instruction to each iteration of the loop. We exclude from this 1463 // check the primary induction variable since it will need an update 1464 // instruction regardless. 1465 Value *Op = Trunc->getOperand(0); 1466 if (Op != Legal->getPrimaryInduction() && TTI.isTruncateFree(SrcTy, DestTy)) 1467 return false; 1468 1469 // If the truncated value is not an induction variable, return false. 1470 return Legal->isInductionPhi(Op); 1471 } 1472 1473 /// Collects the instructions to scalarize for each predicated instruction in 1474 /// the loop. 1475 void collectInstsToScalarize(ElementCount VF); 1476 1477 /// Collect Uniform and Scalar values for the given \p VF. 1478 /// The sets depend on CM decision for Load/Store instructions 1479 /// that may be vectorized as interleave, gather-scatter or scalarized. 1480 void collectUniformsAndScalars(ElementCount VF) { 1481 // Do the analysis once. 1482 if (VF.isScalar() || Uniforms.find(VF) != Uniforms.end()) 1483 return; 1484 setCostBasedWideningDecision(VF); 1485 collectLoopUniforms(VF); 1486 collectLoopScalars(VF); 1487 } 1488 1489 /// Returns true if the target machine supports masked store operation 1490 /// for the given \p DataType and kind of access to \p Ptr. 1491 bool isLegalMaskedStore(Type *DataType, Value *Ptr, Align Alignment) { 1492 return Legal->isConsecutivePtr(Ptr) && 1493 TTI.isLegalMaskedStore(DataType, Alignment); 1494 } 1495 1496 /// Returns true if the target machine supports masked load operation 1497 /// for the given \p DataType and kind of access to \p Ptr. 1498 bool isLegalMaskedLoad(Type *DataType, Value *Ptr, Align Alignment) { 1499 return Legal->isConsecutivePtr(Ptr) && 1500 TTI.isLegalMaskedLoad(DataType, Alignment); 1501 } 1502 1503 /// Returns true if the target machine supports masked scatter operation 1504 /// for the given \p DataType. 1505 bool isLegalMaskedScatter(Type *DataType, Align Alignment) { 1506 return TTI.isLegalMaskedScatter(DataType, Alignment); 1507 } 1508 1509 /// Returns true if the target machine supports masked gather operation 1510 /// for the given \p DataType. 1511 bool isLegalMaskedGather(Type *DataType, Align Alignment) { 1512 return TTI.isLegalMaskedGather(DataType, Alignment); 1513 } 1514 1515 /// Returns true if the target machine can represent \p V as a masked gather 1516 /// or scatter operation. 1517 bool isLegalGatherOrScatter(Value *V) { 1518 bool LI = isa<LoadInst>(V); 1519 bool SI = isa<StoreInst>(V); 1520 if (!LI && !SI) 1521 return false; 1522 auto *Ty = getMemInstValueType(V); 1523 Align Align = getLoadStoreAlignment(V); 1524 return (LI && isLegalMaskedGather(Ty, Align)) || 1525 (SI && isLegalMaskedScatter(Ty, Align)); 1526 } 1527 1528 /// Returns true if the target machine supports all of the reduction 1529 /// variables found for the given VF. 1530 bool canVectorizeReductions(ElementCount VF) { 1531 return (all_of(Legal->getReductionVars(), [&](auto &Reduction) -> bool { 1532 RecurrenceDescriptor RdxDesc = Reduction.second; 1533 return TTI.isLegalToVectorizeReduction(RdxDesc, VF); 1534 })); 1535 } 1536 1537 /// Returns true if \p I is an instruction that will be scalarized with 1538 /// predication. Such instructions include conditional stores and 1539 /// instructions that may divide by zero. 1540 /// If a non-zero VF has been calculated, we check if I will be scalarized 1541 /// predication for that VF. 1542 bool isScalarWithPredication(Instruction *I, 1543 ElementCount VF = ElementCount::getFixed(1)); 1544 1545 // Returns true if \p I is an instruction that will be predicated either 1546 // through scalar predication or masked load/store or masked gather/scatter. 1547 // Superset of instructions that return true for isScalarWithPredication. 1548 bool isPredicatedInst(Instruction *I) { 1549 if (!blockNeedsPredication(I->getParent())) 1550 return false; 1551 // Loads and stores that need some form of masked operation are predicated 1552 // instructions. 1553 if (isa<LoadInst>(I) || isa<StoreInst>(I)) 1554 return Legal->isMaskRequired(I); 1555 return isScalarWithPredication(I); 1556 } 1557 1558 /// Returns true if \p I is a memory instruction with consecutive memory 1559 /// access that can be widened. 1560 bool 1561 memoryInstructionCanBeWidened(Instruction *I, 1562 ElementCount VF = ElementCount::getFixed(1)); 1563 1564 /// Returns true if \p I is a memory instruction in an interleaved-group 1565 /// of memory accesses that can be vectorized with wide vector loads/stores 1566 /// and shuffles. 1567 bool 1568 interleavedAccessCanBeWidened(Instruction *I, 1569 ElementCount VF = ElementCount::getFixed(1)); 1570 1571 /// Check if \p Instr belongs to any interleaved access group. 1572 bool isAccessInterleaved(Instruction *Instr) { 1573 return InterleaveInfo.isInterleaved(Instr); 1574 } 1575 1576 /// Get the interleaved access group that \p Instr belongs to. 1577 const InterleaveGroup<Instruction> * 1578 getInterleavedAccessGroup(Instruction *Instr) { 1579 return InterleaveInfo.getInterleaveGroup(Instr); 1580 } 1581 1582 /// Returns true if we're required to use a scalar epilogue for at least 1583 /// the final iteration of the original loop. 1584 bool requiresScalarEpilogue() const { 1585 if (!isScalarEpilogueAllowed()) 1586 return false; 1587 // If we might exit from anywhere but the latch, must run the exiting 1588 // iteration in scalar form. 1589 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) 1590 return true; 1591 return InterleaveInfo.requiresScalarEpilogue(); 1592 } 1593 1594 /// Returns true if a scalar epilogue is not allowed due to optsize or a 1595 /// loop hint annotation. 1596 bool isScalarEpilogueAllowed() const { 1597 return ScalarEpilogueStatus == CM_ScalarEpilogueAllowed; 1598 } 1599 1600 /// Returns true if all loop blocks should be masked to fold tail loop. 1601 bool foldTailByMasking() const { return FoldTailByMasking; } 1602 1603 bool blockNeedsPredication(BasicBlock *BB) { 1604 return foldTailByMasking() || Legal->blockNeedsPredication(BB); 1605 } 1606 1607 /// A SmallMapVector to store the InLoop reduction op chains, mapping phi 1608 /// nodes to the chain of instructions representing the reductions. Uses a 1609 /// MapVector to ensure deterministic iteration order. 1610 using ReductionChainMap = 1611 SmallMapVector<PHINode *, SmallVector<Instruction *, 4>, 4>; 1612 1613 /// Return the chain of instructions representing an inloop reduction. 1614 const ReductionChainMap &getInLoopReductionChains() const { 1615 return InLoopReductionChains; 1616 } 1617 1618 /// Returns true if the Phi is part of an inloop reduction. 1619 bool isInLoopReduction(PHINode *Phi) const { 1620 return InLoopReductionChains.count(Phi); 1621 } 1622 1623 /// Estimate cost of an intrinsic call instruction CI if it were vectorized 1624 /// with factor VF. Return the cost of the instruction, including 1625 /// scalarization overhead if it's needed. 1626 InstructionCost getVectorIntrinsicCost(CallInst *CI, ElementCount VF); 1627 1628 /// Estimate cost of a call instruction CI if it were vectorized with factor 1629 /// VF. Return the cost of the instruction, including scalarization overhead 1630 /// if it's needed. The flag NeedToScalarize shows if the call needs to be 1631 /// scalarized - 1632 /// i.e. either vector version isn't available, or is too expensive. 1633 InstructionCost getVectorCallCost(CallInst *CI, ElementCount VF, 1634 bool &NeedToScalarize); 1635 1636 /// Invalidates decisions already taken by the cost model. 1637 void invalidateCostModelingDecisions() { 1638 WideningDecisions.clear(); 1639 Uniforms.clear(); 1640 Scalars.clear(); 1641 } 1642 1643 private: 1644 unsigned NumPredStores = 0; 1645 1646 /// \return An upper bound for the vectorization factor, a power-of-2 larger 1647 /// than zero. One is returned if vectorization should best be avoided due 1648 /// to cost. 1649 ElementCount computeFeasibleMaxVF(unsigned ConstTripCount, 1650 ElementCount UserVF); 1651 1652 /// The vectorization cost is a combination of the cost itself and a boolean 1653 /// indicating whether any of the contributing operations will actually 1654 /// operate on 1655 /// vector values after type legalization in the backend. If this latter value 1656 /// is 1657 /// false, then all operations will be scalarized (i.e. no vectorization has 1658 /// actually taken place). 1659 using VectorizationCostTy = std::pair<InstructionCost, bool>; 1660 1661 /// Returns the expected execution cost. The unit of the cost does 1662 /// not matter because we use the 'cost' units to compare different 1663 /// vector widths. The cost that is returned is *not* normalized by 1664 /// the factor width. 1665 VectorizationCostTy expectedCost(ElementCount VF); 1666 1667 /// Returns the execution time cost of an instruction for a given vector 1668 /// width. Vector width of one means scalar. 1669 VectorizationCostTy getInstructionCost(Instruction *I, ElementCount VF); 1670 1671 /// The cost-computation logic from getInstructionCost which provides 1672 /// the vector type as an output parameter. 1673 InstructionCost getInstructionCost(Instruction *I, ElementCount VF, 1674 Type *&VectorTy); 1675 1676 /// Return the cost of instructions in an inloop reduction pattern, if I is 1677 /// part of that pattern. 1678 InstructionCost getReductionPatternCost(Instruction *I, ElementCount VF, 1679 Type *VectorTy, 1680 TTI::TargetCostKind CostKind); 1681 1682 /// Calculate vectorization cost of memory instruction \p I. 1683 InstructionCost getMemoryInstructionCost(Instruction *I, ElementCount VF); 1684 1685 /// The cost computation for scalarized memory instruction. 1686 InstructionCost getMemInstScalarizationCost(Instruction *I, ElementCount VF); 1687 1688 /// The cost computation for interleaving group of memory instructions. 1689 InstructionCost getInterleaveGroupCost(Instruction *I, ElementCount VF); 1690 1691 /// The cost computation for Gather/Scatter instruction. 1692 InstructionCost getGatherScatterCost(Instruction *I, ElementCount VF); 1693 1694 /// The cost computation for widening instruction \p I with consecutive 1695 /// memory access. 1696 InstructionCost getConsecutiveMemOpCost(Instruction *I, ElementCount VF); 1697 1698 /// The cost calculation for Load/Store instruction \p I with uniform pointer - 1699 /// Load: scalar load + broadcast. 1700 /// Store: scalar store + (loop invariant value stored? 0 : extract of last 1701 /// element) 1702 InstructionCost getUniformMemOpCost(Instruction *I, ElementCount VF); 1703 1704 /// Estimate the overhead of scalarizing an instruction. This is a 1705 /// convenience wrapper for the type-based getScalarizationOverhead API. 1706 InstructionCost getScalarizationOverhead(Instruction *I, ElementCount VF); 1707 1708 /// Returns whether the instruction is a load or store and will be a emitted 1709 /// as a vector operation. 1710 bool isConsecutiveLoadOrStore(Instruction *I); 1711 1712 /// Returns true if an artificially high cost for emulated masked memrefs 1713 /// should be used. 1714 bool useEmulatedMaskMemRefHack(Instruction *I); 1715 1716 /// Map of scalar integer values to the smallest bitwidth they can be legally 1717 /// represented as. The vector equivalents of these values should be truncated 1718 /// to this type. 1719 MapVector<Instruction *, uint64_t> MinBWs; 1720 1721 /// A type representing the costs for instructions if they were to be 1722 /// scalarized rather than vectorized. The entries are Instruction-Cost 1723 /// pairs. 1724 using ScalarCostsTy = DenseMap<Instruction *, InstructionCost>; 1725 1726 /// A set containing all BasicBlocks that are known to present after 1727 /// vectorization as a predicated block. 1728 SmallPtrSet<BasicBlock *, 4> PredicatedBBsAfterVectorization; 1729 1730 /// Records whether it is allowed to have the original scalar loop execute at 1731 /// least once. This may be needed as a fallback loop in case runtime 1732 /// aliasing/dependence checks fail, or to handle the tail/remainder 1733 /// iterations when the trip count is unknown or doesn't divide by the VF, 1734 /// or as a peel-loop to handle gaps in interleave-groups. 1735 /// Under optsize and when the trip count is very small we don't allow any 1736 /// iterations to execute in the scalar loop. 1737 ScalarEpilogueLowering ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 1738 1739 /// All blocks of loop are to be masked to fold tail of scalar iterations. 1740 bool FoldTailByMasking = false; 1741 1742 /// A map holding scalar costs for different vectorization factors. The 1743 /// presence of a cost for an instruction in the mapping indicates that the 1744 /// instruction will be scalarized when vectorizing with the associated 1745 /// vectorization factor. The entries are VF-ScalarCostTy pairs. 1746 DenseMap<ElementCount, ScalarCostsTy> InstsToScalarize; 1747 1748 /// Holds the instructions known to be uniform after vectorization. 1749 /// The data is collected per VF. 1750 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Uniforms; 1751 1752 /// Holds the instructions known to be scalar after vectorization. 1753 /// The data is collected per VF. 1754 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> Scalars; 1755 1756 /// Holds the instructions (address computations) that are forced to be 1757 /// scalarized. 1758 DenseMap<ElementCount, SmallPtrSet<Instruction *, 4>> ForcedScalars; 1759 1760 /// PHINodes of the reductions that should be expanded in-loop along with 1761 /// their associated chains of reduction operations, in program order from top 1762 /// (PHI) to bottom 1763 ReductionChainMap InLoopReductionChains; 1764 1765 /// A Map of inloop reduction operations and their immediate chain operand. 1766 /// FIXME: This can be removed once reductions can be costed correctly in 1767 /// vplan. This was added to allow quick lookup to the inloop operations, 1768 /// without having to loop through InLoopReductionChains. 1769 DenseMap<Instruction *, Instruction *> InLoopReductionImmediateChains; 1770 1771 /// Returns the expected difference in cost from scalarizing the expression 1772 /// feeding a predicated instruction \p PredInst. The instructions to 1773 /// scalarize and their scalar costs are collected in \p ScalarCosts. A 1774 /// non-negative return value implies the expression will be scalarized. 1775 /// Currently, only single-use chains are considered for scalarization. 1776 int computePredInstDiscount(Instruction *PredInst, ScalarCostsTy &ScalarCosts, 1777 ElementCount VF); 1778 1779 /// Collect the instructions that are uniform after vectorization. An 1780 /// instruction is uniform if we represent it with a single scalar value in 1781 /// the vectorized loop corresponding to each vector iteration. Examples of 1782 /// uniform instructions include pointer operands of consecutive or 1783 /// interleaved memory accesses. Note that although uniformity implies an 1784 /// instruction will be scalar, the reverse is not true. In general, a 1785 /// scalarized instruction will be represented by VF scalar values in the 1786 /// vectorized loop, each corresponding to an iteration of the original 1787 /// scalar loop. 1788 void collectLoopUniforms(ElementCount VF); 1789 1790 /// Collect the instructions that are scalar after vectorization. An 1791 /// instruction is scalar if it is known to be uniform or will be scalarized 1792 /// during vectorization. Non-uniform scalarized instructions will be 1793 /// represented by VF values in the vectorized loop, each corresponding to an 1794 /// iteration of the original scalar loop. 1795 void collectLoopScalars(ElementCount VF); 1796 1797 /// Keeps cost model vectorization decision and cost for instructions. 1798 /// Right now it is used for memory instructions only. 1799 using DecisionList = DenseMap<std::pair<Instruction *, ElementCount>, 1800 std::pair<InstWidening, InstructionCost>>; 1801 1802 DecisionList WideningDecisions; 1803 1804 /// Returns true if \p V is expected to be vectorized and it needs to be 1805 /// extracted. 1806 bool needsExtract(Value *V, ElementCount VF) const { 1807 Instruction *I = dyn_cast<Instruction>(V); 1808 if (VF.isScalar() || !I || !TheLoop->contains(I) || 1809 TheLoop->isLoopInvariant(I)) 1810 return false; 1811 1812 // Assume we can vectorize V (and hence we need extraction) if the 1813 // scalars are not computed yet. This can happen, because it is called 1814 // via getScalarizationOverhead from setCostBasedWideningDecision, before 1815 // the scalars are collected. That should be a safe assumption in most 1816 // cases, because we check if the operands have vectorizable types 1817 // beforehand in LoopVectorizationLegality. 1818 return Scalars.find(VF) == Scalars.end() || 1819 !isScalarAfterVectorization(I, VF); 1820 }; 1821 1822 /// Returns a range containing only operands needing to be extracted. 1823 SmallVector<Value *, 4> filterExtractingOperands(Instruction::op_range Ops, 1824 ElementCount VF) { 1825 return SmallVector<Value *, 4>(make_filter_range( 1826 Ops, [this, VF](Value *V) { return this->needsExtract(V, VF); })); 1827 } 1828 1829 /// Determines if we have the infrastructure to vectorize loop \p L and its 1830 /// epilogue, assuming the main loop is vectorized by \p VF. 1831 bool isCandidateForEpilogueVectorization(const Loop &L, 1832 const ElementCount VF) const; 1833 1834 /// Returns true if epilogue vectorization is considered profitable, and 1835 /// false otherwise. 1836 /// \p VF is the vectorization factor chosen for the original loop. 1837 bool isEpilogueVectorizationProfitable(const ElementCount VF) const; 1838 1839 public: 1840 /// The loop that we evaluate. 1841 Loop *TheLoop; 1842 1843 /// Predicated scalar evolution analysis. 1844 PredicatedScalarEvolution &PSE; 1845 1846 /// Loop Info analysis. 1847 LoopInfo *LI; 1848 1849 /// Vectorization legality. 1850 LoopVectorizationLegality *Legal; 1851 1852 /// Vector target information. 1853 const TargetTransformInfo &TTI; 1854 1855 /// Target Library Info. 1856 const TargetLibraryInfo *TLI; 1857 1858 /// Demanded bits analysis. 1859 DemandedBits *DB; 1860 1861 /// Assumption cache. 1862 AssumptionCache *AC; 1863 1864 /// Interface to emit optimization remarks. 1865 OptimizationRemarkEmitter *ORE; 1866 1867 const Function *TheFunction; 1868 1869 /// Loop Vectorize Hint. 1870 const LoopVectorizeHints *Hints; 1871 1872 /// The interleave access information contains groups of interleaved accesses 1873 /// with the same stride and close to each other. 1874 InterleavedAccessInfo &InterleaveInfo; 1875 1876 /// Values to ignore in the cost model. 1877 SmallPtrSet<const Value *, 16> ValuesToIgnore; 1878 1879 /// Values to ignore in the cost model when VF > 1. 1880 SmallPtrSet<const Value *, 16> VecValuesToIgnore; 1881 1882 /// Profitable vector factors. 1883 SmallVector<VectorizationFactor, 8> ProfitableVFs; 1884 }; 1885 1886 } // end namespace llvm 1887 1888 // Return true if \p OuterLp is an outer loop annotated with hints for explicit 1889 // vectorization. The loop needs to be annotated with #pragma omp simd 1890 // simdlen(#) or #pragma clang vectorize(enable) vectorize_width(#). If the 1891 // vector length information is not provided, vectorization is not considered 1892 // explicit. Interleave hints are not allowed either. These limitations will be 1893 // relaxed in the future. 1894 // Please, note that we are currently forced to abuse the pragma 'clang 1895 // vectorize' semantics. This pragma provides *auto-vectorization hints* 1896 // (i.e., LV must check that vectorization is legal) whereas pragma 'omp simd' 1897 // provides *explicit vectorization hints* (LV can bypass legal checks and 1898 // assume that vectorization is legal). However, both hints are implemented 1899 // using the same metadata (llvm.loop.vectorize, processed by 1900 // LoopVectorizeHints). This will be fixed in the future when the native IR 1901 // representation for pragma 'omp simd' is introduced. 1902 static bool isExplicitVecOuterLoop(Loop *OuterLp, 1903 OptimizationRemarkEmitter *ORE) { 1904 assert(!OuterLp->isInnermost() && "This is not an outer loop"); 1905 LoopVectorizeHints Hints(OuterLp, true /*DisableInterleaving*/, *ORE); 1906 1907 // Only outer loops with an explicit vectorization hint are supported. 1908 // Unannotated outer loops are ignored. 1909 if (Hints.getForce() == LoopVectorizeHints::FK_Undefined) 1910 return false; 1911 1912 Function *Fn = OuterLp->getHeader()->getParent(); 1913 if (!Hints.allowVectorization(Fn, OuterLp, 1914 true /*VectorizeOnlyWhenForced*/)) { 1915 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent outer loop vectorization.\n"); 1916 return false; 1917 } 1918 1919 if (Hints.getInterleave() > 1) { 1920 // TODO: Interleave support is future work. 1921 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Interleave is not supported for " 1922 "outer loops.\n"); 1923 Hints.emitRemarkWithHints(); 1924 return false; 1925 } 1926 1927 return true; 1928 } 1929 1930 static void collectSupportedLoops(Loop &L, LoopInfo *LI, 1931 OptimizationRemarkEmitter *ORE, 1932 SmallVectorImpl<Loop *> &V) { 1933 // Collect inner loops and outer loops without irreducible control flow. For 1934 // now, only collect outer loops that have explicit vectorization hints. If we 1935 // are stress testing the VPlan H-CFG construction, we collect the outermost 1936 // loop of every loop nest. 1937 if (L.isInnermost() || VPlanBuildStressTest || 1938 (EnableVPlanNativePath && isExplicitVecOuterLoop(&L, ORE))) { 1939 LoopBlocksRPO RPOT(&L); 1940 RPOT.perform(LI); 1941 if (!containsIrreducibleCFG<const BasicBlock *>(RPOT, *LI)) { 1942 V.push_back(&L); 1943 // TODO: Collect inner loops inside marked outer loops in case 1944 // vectorization fails for the outer loop. Do not invoke 1945 // 'containsIrreducibleCFG' again for inner loops when the outer loop is 1946 // already known to be reducible. We can use an inherited attribute for 1947 // that. 1948 return; 1949 } 1950 } 1951 for (Loop *InnerL : L) 1952 collectSupportedLoops(*InnerL, LI, ORE, V); 1953 } 1954 1955 namespace { 1956 1957 /// The LoopVectorize Pass. 1958 struct LoopVectorize : public FunctionPass { 1959 /// Pass identification, replacement for typeid 1960 static char ID; 1961 1962 LoopVectorizePass Impl; 1963 1964 explicit LoopVectorize(bool InterleaveOnlyWhenForced = false, 1965 bool VectorizeOnlyWhenForced = false) 1966 : FunctionPass(ID), 1967 Impl({InterleaveOnlyWhenForced, VectorizeOnlyWhenForced}) { 1968 initializeLoopVectorizePass(*PassRegistry::getPassRegistry()); 1969 } 1970 1971 bool runOnFunction(Function &F) override { 1972 if (skipFunction(F)) 1973 return false; 1974 1975 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1976 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1977 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 1978 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1979 auto *BFI = &getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); 1980 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1981 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr; 1982 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1983 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 1984 auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); 1985 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); 1986 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); 1987 auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 1988 1989 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 1990 [&](Loop &L) -> const LoopAccessInfo & { return LAA->getInfo(&L); }; 1991 1992 return Impl.runImpl(F, *SE, *LI, *TTI, *DT, *BFI, TLI, *DB, *AA, *AC, 1993 GetLAA, *ORE, PSI).MadeAnyChange; 1994 } 1995 1996 void getAnalysisUsage(AnalysisUsage &AU) const override { 1997 AU.addRequired<AssumptionCacheTracker>(); 1998 AU.addRequired<BlockFrequencyInfoWrapperPass>(); 1999 AU.addRequired<DominatorTreeWrapperPass>(); 2000 AU.addRequired<LoopInfoWrapperPass>(); 2001 AU.addRequired<ScalarEvolutionWrapperPass>(); 2002 AU.addRequired<TargetTransformInfoWrapperPass>(); 2003 AU.addRequired<AAResultsWrapperPass>(); 2004 AU.addRequired<LoopAccessLegacyAnalysis>(); 2005 AU.addRequired<DemandedBitsWrapperPass>(); 2006 AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); 2007 AU.addRequired<InjectTLIMappingsLegacy>(); 2008 2009 // We currently do not preserve loopinfo/dominator analyses with outer loop 2010 // vectorization. Until this is addressed, mark these analyses as preserved 2011 // only for non-VPlan-native path. 2012 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 2013 if (!EnableVPlanNativePath) { 2014 AU.addPreserved<LoopInfoWrapperPass>(); 2015 AU.addPreserved<DominatorTreeWrapperPass>(); 2016 } 2017 2018 AU.addPreserved<BasicAAWrapperPass>(); 2019 AU.addPreserved<GlobalsAAWrapperPass>(); 2020 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 2021 } 2022 }; 2023 2024 } // end anonymous namespace 2025 2026 //===----------------------------------------------------------------------===// 2027 // Implementation of LoopVectorizationLegality, InnerLoopVectorizer and 2028 // LoopVectorizationCostModel and LoopVectorizationPlanner. 2029 //===----------------------------------------------------------------------===// 2030 2031 Value *InnerLoopVectorizer::getBroadcastInstrs(Value *V) { 2032 // We need to place the broadcast of invariant variables outside the loop, 2033 // but only if it's proven safe to do so. Else, broadcast will be inside 2034 // vector loop body. 2035 Instruction *Instr = dyn_cast<Instruction>(V); 2036 bool SafeToHoist = OrigLoop->isLoopInvariant(V) && 2037 (!Instr || 2038 DT->dominates(Instr->getParent(), LoopVectorPreHeader)); 2039 // Place the code for broadcasting invariant variables in the new preheader. 2040 IRBuilder<>::InsertPointGuard Guard(Builder); 2041 if (SafeToHoist) 2042 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2043 2044 // Broadcast the scalar into all locations in the vector. 2045 Value *Shuf = Builder.CreateVectorSplat(VF, V, "broadcast"); 2046 2047 return Shuf; 2048 } 2049 2050 void InnerLoopVectorizer::createVectorIntOrFpInductionPHI( 2051 const InductionDescriptor &II, Value *Step, Value *Start, 2052 Instruction *EntryVal, VPValue *Def, VPValue *CastDef, 2053 VPTransformState &State) { 2054 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2055 "Expected either an induction phi-node or a truncate of it!"); 2056 2057 // Construct the initial value of the vector IV in the vector loop preheader 2058 auto CurrIP = Builder.saveIP(); 2059 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 2060 if (isa<TruncInst>(EntryVal)) { 2061 assert(Start->getType()->isIntegerTy() && 2062 "Truncation requires an integer type"); 2063 auto *TruncType = cast<IntegerType>(EntryVal->getType()); 2064 Step = Builder.CreateTrunc(Step, TruncType); 2065 Start = Builder.CreateCast(Instruction::Trunc, Start, TruncType); 2066 } 2067 Value *SplatStart = Builder.CreateVectorSplat(VF, Start); 2068 Value *SteppedStart = 2069 getStepVector(SplatStart, 0, Step, II.getInductionOpcode()); 2070 2071 // We create vector phi nodes for both integer and floating-point induction 2072 // variables. Here, we determine the kind of arithmetic we will perform. 2073 Instruction::BinaryOps AddOp; 2074 Instruction::BinaryOps MulOp; 2075 if (Step->getType()->isIntegerTy()) { 2076 AddOp = Instruction::Add; 2077 MulOp = Instruction::Mul; 2078 } else { 2079 AddOp = II.getInductionOpcode(); 2080 MulOp = Instruction::FMul; 2081 } 2082 2083 // Multiply the vectorization factor by the step using integer or 2084 // floating-point arithmetic as appropriate. 2085 Value *ConstVF = 2086 getSignedIntOrFpConstant(Step->getType(), VF.getKnownMinValue()); 2087 Value *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, Step, ConstVF)); 2088 2089 // Create a vector splat to use in the induction update. 2090 // 2091 // FIXME: If the step is non-constant, we create the vector splat with 2092 // IRBuilder. IRBuilder can constant-fold the multiply, but it doesn't 2093 // handle a constant vector splat. 2094 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2095 Value *SplatVF = isa<Constant>(Mul) 2096 ? ConstantVector::getSplat(VF, cast<Constant>(Mul)) 2097 : Builder.CreateVectorSplat(VF, Mul); 2098 Builder.restoreIP(CurrIP); 2099 2100 // We may need to add the step a number of times, depending on the unroll 2101 // factor. The last of those goes into the PHI. 2102 PHINode *VecInd = PHINode::Create(SteppedStart->getType(), 2, "vec.ind", 2103 &*LoopVectorBody->getFirstInsertionPt()); 2104 VecInd->setDebugLoc(EntryVal->getDebugLoc()); 2105 Instruction *LastInduction = VecInd; 2106 for (unsigned Part = 0; Part < UF; ++Part) { 2107 State.set(Def, EntryVal, LastInduction, Part); 2108 2109 if (isa<TruncInst>(EntryVal)) 2110 addMetadata(LastInduction, EntryVal); 2111 recordVectorLoopValueForInductionCast(II, EntryVal, LastInduction, CastDef, 2112 State, Part); 2113 2114 LastInduction = cast<Instruction>(addFastMathFlag( 2115 Builder.CreateBinOp(AddOp, LastInduction, SplatVF, "step.add"))); 2116 LastInduction->setDebugLoc(EntryVal->getDebugLoc()); 2117 } 2118 2119 // Move the last step to the end of the latch block. This ensures consistent 2120 // placement of all induction updates. 2121 auto *LoopVectorLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 2122 auto *Br = cast<BranchInst>(LoopVectorLatch->getTerminator()); 2123 auto *ICmp = cast<Instruction>(Br->getCondition()); 2124 LastInduction->moveBefore(ICmp); 2125 LastInduction->setName("vec.ind.next"); 2126 2127 VecInd->addIncoming(SteppedStart, LoopVectorPreHeader); 2128 VecInd->addIncoming(LastInduction, LoopVectorLatch); 2129 } 2130 2131 bool InnerLoopVectorizer::shouldScalarizeInstruction(Instruction *I) const { 2132 return Cost->isScalarAfterVectorization(I, VF) || 2133 Cost->isProfitableToScalarize(I, VF); 2134 } 2135 2136 bool InnerLoopVectorizer::needsScalarInduction(Instruction *IV) const { 2137 if (shouldScalarizeInstruction(IV)) 2138 return true; 2139 auto isScalarInst = [&](User *U) -> bool { 2140 auto *I = cast<Instruction>(U); 2141 return (OrigLoop->contains(I) && shouldScalarizeInstruction(I)); 2142 }; 2143 return llvm::any_of(IV->users(), isScalarInst); 2144 } 2145 2146 void InnerLoopVectorizer::recordVectorLoopValueForInductionCast( 2147 const InductionDescriptor &ID, const Instruction *EntryVal, 2148 Value *VectorLoopVal, VPValue *CastDef, VPTransformState &State, 2149 unsigned Part, unsigned Lane) { 2150 assert((isa<PHINode>(EntryVal) || isa<TruncInst>(EntryVal)) && 2151 "Expected either an induction phi-node or a truncate of it!"); 2152 2153 // This induction variable is not the phi from the original loop but the 2154 // newly-created IV based on the proof that casted Phi is equal to the 2155 // uncasted Phi in the vectorized loop (under a runtime guard possibly). It 2156 // re-uses the same InductionDescriptor that original IV uses but we don't 2157 // have to do any recording in this case - that is done when original IV is 2158 // processed. 2159 if (isa<TruncInst>(EntryVal)) 2160 return; 2161 2162 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 2163 if (Casts.empty()) 2164 return; 2165 // Only the first Cast instruction in the Casts vector is of interest. 2166 // The rest of the Casts (if exist) have no uses outside the 2167 // induction update chain itself. 2168 if (Lane < UINT_MAX) 2169 State.set(CastDef, VectorLoopVal, VPIteration(Part, Lane)); 2170 else 2171 State.set(CastDef, VectorLoopVal, Part); 2172 } 2173 2174 void InnerLoopVectorizer::widenIntOrFpInduction(PHINode *IV, Value *Start, 2175 TruncInst *Trunc, VPValue *Def, 2176 VPValue *CastDef, 2177 VPTransformState &State) { 2178 assert((IV->getType()->isIntegerTy() || IV != OldInduction) && 2179 "Primary induction variable must have an integer type"); 2180 2181 auto II = Legal->getInductionVars().find(IV); 2182 assert(II != Legal->getInductionVars().end() && "IV is not an induction"); 2183 2184 auto ID = II->second; 2185 assert(IV->getType() == ID.getStartValue()->getType() && "Types must match"); 2186 2187 // The value from the original loop to which we are mapping the new induction 2188 // variable. 2189 Instruction *EntryVal = Trunc ? cast<Instruction>(Trunc) : IV; 2190 2191 auto &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 2192 2193 // Generate code for the induction step. Note that induction steps are 2194 // required to be loop-invariant 2195 auto CreateStepValue = [&](const SCEV *Step) -> Value * { 2196 assert(PSE.getSE()->isLoopInvariant(Step, OrigLoop) && 2197 "Induction step should be loop invariant"); 2198 if (PSE.getSE()->isSCEVable(IV->getType())) { 2199 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 2200 return Exp.expandCodeFor(Step, Step->getType(), 2201 LoopVectorPreHeader->getTerminator()); 2202 } 2203 return cast<SCEVUnknown>(Step)->getValue(); 2204 }; 2205 2206 // The scalar value to broadcast. This is derived from the canonical 2207 // induction variable. If a truncation type is given, truncate the canonical 2208 // induction variable and step. Otherwise, derive these values from the 2209 // induction descriptor. 2210 auto CreateScalarIV = [&](Value *&Step) -> Value * { 2211 Value *ScalarIV = Induction; 2212 if (IV != OldInduction) { 2213 ScalarIV = IV->getType()->isIntegerTy() 2214 ? Builder.CreateSExtOrTrunc(Induction, IV->getType()) 2215 : Builder.CreateCast(Instruction::SIToFP, Induction, 2216 IV->getType()); 2217 ScalarIV = emitTransformedIndex(Builder, ScalarIV, PSE.getSE(), DL, ID); 2218 ScalarIV->setName("offset.idx"); 2219 } 2220 if (Trunc) { 2221 auto *TruncType = cast<IntegerType>(Trunc->getType()); 2222 assert(Step->getType()->isIntegerTy() && 2223 "Truncation requires an integer step"); 2224 ScalarIV = Builder.CreateTrunc(ScalarIV, TruncType); 2225 Step = Builder.CreateTrunc(Step, TruncType); 2226 } 2227 return ScalarIV; 2228 }; 2229 2230 // Create the vector values from the scalar IV, in the absence of creating a 2231 // vector IV. 2232 auto CreateSplatIV = [&](Value *ScalarIV, Value *Step) { 2233 Value *Broadcasted = getBroadcastInstrs(ScalarIV); 2234 for (unsigned Part = 0; Part < UF; ++Part) { 2235 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2236 Value *EntryPart = 2237 getStepVector(Broadcasted, VF.getKnownMinValue() * Part, Step, 2238 ID.getInductionOpcode()); 2239 State.set(Def, EntryVal, EntryPart, Part); 2240 if (Trunc) 2241 addMetadata(EntryPart, Trunc); 2242 recordVectorLoopValueForInductionCast(ID, EntryVal, EntryPart, CastDef, 2243 State, Part); 2244 } 2245 }; 2246 2247 // Now do the actual transformations, and start with creating the step value. 2248 Value *Step = CreateStepValue(ID.getStep()); 2249 if (VF.isZero() || VF.isScalar()) { 2250 Value *ScalarIV = CreateScalarIV(Step); 2251 CreateSplatIV(ScalarIV, Step); 2252 return; 2253 } 2254 2255 // Determine if we want a scalar version of the induction variable. This is 2256 // true if the induction variable itself is not widened, or if it has at 2257 // least one user in the loop that is not widened. 2258 auto NeedsScalarIV = needsScalarInduction(EntryVal); 2259 if (!NeedsScalarIV) { 2260 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2261 State); 2262 return; 2263 } 2264 2265 // Try to create a new independent vector induction variable. If we can't 2266 // create the phi node, we will splat the scalar induction variable in each 2267 // loop iteration. 2268 if (!shouldScalarizeInstruction(EntryVal)) { 2269 createVectorIntOrFpInductionPHI(ID, Step, Start, EntryVal, Def, CastDef, 2270 State); 2271 Value *ScalarIV = CreateScalarIV(Step); 2272 // Create scalar steps that can be used by instructions we will later 2273 // scalarize. Note that the addition of the scalar steps will not increase 2274 // the number of instructions in the loop in the common case prior to 2275 // InstCombine. We will be trading one vector extract for each scalar step. 2276 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2277 return; 2278 } 2279 2280 // All IV users are scalar instructions, so only emit a scalar IV, not a 2281 // vectorised IV. Except when we tail-fold, then the splat IV feeds the 2282 // predicate used by the masked loads/stores. 2283 Value *ScalarIV = CreateScalarIV(Step); 2284 if (!Cost->isScalarEpilogueAllowed()) 2285 CreateSplatIV(ScalarIV, Step); 2286 buildScalarSteps(ScalarIV, Step, EntryVal, ID, Def, CastDef, State); 2287 } 2288 2289 Value *InnerLoopVectorizer::getStepVector(Value *Val, int StartIdx, Value *Step, 2290 Instruction::BinaryOps BinOp) { 2291 // Create and check the types. 2292 auto *ValVTy = cast<FixedVectorType>(Val->getType()); 2293 int VLen = ValVTy->getNumElements(); 2294 2295 Type *STy = Val->getType()->getScalarType(); 2296 assert((STy->isIntegerTy() || STy->isFloatingPointTy()) && 2297 "Induction Step must be an integer or FP"); 2298 assert(Step->getType() == STy && "Step has wrong type"); 2299 2300 SmallVector<Constant *, 8> Indices; 2301 2302 if (STy->isIntegerTy()) { 2303 // Create a vector of consecutive numbers from zero to VF. 2304 for (int i = 0; i < VLen; ++i) 2305 Indices.push_back(ConstantInt::get(STy, StartIdx + i)); 2306 2307 // Add the consecutive indices to the vector value. 2308 Constant *Cv = ConstantVector::get(Indices); 2309 assert(Cv->getType() == Val->getType() && "Invalid consecutive vec"); 2310 Step = Builder.CreateVectorSplat(VLen, Step); 2311 assert(Step->getType() == Val->getType() && "Invalid step vec"); 2312 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 2313 // which can be found from the original scalar operations. 2314 Step = Builder.CreateMul(Cv, Step); 2315 return Builder.CreateAdd(Val, Step, "induction"); 2316 } 2317 2318 // Floating point induction. 2319 assert((BinOp == Instruction::FAdd || BinOp == Instruction::FSub) && 2320 "Binary Opcode should be specified for FP induction"); 2321 // Create a vector of consecutive numbers from zero to VF. 2322 for (int i = 0; i < VLen; ++i) 2323 Indices.push_back(ConstantFP::get(STy, (double)(StartIdx + i))); 2324 2325 // Add the consecutive indices to the vector value. 2326 Constant *Cv = ConstantVector::get(Indices); 2327 2328 Step = Builder.CreateVectorSplat(VLen, Step); 2329 2330 // Floating point operations had to be 'fast' to enable the induction. 2331 FastMathFlags Flags; 2332 Flags.setFast(); 2333 2334 Value *MulOp = Builder.CreateFMul(Cv, Step); 2335 if (isa<Instruction>(MulOp)) 2336 // Have to check, MulOp may be a constant 2337 cast<Instruction>(MulOp)->setFastMathFlags(Flags); 2338 2339 Value *BOp = Builder.CreateBinOp(BinOp, Val, MulOp, "induction"); 2340 if (isa<Instruction>(BOp)) 2341 cast<Instruction>(BOp)->setFastMathFlags(Flags); 2342 return BOp; 2343 } 2344 2345 void InnerLoopVectorizer::buildScalarSteps(Value *ScalarIV, Value *Step, 2346 Instruction *EntryVal, 2347 const InductionDescriptor &ID, 2348 VPValue *Def, VPValue *CastDef, 2349 VPTransformState &State) { 2350 // We shouldn't have to build scalar steps if we aren't vectorizing. 2351 assert(VF.isVector() && "VF should be greater than one"); 2352 // Get the value type and ensure it and the step have the same integer type. 2353 Type *ScalarIVTy = ScalarIV->getType()->getScalarType(); 2354 assert(ScalarIVTy == Step->getType() && 2355 "Val and Step should have the same type"); 2356 2357 // We build scalar steps for both integer and floating-point induction 2358 // variables. Here, we determine the kind of arithmetic we will perform. 2359 Instruction::BinaryOps AddOp; 2360 Instruction::BinaryOps MulOp; 2361 if (ScalarIVTy->isIntegerTy()) { 2362 AddOp = Instruction::Add; 2363 MulOp = Instruction::Mul; 2364 } else { 2365 AddOp = ID.getInductionOpcode(); 2366 MulOp = Instruction::FMul; 2367 } 2368 2369 // Determine the number of scalars we need to generate for each unroll 2370 // iteration. If EntryVal is uniform, we only need to generate the first 2371 // lane. Otherwise, we generate all VF values. 2372 unsigned Lanes = 2373 Cost->isUniformAfterVectorization(cast<Instruction>(EntryVal), VF) 2374 ? 1 2375 : VF.getKnownMinValue(); 2376 assert((!VF.isScalable() || Lanes == 1) && 2377 "Should never scalarize a scalable vector"); 2378 // Compute the scalar steps and save the results in VectorLoopValueMap. 2379 for (unsigned Part = 0; Part < UF; ++Part) { 2380 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 2381 auto *IntStepTy = IntegerType::get(ScalarIVTy->getContext(), 2382 ScalarIVTy->getScalarSizeInBits()); 2383 Value *StartIdx = 2384 createStepForVF(Builder, ConstantInt::get(IntStepTy, Part), VF); 2385 if (ScalarIVTy->isFloatingPointTy()) 2386 StartIdx = Builder.CreateSIToFP(StartIdx, ScalarIVTy); 2387 StartIdx = addFastMathFlag(Builder.CreateBinOp( 2388 AddOp, StartIdx, getSignedIntOrFpConstant(ScalarIVTy, Lane))); 2389 // The step returned by `createStepForVF` is a runtime-evaluated value 2390 // when VF is scalable. Otherwise, it should be folded into a Constant. 2391 assert((VF.isScalable() || isa<Constant>(StartIdx)) && 2392 "Expected StartIdx to be folded to a constant when VF is not " 2393 "scalable"); 2394 auto *Mul = addFastMathFlag(Builder.CreateBinOp(MulOp, StartIdx, Step)); 2395 auto *Add = addFastMathFlag(Builder.CreateBinOp(AddOp, ScalarIV, Mul)); 2396 State.set(Def, Add, VPIteration(Part, Lane)); 2397 recordVectorLoopValueForInductionCast(ID, EntryVal, Add, CastDef, State, 2398 Part, Lane); 2399 } 2400 } 2401 } 2402 2403 Value *InnerLoopVectorizer::getOrCreateVectorValue(Value *V, unsigned Part) { 2404 assert(V != Induction && "The new induction variable should not be used."); 2405 assert(!V->getType()->isVectorTy() && "Can't widen a vector"); 2406 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2407 2408 // If we have a stride that is replaced by one, do it here. Defer this for 2409 // the VPlan-native path until we start running Legal checks in that path. 2410 if (!EnableVPlanNativePath && Legal->hasStride(V)) 2411 V = ConstantInt::get(V->getType(), 1); 2412 2413 // If we have a vector mapped to this value, return it. 2414 if (VectorLoopValueMap.hasVectorValue(V, Part)) 2415 return VectorLoopValueMap.getVectorValue(V, Part); 2416 2417 // If the value has not been vectorized, check if it has been scalarized 2418 // instead. If it has been scalarized, and we actually need the value in 2419 // vector form, we will construct the vector values on demand. 2420 if (VectorLoopValueMap.hasAnyScalarValue(V)) { 2421 Value *ScalarValue = 2422 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, 0)); 2423 2424 // If we've scalarized a value, that value should be an instruction. 2425 auto *I = cast<Instruction>(V); 2426 2427 // If we aren't vectorizing, we can just copy the scalar map values over to 2428 // the vector map. 2429 if (VF.isScalar()) { 2430 VectorLoopValueMap.setVectorValue(V, Part, ScalarValue); 2431 return ScalarValue; 2432 } 2433 2434 // Get the last scalar instruction we generated for V and Part. If the value 2435 // is known to be uniform after vectorization, this corresponds to lane zero 2436 // of the Part unroll iteration. Otherwise, the last instruction is the one 2437 // we created for the last vector lane of the Part unroll iteration. 2438 unsigned LastLane = Cost->isUniformAfterVectorization(I, VF) 2439 ? 0 2440 : VF.getKnownMinValue() - 1; 2441 assert((!VF.isScalable() || LastLane == 0) && 2442 "Scalable vectorization can't lead to any scalarized values."); 2443 auto *LastInst = cast<Instruction>( 2444 VectorLoopValueMap.getScalarValue(V, VPIteration(Part, LastLane))); 2445 2446 // Set the insert point after the last scalarized instruction. This ensures 2447 // the insertelement sequence will directly follow the scalar definitions. 2448 auto OldIP = Builder.saveIP(); 2449 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 2450 Builder.SetInsertPoint(&*NewIP); 2451 2452 // However, if we are vectorizing, we need to construct the vector values. 2453 // If the value is known to be uniform after vectorization, we can just 2454 // broadcast the scalar value corresponding to lane zero for each unroll 2455 // iteration. Otherwise, we construct the vector values using insertelement 2456 // instructions. Since the resulting vectors are stored in 2457 // VectorLoopValueMap, we will only generate the insertelements once. 2458 Value *VectorValue = nullptr; 2459 if (Cost->isUniformAfterVectorization(I, VF)) { 2460 VectorValue = getBroadcastInstrs(ScalarValue); 2461 VectorLoopValueMap.setVectorValue(V, Part, VectorValue); 2462 } else { 2463 // Initialize packing with insertelements to start from poison. 2464 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2465 Value *Poison = PoisonValue::get(VectorType::get(V->getType(), VF)); 2466 VectorLoopValueMap.setVectorValue(V, Part, Poison); 2467 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 2468 packScalarIntoVectorValue(V, VPIteration(Part, Lane)); 2469 VectorValue = VectorLoopValueMap.getVectorValue(V, Part); 2470 } 2471 Builder.restoreIP(OldIP); 2472 return VectorValue; 2473 } 2474 2475 // If this scalar is unknown, assume that it is a constant or that it is 2476 // loop invariant. Broadcast V and save the value for future uses. 2477 Value *B = getBroadcastInstrs(V); 2478 VectorLoopValueMap.setVectorValue(V, Part, B); 2479 return B; 2480 } 2481 2482 Value * 2483 InnerLoopVectorizer::getOrCreateScalarValue(Value *V, 2484 const VPIteration &Instance) { 2485 // If the value is not an instruction contained in the loop, it should 2486 // already be scalar. 2487 if (OrigLoop->isLoopInvariant(V)) 2488 return V; 2489 2490 assert(Instance.Lane > 0 2491 ? !Cost->isUniformAfterVectorization(cast<Instruction>(V), VF) 2492 : true && "Uniform values only have lane zero"); 2493 2494 // If the value from the original loop has not been vectorized, it is 2495 // represented by UF x VF scalar values in the new loop. Return the requested 2496 // scalar value. 2497 if (VectorLoopValueMap.hasScalarValue(V, Instance)) 2498 return VectorLoopValueMap.getScalarValue(V, Instance); 2499 2500 // If the value has not been scalarized, get its entry in VectorLoopValueMap 2501 // for the given unroll part. If this entry is not a vector type (i.e., the 2502 // vectorization factor is one), there is no need to generate an 2503 // extractelement instruction. 2504 auto *U = getOrCreateVectorValue(V, Instance.Part); 2505 if (!U->getType()->isVectorTy()) { 2506 assert(VF.isScalar() && "Value not scalarized has non-vector type"); 2507 return U; 2508 } 2509 2510 // Otherwise, the value from the original loop has been vectorized and is 2511 // represented by UF vector values. Extract and return the requested scalar 2512 // value from the appropriate vector lane. 2513 return Builder.CreateExtractElement(U, Builder.getInt32(Instance.Lane)); 2514 } 2515 2516 void InnerLoopVectorizer::packScalarIntoVectorValue( 2517 Value *V, const VPIteration &Instance) { 2518 assert(V != Induction && "The new induction variable should not be used."); 2519 assert(!V->getType()->isVectorTy() && "Can't pack a vector"); 2520 assert(!V->getType()->isVoidTy() && "Type does not produce a value"); 2521 2522 Value *ScalarInst = VectorLoopValueMap.getScalarValue(V, Instance); 2523 Value *VectorValue = VectorLoopValueMap.getVectorValue(V, Instance.Part); 2524 VectorValue = Builder.CreateInsertElement(VectorValue, ScalarInst, 2525 Builder.getInt32(Instance.Lane)); 2526 VectorLoopValueMap.resetVectorValue(V, Instance.Part, VectorValue); 2527 } 2528 2529 void InnerLoopVectorizer::packScalarIntoVectorValue(VPValue *Def, 2530 const VPIteration &Instance, 2531 VPTransformState &State) { 2532 Value *ScalarInst = State.get(Def, Instance); 2533 Value *VectorValue = State.get(Def, Instance.Part); 2534 VectorValue = Builder.CreateInsertElement( 2535 VectorValue, ScalarInst, State.Builder.getInt32(Instance.Lane)); 2536 State.set(Def, VectorValue, Instance.Part); 2537 } 2538 2539 Value *InnerLoopVectorizer::reverseVector(Value *Vec) { 2540 assert(Vec->getType()->isVectorTy() && "Invalid type"); 2541 assert(!VF.isScalable() && "Cannot reverse scalable vectors"); 2542 SmallVector<int, 8> ShuffleMask; 2543 for (unsigned i = 0; i < VF.getKnownMinValue(); ++i) 2544 ShuffleMask.push_back(VF.getKnownMinValue() - i - 1); 2545 2546 return Builder.CreateShuffleVector(Vec, ShuffleMask, "reverse"); 2547 } 2548 2549 // Return whether we allow using masked interleave-groups (for dealing with 2550 // strided loads/stores that reside in predicated blocks, or for dealing 2551 // with gaps). 2552 static bool useMaskedInterleavedAccesses(const TargetTransformInfo &TTI) { 2553 // If an override option has been passed in for interleaved accesses, use it. 2554 if (EnableMaskedInterleavedMemAccesses.getNumOccurrences() > 0) 2555 return EnableMaskedInterleavedMemAccesses; 2556 2557 return TTI.enableMaskedInterleavedAccessVectorization(); 2558 } 2559 2560 // Try to vectorize the interleave group that \p Instr belongs to. 2561 // 2562 // E.g. Translate following interleaved load group (factor = 3): 2563 // for (i = 0; i < N; i+=3) { 2564 // R = Pic[i]; // Member of index 0 2565 // G = Pic[i+1]; // Member of index 1 2566 // B = Pic[i+2]; // Member of index 2 2567 // ... // do something to R, G, B 2568 // } 2569 // To: 2570 // %wide.vec = load <12 x i32> ; Read 4 tuples of R,G,B 2571 // %R.vec = shuffle %wide.vec, poison, <0, 3, 6, 9> ; R elements 2572 // %G.vec = shuffle %wide.vec, poison, <1, 4, 7, 10> ; G elements 2573 // %B.vec = shuffle %wide.vec, poison, <2, 5, 8, 11> ; B elements 2574 // 2575 // Or translate following interleaved store group (factor = 3): 2576 // for (i = 0; i < N; i+=3) { 2577 // ... do something to R, G, B 2578 // Pic[i] = R; // Member of index 0 2579 // Pic[i+1] = G; // Member of index 1 2580 // Pic[i+2] = B; // Member of index 2 2581 // } 2582 // To: 2583 // %R_G.vec = shuffle %R.vec, %G.vec, <0, 1, 2, ..., 7> 2584 // %B_U.vec = shuffle %B.vec, poison, <0, 1, 2, 3, u, u, u, u> 2585 // %interleaved.vec = shuffle %R_G.vec, %B_U.vec, 2586 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> ; Interleave R,G,B elements 2587 // store <12 x i32> %interleaved.vec ; Write 4 tuples of R,G,B 2588 void InnerLoopVectorizer::vectorizeInterleaveGroup( 2589 const InterleaveGroup<Instruction> *Group, ArrayRef<VPValue *> VPDefs, 2590 VPTransformState &State, VPValue *Addr, ArrayRef<VPValue *> StoredValues, 2591 VPValue *BlockInMask) { 2592 Instruction *Instr = Group->getInsertPos(); 2593 const DataLayout &DL = Instr->getModule()->getDataLayout(); 2594 2595 // Prepare for the vector type of the interleaved load/store. 2596 Type *ScalarTy = getMemInstValueType(Instr); 2597 unsigned InterleaveFactor = Group->getFactor(); 2598 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2599 auto *VecTy = VectorType::get(ScalarTy, VF * InterleaveFactor); 2600 2601 // Prepare for the new pointers. 2602 SmallVector<Value *, 2> AddrParts; 2603 unsigned Index = Group->getIndex(Instr); 2604 2605 // TODO: extend the masked interleaved-group support to reversed access. 2606 assert((!BlockInMask || !Group->isReverse()) && 2607 "Reversed masked interleave-group not supported."); 2608 2609 // If the group is reverse, adjust the index to refer to the last vector lane 2610 // instead of the first. We adjust the index from the first vector lane, 2611 // rather than directly getting the pointer for lane VF - 1, because the 2612 // pointer operand of the interleaved access is supposed to be uniform. For 2613 // uniform instructions, we're only required to generate a value for the 2614 // first vector lane in each unroll iteration. 2615 assert(!VF.isScalable() && 2616 "scalable vector reverse operation is not implemented"); 2617 if (Group->isReverse()) 2618 Index += (VF.getKnownMinValue() - 1) * Group->getFactor(); 2619 2620 for (unsigned Part = 0; Part < UF; Part++) { 2621 Value *AddrPart = State.get(Addr, VPIteration(Part, 0)); 2622 setDebugLocFromInst(Builder, AddrPart); 2623 2624 // Notice current instruction could be any index. Need to adjust the address 2625 // to the member of index 0. 2626 // 2627 // E.g. a = A[i+1]; // Member of index 1 (Current instruction) 2628 // b = A[i]; // Member of index 0 2629 // Current pointer is pointed to A[i+1], adjust it to A[i]. 2630 // 2631 // E.g. A[i+1] = a; // Member of index 1 2632 // A[i] = b; // Member of index 0 2633 // A[i+2] = c; // Member of index 2 (Current instruction) 2634 // Current pointer is pointed to A[i+2], adjust it to A[i]. 2635 2636 bool InBounds = false; 2637 if (auto *gep = dyn_cast<GetElementPtrInst>(AddrPart->stripPointerCasts())) 2638 InBounds = gep->isInBounds(); 2639 AddrPart = Builder.CreateGEP(ScalarTy, AddrPart, Builder.getInt32(-Index)); 2640 cast<GetElementPtrInst>(AddrPart)->setIsInBounds(InBounds); 2641 2642 // Cast to the vector pointer type. 2643 unsigned AddressSpace = AddrPart->getType()->getPointerAddressSpace(); 2644 Type *PtrTy = VecTy->getPointerTo(AddressSpace); 2645 AddrParts.push_back(Builder.CreateBitCast(AddrPart, PtrTy)); 2646 } 2647 2648 setDebugLocFromInst(Builder, Instr); 2649 Value *PoisonVec = PoisonValue::get(VecTy); 2650 2651 Value *MaskForGaps = nullptr; 2652 if (Group->requiresScalarEpilogue() && !Cost->isScalarEpilogueAllowed()) { 2653 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2654 MaskForGaps = createBitMaskForGaps(Builder, VF.getKnownMinValue(), *Group); 2655 assert(MaskForGaps && "Mask for Gaps is required but it is null"); 2656 } 2657 2658 // Vectorize the interleaved load group. 2659 if (isa<LoadInst>(Instr)) { 2660 // For each unroll part, create a wide load for the group. 2661 SmallVector<Value *, 2> NewLoads; 2662 for (unsigned Part = 0; Part < UF; Part++) { 2663 Instruction *NewLoad; 2664 if (BlockInMask || MaskForGaps) { 2665 assert(useMaskedInterleavedAccesses(*TTI) && 2666 "masked interleaved groups are not allowed."); 2667 Value *GroupMask = MaskForGaps; 2668 if (BlockInMask) { 2669 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2670 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2671 Value *ShuffledMask = Builder.CreateShuffleVector( 2672 BlockInMaskPart, 2673 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2674 "interleaved.mask"); 2675 GroupMask = MaskForGaps 2676 ? Builder.CreateBinOp(Instruction::And, ShuffledMask, 2677 MaskForGaps) 2678 : ShuffledMask; 2679 } 2680 NewLoad = 2681 Builder.CreateMaskedLoad(AddrParts[Part], Group->getAlign(), 2682 GroupMask, PoisonVec, "wide.masked.vec"); 2683 } 2684 else 2685 NewLoad = Builder.CreateAlignedLoad(VecTy, AddrParts[Part], 2686 Group->getAlign(), "wide.vec"); 2687 Group->addMetadata(NewLoad); 2688 NewLoads.push_back(NewLoad); 2689 } 2690 2691 // For each member in the group, shuffle out the appropriate data from the 2692 // wide loads. 2693 unsigned J = 0; 2694 for (unsigned I = 0; I < InterleaveFactor; ++I) { 2695 Instruction *Member = Group->getMember(I); 2696 2697 // Skip the gaps in the group. 2698 if (!Member) 2699 continue; 2700 2701 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2702 auto StrideMask = 2703 createStrideMask(I, InterleaveFactor, VF.getKnownMinValue()); 2704 for (unsigned Part = 0; Part < UF; Part++) { 2705 Value *StridedVec = Builder.CreateShuffleVector( 2706 NewLoads[Part], StrideMask, "strided.vec"); 2707 2708 // If this member has different type, cast the result type. 2709 if (Member->getType() != ScalarTy) { 2710 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2711 VectorType *OtherVTy = VectorType::get(Member->getType(), VF); 2712 StridedVec = createBitOrPointerCast(StridedVec, OtherVTy, DL); 2713 } 2714 2715 if (Group->isReverse()) 2716 StridedVec = reverseVector(StridedVec); 2717 2718 State.set(VPDefs[J], Member, StridedVec, Part); 2719 } 2720 ++J; 2721 } 2722 return; 2723 } 2724 2725 // The sub vector type for current instruction. 2726 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 2727 auto *SubVT = VectorType::get(ScalarTy, VF); 2728 2729 // Vectorize the interleaved store group. 2730 for (unsigned Part = 0; Part < UF; Part++) { 2731 // Collect the stored vector from each member. 2732 SmallVector<Value *, 4> StoredVecs; 2733 for (unsigned i = 0; i < InterleaveFactor; i++) { 2734 // Interleaved store group doesn't allow a gap, so each index has a member 2735 assert(Group->getMember(i) && "Fail to get a member from an interleaved store group"); 2736 2737 Value *StoredVec = State.get(StoredValues[i], Part); 2738 2739 if (Group->isReverse()) 2740 StoredVec = reverseVector(StoredVec); 2741 2742 // If this member has different type, cast it to a unified type. 2743 2744 if (StoredVec->getType() != SubVT) 2745 StoredVec = createBitOrPointerCast(StoredVec, SubVT, DL); 2746 2747 StoredVecs.push_back(StoredVec); 2748 } 2749 2750 // Concatenate all vectors into a wide vector. 2751 Value *WideVec = concatenateVectors(Builder, StoredVecs); 2752 2753 // Interleave the elements in the wide vector. 2754 assert(!VF.isScalable() && "scalable vectors not yet supported."); 2755 Value *IVec = Builder.CreateShuffleVector( 2756 WideVec, createInterleaveMask(VF.getKnownMinValue(), InterleaveFactor), 2757 "interleaved.vec"); 2758 2759 Instruction *NewStoreInstr; 2760 if (BlockInMask) { 2761 Value *BlockInMaskPart = State.get(BlockInMask, Part); 2762 Value *ShuffledMask = Builder.CreateShuffleVector( 2763 BlockInMaskPart, 2764 createReplicatedMask(InterleaveFactor, VF.getKnownMinValue()), 2765 "interleaved.mask"); 2766 NewStoreInstr = Builder.CreateMaskedStore( 2767 IVec, AddrParts[Part], Group->getAlign(), ShuffledMask); 2768 } 2769 else 2770 NewStoreInstr = 2771 Builder.CreateAlignedStore(IVec, AddrParts[Part], Group->getAlign()); 2772 2773 Group->addMetadata(NewStoreInstr); 2774 } 2775 } 2776 2777 void InnerLoopVectorizer::vectorizeMemoryInstruction( 2778 Instruction *Instr, VPTransformState &State, VPValue *Def, VPValue *Addr, 2779 VPValue *StoredValue, VPValue *BlockInMask) { 2780 // Attempt to issue a wide load. 2781 LoadInst *LI = dyn_cast<LoadInst>(Instr); 2782 StoreInst *SI = dyn_cast<StoreInst>(Instr); 2783 2784 assert((LI || SI) && "Invalid Load/Store instruction"); 2785 assert((!SI || StoredValue) && "No stored value provided for widened store"); 2786 assert((!LI || !StoredValue) && "Stored value provided for widened load"); 2787 2788 LoopVectorizationCostModel::InstWidening Decision = 2789 Cost->getWideningDecision(Instr, VF); 2790 assert((Decision == LoopVectorizationCostModel::CM_Widen || 2791 Decision == LoopVectorizationCostModel::CM_Widen_Reverse || 2792 Decision == LoopVectorizationCostModel::CM_GatherScatter) && 2793 "CM decision is not to widen the memory instruction"); 2794 2795 Type *ScalarDataTy = getMemInstValueType(Instr); 2796 2797 auto *DataTy = VectorType::get(ScalarDataTy, VF); 2798 const Align Alignment = getLoadStoreAlignment(Instr); 2799 2800 // Determine if the pointer operand of the access is either consecutive or 2801 // reverse consecutive. 2802 bool Reverse = (Decision == LoopVectorizationCostModel::CM_Widen_Reverse); 2803 bool ConsecutiveStride = 2804 Reverse || (Decision == LoopVectorizationCostModel::CM_Widen); 2805 bool CreateGatherScatter = 2806 (Decision == LoopVectorizationCostModel::CM_GatherScatter); 2807 2808 // Either Ptr feeds a vector load/store, or a vector GEP should feed a vector 2809 // gather/scatter. Otherwise Decision should have been to Scalarize. 2810 assert((ConsecutiveStride || CreateGatherScatter) && 2811 "The instruction should be scalarized"); 2812 (void)ConsecutiveStride; 2813 2814 VectorParts BlockInMaskParts(UF); 2815 bool isMaskRequired = BlockInMask; 2816 if (isMaskRequired) 2817 for (unsigned Part = 0; Part < UF; ++Part) 2818 BlockInMaskParts[Part] = State.get(BlockInMask, Part); 2819 2820 const auto CreateVecPtr = [&](unsigned Part, Value *Ptr) -> Value * { 2821 // Calculate the pointer for the specific unroll-part. 2822 GetElementPtrInst *PartPtr = nullptr; 2823 2824 bool InBounds = false; 2825 if (auto *gep = dyn_cast<GetElementPtrInst>(Ptr->stripPointerCasts())) 2826 InBounds = gep->isInBounds(); 2827 2828 if (Reverse) { 2829 assert(!VF.isScalable() && 2830 "Reversing vectors is not yet supported for scalable vectors."); 2831 2832 // If the address is consecutive but reversed, then the 2833 // wide store needs to start at the last vector element. 2834 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2835 ScalarDataTy, Ptr, Builder.getInt32(-Part * VF.getKnownMinValue()))); 2836 PartPtr->setIsInBounds(InBounds); 2837 PartPtr = cast<GetElementPtrInst>(Builder.CreateGEP( 2838 ScalarDataTy, PartPtr, Builder.getInt32(1 - VF.getKnownMinValue()))); 2839 PartPtr->setIsInBounds(InBounds); 2840 if (isMaskRequired) // Reverse of a null all-one mask is a null mask. 2841 BlockInMaskParts[Part] = reverseVector(BlockInMaskParts[Part]); 2842 } else { 2843 Value *Increment = createStepForVF(Builder, Builder.getInt32(Part), VF); 2844 PartPtr = cast<GetElementPtrInst>( 2845 Builder.CreateGEP(ScalarDataTy, Ptr, Increment)); 2846 PartPtr->setIsInBounds(InBounds); 2847 } 2848 2849 unsigned AddressSpace = Ptr->getType()->getPointerAddressSpace(); 2850 return Builder.CreateBitCast(PartPtr, DataTy->getPointerTo(AddressSpace)); 2851 }; 2852 2853 // Handle Stores: 2854 if (SI) { 2855 setDebugLocFromInst(Builder, SI); 2856 2857 for (unsigned Part = 0; Part < UF; ++Part) { 2858 Instruction *NewSI = nullptr; 2859 Value *StoredVal = State.get(StoredValue, Part); 2860 if (CreateGatherScatter) { 2861 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2862 Value *VectorGep = State.get(Addr, Part); 2863 NewSI = Builder.CreateMaskedScatter(StoredVal, VectorGep, Alignment, 2864 MaskPart); 2865 } else { 2866 if (Reverse) { 2867 // If we store to reverse consecutive memory locations, then we need 2868 // to reverse the order of elements in the stored value. 2869 StoredVal = reverseVector(StoredVal); 2870 // We don't want to update the value in the map as it might be used in 2871 // another expression. So don't call resetVectorValue(StoredVal). 2872 } 2873 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2874 if (isMaskRequired) 2875 NewSI = Builder.CreateMaskedStore(StoredVal, VecPtr, Alignment, 2876 BlockInMaskParts[Part]); 2877 else 2878 NewSI = Builder.CreateAlignedStore(StoredVal, VecPtr, Alignment); 2879 } 2880 addMetadata(NewSI, SI); 2881 } 2882 return; 2883 } 2884 2885 // Handle loads. 2886 assert(LI && "Must have a load instruction"); 2887 setDebugLocFromInst(Builder, LI); 2888 for (unsigned Part = 0; Part < UF; ++Part) { 2889 Value *NewLI; 2890 if (CreateGatherScatter) { 2891 Value *MaskPart = isMaskRequired ? BlockInMaskParts[Part] : nullptr; 2892 Value *VectorGep = State.get(Addr, Part); 2893 NewLI = Builder.CreateMaskedGather(VectorGep, Alignment, MaskPart, 2894 nullptr, "wide.masked.gather"); 2895 addMetadata(NewLI, LI); 2896 } else { 2897 auto *VecPtr = CreateVecPtr(Part, State.get(Addr, VPIteration(0, 0))); 2898 if (isMaskRequired) 2899 NewLI = Builder.CreateMaskedLoad( 2900 VecPtr, Alignment, BlockInMaskParts[Part], PoisonValue::get(DataTy), 2901 "wide.masked.load"); 2902 else 2903 NewLI = 2904 Builder.CreateAlignedLoad(DataTy, VecPtr, Alignment, "wide.load"); 2905 2906 // Add metadata to the load, but setVectorValue to the reverse shuffle. 2907 addMetadata(NewLI, LI); 2908 if (Reverse) 2909 NewLI = reverseVector(NewLI); 2910 } 2911 2912 State.set(Def, Instr, NewLI, Part); 2913 } 2914 } 2915 2916 void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, VPValue *Def, 2917 VPUser &User, 2918 const VPIteration &Instance, 2919 bool IfPredicateInstr, 2920 VPTransformState &State) { 2921 assert(!Instr->getType()->isAggregateType() && "Can't handle vectors"); 2922 2923 // llvm.experimental.noalias.scope.decl intrinsics must only be duplicated for 2924 // the first lane and part. 2925 if (isa<NoAliasScopeDeclInst>(Instr)) 2926 if (!Instance.isFirstIteration()) 2927 return; 2928 2929 setDebugLocFromInst(Builder, Instr); 2930 2931 // Does this instruction return a value ? 2932 bool IsVoidRetTy = Instr->getType()->isVoidTy(); 2933 2934 Instruction *Cloned = Instr->clone(); 2935 if (!IsVoidRetTy) 2936 Cloned->setName(Instr->getName() + ".cloned"); 2937 2938 State.Builder.SetInsertPoint(Builder.GetInsertBlock(), 2939 Builder.GetInsertPoint()); 2940 // Replace the operands of the cloned instructions with their scalar 2941 // equivalents in the new loop. 2942 for (unsigned op = 0, e = User.getNumOperands(); op != e; ++op) { 2943 auto *Operand = dyn_cast<Instruction>(Instr->getOperand(op)); 2944 auto InputInstance = Instance; 2945 if (!Operand || !OrigLoop->contains(Operand) || 2946 (Cost->isUniformAfterVectorization(Operand, State.VF))) 2947 InputInstance.Lane = 0; 2948 auto *NewOp = State.get(User.getOperand(op), InputInstance); 2949 Cloned->setOperand(op, NewOp); 2950 } 2951 addNewMetadata(Cloned, Instr); 2952 2953 // Place the cloned scalar in the new loop. 2954 Builder.Insert(Cloned); 2955 2956 State.set(Def, Instr, Cloned, Instance); 2957 2958 // If we just cloned a new assumption, add it the assumption cache. 2959 if (auto *II = dyn_cast<IntrinsicInst>(Cloned)) 2960 if (II->getIntrinsicID() == Intrinsic::assume) 2961 AC->registerAssumption(II); 2962 2963 // End if-block. 2964 if (IfPredicateInstr) 2965 PredicatedInstructions.push_back(Cloned); 2966 } 2967 2968 PHINode *InnerLoopVectorizer::createInductionVariable(Loop *L, Value *Start, 2969 Value *End, Value *Step, 2970 Instruction *DL) { 2971 BasicBlock *Header = L->getHeader(); 2972 BasicBlock *Latch = L->getLoopLatch(); 2973 // As we're just creating this loop, it's possible no latch exists 2974 // yet. If so, use the header as this will be a single block loop. 2975 if (!Latch) 2976 Latch = Header; 2977 2978 IRBuilder<> Builder(&*Header->getFirstInsertionPt()); 2979 Instruction *OldInst = getDebugLocFromInstOrOperands(OldInduction); 2980 setDebugLocFromInst(Builder, OldInst); 2981 auto *Induction = Builder.CreatePHI(Start->getType(), 2, "index"); 2982 2983 Builder.SetInsertPoint(Latch->getTerminator()); 2984 setDebugLocFromInst(Builder, OldInst); 2985 2986 // Create i+1 and fill the PHINode. 2987 Value *Next = Builder.CreateAdd(Induction, Step, "index.next"); 2988 Induction->addIncoming(Start, L->getLoopPreheader()); 2989 Induction->addIncoming(Next, Latch); 2990 // Create the compare. 2991 Value *ICmp = Builder.CreateICmpEQ(Next, End); 2992 Builder.CreateCondBr(ICmp, L->getUniqueExitBlock(), Header); 2993 2994 // Now we have two terminators. Remove the old one from the block. 2995 Latch->getTerminator()->eraseFromParent(); 2996 2997 return Induction; 2998 } 2999 3000 Value *InnerLoopVectorizer::getOrCreateTripCount(Loop *L) { 3001 if (TripCount) 3002 return TripCount; 3003 3004 assert(L && "Create Trip Count for null loop."); 3005 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3006 // Find the loop boundaries. 3007 ScalarEvolution *SE = PSE.getSE(); 3008 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 3009 assert(!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 3010 "Invalid loop count"); 3011 3012 Type *IdxTy = Legal->getWidestInductionType(); 3013 assert(IdxTy && "No type for induction"); 3014 3015 // The exit count might have the type of i64 while the phi is i32. This can 3016 // happen if we have an induction variable that is sign extended before the 3017 // compare. The only way that we get a backedge taken count is that the 3018 // induction variable was signed and as such will not overflow. In such a case 3019 // truncation is legal. 3020 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) > 3021 IdxTy->getPrimitiveSizeInBits()) 3022 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, IdxTy); 3023 BackedgeTakenCount = SE->getNoopOrZeroExtend(BackedgeTakenCount, IdxTy); 3024 3025 // Get the total trip count from the count by adding 1. 3026 const SCEV *ExitCount = SE->getAddExpr( 3027 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 3028 3029 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 3030 3031 // Expand the trip count and place the new instructions in the preheader. 3032 // Notice that the pre-header does not change, only the loop body. 3033 SCEVExpander Exp(*SE, DL, "induction"); 3034 3035 // Count holds the overall loop count (N). 3036 TripCount = Exp.expandCodeFor(ExitCount, ExitCount->getType(), 3037 L->getLoopPreheader()->getTerminator()); 3038 3039 if (TripCount->getType()->isPointerTy()) 3040 TripCount = 3041 CastInst::CreatePointerCast(TripCount, IdxTy, "exitcount.ptrcnt.to.int", 3042 L->getLoopPreheader()->getTerminator()); 3043 3044 return TripCount; 3045 } 3046 3047 Value *InnerLoopVectorizer::getOrCreateVectorTripCount(Loop *L) { 3048 if (VectorTripCount) 3049 return VectorTripCount; 3050 3051 Value *TC = getOrCreateTripCount(L); 3052 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 3053 3054 Type *Ty = TC->getType(); 3055 // This is where we can make the step a runtime constant. 3056 Value *Step = createStepForVF(Builder, ConstantInt::get(Ty, UF), VF); 3057 3058 // If the tail is to be folded by masking, round the number of iterations N 3059 // up to a multiple of Step instead of rounding down. This is done by first 3060 // adding Step-1 and then rounding down. Note that it's ok if this addition 3061 // overflows: the vector induction variable will eventually wrap to zero given 3062 // that it starts at zero and its Step is a power of two; the loop will then 3063 // exit, with the last early-exit vector comparison also producing all-true. 3064 if (Cost->foldTailByMasking()) { 3065 assert(isPowerOf2_32(VF.getKnownMinValue() * UF) && 3066 "VF*UF must be a power of 2 when folding tail by masking"); 3067 assert(!VF.isScalable() && 3068 "Tail folding not yet supported for scalable vectors"); 3069 TC = Builder.CreateAdd( 3070 TC, ConstantInt::get(Ty, VF.getKnownMinValue() * UF - 1), "n.rnd.up"); 3071 } 3072 3073 // Now we need to generate the expression for the part of the loop that the 3074 // vectorized body will execute. This is equal to N - (N % Step) if scalar 3075 // iterations are not required for correctness, or N - Step, otherwise. Step 3076 // is equal to the vectorization factor (number of SIMD elements) times the 3077 // unroll factor (number of SIMD instructions). 3078 Value *R = Builder.CreateURem(TC, Step, "n.mod.vf"); 3079 3080 // There are two cases where we need to ensure (at least) the last iteration 3081 // runs in the scalar remainder loop. Thus, if the step evenly divides 3082 // the trip count, we set the remainder to be equal to the step. If the step 3083 // does not evenly divide the trip count, no adjustment is necessary since 3084 // there will already be scalar iterations. Note that the minimum iterations 3085 // check ensures that N >= Step. The cases are: 3086 // 1) If there is a non-reversed interleaved group that may speculatively 3087 // access memory out-of-bounds. 3088 // 2) If any instruction may follow a conditionally taken exit. That is, if 3089 // the loop contains multiple exiting blocks, or a single exiting block 3090 // which is not the latch. 3091 if (VF.isVector() && Cost->requiresScalarEpilogue()) { 3092 auto *IsZero = Builder.CreateICmpEQ(R, ConstantInt::get(R->getType(), 0)); 3093 R = Builder.CreateSelect(IsZero, Step, R); 3094 } 3095 3096 VectorTripCount = Builder.CreateSub(TC, R, "n.vec"); 3097 3098 return VectorTripCount; 3099 } 3100 3101 Value *InnerLoopVectorizer::createBitOrPointerCast(Value *V, VectorType *DstVTy, 3102 const DataLayout &DL) { 3103 // Verify that V is a vector type with same number of elements as DstVTy. 3104 auto *DstFVTy = cast<FixedVectorType>(DstVTy); 3105 unsigned VF = DstFVTy->getNumElements(); 3106 auto *SrcVecTy = cast<FixedVectorType>(V->getType()); 3107 assert((VF == SrcVecTy->getNumElements()) && "Vector dimensions do not match"); 3108 Type *SrcElemTy = SrcVecTy->getElementType(); 3109 Type *DstElemTy = DstFVTy->getElementType(); 3110 assert((DL.getTypeSizeInBits(SrcElemTy) == DL.getTypeSizeInBits(DstElemTy)) && 3111 "Vector elements must have same size"); 3112 3113 // Do a direct cast if element types are castable. 3114 if (CastInst::isBitOrNoopPointerCastable(SrcElemTy, DstElemTy, DL)) { 3115 return Builder.CreateBitOrPointerCast(V, DstFVTy); 3116 } 3117 // V cannot be directly casted to desired vector type. 3118 // May happen when V is a floating point vector but DstVTy is a vector of 3119 // pointers or vice-versa. Handle this using a two-step bitcast using an 3120 // intermediate Integer type for the bitcast i.e. Ptr <-> Int <-> Float. 3121 assert((DstElemTy->isPointerTy() != SrcElemTy->isPointerTy()) && 3122 "Only one type should be a pointer type"); 3123 assert((DstElemTy->isFloatingPointTy() != SrcElemTy->isFloatingPointTy()) && 3124 "Only one type should be a floating point type"); 3125 Type *IntTy = 3126 IntegerType::getIntNTy(V->getContext(), DL.getTypeSizeInBits(SrcElemTy)); 3127 auto *VecIntTy = FixedVectorType::get(IntTy, VF); 3128 Value *CastVal = Builder.CreateBitOrPointerCast(V, VecIntTy); 3129 return Builder.CreateBitOrPointerCast(CastVal, DstFVTy); 3130 } 3131 3132 void InnerLoopVectorizer::emitMinimumIterationCountCheck(Loop *L, 3133 BasicBlock *Bypass) { 3134 Value *Count = getOrCreateTripCount(L); 3135 // Reuse existing vector loop preheader for TC checks. 3136 // Note that new preheader block is generated for vector loop. 3137 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 3138 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 3139 3140 // Generate code to check if the loop's trip count is less than VF * UF, or 3141 // equal to it in case a scalar epilogue is required; this implies that the 3142 // vector trip count is zero. This check also covers the case where adding one 3143 // to the backedge-taken count overflowed leading to an incorrect trip count 3144 // of zero. In this case we will also jump to the scalar loop. 3145 auto P = Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE 3146 : ICmpInst::ICMP_ULT; 3147 3148 // If tail is to be folded, vector loop takes care of all iterations. 3149 Value *CheckMinIters = Builder.getFalse(); 3150 if (!Cost->foldTailByMasking()) { 3151 Value *Step = 3152 createStepForVF(Builder, ConstantInt::get(Count->getType(), UF), VF); 3153 CheckMinIters = Builder.CreateICmp(P, Count, Step, "min.iters.check"); 3154 } 3155 // Create new preheader for vector loop. 3156 LoopVectorPreHeader = 3157 SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), DT, LI, nullptr, 3158 "vector.ph"); 3159 3160 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 3161 DT->getNode(Bypass)->getIDom()) && 3162 "TC check is expected to dominate Bypass"); 3163 3164 // Update dominator for Bypass & LoopExit. 3165 DT->changeImmediateDominator(Bypass, TCCheckBlock); 3166 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 3167 3168 ReplaceInstWithInst( 3169 TCCheckBlock->getTerminator(), 3170 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 3171 LoopBypassBlocks.push_back(TCCheckBlock); 3172 } 3173 3174 void InnerLoopVectorizer::emitSCEVChecks(Loop *L, BasicBlock *Bypass) { 3175 // Reuse existing vector loop preheader for SCEV checks. 3176 // Note that new preheader block is generated for vector loop. 3177 BasicBlock *const SCEVCheckBlock = LoopVectorPreHeader; 3178 3179 // Generate the code to check that the SCEV assumptions that we made. 3180 // We want the new basic block to start at the first instruction in a 3181 // sequence of instructions that form a check. 3182 SCEVExpander Exp(*PSE.getSE(), Bypass->getModule()->getDataLayout(), 3183 "scev.check"); 3184 Value *SCEVCheck = Exp.expandCodeForPredicate( 3185 &PSE.getUnionPredicate(), SCEVCheckBlock->getTerminator()); 3186 3187 if (auto *C = dyn_cast<ConstantInt>(SCEVCheck)) 3188 if (C->isZero()) 3189 return; 3190 3191 assert(!(SCEVCheckBlock->getParent()->hasOptSize() || 3192 (OptForSizeBasedOnProfile && 3193 Cost->Hints->getForce() != LoopVectorizeHints::FK_Enabled)) && 3194 "Cannot SCEV check stride or overflow when optimizing for size"); 3195 3196 SCEVCheckBlock->setName("vector.scevcheck"); 3197 // Create new preheader for vector loop. 3198 LoopVectorPreHeader = 3199 SplitBlock(SCEVCheckBlock, SCEVCheckBlock->getTerminator(), DT, LI, 3200 nullptr, "vector.ph"); 3201 3202 // Update dominator only if this is first RT check. 3203 if (LoopBypassBlocks.empty()) { 3204 DT->changeImmediateDominator(Bypass, SCEVCheckBlock); 3205 DT->changeImmediateDominator(LoopExitBlock, SCEVCheckBlock); 3206 } 3207 3208 ReplaceInstWithInst( 3209 SCEVCheckBlock->getTerminator(), 3210 BranchInst::Create(Bypass, LoopVectorPreHeader, SCEVCheck)); 3211 LoopBypassBlocks.push_back(SCEVCheckBlock); 3212 AddedSafetyChecks = true; 3213 } 3214 3215 void InnerLoopVectorizer::emitMemRuntimeChecks(Loop *L, BasicBlock *Bypass) { 3216 // VPlan-native path does not do any analysis for runtime checks currently. 3217 if (EnableVPlanNativePath) 3218 return; 3219 3220 // Reuse existing vector loop preheader for runtime memory checks. 3221 // Note that new preheader block is generated for vector loop. 3222 BasicBlock *const MemCheckBlock = L->getLoopPreheader(); 3223 3224 // Generate the code that checks in runtime if arrays overlap. We put the 3225 // checks into a separate block to make the more common case of few elements 3226 // faster. 3227 auto *LAI = Legal->getLAI(); 3228 const auto &RtPtrChecking = *LAI->getRuntimePointerChecking(); 3229 if (!RtPtrChecking.Need) 3230 return; 3231 3232 if (MemCheckBlock->getParent()->hasOptSize() || OptForSizeBasedOnProfile) { 3233 assert(Cost->Hints->getForce() == LoopVectorizeHints::FK_Enabled && 3234 "Cannot emit memory checks when optimizing for size, unless forced " 3235 "to vectorize."); 3236 ORE->emit([&]() { 3237 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationCodeSize", 3238 L->getStartLoc(), L->getHeader()) 3239 << "Code-size may be reduced by not forcing " 3240 "vectorization, or by source-code modifications " 3241 "eliminating the need for runtime checks " 3242 "(e.g., adding 'restrict')."; 3243 }); 3244 } 3245 3246 MemCheckBlock->setName("vector.memcheck"); 3247 // Create new preheader for vector loop. 3248 LoopVectorPreHeader = 3249 SplitBlock(MemCheckBlock, MemCheckBlock->getTerminator(), DT, LI, nullptr, 3250 "vector.ph"); 3251 3252 auto *CondBranch = cast<BranchInst>( 3253 Builder.CreateCondBr(Builder.getTrue(), Bypass, LoopVectorPreHeader)); 3254 ReplaceInstWithInst(MemCheckBlock->getTerminator(), CondBranch); 3255 LoopBypassBlocks.push_back(MemCheckBlock); 3256 AddedSafetyChecks = true; 3257 3258 // Update dominator only if this is first RT check. 3259 if (LoopBypassBlocks.empty()) { 3260 DT->changeImmediateDominator(Bypass, MemCheckBlock); 3261 DT->changeImmediateDominator(LoopExitBlock, MemCheckBlock); 3262 } 3263 3264 Instruction *FirstCheckInst; 3265 Instruction *MemRuntimeCheck; 3266 SCEVExpander Exp(*PSE.getSE(), MemCheckBlock->getModule()->getDataLayout(), 3267 "induction"); 3268 std::tie(FirstCheckInst, MemRuntimeCheck) = addRuntimeChecks( 3269 MemCheckBlock->getTerminator(), OrigLoop, RtPtrChecking.getChecks(), Exp); 3270 assert(MemRuntimeCheck && "no RT checks generated although RtPtrChecking " 3271 "claimed checks are required"); 3272 CondBranch->setCondition(MemRuntimeCheck); 3273 3274 // We currently don't use LoopVersioning for the actual loop cloning but we 3275 // still use it to add the noalias metadata. 3276 LVer = std::make_unique<LoopVersioning>( 3277 *Legal->getLAI(), 3278 Legal->getLAI()->getRuntimePointerChecking()->getChecks(), OrigLoop, LI, 3279 DT, PSE.getSE()); 3280 LVer->prepareNoAliasMetadata(); 3281 } 3282 3283 Value *InnerLoopVectorizer::emitTransformedIndex( 3284 IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout &DL, 3285 const InductionDescriptor &ID) const { 3286 3287 SCEVExpander Exp(*SE, DL, "induction"); 3288 auto Step = ID.getStep(); 3289 auto StartValue = ID.getStartValue(); 3290 assert(Index->getType() == Step->getType() && 3291 "Index type does not match StepValue type"); 3292 3293 // Note: the IR at this point is broken. We cannot use SE to create any new 3294 // SCEV and then expand it, hoping that SCEV's simplification will give us 3295 // a more optimal code. Unfortunately, attempt of doing so on invalid IR may 3296 // lead to various SCEV crashes. So all we can do is to use builder and rely 3297 // on InstCombine for future simplifications. Here we handle some trivial 3298 // cases only. 3299 auto CreateAdd = [&B](Value *X, Value *Y) { 3300 assert(X->getType() == Y->getType() && "Types don't match!"); 3301 if (auto *CX = dyn_cast<ConstantInt>(X)) 3302 if (CX->isZero()) 3303 return Y; 3304 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3305 if (CY->isZero()) 3306 return X; 3307 return B.CreateAdd(X, Y); 3308 }; 3309 3310 auto CreateMul = [&B](Value *X, Value *Y) { 3311 assert(X->getType() == Y->getType() && "Types don't match!"); 3312 if (auto *CX = dyn_cast<ConstantInt>(X)) 3313 if (CX->isOne()) 3314 return Y; 3315 if (auto *CY = dyn_cast<ConstantInt>(Y)) 3316 if (CY->isOne()) 3317 return X; 3318 return B.CreateMul(X, Y); 3319 }; 3320 3321 // Get a suitable insert point for SCEV expansion. For blocks in the vector 3322 // loop, choose the end of the vector loop header (=LoopVectorBody), because 3323 // the DomTree is not kept up-to-date for additional blocks generated in the 3324 // vector loop. By using the header as insertion point, we guarantee that the 3325 // expanded instructions dominate all their uses. 3326 auto GetInsertPoint = [this, &B]() { 3327 BasicBlock *InsertBB = B.GetInsertPoint()->getParent(); 3328 if (InsertBB != LoopVectorBody && 3329 LI->getLoopFor(LoopVectorBody) == LI->getLoopFor(InsertBB)) 3330 return LoopVectorBody->getTerminator(); 3331 return &*B.GetInsertPoint(); 3332 }; 3333 switch (ID.getKind()) { 3334 case InductionDescriptor::IK_IntInduction: { 3335 assert(Index->getType() == StartValue->getType() && 3336 "Index type does not match StartValue type"); 3337 if (ID.getConstIntStepValue() && ID.getConstIntStepValue()->isMinusOne()) 3338 return B.CreateSub(StartValue, Index); 3339 auto *Offset = CreateMul( 3340 Index, Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint())); 3341 return CreateAdd(StartValue, Offset); 3342 } 3343 case InductionDescriptor::IK_PtrInduction: { 3344 assert(isa<SCEVConstant>(Step) && 3345 "Expected constant step for pointer induction"); 3346 return B.CreateGEP( 3347 StartValue->getType()->getPointerElementType(), StartValue, 3348 CreateMul(Index, 3349 Exp.expandCodeFor(Step, Index->getType(), GetInsertPoint()))); 3350 } 3351 case InductionDescriptor::IK_FpInduction: { 3352 assert(Step->getType()->isFloatingPointTy() && "Expected FP Step value"); 3353 auto InductionBinOp = ID.getInductionBinOp(); 3354 assert(InductionBinOp && 3355 (InductionBinOp->getOpcode() == Instruction::FAdd || 3356 InductionBinOp->getOpcode() == Instruction::FSub) && 3357 "Original bin op should be defined for FP induction"); 3358 3359 Value *StepValue = cast<SCEVUnknown>(Step)->getValue(); 3360 3361 // Floating point operations had to be 'fast' to enable the induction. 3362 FastMathFlags Flags; 3363 Flags.setFast(); 3364 3365 Value *MulExp = B.CreateFMul(StepValue, Index); 3366 if (isa<Instruction>(MulExp)) 3367 // We have to check, the MulExp may be a constant. 3368 cast<Instruction>(MulExp)->setFastMathFlags(Flags); 3369 3370 Value *BOp = B.CreateBinOp(InductionBinOp->getOpcode(), StartValue, MulExp, 3371 "induction"); 3372 if (isa<Instruction>(BOp)) 3373 cast<Instruction>(BOp)->setFastMathFlags(Flags); 3374 3375 return BOp; 3376 } 3377 case InductionDescriptor::IK_NoInduction: 3378 return nullptr; 3379 } 3380 llvm_unreachable("invalid enum"); 3381 } 3382 3383 Loop *InnerLoopVectorizer::createVectorLoopSkeleton(StringRef Prefix) { 3384 LoopScalarBody = OrigLoop->getHeader(); 3385 LoopVectorPreHeader = OrigLoop->getLoopPreheader(); 3386 LoopExitBlock = OrigLoop->getUniqueExitBlock(); 3387 assert(LoopExitBlock && "Must have an exit block"); 3388 assert(LoopVectorPreHeader && "Invalid loop structure"); 3389 3390 LoopMiddleBlock = 3391 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3392 LI, nullptr, Twine(Prefix) + "middle.block"); 3393 LoopScalarPreHeader = 3394 SplitBlock(LoopMiddleBlock, LoopMiddleBlock->getTerminator(), DT, LI, 3395 nullptr, Twine(Prefix) + "scalar.ph"); 3396 3397 // Set up branch from middle block to the exit and scalar preheader blocks. 3398 // completeLoopSkeleton will update the condition to use an iteration check, 3399 // if required to decide whether to execute the remainder. 3400 BranchInst *BrInst = 3401 BranchInst::Create(LoopExitBlock, LoopScalarPreHeader, Builder.getTrue()); 3402 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3403 BrInst->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3404 ReplaceInstWithInst(LoopMiddleBlock->getTerminator(), BrInst); 3405 3406 // We intentionally don't let SplitBlock to update LoopInfo since 3407 // LoopVectorBody should belong to another loop than LoopVectorPreHeader. 3408 // LoopVectorBody is explicitly added to the correct place few lines later. 3409 LoopVectorBody = 3410 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 3411 nullptr, nullptr, Twine(Prefix) + "vector.body"); 3412 3413 // Update dominator for loop exit. 3414 DT->changeImmediateDominator(LoopExitBlock, LoopMiddleBlock); 3415 3416 // Create and register the new vector loop. 3417 Loop *Lp = LI->AllocateLoop(); 3418 Loop *ParentLoop = OrigLoop->getParentLoop(); 3419 3420 // Insert the new loop into the loop nest and register the new basic blocks 3421 // before calling any utilities such as SCEV that require valid LoopInfo. 3422 if (ParentLoop) { 3423 ParentLoop->addChildLoop(Lp); 3424 } else { 3425 LI->addTopLevelLoop(Lp); 3426 } 3427 Lp->addBasicBlockToLoop(LoopVectorBody, *LI); 3428 return Lp; 3429 } 3430 3431 void InnerLoopVectorizer::createInductionResumeValues( 3432 Loop *L, Value *VectorTripCount, 3433 std::pair<BasicBlock *, Value *> AdditionalBypass) { 3434 assert(VectorTripCount && L && "Expected valid arguments"); 3435 assert(((AdditionalBypass.first && AdditionalBypass.second) || 3436 (!AdditionalBypass.first && !AdditionalBypass.second)) && 3437 "Inconsistent information about additional bypass."); 3438 // We are going to resume the execution of the scalar loop. 3439 // Go over all of the induction variables that we found and fix the 3440 // PHIs that are left in the scalar version of the loop. 3441 // The starting values of PHI nodes depend on the counter of the last 3442 // iteration in the vectorized loop. 3443 // If we come from a bypass edge then we need to start from the original 3444 // start value. 3445 for (auto &InductionEntry : Legal->getInductionVars()) { 3446 PHINode *OrigPhi = InductionEntry.first; 3447 InductionDescriptor II = InductionEntry.second; 3448 3449 // Create phi nodes to merge from the backedge-taken check block. 3450 PHINode *BCResumeVal = 3451 PHINode::Create(OrigPhi->getType(), 3, "bc.resume.val", 3452 LoopScalarPreHeader->getTerminator()); 3453 // Copy original phi DL over to the new one. 3454 BCResumeVal->setDebugLoc(OrigPhi->getDebugLoc()); 3455 Value *&EndValue = IVEndValues[OrigPhi]; 3456 Value *EndValueFromAdditionalBypass = AdditionalBypass.second; 3457 if (OrigPhi == OldInduction) { 3458 // We know what the end value is. 3459 EndValue = VectorTripCount; 3460 } else { 3461 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 3462 Type *StepType = II.getStep()->getType(); 3463 Instruction::CastOps CastOp = 3464 CastInst::getCastOpcode(VectorTripCount, true, StepType, true); 3465 Value *CRD = B.CreateCast(CastOp, VectorTripCount, StepType, "cast.crd"); 3466 const DataLayout &DL = LoopScalarBody->getModule()->getDataLayout(); 3467 EndValue = emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3468 EndValue->setName("ind.end"); 3469 3470 // Compute the end value for the additional bypass (if applicable). 3471 if (AdditionalBypass.first) { 3472 B.SetInsertPoint(&(*AdditionalBypass.first->getFirstInsertionPt())); 3473 CastOp = CastInst::getCastOpcode(AdditionalBypass.second, true, 3474 StepType, true); 3475 CRD = 3476 B.CreateCast(CastOp, AdditionalBypass.second, StepType, "cast.crd"); 3477 EndValueFromAdditionalBypass = 3478 emitTransformedIndex(B, CRD, PSE.getSE(), DL, II); 3479 EndValueFromAdditionalBypass->setName("ind.end"); 3480 } 3481 } 3482 // The new PHI merges the original incoming value, in case of a bypass, 3483 // or the value at the end of the vectorized loop. 3484 BCResumeVal->addIncoming(EndValue, LoopMiddleBlock); 3485 3486 // Fix the scalar body counter (PHI node). 3487 // The old induction's phi node in the scalar body needs the truncated 3488 // value. 3489 for (BasicBlock *BB : LoopBypassBlocks) 3490 BCResumeVal->addIncoming(II.getStartValue(), BB); 3491 3492 if (AdditionalBypass.first) 3493 BCResumeVal->setIncomingValueForBlock(AdditionalBypass.first, 3494 EndValueFromAdditionalBypass); 3495 3496 OrigPhi->setIncomingValueForBlock(LoopScalarPreHeader, BCResumeVal); 3497 } 3498 } 3499 3500 BasicBlock *InnerLoopVectorizer::completeLoopSkeleton(Loop *L, 3501 MDNode *OrigLoopID) { 3502 assert(L && "Expected valid loop."); 3503 3504 // The trip counts should be cached by now. 3505 Value *Count = getOrCreateTripCount(L); 3506 Value *VectorTripCount = getOrCreateVectorTripCount(L); 3507 3508 auto *ScalarLatchTerm = OrigLoop->getLoopLatch()->getTerminator(); 3509 3510 // Add a check in the middle block to see if we have completed 3511 // all of the iterations in the first vector loop. 3512 // If (N - N%VF) == N, then we *don't* need to run the remainder. 3513 // If tail is to be folded, we know we don't need to run the remainder. 3514 if (!Cost->foldTailByMasking()) { 3515 Instruction *CmpN = CmpInst::Create(Instruction::ICmp, CmpInst::ICMP_EQ, 3516 Count, VectorTripCount, "cmp.n", 3517 LoopMiddleBlock->getTerminator()); 3518 3519 // Here we use the same DebugLoc as the scalar loop latch terminator instead 3520 // of the corresponding compare because they may have ended up with 3521 // different line numbers and we want to avoid awkward line stepping while 3522 // debugging. Eg. if the compare has got a line number inside the loop. 3523 CmpN->setDebugLoc(ScalarLatchTerm->getDebugLoc()); 3524 cast<BranchInst>(LoopMiddleBlock->getTerminator())->setCondition(CmpN); 3525 } 3526 3527 // Get ready to start creating new instructions into the vectorized body. 3528 assert(LoopVectorPreHeader == L->getLoopPreheader() && 3529 "Inconsistent vector loop preheader"); 3530 Builder.SetInsertPoint(&*LoopVectorBody->getFirstInsertionPt()); 3531 3532 Optional<MDNode *> VectorizedLoopID = 3533 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 3534 LLVMLoopVectorizeFollowupVectorized}); 3535 if (VectorizedLoopID.hasValue()) { 3536 L->setLoopID(VectorizedLoopID.getValue()); 3537 3538 // Do not setAlreadyVectorized if loop attributes have been defined 3539 // explicitly. 3540 return LoopVectorPreHeader; 3541 } 3542 3543 // Keep all loop hints from the original loop on the vector loop (we'll 3544 // replace the vectorizer-specific hints below). 3545 if (MDNode *LID = OrigLoop->getLoopID()) 3546 L->setLoopID(LID); 3547 3548 LoopVectorizeHints Hints(L, true, *ORE); 3549 Hints.setAlreadyVectorized(); 3550 3551 #ifdef EXPENSIVE_CHECKS 3552 assert(DT->verify(DominatorTree::VerificationLevel::Fast)); 3553 LI->verify(*DT); 3554 #endif 3555 3556 return LoopVectorPreHeader; 3557 } 3558 3559 BasicBlock *InnerLoopVectorizer::createVectorizedLoopSkeleton() { 3560 /* 3561 In this function we generate a new loop. The new loop will contain 3562 the vectorized instructions while the old loop will continue to run the 3563 scalar remainder. 3564 3565 [ ] <-- loop iteration number check. 3566 / | 3567 / v 3568 | [ ] <-- vector loop bypass (may consist of multiple blocks). 3569 | / | 3570 | / v 3571 || [ ] <-- vector pre header. 3572 |/ | 3573 | v 3574 | [ ] \ 3575 | [ ]_| <-- vector loop. 3576 | | 3577 | v 3578 | -[ ] <--- middle-block. 3579 | / | 3580 | / v 3581 -|- >[ ] <--- new preheader. 3582 | | 3583 | v 3584 | [ ] \ 3585 | [ ]_| <-- old scalar loop to handle remainder. 3586 \ | 3587 \ v 3588 >[ ] <-- exit block. 3589 ... 3590 */ 3591 3592 // Get the metadata of the original loop before it gets modified. 3593 MDNode *OrigLoopID = OrigLoop->getLoopID(); 3594 3595 // Create an empty vector loop, and prepare basic blocks for the runtime 3596 // checks. 3597 Loop *Lp = createVectorLoopSkeleton(""); 3598 3599 // Now, compare the new count to zero. If it is zero skip the vector loop and 3600 // jump to the scalar loop. This check also covers the case where the 3601 // backedge-taken count is uint##_max: adding one to it will overflow leading 3602 // to an incorrect trip count of zero. In this (rare) case we will also jump 3603 // to the scalar loop. 3604 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader); 3605 3606 // Generate the code to check any assumptions that we've made for SCEV 3607 // expressions. 3608 emitSCEVChecks(Lp, LoopScalarPreHeader); 3609 3610 // Generate the code that checks in runtime if arrays overlap. We put the 3611 // checks into a separate block to make the more common case of few elements 3612 // faster. 3613 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 3614 3615 // Some loops have a single integer induction variable, while other loops 3616 // don't. One example is c++ iterators that often have multiple pointer 3617 // induction variables. In the code below we also support a case where we 3618 // don't have a single induction variable. 3619 // 3620 // We try to obtain an induction variable from the original loop as hard 3621 // as possible. However if we don't find one that: 3622 // - is an integer 3623 // - counts from zero, stepping by one 3624 // - is the size of the widest induction variable type 3625 // then we create a new one. 3626 OldInduction = Legal->getPrimaryInduction(); 3627 Type *IdxTy = Legal->getWidestInductionType(); 3628 Value *StartIdx = ConstantInt::get(IdxTy, 0); 3629 // The loop step is equal to the vectorization factor (num of SIMD elements) 3630 // times the unroll factor (num of SIMD instructions). 3631 Builder.SetInsertPoint(&*Lp->getHeader()->getFirstInsertionPt()); 3632 Value *Step = createStepForVF(Builder, ConstantInt::get(IdxTy, UF), VF); 3633 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 3634 Induction = 3635 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 3636 getDebugLocFromInstOrOperands(OldInduction)); 3637 3638 // Emit phis for the new starting index of the scalar loop. 3639 createInductionResumeValues(Lp, CountRoundDown); 3640 3641 return completeLoopSkeleton(Lp, OrigLoopID); 3642 } 3643 3644 // Fix up external users of the induction variable. At this point, we are 3645 // in LCSSA form, with all external PHIs that use the IV having one input value, 3646 // coming from the remainder loop. We need those PHIs to also have a correct 3647 // value for the IV when arriving directly from the middle block. 3648 void InnerLoopVectorizer::fixupIVUsers(PHINode *OrigPhi, 3649 const InductionDescriptor &II, 3650 Value *CountRoundDown, Value *EndValue, 3651 BasicBlock *MiddleBlock) { 3652 // There are two kinds of external IV usages - those that use the value 3653 // computed in the last iteration (the PHI) and those that use the penultimate 3654 // value (the value that feeds into the phi from the loop latch). 3655 // We allow both, but they, obviously, have different values. 3656 3657 assert(OrigLoop->getUniqueExitBlock() && "Expected a single exit block"); 3658 3659 DenseMap<Value *, Value *> MissingVals; 3660 3661 // An external user of the last iteration's value should see the value that 3662 // the remainder loop uses to initialize its own IV. 3663 Value *PostInc = OrigPhi->getIncomingValueForBlock(OrigLoop->getLoopLatch()); 3664 for (User *U : PostInc->users()) { 3665 Instruction *UI = cast<Instruction>(U); 3666 if (!OrigLoop->contains(UI)) { 3667 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3668 MissingVals[UI] = EndValue; 3669 } 3670 } 3671 3672 // An external user of the penultimate value need to see EndValue - Step. 3673 // The simplest way to get this is to recompute it from the constituent SCEVs, 3674 // that is Start + (Step * (CRD - 1)). 3675 for (User *U : OrigPhi->users()) { 3676 auto *UI = cast<Instruction>(U); 3677 if (!OrigLoop->contains(UI)) { 3678 const DataLayout &DL = 3679 OrigLoop->getHeader()->getModule()->getDataLayout(); 3680 assert(isa<PHINode>(UI) && "Expected LCSSA form"); 3681 3682 IRBuilder<> B(MiddleBlock->getTerminator()); 3683 Value *CountMinusOne = B.CreateSub( 3684 CountRoundDown, ConstantInt::get(CountRoundDown->getType(), 1)); 3685 Value *CMO = 3686 !II.getStep()->getType()->isIntegerTy() 3687 ? B.CreateCast(Instruction::SIToFP, CountMinusOne, 3688 II.getStep()->getType()) 3689 : B.CreateSExtOrTrunc(CountMinusOne, II.getStep()->getType()); 3690 CMO->setName("cast.cmo"); 3691 Value *Escape = emitTransformedIndex(B, CMO, PSE.getSE(), DL, II); 3692 Escape->setName("ind.escape"); 3693 MissingVals[UI] = Escape; 3694 } 3695 } 3696 3697 for (auto &I : MissingVals) { 3698 PHINode *PHI = cast<PHINode>(I.first); 3699 // One corner case we have to handle is two IVs "chasing" each-other, 3700 // that is %IV2 = phi [...], [ %IV1, %latch ] 3701 // In this case, if IV1 has an external use, we need to avoid adding both 3702 // "last value of IV1" and "penultimate value of IV2". So, verify that we 3703 // don't already have an incoming value for the middle block. 3704 if (PHI->getBasicBlockIndex(MiddleBlock) == -1) 3705 PHI->addIncoming(I.second, MiddleBlock); 3706 } 3707 } 3708 3709 namespace { 3710 3711 struct CSEDenseMapInfo { 3712 static bool canHandle(const Instruction *I) { 3713 return isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || 3714 isa<ShuffleVectorInst>(I) || isa<GetElementPtrInst>(I); 3715 } 3716 3717 static inline Instruction *getEmptyKey() { 3718 return DenseMapInfo<Instruction *>::getEmptyKey(); 3719 } 3720 3721 static inline Instruction *getTombstoneKey() { 3722 return DenseMapInfo<Instruction *>::getTombstoneKey(); 3723 } 3724 3725 static unsigned getHashValue(const Instruction *I) { 3726 assert(canHandle(I) && "Unknown instruction!"); 3727 return hash_combine(I->getOpcode(), hash_combine_range(I->value_op_begin(), 3728 I->value_op_end())); 3729 } 3730 3731 static bool isEqual(const Instruction *LHS, const Instruction *RHS) { 3732 if (LHS == getEmptyKey() || RHS == getEmptyKey() || 3733 LHS == getTombstoneKey() || RHS == getTombstoneKey()) 3734 return LHS == RHS; 3735 return LHS->isIdenticalTo(RHS); 3736 } 3737 }; 3738 3739 } // end anonymous namespace 3740 3741 ///Perform cse of induction variable instructions. 3742 static void cse(BasicBlock *BB) { 3743 // Perform simple cse. 3744 SmallDenseMap<Instruction *, Instruction *, 4, CSEDenseMapInfo> CSEMap; 3745 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 3746 Instruction *In = &*I++; 3747 3748 if (!CSEDenseMapInfo::canHandle(In)) 3749 continue; 3750 3751 // Check if we can replace this instruction with any of the 3752 // visited instructions. 3753 if (Instruction *V = CSEMap.lookup(In)) { 3754 In->replaceAllUsesWith(V); 3755 In->eraseFromParent(); 3756 continue; 3757 } 3758 3759 CSEMap[In] = In; 3760 } 3761 } 3762 3763 InstructionCost 3764 LoopVectorizationCostModel::getVectorCallCost(CallInst *CI, ElementCount VF, 3765 bool &NeedToScalarize) { 3766 Function *F = CI->getCalledFunction(); 3767 Type *ScalarRetTy = CI->getType(); 3768 SmallVector<Type *, 4> Tys, ScalarTys; 3769 for (auto &ArgOp : CI->arg_operands()) 3770 ScalarTys.push_back(ArgOp->getType()); 3771 3772 // Estimate cost of scalarized vector call. The source operands are assumed 3773 // to be vectors, so we need to extract individual elements from there, 3774 // execute VF scalar calls, and then gather the result into the vector return 3775 // value. 3776 InstructionCost ScalarCallCost = 3777 TTI.getCallInstrCost(F, ScalarRetTy, ScalarTys, TTI::TCK_RecipThroughput); 3778 if (VF.isScalar()) 3779 return ScalarCallCost; 3780 3781 // Compute corresponding vector type for return value and arguments. 3782 Type *RetTy = ToVectorTy(ScalarRetTy, VF); 3783 for (Type *ScalarTy : ScalarTys) 3784 Tys.push_back(ToVectorTy(ScalarTy, VF)); 3785 3786 // Compute costs of unpacking argument values for the scalar calls and 3787 // packing the return values to a vector. 3788 InstructionCost ScalarizationCost = getScalarizationOverhead(CI, VF); 3789 3790 InstructionCost Cost = 3791 ScalarCallCost * VF.getKnownMinValue() + ScalarizationCost; 3792 3793 // If we can't emit a vector call for this function, then the currently found 3794 // cost is the cost we need to return. 3795 NeedToScalarize = true; 3796 VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 3797 Function *VecFunc = VFDatabase(*CI).getVectorizedFunction(Shape); 3798 3799 if (!TLI || CI->isNoBuiltin() || !VecFunc) 3800 return Cost; 3801 3802 // If the corresponding vector cost is cheaper, return its cost. 3803 InstructionCost VectorCallCost = 3804 TTI.getCallInstrCost(nullptr, RetTy, Tys, TTI::TCK_RecipThroughput); 3805 if (VectorCallCost < Cost) { 3806 NeedToScalarize = false; 3807 Cost = VectorCallCost; 3808 } 3809 return Cost; 3810 } 3811 3812 InstructionCost 3813 LoopVectorizationCostModel::getVectorIntrinsicCost(CallInst *CI, 3814 ElementCount VF) { 3815 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 3816 assert(ID && "Expected intrinsic call!"); 3817 3818 IntrinsicCostAttributes CostAttrs(ID, *CI, VF); 3819 return TTI.getIntrinsicInstrCost(CostAttrs, 3820 TargetTransformInfo::TCK_RecipThroughput); 3821 } 3822 3823 static Type *smallestIntegerVectorType(Type *T1, Type *T2) { 3824 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3825 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3826 return I1->getBitWidth() < I2->getBitWidth() ? T1 : T2; 3827 } 3828 3829 static Type *largestIntegerVectorType(Type *T1, Type *T2) { 3830 auto *I1 = cast<IntegerType>(cast<VectorType>(T1)->getElementType()); 3831 auto *I2 = cast<IntegerType>(cast<VectorType>(T2)->getElementType()); 3832 return I1->getBitWidth() > I2->getBitWidth() ? T1 : T2; 3833 } 3834 3835 void InnerLoopVectorizer::truncateToMinimalBitwidths() { 3836 // For every instruction `I` in MinBWs, truncate the operands, create a 3837 // truncated version of `I` and reextend its result. InstCombine runs 3838 // later and will remove any ext/trunc pairs. 3839 SmallPtrSet<Value *, 4> Erased; 3840 for (const auto &KV : Cost->getMinimalBitwidths()) { 3841 // If the value wasn't vectorized, we must maintain the original scalar 3842 // type. The absence of the value from VectorLoopValueMap indicates that it 3843 // wasn't vectorized. 3844 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3845 continue; 3846 for (unsigned Part = 0; Part < UF; ++Part) { 3847 Value *I = getOrCreateVectorValue(KV.first, Part); 3848 if (Erased.count(I) || I->use_empty() || !isa<Instruction>(I)) 3849 continue; 3850 Type *OriginalTy = I->getType(); 3851 Type *ScalarTruncatedTy = 3852 IntegerType::get(OriginalTy->getContext(), KV.second); 3853 auto *TruncatedTy = FixedVectorType::get( 3854 ScalarTruncatedTy, 3855 cast<FixedVectorType>(OriginalTy)->getNumElements()); 3856 if (TruncatedTy == OriginalTy) 3857 continue; 3858 3859 IRBuilder<> B(cast<Instruction>(I)); 3860 auto ShrinkOperand = [&](Value *V) -> Value * { 3861 if (auto *ZI = dyn_cast<ZExtInst>(V)) 3862 if (ZI->getSrcTy() == TruncatedTy) 3863 return ZI->getOperand(0); 3864 return B.CreateZExtOrTrunc(V, TruncatedTy); 3865 }; 3866 3867 // The actual instruction modification depends on the instruction type, 3868 // unfortunately. 3869 Value *NewI = nullptr; 3870 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 3871 NewI = B.CreateBinOp(BO->getOpcode(), ShrinkOperand(BO->getOperand(0)), 3872 ShrinkOperand(BO->getOperand(1))); 3873 3874 // Any wrapping introduced by shrinking this operation shouldn't be 3875 // considered undefined behavior. So, we can't unconditionally copy 3876 // arithmetic wrapping flags to NewI. 3877 cast<BinaryOperator>(NewI)->copyIRFlags(I, /*IncludeWrapFlags=*/false); 3878 } else if (auto *CI = dyn_cast<ICmpInst>(I)) { 3879 NewI = 3880 B.CreateICmp(CI->getPredicate(), ShrinkOperand(CI->getOperand(0)), 3881 ShrinkOperand(CI->getOperand(1))); 3882 } else if (auto *SI = dyn_cast<SelectInst>(I)) { 3883 NewI = B.CreateSelect(SI->getCondition(), 3884 ShrinkOperand(SI->getTrueValue()), 3885 ShrinkOperand(SI->getFalseValue())); 3886 } else if (auto *CI = dyn_cast<CastInst>(I)) { 3887 switch (CI->getOpcode()) { 3888 default: 3889 llvm_unreachable("Unhandled cast!"); 3890 case Instruction::Trunc: 3891 NewI = ShrinkOperand(CI->getOperand(0)); 3892 break; 3893 case Instruction::SExt: 3894 NewI = B.CreateSExtOrTrunc( 3895 CI->getOperand(0), 3896 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3897 break; 3898 case Instruction::ZExt: 3899 NewI = B.CreateZExtOrTrunc( 3900 CI->getOperand(0), 3901 smallestIntegerVectorType(OriginalTy, TruncatedTy)); 3902 break; 3903 } 3904 } else if (auto *SI = dyn_cast<ShuffleVectorInst>(I)) { 3905 auto Elements0 = cast<FixedVectorType>(SI->getOperand(0)->getType()) 3906 ->getNumElements(); 3907 auto *O0 = B.CreateZExtOrTrunc( 3908 SI->getOperand(0), 3909 FixedVectorType::get(ScalarTruncatedTy, Elements0)); 3910 auto Elements1 = cast<FixedVectorType>(SI->getOperand(1)->getType()) 3911 ->getNumElements(); 3912 auto *O1 = B.CreateZExtOrTrunc( 3913 SI->getOperand(1), 3914 FixedVectorType::get(ScalarTruncatedTy, Elements1)); 3915 3916 NewI = B.CreateShuffleVector(O0, O1, SI->getShuffleMask()); 3917 } else if (isa<LoadInst>(I) || isa<PHINode>(I)) { 3918 // Don't do anything with the operands, just extend the result. 3919 continue; 3920 } else if (auto *IE = dyn_cast<InsertElementInst>(I)) { 3921 auto Elements = cast<FixedVectorType>(IE->getOperand(0)->getType()) 3922 ->getNumElements(); 3923 auto *O0 = B.CreateZExtOrTrunc( 3924 IE->getOperand(0), 3925 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3926 auto *O1 = B.CreateZExtOrTrunc(IE->getOperand(1), ScalarTruncatedTy); 3927 NewI = B.CreateInsertElement(O0, O1, IE->getOperand(2)); 3928 } else if (auto *EE = dyn_cast<ExtractElementInst>(I)) { 3929 auto Elements = cast<FixedVectorType>(EE->getOperand(0)->getType()) 3930 ->getNumElements(); 3931 auto *O0 = B.CreateZExtOrTrunc( 3932 EE->getOperand(0), 3933 FixedVectorType::get(ScalarTruncatedTy, Elements)); 3934 NewI = B.CreateExtractElement(O0, EE->getOperand(2)); 3935 } else { 3936 // If we don't know what to do, be conservative and don't do anything. 3937 continue; 3938 } 3939 3940 // Lastly, extend the result. 3941 NewI->takeName(cast<Instruction>(I)); 3942 Value *Res = B.CreateZExtOrTrunc(NewI, OriginalTy); 3943 I->replaceAllUsesWith(Res); 3944 cast<Instruction>(I)->eraseFromParent(); 3945 Erased.insert(I); 3946 VectorLoopValueMap.resetVectorValue(KV.first, Part, Res); 3947 } 3948 } 3949 3950 // We'll have created a bunch of ZExts that are now parentless. Clean up. 3951 for (const auto &KV : Cost->getMinimalBitwidths()) { 3952 // If the value wasn't vectorized, we must maintain the original scalar 3953 // type. The absence of the value from VectorLoopValueMap indicates that it 3954 // wasn't vectorized. 3955 if (!VectorLoopValueMap.hasAnyVectorValue(KV.first)) 3956 continue; 3957 for (unsigned Part = 0; Part < UF; ++Part) { 3958 Value *I = getOrCreateVectorValue(KV.first, Part); 3959 ZExtInst *Inst = dyn_cast<ZExtInst>(I); 3960 if (Inst && Inst->use_empty()) { 3961 Value *NewI = Inst->getOperand(0); 3962 Inst->eraseFromParent(); 3963 VectorLoopValueMap.resetVectorValue(KV.first, Part, NewI); 3964 } 3965 } 3966 } 3967 } 3968 3969 void InnerLoopVectorizer::fixVectorizedLoop(VPTransformState &State) { 3970 // Insert truncates and extends for any truncated instructions as hints to 3971 // InstCombine. 3972 if (VF.isVector()) 3973 truncateToMinimalBitwidths(); 3974 3975 // Fix widened non-induction PHIs by setting up the PHI operands. 3976 if (OrigPHIsToFix.size()) { 3977 assert(EnableVPlanNativePath && 3978 "Unexpected non-induction PHIs for fixup in non VPlan-native path"); 3979 fixNonInductionPHIs(State); 3980 } 3981 3982 // At this point every instruction in the original loop is widened to a 3983 // vector form. Now we need to fix the recurrences in the loop. These PHI 3984 // nodes are currently empty because we did not want to introduce cycles. 3985 // This is the second stage of vectorizing recurrences. 3986 fixCrossIterationPHIs(State); 3987 3988 // Forget the original basic block. 3989 PSE.getSE()->forgetLoop(OrigLoop); 3990 3991 // Fix-up external users of the induction variables. 3992 for (auto &Entry : Legal->getInductionVars()) 3993 fixupIVUsers(Entry.first, Entry.second, 3994 getOrCreateVectorTripCount(LI->getLoopFor(LoopVectorBody)), 3995 IVEndValues[Entry.first], LoopMiddleBlock); 3996 3997 fixLCSSAPHIs(State); 3998 for (Instruction *PI : PredicatedInstructions) 3999 sinkScalarOperands(&*PI); 4000 4001 // Remove redundant induction instructions. 4002 cse(LoopVectorBody); 4003 4004 // Set/update profile weights for the vector and remainder loops as original 4005 // loop iterations are now distributed among them. Note that original loop 4006 // represented by LoopScalarBody becomes remainder loop after vectorization. 4007 // 4008 // For cases like foldTailByMasking() and requiresScalarEpiloque() we may 4009 // end up getting slightly roughened result but that should be OK since 4010 // profile is not inherently precise anyway. Note also possible bypass of 4011 // vector code caused by legality checks is ignored, assigning all the weight 4012 // to the vector loop, optimistically. 4013 // 4014 // For scalable vectorization we can't know at compile time how many iterations 4015 // of the loop are handled in one vector iteration, so instead assume a pessimistic 4016 // vscale of '1'. 4017 setProfileInfoAfterUnrolling( 4018 LI->getLoopFor(LoopScalarBody), LI->getLoopFor(LoopVectorBody), 4019 LI->getLoopFor(LoopScalarBody), VF.getKnownMinValue() * UF); 4020 } 4021 4022 void InnerLoopVectorizer::fixCrossIterationPHIs(VPTransformState &State) { 4023 // In order to support recurrences we need to be able to vectorize Phi nodes. 4024 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4025 // stage #2: We now need to fix the recurrences by adding incoming edges to 4026 // the currently empty PHI nodes. At this point every instruction in the 4027 // original loop is widened to a vector form so we can use them to construct 4028 // the incoming edges. 4029 for (PHINode &Phi : OrigLoop->getHeader()->phis()) { 4030 // Handle first-order recurrences and reductions that need to be fixed. 4031 if (Legal->isFirstOrderRecurrence(&Phi)) 4032 fixFirstOrderRecurrence(&Phi, State); 4033 else if (Legal->isReductionVariable(&Phi)) 4034 fixReduction(&Phi, State); 4035 } 4036 } 4037 4038 void InnerLoopVectorizer::fixFirstOrderRecurrence(PHINode *Phi, 4039 VPTransformState &State) { 4040 // This is the second phase of vectorizing first-order recurrences. An 4041 // overview of the transformation is described below. Suppose we have the 4042 // following loop. 4043 // 4044 // for (int i = 0; i < n; ++i) 4045 // b[i] = a[i] - a[i - 1]; 4046 // 4047 // There is a first-order recurrence on "a". For this loop, the shorthand 4048 // scalar IR looks like: 4049 // 4050 // scalar.ph: 4051 // s_init = a[-1] 4052 // br scalar.body 4053 // 4054 // scalar.body: 4055 // i = phi [0, scalar.ph], [i+1, scalar.body] 4056 // s1 = phi [s_init, scalar.ph], [s2, scalar.body] 4057 // s2 = a[i] 4058 // b[i] = s2 - s1 4059 // br cond, scalar.body, ... 4060 // 4061 // In this example, s1 is a recurrence because it's value depends on the 4062 // previous iteration. In the first phase of vectorization, we created a 4063 // temporary value for s1. We now complete the vectorization and produce the 4064 // shorthand vector IR shown below (for VF = 4, UF = 1). 4065 // 4066 // vector.ph: 4067 // v_init = vector(..., ..., ..., a[-1]) 4068 // br vector.body 4069 // 4070 // vector.body 4071 // i = phi [0, vector.ph], [i+4, vector.body] 4072 // v1 = phi [v_init, vector.ph], [v2, vector.body] 4073 // v2 = a[i, i+1, i+2, i+3]; 4074 // v3 = vector(v1(3), v2(0, 1, 2)) 4075 // b[i, i+1, i+2, i+3] = v2 - v3 4076 // br cond, vector.body, middle.block 4077 // 4078 // middle.block: 4079 // x = v2(3) 4080 // br scalar.ph 4081 // 4082 // scalar.ph: 4083 // s_init = phi [x, middle.block], [a[-1], otherwise] 4084 // br scalar.body 4085 // 4086 // After execution completes the vector loop, we extract the next value of 4087 // the recurrence (x) to use as the initial value in the scalar loop. 4088 4089 // Get the original loop preheader and single loop latch. 4090 auto *Preheader = OrigLoop->getLoopPreheader(); 4091 auto *Latch = OrigLoop->getLoopLatch(); 4092 4093 // Get the initial and previous values of the scalar recurrence. 4094 auto *ScalarInit = Phi->getIncomingValueForBlock(Preheader); 4095 auto *Previous = Phi->getIncomingValueForBlock(Latch); 4096 4097 // Create a vector from the initial value. 4098 auto *VectorInit = ScalarInit; 4099 if (VF.isVector()) { 4100 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4101 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 4102 VectorInit = Builder.CreateInsertElement( 4103 PoisonValue::get(VectorType::get(VectorInit->getType(), VF)), VectorInit, 4104 Builder.getInt32(VF.getKnownMinValue() - 1), "vector.recur.init"); 4105 } 4106 4107 VPValue *PhiDef = State.Plan->getVPValue(Phi); 4108 VPValue *PreviousDef = State.Plan->getVPValue(Previous); 4109 // We constructed a temporary phi node in the first phase of vectorization. 4110 // This phi node will eventually be deleted. 4111 Builder.SetInsertPoint(cast<Instruction>(State.get(PhiDef, 0))); 4112 4113 // Create a phi node for the new recurrence. The current value will either be 4114 // the initial value inserted into a vector or loop-varying vector value. 4115 auto *VecPhi = Builder.CreatePHI(VectorInit->getType(), 2, "vector.recur"); 4116 VecPhi->addIncoming(VectorInit, LoopVectorPreHeader); 4117 4118 // Get the vectorized previous value of the last part UF - 1. It appears last 4119 // among all unrolled iterations, due to the order of their construction. 4120 Value *PreviousLastPart = State.get(PreviousDef, UF - 1); 4121 4122 // Find and set the insertion point after the previous value if it is an 4123 // instruction. 4124 BasicBlock::iterator InsertPt; 4125 // Note that the previous value may have been constant-folded so it is not 4126 // guaranteed to be an instruction in the vector loop. 4127 // FIXME: Loop invariant values do not form recurrences. We should deal with 4128 // them earlier. 4129 if (LI->getLoopFor(LoopVectorBody)->isLoopInvariant(PreviousLastPart)) 4130 InsertPt = LoopVectorBody->getFirstInsertionPt(); 4131 else { 4132 Instruction *PreviousInst = cast<Instruction>(PreviousLastPart); 4133 if (isa<PHINode>(PreviousLastPart)) 4134 // If the previous value is a phi node, we should insert after all the phi 4135 // nodes in the block containing the PHI to avoid breaking basic block 4136 // verification. Note that the basic block may be different to 4137 // LoopVectorBody, in case we predicate the loop. 4138 InsertPt = PreviousInst->getParent()->getFirstInsertionPt(); 4139 else 4140 InsertPt = ++PreviousInst->getIterator(); 4141 } 4142 Builder.SetInsertPoint(&*InsertPt); 4143 4144 // We will construct a vector for the recurrence by combining the values for 4145 // the current and previous iterations. This is the required shuffle mask. 4146 assert(!VF.isScalable()); 4147 SmallVector<int, 8> ShuffleMask(VF.getKnownMinValue()); 4148 ShuffleMask[0] = VF.getKnownMinValue() - 1; 4149 for (unsigned I = 1; I < VF.getKnownMinValue(); ++I) 4150 ShuffleMask[I] = I + VF.getKnownMinValue() - 1; 4151 4152 // The vector from which to take the initial value for the current iteration 4153 // (actual or unrolled). Initially, this is the vector phi node. 4154 Value *Incoming = VecPhi; 4155 4156 // Shuffle the current and previous vector and update the vector parts. 4157 for (unsigned Part = 0; Part < UF; ++Part) { 4158 Value *PreviousPart = State.get(PreviousDef, Part); 4159 Value *PhiPart = State.get(PhiDef, Part); 4160 auto *Shuffle = 4161 VF.isVector() 4162 ? Builder.CreateShuffleVector(Incoming, PreviousPart, ShuffleMask) 4163 : Incoming; 4164 PhiPart->replaceAllUsesWith(Shuffle); 4165 cast<Instruction>(PhiPart)->eraseFromParent(); 4166 State.reset(PhiDef, Phi, Shuffle, Part); 4167 Incoming = PreviousPart; 4168 } 4169 4170 // Fix the latch value of the new recurrence in the vector loop. 4171 VecPhi->addIncoming(Incoming, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4172 4173 // Extract the last vector element in the middle block. This will be the 4174 // initial value for the recurrence when jumping to the scalar loop. 4175 auto *ExtractForScalar = Incoming; 4176 if (VF.isVector()) { 4177 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4178 ExtractForScalar = Builder.CreateExtractElement( 4179 ExtractForScalar, Builder.getInt32(VF.getKnownMinValue() - 1), 4180 "vector.recur.extract"); 4181 } 4182 // Extract the second last element in the middle block if the 4183 // Phi is used outside the loop. We need to extract the phi itself 4184 // and not the last element (the phi update in the current iteration). This 4185 // will be the value when jumping to the exit block from the LoopMiddleBlock, 4186 // when the scalar loop is not run at all. 4187 Value *ExtractForPhiUsedOutsideLoop = nullptr; 4188 if (VF.isVector()) 4189 ExtractForPhiUsedOutsideLoop = Builder.CreateExtractElement( 4190 Incoming, Builder.getInt32(VF.getKnownMinValue() - 2), 4191 "vector.recur.extract.for.phi"); 4192 // When loop is unrolled without vectorizing, initialize 4193 // ExtractForPhiUsedOutsideLoop with the value just prior to unrolled value of 4194 // `Incoming`. This is analogous to the vectorized case above: extracting the 4195 // second last element when VF > 1. 4196 else if (UF > 1) 4197 ExtractForPhiUsedOutsideLoop = State.get(PreviousDef, UF - 2); 4198 4199 // Fix the initial value of the original recurrence in the scalar loop. 4200 Builder.SetInsertPoint(&*LoopScalarPreHeader->begin()); 4201 auto *Start = Builder.CreatePHI(Phi->getType(), 2, "scalar.recur.init"); 4202 for (auto *BB : predecessors(LoopScalarPreHeader)) { 4203 auto *Incoming = BB == LoopMiddleBlock ? ExtractForScalar : ScalarInit; 4204 Start->addIncoming(Incoming, BB); 4205 } 4206 4207 Phi->setIncomingValueForBlock(LoopScalarPreHeader, Start); 4208 Phi->setName("scalar.recur"); 4209 4210 // Finally, fix users of the recurrence outside the loop. The users will need 4211 // either the last value of the scalar recurrence or the last value of the 4212 // vector recurrence we extracted in the middle block. Since the loop is in 4213 // LCSSA form, we just need to find all the phi nodes for the original scalar 4214 // recurrence in the exit block, and then add an edge for the middle block. 4215 // Note that LCSSA does not imply single entry when the original scalar loop 4216 // had multiple exiting edges (as we always run the last iteration in the 4217 // scalar epilogue); in that case, the exiting path through middle will be 4218 // dynamically dead and the value picked for the phi doesn't matter. 4219 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4220 if (any_of(LCSSAPhi.incoming_values(), 4221 [Phi](Value *V) { return V == Phi; })) 4222 LCSSAPhi.addIncoming(ExtractForPhiUsedOutsideLoop, LoopMiddleBlock); 4223 } 4224 4225 void InnerLoopVectorizer::fixReduction(PHINode *Phi, VPTransformState &State) { 4226 // Get it's reduction variable descriptor. 4227 assert(Legal->isReductionVariable(Phi) && 4228 "Unable to find the reduction variable"); 4229 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4230 4231 RecurKind RK = RdxDesc.getRecurrenceKind(); 4232 TrackingVH<Value> ReductionStartValue = RdxDesc.getRecurrenceStartValue(); 4233 Instruction *LoopExitInst = RdxDesc.getLoopExitInstr(); 4234 setDebugLocFromInst(Builder, ReductionStartValue); 4235 bool IsInLoopReductionPhi = Cost->isInLoopReduction(Phi); 4236 4237 VPValue *LoopExitInstDef = State.Plan->getVPValue(LoopExitInst); 4238 // This is the vector-clone of the value that leaves the loop. 4239 Type *VecTy = State.get(LoopExitInstDef, 0)->getType(); 4240 4241 // Wrap flags are in general invalid after vectorization, clear them. 4242 clearReductionWrapFlags(RdxDesc); 4243 4244 // Fix the vector-loop phi. 4245 4246 // Reductions do not have to start at zero. They can start with 4247 // any loop invariant values. 4248 BasicBlock *Latch = OrigLoop->getLoopLatch(); 4249 Value *LoopVal = Phi->getIncomingValueForBlock(Latch); 4250 4251 for (unsigned Part = 0; Part < UF; ++Part) { 4252 Value *VecRdxPhi = State.get(State.Plan->getVPValue(Phi), Part); 4253 Value *Val = State.get(State.Plan->getVPValue(LoopVal), Part); 4254 cast<PHINode>(VecRdxPhi) 4255 ->addIncoming(Val, LI->getLoopFor(LoopVectorBody)->getLoopLatch()); 4256 } 4257 4258 // Before each round, move the insertion point right between 4259 // the PHIs and the values we are going to write. 4260 // This allows us to write both PHINodes and the extractelement 4261 // instructions. 4262 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4263 4264 setDebugLocFromInst(Builder, LoopExitInst); 4265 4266 // If tail is folded by masking, the vector value to leave the loop should be 4267 // a Select choosing between the vectorized LoopExitInst and vectorized Phi, 4268 // instead of the former. For an inloop reduction the reduction will already 4269 // be predicated, and does not need to be handled here. 4270 if (Cost->foldTailByMasking() && !IsInLoopReductionPhi) { 4271 for (unsigned Part = 0; Part < UF; ++Part) { 4272 Value *VecLoopExitInst = State.get(LoopExitInstDef, Part); 4273 Value *Sel = nullptr; 4274 for (User *U : VecLoopExitInst->users()) { 4275 if (isa<SelectInst>(U)) { 4276 assert(!Sel && "Reduction exit feeding two selects"); 4277 Sel = U; 4278 } else 4279 assert(isa<PHINode>(U) && "Reduction exit must feed Phi's or select"); 4280 } 4281 assert(Sel && "Reduction exit feeds no select"); 4282 State.reset(LoopExitInstDef, LoopExitInst, Sel, Part); 4283 4284 // If the target can create a predicated operator for the reduction at no 4285 // extra cost in the loop (for example a predicated vadd), it can be 4286 // cheaper for the select to remain in the loop than be sunk out of it, 4287 // and so use the select value for the phi instead of the old 4288 // LoopExitValue. 4289 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[Phi]; 4290 if (PreferPredicatedReductionSelect || 4291 TTI->preferPredicatedReductionSelect( 4292 RdxDesc.getOpcode(), Phi->getType(), 4293 TargetTransformInfo::ReductionFlags())) { 4294 auto *VecRdxPhi = 4295 cast<PHINode>(State.get(State.Plan->getVPValue(Phi), Part)); 4296 VecRdxPhi->setIncomingValueForBlock( 4297 LI->getLoopFor(LoopVectorBody)->getLoopLatch(), Sel); 4298 } 4299 } 4300 } 4301 4302 // If the vector reduction can be performed in a smaller type, we truncate 4303 // then extend the loop exit value to enable InstCombine to evaluate the 4304 // entire expression in the smaller type. 4305 if (VF.isVector() && Phi->getType() != RdxDesc.getRecurrenceType()) { 4306 assert(!IsInLoopReductionPhi && "Unexpected truncated inloop reduction!"); 4307 assert(!VF.isScalable() && "scalable vectors not yet supported."); 4308 Type *RdxVecTy = VectorType::get(RdxDesc.getRecurrenceType(), VF); 4309 Builder.SetInsertPoint( 4310 LI->getLoopFor(LoopVectorBody)->getLoopLatch()->getTerminator()); 4311 VectorParts RdxParts(UF); 4312 for (unsigned Part = 0; Part < UF; ++Part) { 4313 RdxParts[Part] = State.get(LoopExitInstDef, Part); 4314 Value *Trunc = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4315 Value *Extnd = RdxDesc.isSigned() ? Builder.CreateSExt(Trunc, VecTy) 4316 : Builder.CreateZExt(Trunc, VecTy); 4317 for (Value::user_iterator UI = RdxParts[Part]->user_begin(); 4318 UI != RdxParts[Part]->user_end();) 4319 if (*UI != Trunc) { 4320 (*UI++)->replaceUsesOfWith(RdxParts[Part], Extnd); 4321 RdxParts[Part] = Extnd; 4322 } else { 4323 ++UI; 4324 } 4325 } 4326 Builder.SetInsertPoint(&*LoopMiddleBlock->getFirstInsertionPt()); 4327 for (unsigned Part = 0; Part < UF; ++Part) { 4328 RdxParts[Part] = Builder.CreateTrunc(RdxParts[Part], RdxVecTy); 4329 State.reset(LoopExitInstDef, LoopExitInst, RdxParts[Part], Part); 4330 } 4331 } 4332 4333 // Reduce all of the unrolled parts into a single vector. 4334 Value *ReducedPartRdx = State.get(LoopExitInstDef, 0); 4335 unsigned Op = RecurrenceDescriptor::getOpcode(RK); 4336 4337 // The middle block terminator has already been assigned a DebugLoc here (the 4338 // OrigLoop's single latch terminator). We want the whole middle block to 4339 // appear to execute on this line because: (a) it is all compiler generated, 4340 // (b) these instructions are always executed after evaluating the latch 4341 // conditional branch, and (c) other passes may add new predecessors which 4342 // terminate on this line. This is the easiest way to ensure we don't 4343 // accidentally cause an extra step back into the loop while debugging. 4344 setDebugLocFromInst(Builder, LoopMiddleBlock->getTerminator()); 4345 { 4346 // Floating-point operations should have some FMF to enable the reduction. 4347 IRBuilderBase::FastMathFlagGuard FMFG(Builder); 4348 Builder.setFastMathFlags(RdxDesc.getFastMathFlags()); 4349 for (unsigned Part = 1; Part < UF; ++Part) { 4350 Value *RdxPart = State.get(LoopExitInstDef, Part); 4351 if (Op != Instruction::ICmp && Op != Instruction::FCmp) { 4352 ReducedPartRdx = Builder.CreateBinOp( 4353 (Instruction::BinaryOps)Op, RdxPart, ReducedPartRdx, "bin.rdx"); 4354 } else { 4355 ReducedPartRdx = createMinMaxOp(Builder, RK, ReducedPartRdx, RdxPart); 4356 } 4357 } 4358 } 4359 4360 // Create the reduction after the loop. Note that inloop reductions create the 4361 // target reduction in the loop using a Reduction recipe. 4362 if (VF.isVector() && !IsInLoopReductionPhi) { 4363 ReducedPartRdx = 4364 createTargetReduction(Builder, TTI, RdxDesc, ReducedPartRdx); 4365 // If the reduction can be performed in a smaller type, we need to extend 4366 // the reduction to the wider type before we branch to the original loop. 4367 if (Phi->getType() != RdxDesc.getRecurrenceType()) 4368 ReducedPartRdx = 4369 RdxDesc.isSigned() 4370 ? Builder.CreateSExt(ReducedPartRdx, Phi->getType()) 4371 : Builder.CreateZExt(ReducedPartRdx, Phi->getType()); 4372 } 4373 4374 // Create a phi node that merges control-flow from the backedge-taken check 4375 // block and the middle block. 4376 PHINode *BCBlockPhi = PHINode::Create(Phi->getType(), 2, "bc.merge.rdx", 4377 LoopScalarPreHeader->getTerminator()); 4378 for (unsigned I = 0, E = LoopBypassBlocks.size(); I != E; ++I) 4379 BCBlockPhi->addIncoming(ReductionStartValue, LoopBypassBlocks[I]); 4380 BCBlockPhi->addIncoming(ReducedPartRdx, LoopMiddleBlock); 4381 4382 // Now, we need to fix the users of the reduction variable 4383 // inside and outside of the scalar remainder loop. 4384 4385 // We know that the loop is in LCSSA form. We need to update the PHI nodes 4386 // in the exit blocks. See comment on analogous loop in 4387 // fixFirstOrderRecurrence for a more complete explaination of the logic. 4388 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) 4389 if (any_of(LCSSAPhi.incoming_values(), 4390 [LoopExitInst](Value *V) { return V == LoopExitInst; })) 4391 LCSSAPhi.addIncoming(ReducedPartRdx, LoopMiddleBlock); 4392 4393 // Fix the scalar loop reduction variable with the incoming reduction sum 4394 // from the vector body and from the backedge value. 4395 int IncomingEdgeBlockIdx = 4396 Phi->getBasicBlockIndex(OrigLoop->getLoopLatch()); 4397 assert(IncomingEdgeBlockIdx >= 0 && "Invalid block index"); 4398 // Pick the other block. 4399 int SelfEdgeBlockIdx = (IncomingEdgeBlockIdx ? 0 : 1); 4400 Phi->setIncomingValue(SelfEdgeBlockIdx, BCBlockPhi); 4401 Phi->setIncomingValue(IncomingEdgeBlockIdx, LoopExitInst); 4402 } 4403 4404 void InnerLoopVectorizer::clearReductionWrapFlags( 4405 RecurrenceDescriptor &RdxDesc) { 4406 RecurKind RK = RdxDesc.getRecurrenceKind(); 4407 if (RK != RecurKind::Add && RK != RecurKind::Mul) 4408 return; 4409 4410 Instruction *LoopExitInstr = RdxDesc.getLoopExitInstr(); 4411 assert(LoopExitInstr && "null loop exit instruction"); 4412 SmallVector<Instruction *, 8> Worklist; 4413 SmallPtrSet<Instruction *, 8> Visited; 4414 Worklist.push_back(LoopExitInstr); 4415 Visited.insert(LoopExitInstr); 4416 4417 while (!Worklist.empty()) { 4418 Instruction *Cur = Worklist.pop_back_val(); 4419 if (isa<OverflowingBinaryOperator>(Cur)) 4420 for (unsigned Part = 0; Part < UF; ++Part) { 4421 Value *V = getOrCreateVectorValue(Cur, Part); 4422 cast<Instruction>(V)->dropPoisonGeneratingFlags(); 4423 } 4424 4425 for (User *U : Cur->users()) { 4426 Instruction *UI = cast<Instruction>(U); 4427 if ((Cur != LoopExitInstr || OrigLoop->contains(UI->getParent())) && 4428 Visited.insert(UI).second) 4429 Worklist.push_back(UI); 4430 } 4431 } 4432 } 4433 4434 void InnerLoopVectorizer::fixLCSSAPHIs(VPTransformState &State) { 4435 for (PHINode &LCSSAPhi : LoopExitBlock->phis()) { 4436 if (LCSSAPhi.getBasicBlockIndex(LoopMiddleBlock) != -1) 4437 // Some phis were already hand updated by the reduction and recurrence 4438 // code above, leave them alone. 4439 continue; 4440 4441 auto *IncomingValue = LCSSAPhi.getIncomingValue(0); 4442 // Non-instruction incoming values will have only one value. 4443 unsigned LastLane = 0; 4444 if (isa<Instruction>(IncomingValue)) 4445 LastLane = Cost->isUniformAfterVectorization( 4446 cast<Instruction>(IncomingValue), VF) 4447 ? 0 4448 : VF.getKnownMinValue() - 1; 4449 assert((!VF.isScalable() || LastLane == 0) && 4450 "scalable vectors dont support non-uniform scalars yet"); 4451 // Can be a loop invariant incoming value or the last scalar value to be 4452 // extracted from the vectorized loop. 4453 Builder.SetInsertPoint(LoopMiddleBlock->getTerminator()); 4454 Value *lastIncomingValue = 4455 OrigLoop->isLoopInvariant(IncomingValue) 4456 ? IncomingValue 4457 : State.get(State.Plan->getVPValue(IncomingValue), 4458 VPIteration(UF - 1, LastLane)); 4459 LCSSAPhi.addIncoming(lastIncomingValue, LoopMiddleBlock); 4460 } 4461 } 4462 4463 void InnerLoopVectorizer::sinkScalarOperands(Instruction *PredInst) { 4464 // The basic block and loop containing the predicated instruction. 4465 auto *PredBB = PredInst->getParent(); 4466 auto *VectorLoop = LI->getLoopFor(PredBB); 4467 4468 // Initialize a worklist with the operands of the predicated instruction. 4469 SetVector<Value *> Worklist(PredInst->op_begin(), PredInst->op_end()); 4470 4471 // Holds instructions that we need to analyze again. An instruction may be 4472 // reanalyzed if we don't yet know if we can sink it or not. 4473 SmallVector<Instruction *, 8> InstsToReanalyze; 4474 4475 // Returns true if a given use occurs in the predicated block. Phi nodes use 4476 // their operands in their corresponding predecessor blocks. 4477 auto isBlockOfUsePredicated = [&](Use &U) -> bool { 4478 auto *I = cast<Instruction>(U.getUser()); 4479 BasicBlock *BB = I->getParent(); 4480 if (auto *Phi = dyn_cast<PHINode>(I)) 4481 BB = Phi->getIncomingBlock( 4482 PHINode::getIncomingValueNumForOperand(U.getOperandNo())); 4483 return BB == PredBB; 4484 }; 4485 4486 // Iteratively sink the scalarized operands of the predicated instruction 4487 // into the block we created for it. When an instruction is sunk, it's 4488 // operands are then added to the worklist. The algorithm ends after one pass 4489 // through the worklist doesn't sink a single instruction. 4490 bool Changed; 4491 do { 4492 // Add the instructions that need to be reanalyzed to the worklist, and 4493 // reset the changed indicator. 4494 Worklist.insert(InstsToReanalyze.begin(), InstsToReanalyze.end()); 4495 InstsToReanalyze.clear(); 4496 Changed = false; 4497 4498 while (!Worklist.empty()) { 4499 auto *I = dyn_cast<Instruction>(Worklist.pop_back_val()); 4500 4501 // We can't sink an instruction if it is a phi node, is already in the 4502 // predicated block, is not in the loop, or may have side effects. 4503 if (!I || isa<PHINode>(I) || I->getParent() == PredBB || 4504 !VectorLoop->contains(I) || I->mayHaveSideEffects()) 4505 continue; 4506 4507 // It's legal to sink the instruction if all its uses occur in the 4508 // predicated block. Otherwise, there's nothing to do yet, and we may 4509 // need to reanalyze the instruction. 4510 if (!llvm::all_of(I->uses(), isBlockOfUsePredicated)) { 4511 InstsToReanalyze.push_back(I); 4512 continue; 4513 } 4514 4515 // Move the instruction to the beginning of the predicated block, and add 4516 // it's operands to the worklist. 4517 I->moveBefore(&*PredBB->getFirstInsertionPt()); 4518 Worklist.insert(I->op_begin(), I->op_end()); 4519 4520 // The sinking may have enabled other instructions to be sunk, so we will 4521 // need to iterate. 4522 Changed = true; 4523 } 4524 } while (Changed); 4525 } 4526 4527 void InnerLoopVectorizer::fixNonInductionPHIs(VPTransformState &State) { 4528 for (PHINode *OrigPhi : OrigPHIsToFix) { 4529 PHINode *NewPhi = 4530 cast<PHINode>(State.get(State.Plan->getVPValue(OrigPhi), 0)); 4531 unsigned NumIncomingValues = OrigPhi->getNumIncomingValues(); 4532 4533 SmallVector<BasicBlock *, 2> ScalarBBPredecessors( 4534 predecessors(OrigPhi->getParent())); 4535 SmallVector<BasicBlock *, 2> VectorBBPredecessors( 4536 predecessors(NewPhi->getParent())); 4537 assert(ScalarBBPredecessors.size() == VectorBBPredecessors.size() && 4538 "Scalar and Vector BB should have the same number of predecessors"); 4539 4540 // The insertion point in Builder may be invalidated by the time we get 4541 // here. Force the Builder insertion point to something valid so that we do 4542 // not run into issues during insertion point restore in 4543 // getOrCreateVectorValue calls below. 4544 Builder.SetInsertPoint(NewPhi); 4545 4546 // The predecessor order is preserved and we can rely on mapping between 4547 // scalar and vector block predecessors. 4548 for (unsigned i = 0; i < NumIncomingValues; ++i) { 4549 BasicBlock *NewPredBB = VectorBBPredecessors[i]; 4550 4551 // When looking up the new scalar/vector values to fix up, use incoming 4552 // values from original phi. 4553 Value *ScIncV = 4554 OrigPhi->getIncomingValueForBlock(ScalarBBPredecessors[i]); 4555 4556 // Scalar incoming value may need a broadcast 4557 Value *NewIncV = getOrCreateVectorValue(ScIncV, 0); 4558 NewPhi->addIncoming(NewIncV, NewPredBB); 4559 } 4560 } 4561 } 4562 4563 void InnerLoopVectorizer::widenGEP(GetElementPtrInst *GEP, VPValue *VPDef, 4564 VPUser &Operands, unsigned UF, 4565 ElementCount VF, bool IsPtrLoopInvariant, 4566 SmallBitVector &IsIndexLoopInvariant, 4567 VPTransformState &State) { 4568 // Construct a vector GEP by widening the operands of the scalar GEP as 4569 // necessary. We mark the vector GEP 'inbounds' if appropriate. A GEP 4570 // results in a vector of pointers when at least one operand of the GEP 4571 // is vector-typed. Thus, to keep the representation compact, we only use 4572 // vector-typed operands for loop-varying values. 4573 4574 if (VF.isVector() && IsPtrLoopInvariant && IsIndexLoopInvariant.all()) { 4575 // If we are vectorizing, but the GEP has only loop-invariant operands, 4576 // the GEP we build (by only using vector-typed operands for 4577 // loop-varying values) would be a scalar pointer. Thus, to ensure we 4578 // produce a vector of pointers, we need to either arbitrarily pick an 4579 // operand to broadcast, or broadcast a clone of the original GEP. 4580 // Here, we broadcast a clone of the original. 4581 // 4582 // TODO: If at some point we decide to scalarize instructions having 4583 // loop-invariant operands, this special case will no longer be 4584 // required. We would add the scalarization decision to 4585 // collectLoopScalars() and teach getVectorValue() to broadcast 4586 // the lane-zero scalar value. 4587 auto *Clone = Builder.Insert(GEP->clone()); 4588 for (unsigned Part = 0; Part < UF; ++Part) { 4589 Value *EntryPart = Builder.CreateVectorSplat(VF, Clone); 4590 State.set(VPDef, GEP, EntryPart, Part); 4591 addMetadata(EntryPart, GEP); 4592 } 4593 } else { 4594 // If the GEP has at least one loop-varying operand, we are sure to 4595 // produce a vector of pointers. But if we are only unrolling, we want 4596 // to produce a scalar GEP for each unroll part. Thus, the GEP we 4597 // produce with the code below will be scalar (if VF == 1) or vector 4598 // (otherwise). Note that for the unroll-only case, we still maintain 4599 // values in the vector mapping with initVector, as we do for other 4600 // instructions. 4601 for (unsigned Part = 0; Part < UF; ++Part) { 4602 // The pointer operand of the new GEP. If it's loop-invariant, we 4603 // won't broadcast it. 4604 auto *Ptr = IsPtrLoopInvariant 4605 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 4606 : State.get(Operands.getOperand(0), Part); 4607 4608 // Collect all the indices for the new GEP. If any index is 4609 // loop-invariant, we won't broadcast it. 4610 SmallVector<Value *, 4> Indices; 4611 for (unsigned I = 1, E = Operands.getNumOperands(); I < E; I++) { 4612 VPValue *Operand = Operands.getOperand(I); 4613 if (IsIndexLoopInvariant[I - 1]) 4614 Indices.push_back(State.get(Operand, VPIteration(0, 0))); 4615 else 4616 Indices.push_back(State.get(Operand, Part)); 4617 } 4618 4619 // Create the new GEP. Note that this GEP may be a scalar if VF == 1, 4620 // but it should be a vector, otherwise. 4621 auto *NewGEP = 4622 GEP->isInBounds() 4623 ? Builder.CreateInBoundsGEP(GEP->getSourceElementType(), Ptr, 4624 Indices) 4625 : Builder.CreateGEP(GEP->getSourceElementType(), Ptr, Indices); 4626 assert((VF.isScalar() || NewGEP->getType()->isVectorTy()) && 4627 "NewGEP is not a pointer vector"); 4628 State.set(VPDef, GEP, NewGEP, Part); 4629 addMetadata(NewGEP, GEP); 4630 } 4631 } 4632 } 4633 4634 void InnerLoopVectorizer::widenPHIInstruction(Instruction *PN, 4635 RecurrenceDescriptor *RdxDesc, 4636 Value *StartV, VPValue *Def, 4637 VPTransformState &State) { 4638 PHINode *P = cast<PHINode>(PN); 4639 if (EnableVPlanNativePath) { 4640 // Currently we enter here in the VPlan-native path for non-induction 4641 // PHIs where all control flow is uniform. We simply widen these PHIs. 4642 // Create a vector phi with no operands - the vector phi operands will be 4643 // set at the end of vector code generation. 4644 Type *VecTy = (State.VF.isScalar()) 4645 ? PN->getType() 4646 : VectorType::get(PN->getType(), State.VF); 4647 Value *VecPhi = Builder.CreatePHI(VecTy, PN->getNumOperands(), "vec.phi"); 4648 State.set(Def, P, VecPhi, 0); 4649 OrigPHIsToFix.push_back(P); 4650 4651 return; 4652 } 4653 4654 assert(PN->getParent() == OrigLoop->getHeader() && 4655 "Non-header phis should have been handled elsewhere"); 4656 4657 // In order to support recurrences we need to be able to vectorize Phi nodes. 4658 // Phi nodes have cycles, so we need to vectorize them in two stages. This is 4659 // stage #1: We create a new vector PHI node with no incoming edges. We'll use 4660 // this value when we vectorize all of the instructions that use the PHI. 4661 if (RdxDesc || Legal->isFirstOrderRecurrence(P)) { 4662 Value *Iden = nullptr; 4663 bool ScalarPHI = 4664 (State.VF.isScalar()) || Cost->isInLoopReduction(cast<PHINode>(PN)); 4665 Type *VecTy = 4666 ScalarPHI ? PN->getType() : VectorType::get(PN->getType(), State.VF); 4667 4668 if (RdxDesc) { 4669 assert(Legal->isReductionVariable(P) && StartV && 4670 "RdxDesc should only be set for reduction variables; in that case " 4671 "a StartV is also required"); 4672 RecurKind RK = RdxDesc->getRecurrenceKind(); 4673 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(RK)) { 4674 // MinMax reduction have the start value as their identify. 4675 if (ScalarPHI) { 4676 Iden = StartV; 4677 } else { 4678 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4679 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4680 StartV = Iden = 4681 Builder.CreateVectorSplat(State.VF, StartV, "minmax.ident"); 4682 } 4683 } else { 4684 Constant *IdenC = RecurrenceDescriptor::getRecurrenceIdentity( 4685 RK, VecTy->getScalarType()); 4686 Iden = IdenC; 4687 4688 if (!ScalarPHI) { 4689 Iden = ConstantVector::getSplat(State.VF, IdenC); 4690 IRBuilderBase::InsertPointGuard IPBuilder(Builder); 4691 Builder.SetInsertPoint(LoopVectorPreHeader->getTerminator()); 4692 Constant *Zero = Builder.getInt32(0); 4693 StartV = Builder.CreateInsertElement(Iden, StartV, Zero); 4694 } 4695 } 4696 } 4697 4698 for (unsigned Part = 0; Part < State.UF; ++Part) { 4699 // This is phase one of vectorizing PHIs. 4700 Value *EntryPart = PHINode::Create( 4701 VecTy, 2, "vec.phi", &*LoopVectorBody->getFirstInsertionPt()); 4702 State.set(Def, P, EntryPart, Part); 4703 if (StartV) { 4704 // Make sure to add the reduction start value only to the 4705 // first unroll part. 4706 Value *StartVal = (Part == 0) ? StartV : Iden; 4707 cast<PHINode>(EntryPart)->addIncoming(StartVal, LoopVectorPreHeader); 4708 } 4709 } 4710 return; 4711 } 4712 4713 assert(!Legal->isReductionVariable(P) && 4714 "reductions should be handled above"); 4715 4716 setDebugLocFromInst(Builder, P); 4717 4718 // This PHINode must be an induction variable. 4719 // Make sure that we know about it. 4720 assert(Legal->getInductionVars().count(P) && "Not an induction variable"); 4721 4722 InductionDescriptor II = Legal->getInductionVars().lookup(P); 4723 const DataLayout &DL = OrigLoop->getHeader()->getModule()->getDataLayout(); 4724 4725 // FIXME: The newly created binary instructions should contain nsw/nuw flags, 4726 // which can be found from the original scalar operations. 4727 switch (II.getKind()) { 4728 case InductionDescriptor::IK_NoInduction: 4729 llvm_unreachable("Unknown induction"); 4730 case InductionDescriptor::IK_IntInduction: 4731 case InductionDescriptor::IK_FpInduction: 4732 llvm_unreachable("Integer/fp induction is handled elsewhere."); 4733 case InductionDescriptor::IK_PtrInduction: { 4734 // Handle the pointer induction variable case. 4735 assert(P->getType()->isPointerTy() && "Unexpected type."); 4736 4737 if (Cost->isScalarAfterVectorization(P, State.VF)) { 4738 // This is the normalized GEP that starts counting at zero. 4739 Value *PtrInd = 4740 Builder.CreateSExtOrTrunc(Induction, II.getStep()->getType()); 4741 // Determine the number of scalars we need to generate for each unroll 4742 // iteration. If the instruction is uniform, we only need to generate the 4743 // first lane. Otherwise, we generate all VF values. 4744 unsigned Lanes = Cost->isUniformAfterVectorization(P, State.VF) 4745 ? 1 4746 : State.VF.getKnownMinValue(); 4747 for (unsigned Part = 0; Part < UF; ++Part) { 4748 for (unsigned Lane = 0; Lane < Lanes; ++Lane) { 4749 Constant *Idx = ConstantInt::get( 4750 PtrInd->getType(), Lane + Part * State.VF.getKnownMinValue()); 4751 Value *GlobalIdx = Builder.CreateAdd(PtrInd, Idx); 4752 Value *SclrGep = 4753 emitTransformedIndex(Builder, GlobalIdx, PSE.getSE(), DL, II); 4754 SclrGep->setName("next.gep"); 4755 State.set(Def, P, SclrGep, VPIteration(Part, Lane)); 4756 } 4757 } 4758 return; 4759 } 4760 assert(isa<SCEVConstant>(II.getStep()) && 4761 "Induction step not a SCEV constant!"); 4762 Type *PhiType = II.getStep()->getType(); 4763 4764 // Build a pointer phi 4765 Value *ScalarStartValue = II.getStartValue(); 4766 Type *ScStValueType = ScalarStartValue->getType(); 4767 PHINode *NewPointerPhi = 4768 PHINode::Create(ScStValueType, 2, "pointer.phi", Induction); 4769 NewPointerPhi->addIncoming(ScalarStartValue, LoopVectorPreHeader); 4770 4771 // A pointer induction, performed by using a gep 4772 BasicBlock *LoopLatch = LI->getLoopFor(LoopVectorBody)->getLoopLatch(); 4773 Instruction *InductionLoc = LoopLatch->getTerminator(); 4774 const SCEV *ScalarStep = II.getStep(); 4775 SCEVExpander Exp(*PSE.getSE(), DL, "induction"); 4776 Value *ScalarStepValue = 4777 Exp.expandCodeFor(ScalarStep, PhiType, InductionLoc); 4778 Value *InductionGEP = GetElementPtrInst::Create( 4779 ScStValueType->getPointerElementType(), NewPointerPhi, 4780 Builder.CreateMul( 4781 ScalarStepValue, 4782 ConstantInt::get(PhiType, State.VF.getKnownMinValue() * State.UF)), 4783 "ptr.ind", InductionLoc); 4784 NewPointerPhi->addIncoming(InductionGEP, LoopLatch); 4785 4786 // Create UF many actual address geps that use the pointer 4787 // phi as base and a vectorized version of the step value 4788 // (<step*0, ..., step*N>) as offset. 4789 for (unsigned Part = 0; Part < State.UF; ++Part) { 4790 SmallVector<Constant *, 8> Indices; 4791 // Create a vector of consecutive numbers from zero to VF. 4792 for (unsigned i = 0; i < State.VF.getKnownMinValue(); ++i) 4793 Indices.push_back( 4794 ConstantInt::get(PhiType, i + Part * State.VF.getKnownMinValue())); 4795 Constant *StartOffset = ConstantVector::get(Indices); 4796 4797 Value *GEP = Builder.CreateGEP( 4798 ScStValueType->getPointerElementType(), NewPointerPhi, 4799 Builder.CreateMul(StartOffset, 4800 Builder.CreateVectorSplat( 4801 State.VF.getKnownMinValue(), ScalarStepValue), 4802 "vector.gep")); 4803 State.set(Def, P, GEP, Part); 4804 } 4805 } 4806 } 4807 } 4808 4809 /// A helper function for checking whether an integer division-related 4810 /// instruction may divide by zero (in which case it must be predicated if 4811 /// executed conditionally in the scalar code). 4812 /// TODO: It may be worthwhile to generalize and check isKnownNonZero(). 4813 /// Non-zero divisors that are non compile-time constants will not be 4814 /// converted into multiplication, so we will still end up scalarizing 4815 /// the division, but can do so w/o predication. 4816 static bool mayDivideByZero(Instruction &I) { 4817 assert((I.getOpcode() == Instruction::UDiv || 4818 I.getOpcode() == Instruction::SDiv || 4819 I.getOpcode() == Instruction::URem || 4820 I.getOpcode() == Instruction::SRem) && 4821 "Unexpected instruction"); 4822 Value *Divisor = I.getOperand(1); 4823 auto *CInt = dyn_cast<ConstantInt>(Divisor); 4824 return !CInt || CInt->isZero(); 4825 } 4826 4827 void InnerLoopVectorizer::widenInstruction(Instruction &I, VPValue *Def, 4828 VPUser &User, 4829 VPTransformState &State) { 4830 switch (I.getOpcode()) { 4831 case Instruction::Call: 4832 case Instruction::Br: 4833 case Instruction::PHI: 4834 case Instruction::GetElementPtr: 4835 case Instruction::Select: 4836 llvm_unreachable("This instruction is handled by a different recipe."); 4837 case Instruction::UDiv: 4838 case Instruction::SDiv: 4839 case Instruction::SRem: 4840 case Instruction::URem: 4841 case Instruction::Add: 4842 case Instruction::FAdd: 4843 case Instruction::Sub: 4844 case Instruction::FSub: 4845 case Instruction::FNeg: 4846 case Instruction::Mul: 4847 case Instruction::FMul: 4848 case Instruction::FDiv: 4849 case Instruction::FRem: 4850 case Instruction::Shl: 4851 case Instruction::LShr: 4852 case Instruction::AShr: 4853 case Instruction::And: 4854 case Instruction::Or: 4855 case Instruction::Xor: { 4856 // Just widen unops and binops. 4857 setDebugLocFromInst(Builder, &I); 4858 4859 for (unsigned Part = 0; Part < UF; ++Part) { 4860 SmallVector<Value *, 2> Ops; 4861 for (VPValue *VPOp : User.operands()) 4862 Ops.push_back(State.get(VPOp, Part)); 4863 4864 Value *V = Builder.CreateNAryOp(I.getOpcode(), Ops); 4865 4866 if (auto *VecOp = dyn_cast<Instruction>(V)) 4867 VecOp->copyIRFlags(&I); 4868 4869 // Use this vector value for all users of the original instruction. 4870 State.set(Def, &I, V, Part); 4871 addMetadata(V, &I); 4872 } 4873 4874 break; 4875 } 4876 case Instruction::ICmp: 4877 case Instruction::FCmp: { 4878 // Widen compares. Generate vector compares. 4879 bool FCmp = (I.getOpcode() == Instruction::FCmp); 4880 auto *Cmp = cast<CmpInst>(&I); 4881 setDebugLocFromInst(Builder, Cmp); 4882 for (unsigned Part = 0; Part < UF; ++Part) { 4883 Value *A = State.get(User.getOperand(0), Part); 4884 Value *B = State.get(User.getOperand(1), Part); 4885 Value *C = nullptr; 4886 if (FCmp) { 4887 // Propagate fast math flags. 4888 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 4889 Builder.setFastMathFlags(Cmp->getFastMathFlags()); 4890 C = Builder.CreateFCmp(Cmp->getPredicate(), A, B); 4891 } else { 4892 C = Builder.CreateICmp(Cmp->getPredicate(), A, B); 4893 } 4894 State.set(Def, &I, C, Part); 4895 addMetadata(C, &I); 4896 } 4897 4898 break; 4899 } 4900 4901 case Instruction::ZExt: 4902 case Instruction::SExt: 4903 case Instruction::FPToUI: 4904 case Instruction::FPToSI: 4905 case Instruction::FPExt: 4906 case Instruction::PtrToInt: 4907 case Instruction::IntToPtr: 4908 case Instruction::SIToFP: 4909 case Instruction::UIToFP: 4910 case Instruction::Trunc: 4911 case Instruction::FPTrunc: 4912 case Instruction::BitCast: { 4913 auto *CI = cast<CastInst>(&I); 4914 setDebugLocFromInst(Builder, CI); 4915 4916 /// Vectorize casts. 4917 Type *DestTy = 4918 (VF.isScalar()) ? CI->getType() : VectorType::get(CI->getType(), VF); 4919 4920 for (unsigned Part = 0; Part < UF; ++Part) { 4921 Value *A = State.get(User.getOperand(0), Part); 4922 Value *Cast = Builder.CreateCast(CI->getOpcode(), A, DestTy); 4923 State.set(Def, &I, Cast, Part); 4924 addMetadata(Cast, &I); 4925 } 4926 break; 4927 } 4928 default: 4929 // This instruction is not vectorized by simple widening. 4930 LLVM_DEBUG(dbgs() << "LV: Found an unhandled instruction: " << I); 4931 llvm_unreachable("Unhandled instruction!"); 4932 } // end of switch. 4933 } 4934 4935 void InnerLoopVectorizer::widenCallInstruction(CallInst &I, VPValue *Def, 4936 VPUser &ArgOperands, 4937 VPTransformState &State) { 4938 assert(!isa<DbgInfoIntrinsic>(I) && 4939 "DbgInfoIntrinsic should have been dropped during VPlan construction"); 4940 setDebugLocFromInst(Builder, &I); 4941 4942 Module *M = I.getParent()->getParent()->getParent(); 4943 auto *CI = cast<CallInst>(&I); 4944 4945 SmallVector<Type *, 4> Tys; 4946 for (Value *ArgOperand : CI->arg_operands()) 4947 Tys.push_back(ToVectorTy(ArgOperand->getType(), VF.getKnownMinValue())); 4948 4949 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 4950 4951 // The flag shows whether we use Intrinsic or a usual Call for vectorized 4952 // version of the instruction. 4953 // Is it beneficial to perform intrinsic call compared to lib call? 4954 bool NeedToScalarize = false; 4955 InstructionCost CallCost = Cost->getVectorCallCost(CI, VF, NeedToScalarize); 4956 InstructionCost IntrinsicCost = ID ? Cost->getVectorIntrinsicCost(CI, VF) : 0; 4957 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 4958 assert((UseVectorIntrinsic || !NeedToScalarize) && 4959 "Instruction should be scalarized elsewhere."); 4960 assert(IntrinsicCost.isValid() && CallCost.isValid() && 4961 "Cannot have invalid costs while widening"); 4962 4963 for (unsigned Part = 0; Part < UF; ++Part) { 4964 SmallVector<Value *, 4> Args; 4965 for (auto &I : enumerate(ArgOperands.operands())) { 4966 // Some intrinsics have a scalar argument - don't replace it with a 4967 // vector. 4968 Value *Arg; 4969 if (!UseVectorIntrinsic || !hasVectorInstrinsicScalarOpd(ID, I.index())) 4970 Arg = State.get(I.value(), Part); 4971 else 4972 Arg = State.get(I.value(), VPIteration(0, 0)); 4973 Args.push_back(Arg); 4974 } 4975 4976 Function *VectorF; 4977 if (UseVectorIntrinsic) { 4978 // Use vector version of the intrinsic. 4979 Type *TysForDecl[] = {CI->getType()}; 4980 if (VF.isVector()) 4981 TysForDecl[0] = VectorType::get(CI->getType()->getScalarType(), VF); 4982 VectorF = Intrinsic::getDeclaration(M, ID, TysForDecl); 4983 assert(VectorF && "Can't retrieve vector intrinsic."); 4984 } else { 4985 // Use vector version of the function call. 4986 const VFShape Shape = VFShape::get(*CI, VF, false /*HasGlobalPred*/); 4987 #ifndef NDEBUG 4988 assert(VFDatabase(*CI).getVectorizedFunction(Shape) != nullptr && 4989 "Can't create vector function."); 4990 #endif 4991 VectorF = VFDatabase(*CI).getVectorizedFunction(Shape); 4992 } 4993 SmallVector<OperandBundleDef, 1> OpBundles; 4994 CI->getOperandBundlesAsDefs(OpBundles); 4995 CallInst *V = Builder.CreateCall(VectorF, Args, OpBundles); 4996 4997 if (isa<FPMathOperator>(V)) 4998 V->copyFastMathFlags(CI); 4999 5000 State.set(Def, &I, V, Part); 5001 addMetadata(V, &I); 5002 } 5003 } 5004 5005 void InnerLoopVectorizer::widenSelectInstruction(SelectInst &I, VPValue *VPDef, 5006 VPUser &Operands, 5007 bool InvariantCond, 5008 VPTransformState &State) { 5009 setDebugLocFromInst(Builder, &I); 5010 5011 // The condition can be loop invariant but still defined inside the 5012 // loop. This means that we can't just use the original 'cond' value. 5013 // We have to take the 'vectorized' value and pick the first lane. 5014 // Instcombine will make this a no-op. 5015 auto *InvarCond = InvariantCond 5016 ? State.get(Operands.getOperand(0), VPIteration(0, 0)) 5017 : nullptr; 5018 5019 for (unsigned Part = 0; Part < UF; ++Part) { 5020 Value *Cond = 5021 InvarCond ? InvarCond : State.get(Operands.getOperand(0), Part); 5022 Value *Op0 = State.get(Operands.getOperand(1), Part); 5023 Value *Op1 = State.get(Operands.getOperand(2), Part); 5024 Value *Sel = Builder.CreateSelect(Cond, Op0, Op1); 5025 State.set(VPDef, &I, Sel, Part); 5026 addMetadata(Sel, &I); 5027 } 5028 } 5029 5030 void LoopVectorizationCostModel::collectLoopScalars(ElementCount VF) { 5031 // We should not collect Scalars more than once per VF. Right now, this 5032 // function is called from collectUniformsAndScalars(), which already does 5033 // this check. Collecting Scalars for VF=1 does not make any sense. 5034 assert(VF.isVector() && Scalars.find(VF) == Scalars.end() && 5035 "This function should not be visited twice for the same VF"); 5036 5037 SmallSetVector<Instruction *, 8> Worklist; 5038 5039 // These sets are used to seed the analysis with pointers used by memory 5040 // accesses that will remain scalar. 5041 SmallSetVector<Instruction *, 8> ScalarPtrs; 5042 SmallPtrSet<Instruction *, 8> PossibleNonScalarPtrs; 5043 auto *Latch = TheLoop->getLoopLatch(); 5044 5045 // A helper that returns true if the use of Ptr by MemAccess will be scalar. 5046 // The pointer operands of loads and stores will be scalar as long as the 5047 // memory access is not a gather or scatter operation. The value operand of a 5048 // store will remain scalar if the store is scalarized. 5049 auto isScalarUse = [&](Instruction *MemAccess, Value *Ptr) { 5050 InstWidening WideningDecision = getWideningDecision(MemAccess, VF); 5051 assert(WideningDecision != CM_Unknown && 5052 "Widening decision should be ready at this moment"); 5053 if (auto *Store = dyn_cast<StoreInst>(MemAccess)) 5054 if (Ptr == Store->getValueOperand()) 5055 return WideningDecision == CM_Scalarize; 5056 assert(Ptr == getLoadStorePointerOperand(MemAccess) && 5057 "Ptr is neither a value or pointer operand"); 5058 return WideningDecision != CM_GatherScatter; 5059 }; 5060 5061 // A helper that returns true if the given value is a bitcast or 5062 // getelementptr instruction contained in the loop. 5063 auto isLoopVaryingBitCastOrGEP = [&](Value *V) { 5064 return ((isa<BitCastInst>(V) && V->getType()->isPointerTy()) || 5065 isa<GetElementPtrInst>(V)) && 5066 !TheLoop->isLoopInvariant(V); 5067 }; 5068 5069 auto isScalarPtrInduction = [&](Instruction *MemAccess, Value *Ptr) { 5070 if (!isa<PHINode>(Ptr) || 5071 !Legal->getInductionVars().count(cast<PHINode>(Ptr))) 5072 return false; 5073 auto &Induction = Legal->getInductionVars()[cast<PHINode>(Ptr)]; 5074 if (Induction.getKind() != InductionDescriptor::IK_PtrInduction) 5075 return false; 5076 return isScalarUse(MemAccess, Ptr); 5077 }; 5078 5079 // A helper that evaluates a memory access's use of a pointer. If the 5080 // pointer is actually the pointer induction of a loop, it is being 5081 // inserted into Worklist. If the use will be a scalar use, and the 5082 // pointer is only used by memory accesses, we place the pointer in 5083 // ScalarPtrs. Otherwise, the pointer is placed in PossibleNonScalarPtrs. 5084 auto evaluatePtrUse = [&](Instruction *MemAccess, Value *Ptr) { 5085 if (isScalarPtrInduction(MemAccess, Ptr)) { 5086 Worklist.insert(cast<Instruction>(Ptr)); 5087 Instruction *Update = cast<Instruction>( 5088 cast<PHINode>(Ptr)->getIncomingValueForBlock(Latch)); 5089 Worklist.insert(Update); 5090 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Ptr 5091 << "\n"); 5092 LLVM_DEBUG(dbgs() << "LV: Found new scalar instruction: " << *Update 5093 << "\n"); 5094 return; 5095 } 5096 // We only care about bitcast and getelementptr instructions contained in 5097 // the loop. 5098 if (!isLoopVaryingBitCastOrGEP(Ptr)) 5099 return; 5100 5101 // If the pointer has already been identified as scalar (e.g., if it was 5102 // also identified as uniform), there's nothing to do. 5103 auto *I = cast<Instruction>(Ptr); 5104 if (Worklist.count(I)) 5105 return; 5106 5107 // If the use of the pointer will be a scalar use, and all users of the 5108 // pointer are memory accesses, place the pointer in ScalarPtrs. Otherwise, 5109 // place the pointer in PossibleNonScalarPtrs. 5110 if (isScalarUse(MemAccess, Ptr) && llvm::all_of(I->users(), [&](User *U) { 5111 return isa<LoadInst>(U) || isa<StoreInst>(U); 5112 })) 5113 ScalarPtrs.insert(I); 5114 else 5115 PossibleNonScalarPtrs.insert(I); 5116 }; 5117 5118 // We seed the scalars analysis with three classes of instructions: (1) 5119 // instructions marked uniform-after-vectorization and (2) bitcast, 5120 // getelementptr and (pointer) phi instructions used by memory accesses 5121 // requiring a scalar use. 5122 // 5123 // (1) Add to the worklist all instructions that have been identified as 5124 // uniform-after-vectorization. 5125 Worklist.insert(Uniforms[VF].begin(), Uniforms[VF].end()); 5126 5127 // (2) Add to the worklist all bitcast and getelementptr instructions used by 5128 // memory accesses requiring a scalar use. The pointer operands of loads and 5129 // stores will be scalar as long as the memory accesses is not a gather or 5130 // scatter operation. The value operand of a store will remain scalar if the 5131 // store is scalarized. 5132 for (auto *BB : TheLoop->blocks()) 5133 for (auto &I : *BB) { 5134 if (auto *Load = dyn_cast<LoadInst>(&I)) { 5135 evaluatePtrUse(Load, Load->getPointerOperand()); 5136 } else if (auto *Store = dyn_cast<StoreInst>(&I)) { 5137 evaluatePtrUse(Store, Store->getPointerOperand()); 5138 evaluatePtrUse(Store, Store->getValueOperand()); 5139 } 5140 } 5141 for (auto *I : ScalarPtrs) 5142 if (!PossibleNonScalarPtrs.count(I)) { 5143 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *I << "\n"); 5144 Worklist.insert(I); 5145 } 5146 5147 // Insert the forced scalars. 5148 // FIXME: Currently widenPHIInstruction() often creates a dead vector 5149 // induction variable when the PHI user is scalarized. 5150 auto ForcedScalar = ForcedScalars.find(VF); 5151 if (ForcedScalar != ForcedScalars.end()) 5152 for (auto *I : ForcedScalar->second) 5153 Worklist.insert(I); 5154 5155 // Expand the worklist by looking through any bitcasts and getelementptr 5156 // instructions we've already identified as scalar. This is similar to the 5157 // expansion step in collectLoopUniforms(); however, here we're only 5158 // expanding to include additional bitcasts and getelementptr instructions. 5159 unsigned Idx = 0; 5160 while (Idx != Worklist.size()) { 5161 Instruction *Dst = Worklist[Idx++]; 5162 if (!isLoopVaryingBitCastOrGEP(Dst->getOperand(0))) 5163 continue; 5164 auto *Src = cast<Instruction>(Dst->getOperand(0)); 5165 if (llvm::all_of(Src->users(), [&](User *U) -> bool { 5166 auto *J = cast<Instruction>(U); 5167 return !TheLoop->contains(J) || Worklist.count(J) || 5168 ((isa<LoadInst>(J) || isa<StoreInst>(J)) && 5169 isScalarUse(J, Src)); 5170 })) { 5171 Worklist.insert(Src); 5172 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Src << "\n"); 5173 } 5174 } 5175 5176 // An induction variable will remain scalar if all users of the induction 5177 // variable and induction variable update remain scalar. 5178 for (auto &Induction : Legal->getInductionVars()) { 5179 auto *Ind = Induction.first; 5180 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5181 5182 // If tail-folding is applied, the primary induction variable will be used 5183 // to feed a vector compare. 5184 if (Ind == Legal->getPrimaryInduction() && foldTailByMasking()) 5185 continue; 5186 5187 // Determine if all users of the induction variable are scalar after 5188 // vectorization. 5189 auto ScalarInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5190 auto *I = cast<Instruction>(U); 5191 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I); 5192 }); 5193 if (!ScalarInd) 5194 continue; 5195 5196 // Determine if all users of the induction variable update instruction are 5197 // scalar after vectorization. 5198 auto ScalarIndUpdate = 5199 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5200 auto *I = cast<Instruction>(U); 5201 return I == Ind || !TheLoop->contains(I) || Worklist.count(I); 5202 }); 5203 if (!ScalarIndUpdate) 5204 continue; 5205 5206 // The induction variable and its update instruction will remain scalar. 5207 Worklist.insert(Ind); 5208 Worklist.insert(IndUpdate); 5209 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *Ind << "\n"); 5210 LLVM_DEBUG(dbgs() << "LV: Found scalar instruction: " << *IndUpdate 5211 << "\n"); 5212 } 5213 5214 Scalars[VF].insert(Worklist.begin(), Worklist.end()); 5215 } 5216 5217 bool LoopVectorizationCostModel::isScalarWithPredication(Instruction *I, 5218 ElementCount VF) { 5219 if (!blockNeedsPredication(I->getParent())) 5220 return false; 5221 switch(I->getOpcode()) { 5222 default: 5223 break; 5224 case Instruction::Load: 5225 case Instruction::Store: { 5226 if (!Legal->isMaskRequired(I)) 5227 return false; 5228 auto *Ptr = getLoadStorePointerOperand(I); 5229 auto *Ty = getMemInstValueType(I); 5230 // We have already decided how to vectorize this instruction, get that 5231 // result. 5232 if (VF.isVector()) { 5233 InstWidening WideningDecision = getWideningDecision(I, VF); 5234 assert(WideningDecision != CM_Unknown && 5235 "Widening decision should be ready at this moment"); 5236 return WideningDecision == CM_Scalarize; 5237 } 5238 const Align Alignment = getLoadStoreAlignment(I); 5239 return isa<LoadInst>(I) ? !(isLegalMaskedLoad(Ty, Ptr, Alignment) || 5240 isLegalMaskedGather(Ty, Alignment)) 5241 : !(isLegalMaskedStore(Ty, Ptr, Alignment) || 5242 isLegalMaskedScatter(Ty, Alignment)); 5243 } 5244 case Instruction::UDiv: 5245 case Instruction::SDiv: 5246 case Instruction::SRem: 5247 case Instruction::URem: 5248 return mayDivideByZero(*I); 5249 } 5250 return false; 5251 } 5252 5253 bool LoopVectorizationCostModel::interleavedAccessCanBeWidened( 5254 Instruction *I, ElementCount VF) { 5255 assert(isAccessInterleaved(I) && "Expecting interleaved access."); 5256 assert(getWideningDecision(I, VF) == CM_Unknown && 5257 "Decision should not be set yet."); 5258 auto *Group = getInterleavedAccessGroup(I); 5259 assert(Group && "Must have a group."); 5260 5261 // If the instruction's allocated size doesn't equal it's type size, it 5262 // requires padding and will be scalarized. 5263 auto &DL = I->getModule()->getDataLayout(); 5264 auto *ScalarTy = getMemInstValueType(I); 5265 if (hasIrregularType(ScalarTy, DL, VF)) 5266 return false; 5267 5268 // Check if masking is required. 5269 // A Group may need masking for one of two reasons: it resides in a block that 5270 // needs predication, or it was decided to use masking to deal with gaps. 5271 bool PredicatedAccessRequiresMasking = 5272 Legal->blockNeedsPredication(I->getParent()) && Legal->isMaskRequired(I); 5273 bool AccessWithGapsRequiresMasking = 5274 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 5275 if (!PredicatedAccessRequiresMasking && !AccessWithGapsRequiresMasking) 5276 return true; 5277 5278 // If masked interleaving is required, we expect that the user/target had 5279 // enabled it, because otherwise it either wouldn't have been created or 5280 // it should have been invalidated by the CostModel. 5281 assert(useMaskedInterleavedAccesses(TTI) && 5282 "Masked interleave-groups for predicated accesses are not enabled."); 5283 5284 auto *Ty = getMemInstValueType(I); 5285 const Align Alignment = getLoadStoreAlignment(I); 5286 return isa<LoadInst>(I) ? TTI.isLegalMaskedLoad(Ty, Alignment) 5287 : TTI.isLegalMaskedStore(Ty, Alignment); 5288 } 5289 5290 bool LoopVectorizationCostModel::memoryInstructionCanBeWidened( 5291 Instruction *I, ElementCount VF) { 5292 // Get and ensure we have a valid memory instruction. 5293 LoadInst *LI = dyn_cast<LoadInst>(I); 5294 StoreInst *SI = dyn_cast<StoreInst>(I); 5295 assert((LI || SI) && "Invalid memory instruction"); 5296 5297 auto *Ptr = getLoadStorePointerOperand(I); 5298 5299 // In order to be widened, the pointer should be consecutive, first of all. 5300 if (!Legal->isConsecutivePtr(Ptr)) 5301 return false; 5302 5303 // If the instruction is a store located in a predicated block, it will be 5304 // scalarized. 5305 if (isScalarWithPredication(I)) 5306 return false; 5307 5308 // If the instruction's allocated size doesn't equal it's type size, it 5309 // requires padding and will be scalarized. 5310 auto &DL = I->getModule()->getDataLayout(); 5311 auto *ScalarTy = LI ? LI->getType() : SI->getValueOperand()->getType(); 5312 if (hasIrregularType(ScalarTy, DL, VF)) 5313 return false; 5314 5315 return true; 5316 } 5317 5318 void LoopVectorizationCostModel::collectLoopUniforms(ElementCount VF) { 5319 // We should not collect Uniforms more than once per VF. Right now, 5320 // this function is called from collectUniformsAndScalars(), which 5321 // already does this check. Collecting Uniforms for VF=1 does not make any 5322 // sense. 5323 5324 assert(VF.isVector() && Uniforms.find(VF) == Uniforms.end() && 5325 "This function should not be visited twice for the same VF"); 5326 5327 // Visit the list of Uniforms. If we'll not find any uniform value, we'll 5328 // not analyze again. Uniforms.count(VF) will return 1. 5329 Uniforms[VF].clear(); 5330 5331 // We now know that the loop is vectorizable! 5332 // Collect instructions inside the loop that will remain uniform after 5333 // vectorization. 5334 5335 // Global values, params and instructions outside of current loop are out of 5336 // scope. 5337 auto isOutOfScope = [&](Value *V) -> bool { 5338 Instruction *I = dyn_cast<Instruction>(V); 5339 return (!I || !TheLoop->contains(I)); 5340 }; 5341 5342 SetVector<Instruction *> Worklist; 5343 BasicBlock *Latch = TheLoop->getLoopLatch(); 5344 5345 // Instructions that are scalar with predication must not be considered 5346 // uniform after vectorization, because that would create an erroneous 5347 // replicating region where only a single instance out of VF should be formed. 5348 // TODO: optimize such seldom cases if found important, see PR40816. 5349 auto addToWorklistIfAllowed = [&](Instruction *I) -> void { 5350 if (isOutOfScope(I)) { 5351 LLVM_DEBUG(dbgs() << "LV: Found not uniform due to scope: " 5352 << *I << "\n"); 5353 return; 5354 } 5355 if (isScalarWithPredication(I, VF)) { 5356 LLVM_DEBUG(dbgs() << "LV: Found not uniform being ScalarWithPredication: " 5357 << *I << "\n"); 5358 return; 5359 } 5360 LLVM_DEBUG(dbgs() << "LV: Found uniform instruction: " << *I << "\n"); 5361 Worklist.insert(I); 5362 }; 5363 5364 // Start with the conditional branch. If the branch condition is an 5365 // instruction contained in the loop that is only used by the branch, it is 5366 // uniform. 5367 auto *Cmp = dyn_cast<Instruction>(Latch->getTerminator()->getOperand(0)); 5368 if (Cmp && TheLoop->contains(Cmp) && Cmp->hasOneUse()) 5369 addToWorklistIfAllowed(Cmp); 5370 5371 auto isUniformDecision = [&](Instruction *I, ElementCount VF) { 5372 InstWidening WideningDecision = getWideningDecision(I, VF); 5373 assert(WideningDecision != CM_Unknown && 5374 "Widening decision should be ready at this moment"); 5375 5376 // A uniform memory op is itself uniform. We exclude uniform stores 5377 // here as they demand the last lane, not the first one. 5378 if (isa<LoadInst>(I) && Legal->isUniformMemOp(*I)) { 5379 assert(WideningDecision == CM_Scalarize); 5380 return true; 5381 } 5382 5383 return (WideningDecision == CM_Widen || 5384 WideningDecision == CM_Widen_Reverse || 5385 WideningDecision == CM_Interleave); 5386 }; 5387 5388 5389 // Returns true if Ptr is the pointer operand of a memory access instruction 5390 // I, and I is known to not require scalarization. 5391 auto isVectorizedMemAccessUse = [&](Instruction *I, Value *Ptr) -> bool { 5392 return getLoadStorePointerOperand(I) == Ptr && isUniformDecision(I, VF); 5393 }; 5394 5395 // Holds a list of values which are known to have at least one uniform use. 5396 // Note that there may be other uses which aren't uniform. A "uniform use" 5397 // here is something which only demands lane 0 of the unrolled iterations; 5398 // it does not imply that all lanes produce the same value (e.g. this is not 5399 // the usual meaning of uniform) 5400 SmallPtrSet<Value *, 8> HasUniformUse; 5401 5402 // Scan the loop for instructions which are either a) known to have only 5403 // lane 0 demanded or b) are uses which demand only lane 0 of their operand. 5404 for (auto *BB : TheLoop->blocks()) 5405 for (auto &I : *BB) { 5406 // If there's no pointer operand, there's nothing to do. 5407 auto *Ptr = getLoadStorePointerOperand(&I); 5408 if (!Ptr) 5409 continue; 5410 5411 // A uniform memory op is itself uniform. We exclude uniform stores 5412 // here as they demand the last lane, not the first one. 5413 if (isa<LoadInst>(I) && Legal->isUniformMemOp(I)) 5414 addToWorklistIfAllowed(&I); 5415 5416 if (isUniformDecision(&I, VF)) { 5417 assert(isVectorizedMemAccessUse(&I, Ptr) && "consistency check"); 5418 HasUniformUse.insert(Ptr); 5419 } 5420 } 5421 5422 // Add to the worklist any operands which have *only* uniform (e.g. lane 0 5423 // demanding) users. Since loops are assumed to be in LCSSA form, this 5424 // disallows uses outside the loop as well. 5425 for (auto *V : HasUniformUse) { 5426 if (isOutOfScope(V)) 5427 continue; 5428 auto *I = cast<Instruction>(V); 5429 auto UsersAreMemAccesses = 5430 llvm::all_of(I->users(), [&](User *U) -> bool { 5431 return isVectorizedMemAccessUse(cast<Instruction>(U), V); 5432 }); 5433 if (UsersAreMemAccesses) 5434 addToWorklistIfAllowed(I); 5435 } 5436 5437 // Expand Worklist in topological order: whenever a new instruction 5438 // is added , its users should be already inside Worklist. It ensures 5439 // a uniform instruction will only be used by uniform instructions. 5440 unsigned idx = 0; 5441 while (idx != Worklist.size()) { 5442 Instruction *I = Worklist[idx++]; 5443 5444 for (auto OV : I->operand_values()) { 5445 // isOutOfScope operands cannot be uniform instructions. 5446 if (isOutOfScope(OV)) 5447 continue; 5448 // First order recurrence Phi's should typically be considered 5449 // non-uniform. 5450 auto *OP = dyn_cast<PHINode>(OV); 5451 if (OP && Legal->isFirstOrderRecurrence(OP)) 5452 continue; 5453 // If all the users of the operand are uniform, then add the 5454 // operand into the uniform worklist. 5455 auto *OI = cast<Instruction>(OV); 5456 if (llvm::all_of(OI->users(), [&](User *U) -> bool { 5457 auto *J = cast<Instruction>(U); 5458 return Worklist.count(J) || isVectorizedMemAccessUse(J, OI); 5459 })) 5460 addToWorklistIfAllowed(OI); 5461 } 5462 } 5463 5464 // For an instruction to be added into Worklist above, all its users inside 5465 // the loop should also be in Worklist. However, this condition cannot be 5466 // true for phi nodes that form a cyclic dependence. We must process phi 5467 // nodes separately. An induction variable will remain uniform if all users 5468 // of the induction variable and induction variable update remain uniform. 5469 // The code below handles both pointer and non-pointer induction variables. 5470 for (auto &Induction : Legal->getInductionVars()) { 5471 auto *Ind = Induction.first; 5472 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 5473 5474 // Determine if all users of the induction variable are uniform after 5475 // vectorization. 5476 auto UniformInd = llvm::all_of(Ind->users(), [&](User *U) -> bool { 5477 auto *I = cast<Instruction>(U); 5478 return I == IndUpdate || !TheLoop->contains(I) || Worklist.count(I) || 5479 isVectorizedMemAccessUse(I, Ind); 5480 }); 5481 if (!UniformInd) 5482 continue; 5483 5484 // Determine if all users of the induction variable update instruction are 5485 // uniform after vectorization. 5486 auto UniformIndUpdate = 5487 llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 5488 auto *I = cast<Instruction>(U); 5489 return I == Ind || !TheLoop->contains(I) || Worklist.count(I) || 5490 isVectorizedMemAccessUse(I, IndUpdate); 5491 }); 5492 if (!UniformIndUpdate) 5493 continue; 5494 5495 // The induction variable and its update instruction will remain uniform. 5496 addToWorklistIfAllowed(Ind); 5497 addToWorklistIfAllowed(IndUpdate); 5498 } 5499 5500 Uniforms[VF].insert(Worklist.begin(), Worklist.end()); 5501 } 5502 5503 bool LoopVectorizationCostModel::runtimeChecksRequired() { 5504 LLVM_DEBUG(dbgs() << "LV: Performing code size checks.\n"); 5505 5506 if (Legal->getRuntimePointerChecking()->Need) { 5507 reportVectorizationFailure("Runtime ptr check is required with -Os/-Oz", 5508 "runtime pointer checks needed. Enable vectorization of this " 5509 "loop with '#pragma clang loop vectorize(enable)' when " 5510 "compiling with -Os/-Oz", 5511 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5512 return true; 5513 } 5514 5515 if (!PSE.getUnionPredicate().getPredicates().empty()) { 5516 reportVectorizationFailure("Runtime SCEV check is required with -Os/-Oz", 5517 "runtime SCEV checks needed. Enable vectorization of this " 5518 "loop with '#pragma clang loop vectorize(enable)' when " 5519 "compiling with -Os/-Oz", 5520 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5521 return true; 5522 } 5523 5524 // FIXME: Avoid specializing for stride==1 instead of bailing out. 5525 if (!Legal->getLAI()->getSymbolicStrides().empty()) { 5526 reportVectorizationFailure("Runtime stride check for small trip count", 5527 "runtime stride == 1 checks needed. Enable vectorization of " 5528 "this loop without such check by compiling with -Os/-Oz", 5529 "CantVersionLoopWithOptForSize", ORE, TheLoop); 5530 return true; 5531 } 5532 5533 return false; 5534 } 5535 5536 Optional<ElementCount> 5537 LoopVectorizationCostModel::computeMaxVF(ElementCount UserVF, unsigned UserIC) { 5538 if (Legal->getRuntimePointerChecking()->Need && TTI.hasBranchDivergence()) { 5539 // TODO: It may by useful to do since it's still likely to be dynamically 5540 // uniform if the target can skip. 5541 reportVectorizationFailure( 5542 "Not inserting runtime ptr check for divergent target", 5543 "runtime pointer checks needed. Not enabled for divergent target", 5544 "CantVersionLoopWithDivergentTarget", ORE, TheLoop); 5545 return None; 5546 } 5547 5548 unsigned TC = PSE.getSE()->getSmallConstantTripCount(TheLoop); 5549 LLVM_DEBUG(dbgs() << "LV: Found trip count: " << TC << '\n'); 5550 if (TC == 1) { 5551 reportVectorizationFailure("Single iteration (non) loop", 5552 "loop trip count is one, irrelevant for vectorization", 5553 "SingleIterationLoop", ORE, TheLoop); 5554 return None; 5555 } 5556 5557 switch (ScalarEpilogueStatus) { 5558 case CM_ScalarEpilogueAllowed: 5559 return computeFeasibleMaxVF(TC, UserVF); 5560 case CM_ScalarEpilogueNotAllowedUsePredicate: 5561 LLVM_FALLTHROUGH; 5562 case CM_ScalarEpilogueNotNeededUsePredicate: 5563 LLVM_DEBUG( 5564 dbgs() << "LV: vector predicate hint/switch found.\n" 5565 << "LV: Not allowing scalar epilogue, creating predicated " 5566 << "vector loop.\n"); 5567 break; 5568 case CM_ScalarEpilogueNotAllowedLowTripLoop: 5569 // fallthrough as a special case of OptForSize 5570 case CM_ScalarEpilogueNotAllowedOptSize: 5571 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedOptSize) 5572 LLVM_DEBUG( 5573 dbgs() << "LV: Not allowing scalar epilogue due to -Os/-Oz.\n"); 5574 else 5575 LLVM_DEBUG(dbgs() << "LV: Not allowing scalar epilogue due to low trip " 5576 << "count.\n"); 5577 5578 // Bail if runtime checks are required, which are not good when optimising 5579 // for size. 5580 if (runtimeChecksRequired()) 5581 return None; 5582 5583 break; 5584 } 5585 5586 // The only loops we can vectorize without a scalar epilogue, are loops with 5587 // a bottom-test and a single exiting block. We'd have to handle the fact 5588 // that not every instruction executes on the last iteration. This will 5589 // require a lane mask which varies through the vector loop body. (TODO) 5590 if (TheLoop->getExitingBlock() != TheLoop->getLoopLatch()) { 5591 // If there was a tail-folding hint/switch, but we can't fold the tail by 5592 // masking, fallback to a vectorization with a scalar epilogue. 5593 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5594 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5595 "scalar epilogue instead.\n"); 5596 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5597 return computeFeasibleMaxVF(TC, UserVF); 5598 } 5599 return None; 5600 } 5601 5602 // Now try the tail folding 5603 5604 // Invalidate interleave groups that require an epilogue if we can't mask 5605 // the interleave-group. 5606 if (!useMaskedInterleavedAccesses(TTI)) { 5607 assert(WideningDecisions.empty() && Uniforms.empty() && Scalars.empty() && 5608 "No decisions should have been taken at this point"); 5609 // Note: There is no need to invalidate any cost modeling decisions here, as 5610 // non where taken so far. 5611 InterleaveInfo.invalidateGroupsRequiringScalarEpilogue(); 5612 } 5613 5614 ElementCount MaxVF = computeFeasibleMaxVF(TC, UserVF); 5615 assert(!MaxVF.isScalable() && 5616 "Scalable vectors do not yet support tail folding"); 5617 assert((UserVF.isNonZero() || isPowerOf2_32(MaxVF.getFixedValue())) && 5618 "MaxVF must be a power of 2"); 5619 unsigned MaxVFtimesIC = 5620 UserIC ? MaxVF.getFixedValue() * UserIC : MaxVF.getFixedValue(); 5621 // Avoid tail folding if the trip count is known to be a multiple of any VF we 5622 // chose. 5623 ScalarEvolution *SE = PSE.getSE(); 5624 const SCEV *BackedgeTakenCount = PSE.getBackedgeTakenCount(); 5625 const SCEV *ExitCount = SE->getAddExpr( 5626 BackedgeTakenCount, SE->getOne(BackedgeTakenCount->getType())); 5627 const SCEV *Rem = SE->getURemExpr( 5628 SE->applyLoopGuards(ExitCount, TheLoop), 5629 SE->getConstant(BackedgeTakenCount->getType(), MaxVFtimesIC)); 5630 if (Rem->isZero()) { 5631 // Accept MaxVF if we do not have a tail. 5632 LLVM_DEBUG(dbgs() << "LV: No tail will remain for any chosen VF.\n"); 5633 return MaxVF; 5634 } 5635 5636 // If we don't know the precise trip count, or if the trip count that we 5637 // found modulo the vectorization factor is not zero, try to fold the tail 5638 // by masking. 5639 // FIXME: look for a smaller MaxVF that does divide TC rather than masking. 5640 if (Legal->prepareToFoldTailByMasking()) { 5641 FoldTailByMasking = true; 5642 return MaxVF; 5643 } 5644 5645 // If there was a tail-folding hint/switch, but we can't fold the tail by 5646 // masking, fallback to a vectorization with a scalar epilogue. 5647 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotNeededUsePredicate) { 5648 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking: vectorize with a " 5649 "scalar epilogue instead.\n"); 5650 ScalarEpilogueStatus = CM_ScalarEpilogueAllowed; 5651 return MaxVF; 5652 } 5653 5654 if (ScalarEpilogueStatus == CM_ScalarEpilogueNotAllowedUsePredicate) { 5655 LLVM_DEBUG(dbgs() << "LV: Can't fold tail by masking: don't vectorize\n"); 5656 return None; 5657 } 5658 5659 if (TC == 0) { 5660 reportVectorizationFailure( 5661 "Unable to calculate the loop count due to complex control flow", 5662 "unable to calculate the loop count due to complex control flow", 5663 "UnknownLoopCountComplexCFG", ORE, TheLoop); 5664 return None; 5665 } 5666 5667 reportVectorizationFailure( 5668 "Cannot optimize for size and vectorize at the same time.", 5669 "cannot optimize for size and vectorize at the same time. " 5670 "Enable vectorization of this loop with '#pragma clang loop " 5671 "vectorize(enable)' when compiling with -Os/-Oz", 5672 "NoTailLoopWithOptForSize", ORE, TheLoop); 5673 return None; 5674 } 5675 5676 ElementCount 5677 LoopVectorizationCostModel::computeFeasibleMaxVF(unsigned ConstTripCount, 5678 ElementCount UserVF) { 5679 bool IgnoreScalableUserVF = UserVF.isScalable() && 5680 !TTI.supportsScalableVectors() && 5681 !ForceTargetSupportsScalableVectors; 5682 if (IgnoreScalableUserVF) { 5683 LLVM_DEBUG( 5684 dbgs() << "LV: Ignoring VF=" << UserVF 5685 << " because target does not support scalable vectors.\n"); 5686 ORE->emit([&]() { 5687 return OptimizationRemarkAnalysis(DEBUG_TYPE, "IgnoreScalableUserVF", 5688 TheLoop->getStartLoc(), 5689 TheLoop->getHeader()) 5690 << "Ignoring VF=" << ore::NV("UserVF", UserVF) 5691 << " because target does not support scalable vectors."; 5692 }); 5693 } 5694 5695 // Beyond this point two scenarios are handled. If UserVF isn't specified 5696 // then a suitable VF is chosen. If UserVF is specified and there are 5697 // dependencies, check if it's legal. However, if a UserVF is specified and 5698 // there are no dependencies, then there's nothing to do. 5699 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5700 if (!canVectorizeReductions(UserVF)) { 5701 reportVectorizationFailure( 5702 "LV: Scalable vectorization not supported for the reduction " 5703 "operations found in this loop. Using fixed-width " 5704 "vectorization instead.", 5705 "Scalable vectorization not supported for the reduction operations " 5706 "found in this loop. Using fixed-width vectorization instead.", 5707 "ScalableVFUnfeasible", ORE, TheLoop); 5708 return computeFeasibleMaxVF( 5709 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5710 } 5711 5712 if (Legal->isSafeForAnyVectorWidth()) 5713 return UserVF; 5714 } 5715 5716 MinBWs = computeMinimumValueSizes(TheLoop->getBlocks(), *DB, &TTI); 5717 unsigned SmallestType, WidestType; 5718 std::tie(SmallestType, WidestType) = getSmallestAndWidestTypes(); 5719 unsigned WidestRegister = TTI.getRegisterBitWidth(true); 5720 5721 // Get the maximum safe dependence distance in bits computed by LAA. 5722 // It is computed by MaxVF * sizeOf(type) * 8, where type is taken from 5723 // the memory accesses that is most restrictive (involved in the smallest 5724 // dependence distance). 5725 unsigned MaxSafeVectorWidthInBits = Legal->getMaxSafeVectorWidthInBits(); 5726 5727 // If the user vectorization factor is legally unsafe, clamp it to a safe 5728 // value. Otherwise, return as is. 5729 if (UserVF.isNonZero() && !IgnoreScalableUserVF) { 5730 unsigned MaxSafeElements = 5731 PowerOf2Floor(MaxSafeVectorWidthInBits / WidestType); 5732 ElementCount MaxSafeVF = ElementCount::getFixed(MaxSafeElements); 5733 5734 if (UserVF.isScalable()) { 5735 Optional<unsigned> MaxVScale = TTI.getMaxVScale(); 5736 5737 // Scale VF by vscale before checking if it's safe. 5738 MaxSafeVF = ElementCount::getScalable( 5739 MaxVScale ? (MaxSafeElements / MaxVScale.getValue()) : 0); 5740 5741 if (MaxSafeVF.isZero()) { 5742 // The dependence distance is too small to use scalable vectors, 5743 // fallback on fixed. 5744 LLVM_DEBUG( 5745 dbgs() 5746 << "LV: Max legal vector width too small, scalable vectorization " 5747 "unfeasible. Using fixed-width vectorization instead.\n"); 5748 ORE->emit([&]() { 5749 return OptimizationRemarkAnalysis(DEBUG_TYPE, "ScalableVFUnfeasible", 5750 TheLoop->getStartLoc(), 5751 TheLoop->getHeader()) 5752 << "Max legal vector width too small, scalable vectorization " 5753 << "unfeasible. Using fixed-width vectorization instead."; 5754 }); 5755 return computeFeasibleMaxVF( 5756 ConstTripCount, ElementCount::getFixed(UserVF.getKnownMinValue())); 5757 } 5758 } 5759 5760 LLVM_DEBUG(dbgs() << "LV: The max safe VF is: " << MaxSafeVF << ".\n"); 5761 5762 if (ElementCount::isKnownLE(UserVF, MaxSafeVF)) 5763 return UserVF; 5764 5765 LLVM_DEBUG(dbgs() << "LV: User VF=" << UserVF 5766 << " is unsafe, clamping to max safe VF=" << MaxSafeVF 5767 << ".\n"); 5768 ORE->emit([&]() { 5769 return OptimizationRemarkAnalysis(DEBUG_TYPE, "VectorizationFactor", 5770 TheLoop->getStartLoc(), 5771 TheLoop->getHeader()) 5772 << "User-specified vectorization factor " 5773 << ore::NV("UserVectorizationFactor", UserVF) 5774 << " is unsafe, clamping to maximum safe vectorization factor " 5775 << ore::NV("VectorizationFactor", MaxSafeVF); 5776 }); 5777 return MaxSafeVF; 5778 } 5779 5780 WidestRegister = std::min(WidestRegister, MaxSafeVectorWidthInBits); 5781 5782 // Ensure MaxVF is a power of 2; the dependence distance bound may not be. 5783 // Note that both WidestRegister and WidestType may not be a powers of 2. 5784 auto MaxVectorSize = 5785 ElementCount::getFixed(PowerOf2Floor(WidestRegister / WidestType)); 5786 5787 LLVM_DEBUG(dbgs() << "LV: The Smallest and Widest types: " << SmallestType 5788 << " / " << WidestType << " bits.\n"); 5789 LLVM_DEBUG(dbgs() << "LV: The Widest register safe to use is: " 5790 << WidestRegister << " bits.\n"); 5791 5792 assert(MaxVectorSize.getFixedValue() <= WidestRegister && 5793 "Did not expect to pack so many elements" 5794 " into one vector!"); 5795 if (MaxVectorSize.getFixedValue() == 0) { 5796 LLVM_DEBUG(dbgs() << "LV: The target has no vector registers.\n"); 5797 return ElementCount::getFixed(1); 5798 } else if (ConstTripCount && ConstTripCount < MaxVectorSize.getFixedValue() && 5799 isPowerOf2_32(ConstTripCount)) { 5800 // We need to clamp the VF to be the ConstTripCount. There is no point in 5801 // choosing a higher viable VF as done in the loop below. 5802 LLVM_DEBUG(dbgs() << "LV: Clamping the MaxVF to the constant trip count: " 5803 << ConstTripCount << "\n"); 5804 return ElementCount::getFixed(ConstTripCount); 5805 } 5806 5807 ElementCount MaxVF = MaxVectorSize; 5808 if (TTI.shouldMaximizeVectorBandwidth(!isScalarEpilogueAllowed()) || 5809 (MaximizeBandwidth && isScalarEpilogueAllowed())) { 5810 // Collect all viable vectorization factors larger than the default MaxVF 5811 // (i.e. MaxVectorSize). 5812 SmallVector<ElementCount, 8> VFs; 5813 auto MaxVectorSizeMaxBW = 5814 ElementCount::getFixed(WidestRegister / SmallestType); 5815 for (ElementCount VS = MaxVectorSize * 2; 5816 ElementCount::isKnownLE(VS, MaxVectorSizeMaxBW); VS *= 2) 5817 VFs.push_back(VS); 5818 5819 // For each VF calculate its register usage. 5820 auto RUs = calculateRegisterUsage(VFs); 5821 5822 // Select the largest VF which doesn't require more registers than existing 5823 // ones. 5824 for (int i = RUs.size() - 1; i >= 0; --i) { 5825 bool Selected = true; 5826 for (auto &pair : RUs[i].MaxLocalUsers) { 5827 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 5828 if (pair.second > TargetNumRegisters) 5829 Selected = false; 5830 } 5831 if (Selected) { 5832 MaxVF = VFs[i]; 5833 break; 5834 } 5835 } 5836 if (ElementCount MinVF = 5837 TTI.getMinimumVF(SmallestType, /*IsScalable=*/false)) { 5838 if (ElementCount::isKnownLT(MaxVF, MinVF)) { 5839 LLVM_DEBUG(dbgs() << "LV: Overriding calculated MaxVF(" << MaxVF 5840 << ") with target's minimum: " << MinVF << '\n'); 5841 MaxVF = MinVF; 5842 } 5843 } 5844 } 5845 return MaxVF; 5846 } 5847 5848 VectorizationFactor 5849 LoopVectorizationCostModel::selectVectorizationFactor(ElementCount MaxVF) { 5850 // FIXME: This can be fixed for scalable vectors later, because at this stage 5851 // the LoopVectorizer will only consider vectorizing a loop with scalable 5852 // vectors when the loop has a hint to enable vectorization for a given VF. 5853 assert(!MaxVF.isScalable() && "scalable vectors not yet supported"); 5854 5855 InstructionCost ExpectedCost = expectedCost(ElementCount::getFixed(1)).first; 5856 LLVM_DEBUG(dbgs() << "LV: Scalar loop costs: " << ExpectedCost << ".\n"); 5857 assert(ExpectedCost.isValid() && "Unexpected invalid cost for scalar loop"); 5858 5859 auto Width = ElementCount::getFixed(1); 5860 const float ScalarCost = *ExpectedCost.getValue(); 5861 float Cost = ScalarCost; 5862 5863 bool ForceVectorization = Hints->getForce() == LoopVectorizeHints::FK_Enabled; 5864 if (ForceVectorization && MaxVF.isVector()) { 5865 // Ignore scalar width, because the user explicitly wants vectorization. 5866 // Initialize cost to max so that VF = 2 is, at least, chosen during cost 5867 // evaluation. 5868 Cost = std::numeric_limits<float>::max(); 5869 } 5870 5871 for (auto i = ElementCount::getFixed(2); ElementCount::isKnownLE(i, MaxVF); 5872 i *= 2) { 5873 // Notice that the vector loop needs to be executed less times, so 5874 // we need to divide the cost of the vector loops by the width of 5875 // the vector elements. 5876 VectorizationCostTy C = expectedCost(i); 5877 assert(C.first.isValid() && "Unexpected invalid cost for vector loop"); 5878 float VectorCost = *C.first.getValue() / (float)i.getFixedValue(); 5879 LLVM_DEBUG(dbgs() << "LV: Vector loop of width " << i 5880 << " costs: " << (int)VectorCost << ".\n"); 5881 if (!C.second && !ForceVectorization) { 5882 LLVM_DEBUG( 5883 dbgs() << "LV: Not considering vector loop of width " << i 5884 << " because it will not generate any vector instructions.\n"); 5885 continue; 5886 } 5887 5888 // If profitable add it to ProfitableVF list. 5889 if (VectorCost < ScalarCost) { 5890 ProfitableVFs.push_back(VectorizationFactor( 5891 {i, (unsigned)VectorCost})); 5892 } 5893 5894 if (VectorCost < Cost) { 5895 Cost = VectorCost; 5896 Width = i; 5897 } 5898 } 5899 5900 if (!EnableCondStoresVectorization && NumPredStores) { 5901 reportVectorizationFailure("There are conditional stores.", 5902 "store that is conditionally executed prevents vectorization", 5903 "ConditionalStore", ORE, TheLoop); 5904 Width = ElementCount::getFixed(1); 5905 Cost = ScalarCost; 5906 } 5907 5908 LLVM_DEBUG(if (ForceVectorization && !Width.isScalar() && Cost >= ScalarCost) dbgs() 5909 << "LV: Vectorization seems to be not beneficial, " 5910 << "but was forced by a user.\n"); 5911 LLVM_DEBUG(dbgs() << "LV: Selecting VF: " << Width << ".\n"); 5912 VectorizationFactor Factor = {Width, 5913 (unsigned)(Width.getKnownMinValue() * Cost)}; 5914 return Factor; 5915 } 5916 5917 bool LoopVectorizationCostModel::isCandidateForEpilogueVectorization( 5918 const Loop &L, ElementCount VF) const { 5919 // Cross iteration phis such as reductions need special handling and are 5920 // currently unsupported. 5921 if (any_of(L.getHeader()->phis(), [&](PHINode &Phi) { 5922 return Legal->isFirstOrderRecurrence(&Phi) || 5923 Legal->isReductionVariable(&Phi); 5924 })) 5925 return false; 5926 5927 // Phis with uses outside of the loop require special handling and are 5928 // currently unsupported. 5929 for (auto &Entry : Legal->getInductionVars()) { 5930 // Look for uses of the value of the induction at the last iteration. 5931 Value *PostInc = Entry.first->getIncomingValueForBlock(L.getLoopLatch()); 5932 for (User *U : PostInc->users()) 5933 if (!L.contains(cast<Instruction>(U))) 5934 return false; 5935 // Look for uses of penultimate value of the induction. 5936 for (User *U : Entry.first->users()) 5937 if (!L.contains(cast<Instruction>(U))) 5938 return false; 5939 } 5940 5941 // Induction variables that are widened require special handling that is 5942 // currently not supported. 5943 if (any_of(Legal->getInductionVars(), [&](auto &Entry) { 5944 return !(this->isScalarAfterVectorization(Entry.first, VF) || 5945 this->isProfitableToScalarize(Entry.first, VF)); 5946 })) 5947 return false; 5948 5949 return true; 5950 } 5951 5952 bool LoopVectorizationCostModel::isEpilogueVectorizationProfitable( 5953 const ElementCount VF) const { 5954 // FIXME: We need a much better cost-model to take different parameters such 5955 // as register pressure, code size increase and cost of extra branches into 5956 // account. For now we apply a very crude heuristic and only consider loops 5957 // with vectorization factors larger than a certain value. 5958 // We also consider epilogue vectorization unprofitable for targets that don't 5959 // consider interleaving beneficial (eg. MVE). 5960 if (TTI.getMaxInterleaveFactor(VF.getKnownMinValue()) <= 1) 5961 return false; 5962 if (VF.getFixedValue() >= EpilogueVectorizationMinVF) 5963 return true; 5964 return false; 5965 } 5966 5967 VectorizationFactor 5968 LoopVectorizationCostModel::selectEpilogueVectorizationFactor( 5969 const ElementCount MainLoopVF, const LoopVectorizationPlanner &LVP) { 5970 VectorizationFactor Result = VectorizationFactor::Disabled(); 5971 if (!EnableEpilogueVectorization) { 5972 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization is disabled.\n";); 5973 return Result; 5974 } 5975 5976 if (!isScalarEpilogueAllowed()) { 5977 LLVM_DEBUG( 5978 dbgs() << "LEV: Unable to vectorize epilogue because no epilogue is " 5979 "allowed.\n";); 5980 return Result; 5981 } 5982 5983 // FIXME: This can be fixed for scalable vectors later, because at this stage 5984 // the LoopVectorizer will only consider vectorizing a loop with scalable 5985 // vectors when the loop has a hint to enable vectorization for a given VF. 5986 if (MainLoopVF.isScalable()) { 5987 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization for scalable vectors not " 5988 "yet supported.\n"); 5989 return Result; 5990 } 5991 5992 // Not really a cost consideration, but check for unsupported cases here to 5993 // simplify the logic. 5994 if (!isCandidateForEpilogueVectorization(*TheLoop, MainLoopVF)) { 5995 LLVM_DEBUG( 5996 dbgs() << "LEV: Unable to vectorize epilogue because the loop is " 5997 "not a supported candidate.\n";); 5998 return Result; 5999 } 6000 6001 if (EpilogueVectorizationForceVF > 1) { 6002 LLVM_DEBUG(dbgs() << "LEV: Epilogue vectorization factor is forced.\n";); 6003 if (LVP.hasPlanWithVFs( 6004 {MainLoopVF, ElementCount::getFixed(EpilogueVectorizationForceVF)})) 6005 return {ElementCount::getFixed(EpilogueVectorizationForceVF), 0}; 6006 else { 6007 LLVM_DEBUG( 6008 dbgs() 6009 << "LEV: Epilogue vectorization forced factor is not viable.\n";); 6010 return Result; 6011 } 6012 } 6013 6014 if (TheLoop->getHeader()->getParent()->hasOptSize() || 6015 TheLoop->getHeader()->getParent()->hasMinSize()) { 6016 LLVM_DEBUG( 6017 dbgs() 6018 << "LEV: Epilogue vectorization skipped due to opt for size.\n";); 6019 return Result; 6020 } 6021 6022 if (!isEpilogueVectorizationProfitable(MainLoopVF)) 6023 return Result; 6024 6025 for (auto &NextVF : ProfitableVFs) 6026 if (ElementCount::isKnownLT(NextVF.Width, MainLoopVF) && 6027 (Result.Width.getFixedValue() == 1 || NextVF.Cost < Result.Cost) && 6028 LVP.hasPlanWithVFs({MainLoopVF, NextVF.Width})) 6029 Result = NextVF; 6030 6031 if (Result != VectorizationFactor::Disabled()) 6032 LLVM_DEBUG(dbgs() << "LEV: Vectorizing epilogue loop with VF = " 6033 << Result.Width.getFixedValue() << "\n";); 6034 return Result; 6035 } 6036 6037 std::pair<unsigned, unsigned> 6038 LoopVectorizationCostModel::getSmallestAndWidestTypes() { 6039 unsigned MinWidth = -1U; 6040 unsigned MaxWidth = 8; 6041 const DataLayout &DL = TheFunction->getParent()->getDataLayout(); 6042 6043 // For each block. 6044 for (BasicBlock *BB : TheLoop->blocks()) { 6045 // For each instruction in the loop. 6046 for (Instruction &I : BB->instructionsWithoutDebug()) { 6047 Type *T = I.getType(); 6048 6049 // Skip ignored values. 6050 if (ValuesToIgnore.count(&I)) 6051 continue; 6052 6053 // Only examine Loads, Stores and PHINodes. 6054 if (!isa<LoadInst>(I) && !isa<StoreInst>(I) && !isa<PHINode>(I)) 6055 continue; 6056 6057 // Examine PHI nodes that are reduction variables. Update the type to 6058 // account for the recurrence type. 6059 if (auto *PN = dyn_cast<PHINode>(&I)) { 6060 if (!Legal->isReductionVariable(PN)) 6061 continue; 6062 RecurrenceDescriptor RdxDesc = Legal->getReductionVars()[PN]; 6063 if (PreferInLoopReductions || 6064 TTI.preferInLoopReduction(RdxDesc.getOpcode(), 6065 RdxDesc.getRecurrenceType(), 6066 TargetTransformInfo::ReductionFlags())) 6067 continue; 6068 T = RdxDesc.getRecurrenceType(); 6069 } 6070 6071 // Examine the stored values. 6072 if (auto *ST = dyn_cast<StoreInst>(&I)) 6073 T = ST->getValueOperand()->getType(); 6074 6075 // Ignore loaded pointer types and stored pointer types that are not 6076 // vectorizable. 6077 // 6078 // FIXME: The check here attempts to predict whether a load or store will 6079 // be vectorized. We only know this for certain after a VF has 6080 // been selected. Here, we assume that if an access can be 6081 // vectorized, it will be. We should also look at extending this 6082 // optimization to non-pointer types. 6083 // 6084 if (T->isPointerTy() && !isConsecutiveLoadOrStore(&I) && 6085 !isAccessInterleaved(&I) && !isLegalGatherOrScatter(&I)) 6086 continue; 6087 6088 MinWidth = std::min(MinWidth, 6089 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6090 MaxWidth = std::max(MaxWidth, 6091 (unsigned)DL.getTypeSizeInBits(T->getScalarType())); 6092 } 6093 } 6094 6095 return {MinWidth, MaxWidth}; 6096 } 6097 6098 unsigned LoopVectorizationCostModel::selectInterleaveCount(ElementCount VF, 6099 unsigned LoopCost) { 6100 // -- The interleave heuristics -- 6101 // We interleave the loop in order to expose ILP and reduce the loop overhead. 6102 // There are many micro-architectural considerations that we can't predict 6103 // at this level. For example, frontend pressure (on decode or fetch) due to 6104 // code size, or the number and capabilities of the execution ports. 6105 // 6106 // We use the following heuristics to select the interleave count: 6107 // 1. If the code has reductions, then we interleave to break the cross 6108 // iteration dependency. 6109 // 2. If the loop is really small, then we interleave to reduce the loop 6110 // overhead. 6111 // 3. We don't interleave if we think that we will spill registers to memory 6112 // due to the increased register pressure. 6113 6114 if (!isScalarEpilogueAllowed()) 6115 return 1; 6116 6117 // We used the distance for the interleave count. 6118 if (Legal->getMaxSafeDepDistBytes() != -1U) 6119 return 1; 6120 6121 auto BestKnownTC = getSmallBestKnownTC(*PSE.getSE(), TheLoop); 6122 const bool HasReductions = !Legal->getReductionVars().empty(); 6123 // Do not interleave loops with a relatively small known or estimated trip 6124 // count. But we will interleave when InterleaveSmallLoopScalarReduction is 6125 // enabled, and the code has scalar reductions(HasReductions && VF = 1), 6126 // because with the above conditions interleaving can expose ILP and break 6127 // cross iteration dependences for reductions. 6128 if (BestKnownTC && (*BestKnownTC < TinyTripCountInterleaveThreshold) && 6129 !(InterleaveSmallLoopScalarReduction && HasReductions && VF.isScalar())) 6130 return 1; 6131 6132 RegisterUsage R = calculateRegisterUsage({VF})[0]; 6133 // We divide by these constants so assume that we have at least one 6134 // instruction that uses at least one register. 6135 for (auto& pair : R.MaxLocalUsers) { 6136 pair.second = std::max(pair.second, 1U); 6137 } 6138 6139 // We calculate the interleave count using the following formula. 6140 // Subtract the number of loop invariants from the number of available 6141 // registers. These registers are used by all of the interleaved instances. 6142 // Next, divide the remaining registers by the number of registers that is 6143 // required by the loop, in order to estimate how many parallel instances 6144 // fit without causing spills. All of this is rounded down if necessary to be 6145 // a power of two. We want power of two interleave count to simplify any 6146 // addressing operations or alignment considerations. 6147 // We also want power of two interleave counts to ensure that the induction 6148 // variable of the vector loop wraps to zero, when tail is folded by masking; 6149 // this currently happens when OptForSize, in which case IC is set to 1 above. 6150 unsigned IC = UINT_MAX; 6151 6152 for (auto& pair : R.MaxLocalUsers) { 6153 unsigned TargetNumRegisters = TTI.getNumberOfRegisters(pair.first); 6154 LLVM_DEBUG(dbgs() << "LV: The target has " << TargetNumRegisters 6155 << " registers of " 6156 << TTI.getRegisterClassName(pair.first) << " register class\n"); 6157 if (VF.isScalar()) { 6158 if (ForceTargetNumScalarRegs.getNumOccurrences() > 0) 6159 TargetNumRegisters = ForceTargetNumScalarRegs; 6160 } else { 6161 if (ForceTargetNumVectorRegs.getNumOccurrences() > 0) 6162 TargetNumRegisters = ForceTargetNumVectorRegs; 6163 } 6164 unsigned MaxLocalUsers = pair.second; 6165 unsigned LoopInvariantRegs = 0; 6166 if (R.LoopInvariantRegs.find(pair.first) != R.LoopInvariantRegs.end()) 6167 LoopInvariantRegs = R.LoopInvariantRegs[pair.first]; 6168 6169 unsigned TmpIC = PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs) / MaxLocalUsers); 6170 // Don't count the induction variable as interleaved. 6171 if (EnableIndVarRegisterHeur) { 6172 TmpIC = 6173 PowerOf2Floor((TargetNumRegisters - LoopInvariantRegs - 1) / 6174 std::max(1U, (MaxLocalUsers - 1))); 6175 } 6176 6177 IC = std::min(IC, TmpIC); 6178 } 6179 6180 // Clamp the interleave ranges to reasonable counts. 6181 unsigned MaxInterleaveCount = 6182 TTI.getMaxInterleaveFactor(VF.getKnownMinValue()); 6183 6184 // Check if the user has overridden the max. 6185 if (VF.isScalar()) { 6186 if (ForceTargetMaxScalarInterleaveFactor.getNumOccurrences() > 0) 6187 MaxInterleaveCount = ForceTargetMaxScalarInterleaveFactor; 6188 } else { 6189 if (ForceTargetMaxVectorInterleaveFactor.getNumOccurrences() > 0) 6190 MaxInterleaveCount = ForceTargetMaxVectorInterleaveFactor; 6191 } 6192 6193 // If trip count is known or estimated compile time constant, limit the 6194 // interleave count to be less than the trip count divided by VF, provided it 6195 // is at least 1. 6196 // 6197 // For scalable vectors we can't know if interleaving is beneficial. It may 6198 // not be beneficial for small loops if none of the lanes in the second vector 6199 // iterations is enabled. However, for larger loops, there is likely to be a 6200 // similar benefit as for fixed-width vectors. For now, we choose to leave 6201 // the InterleaveCount as if vscale is '1', although if some information about 6202 // the vector is known (e.g. min vector size), we can make a better decision. 6203 if (BestKnownTC) { 6204 MaxInterleaveCount = 6205 std::min(*BestKnownTC / VF.getKnownMinValue(), MaxInterleaveCount); 6206 // Make sure MaxInterleaveCount is greater than 0. 6207 MaxInterleaveCount = std::max(1u, MaxInterleaveCount); 6208 } 6209 6210 assert(MaxInterleaveCount > 0 && 6211 "Maximum interleave count must be greater than 0"); 6212 6213 // Clamp the calculated IC to be between the 1 and the max interleave count 6214 // that the target and trip count allows. 6215 if (IC > MaxInterleaveCount) 6216 IC = MaxInterleaveCount; 6217 else 6218 // Make sure IC is greater than 0. 6219 IC = std::max(1u, IC); 6220 6221 assert(IC > 0 && "Interleave count must be greater than 0."); 6222 6223 // If we did not calculate the cost for VF (because the user selected the VF) 6224 // then we calculate the cost of VF here. 6225 if (LoopCost == 0) { 6226 assert(expectedCost(VF).first.isValid() && "Expected a valid cost"); 6227 LoopCost = *expectedCost(VF).first.getValue(); 6228 } 6229 6230 assert(LoopCost && "Non-zero loop cost expected"); 6231 6232 // Interleave if we vectorized this loop and there is a reduction that could 6233 // benefit from interleaving. 6234 if (VF.isVector() && HasReductions) { 6235 LLVM_DEBUG(dbgs() << "LV: Interleaving because of reductions.\n"); 6236 return IC; 6237 } 6238 6239 // Note that if we've already vectorized the loop we will have done the 6240 // runtime check and so interleaving won't require further checks. 6241 bool InterleavingRequiresRuntimePointerCheck = 6242 (VF.isScalar() && Legal->getRuntimePointerChecking()->Need); 6243 6244 // We want to interleave small loops in order to reduce the loop overhead and 6245 // potentially expose ILP opportunities. 6246 LLVM_DEBUG(dbgs() << "LV: Loop cost is " << LoopCost << '\n' 6247 << "LV: IC is " << IC << '\n' 6248 << "LV: VF is " << VF << '\n'); 6249 const bool AggressivelyInterleaveReductions = 6250 TTI.enableAggressiveInterleaving(HasReductions); 6251 if (!InterleavingRequiresRuntimePointerCheck && LoopCost < SmallLoopCost) { 6252 // We assume that the cost overhead is 1 and we use the cost model 6253 // to estimate the cost of the loop and interleave until the cost of the 6254 // loop overhead is about 5% of the cost of the loop. 6255 unsigned SmallIC = 6256 std::min(IC, (unsigned)PowerOf2Floor(SmallLoopCost / LoopCost)); 6257 6258 // Interleave until store/load ports (estimated by max interleave count) are 6259 // saturated. 6260 unsigned NumStores = Legal->getNumStores(); 6261 unsigned NumLoads = Legal->getNumLoads(); 6262 unsigned StoresIC = IC / (NumStores ? NumStores : 1); 6263 unsigned LoadsIC = IC / (NumLoads ? NumLoads : 1); 6264 6265 // If we have a scalar reduction (vector reductions are already dealt with 6266 // by this point), we can increase the critical path length if the loop 6267 // we're interleaving is inside another loop. Limit, by default to 2, so the 6268 // critical path only gets increased by one reduction operation. 6269 if (HasReductions && TheLoop->getLoopDepth() > 1) { 6270 unsigned F = static_cast<unsigned>(MaxNestedScalarReductionIC); 6271 SmallIC = std::min(SmallIC, F); 6272 StoresIC = std::min(StoresIC, F); 6273 LoadsIC = std::min(LoadsIC, F); 6274 } 6275 6276 if (EnableLoadStoreRuntimeInterleave && 6277 std::max(StoresIC, LoadsIC) > SmallIC) { 6278 LLVM_DEBUG( 6279 dbgs() << "LV: Interleaving to saturate store or load ports.\n"); 6280 return std::max(StoresIC, LoadsIC); 6281 } 6282 6283 // If there are scalar reductions and TTI has enabled aggressive 6284 // interleaving for reductions, we will interleave to expose ILP. 6285 if (InterleaveSmallLoopScalarReduction && VF.isScalar() && 6286 AggressivelyInterleaveReductions) { 6287 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6288 // Interleave no less than SmallIC but not as aggressive as the normal IC 6289 // to satisfy the rare situation when resources are too limited. 6290 return std::max(IC / 2, SmallIC); 6291 } else { 6292 LLVM_DEBUG(dbgs() << "LV: Interleaving to reduce branch cost.\n"); 6293 return SmallIC; 6294 } 6295 } 6296 6297 // Interleave if this is a large loop (small loops are already dealt with by 6298 // this point) that could benefit from interleaving. 6299 if (AggressivelyInterleaveReductions) { 6300 LLVM_DEBUG(dbgs() << "LV: Interleaving to expose ILP.\n"); 6301 return IC; 6302 } 6303 6304 LLVM_DEBUG(dbgs() << "LV: Not Interleaving.\n"); 6305 return 1; 6306 } 6307 6308 SmallVector<LoopVectorizationCostModel::RegisterUsage, 8> 6309 LoopVectorizationCostModel::calculateRegisterUsage(ArrayRef<ElementCount> VFs) { 6310 // This function calculates the register usage by measuring the highest number 6311 // of values that are alive at a single location. Obviously, this is a very 6312 // rough estimation. We scan the loop in a topological order in order and 6313 // assign a number to each instruction. We use RPO to ensure that defs are 6314 // met before their users. We assume that each instruction that has in-loop 6315 // users starts an interval. We record every time that an in-loop value is 6316 // used, so we have a list of the first and last occurrences of each 6317 // instruction. Next, we transpose this data structure into a multi map that 6318 // holds the list of intervals that *end* at a specific location. This multi 6319 // map allows us to perform a linear search. We scan the instructions linearly 6320 // and record each time that a new interval starts, by placing it in a set. 6321 // If we find this value in the multi-map then we remove it from the set. 6322 // The max register usage is the maximum size of the set. 6323 // We also search for instructions that are defined outside the loop, but are 6324 // used inside the loop. We need this number separately from the max-interval 6325 // usage number because when we unroll, loop-invariant values do not take 6326 // more register. 6327 LoopBlocksDFS DFS(TheLoop); 6328 DFS.perform(LI); 6329 6330 RegisterUsage RU; 6331 6332 // Each 'key' in the map opens a new interval. The values 6333 // of the map are the index of the 'last seen' usage of the 6334 // instruction that is the key. 6335 using IntervalMap = DenseMap<Instruction *, unsigned>; 6336 6337 // Maps instruction to its index. 6338 SmallVector<Instruction *, 64> IdxToInstr; 6339 // Marks the end of each interval. 6340 IntervalMap EndPoint; 6341 // Saves the list of instruction indices that are used in the loop. 6342 SmallPtrSet<Instruction *, 8> Ends; 6343 // Saves the list of values that are used in the loop but are 6344 // defined outside the loop, such as arguments and constants. 6345 SmallPtrSet<Value *, 8> LoopInvariants; 6346 6347 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 6348 for (Instruction &I : BB->instructionsWithoutDebug()) { 6349 IdxToInstr.push_back(&I); 6350 6351 // Save the end location of each USE. 6352 for (Value *U : I.operands()) { 6353 auto *Instr = dyn_cast<Instruction>(U); 6354 6355 // Ignore non-instruction values such as arguments, constants, etc. 6356 if (!Instr) 6357 continue; 6358 6359 // If this instruction is outside the loop then record it and continue. 6360 if (!TheLoop->contains(Instr)) { 6361 LoopInvariants.insert(Instr); 6362 continue; 6363 } 6364 6365 // Overwrite previous end points. 6366 EndPoint[Instr] = IdxToInstr.size(); 6367 Ends.insert(Instr); 6368 } 6369 } 6370 } 6371 6372 // Saves the list of intervals that end with the index in 'key'. 6373 using InstrList = SmallVector<Instruction *, 2>; 6374 DenseMap<unsigned, InstrList> TransposeEnds; 6375 6376 // Transpose the EndPoints to a list of values that end at each index. 6377 for (auto &Interval : EndPoint) 6378 TransposeEnds[Interval.second].push_back(Interval.first); 6379 6380 SmallPtrSet<Instruction *, 8> OpenIntervals; 6381 SmallVector<RegisterUsage, 8> RUs(VFs.size()); 6382 SmallVector<SmallMapVector<unsigned, unsigned, 4>, 8> MaxUsages(VFs.size()); 6383 6384 LLVM_DEBUG(dbgs() << "LV(REG): Calculating max register usage:\n"); 6385 6386 // A lambda that gets the register usage for the given type and VF. 6387 const auto &TTICapture = TTI; 6388 auto GetRegUsage = [&TTICapture](Type *Ty, ElementCount VF) { 6389 if (Ty->isTokenTy() || !VectorType::isValidElementType(Ty)) 6390 return 0U; 6391 return TTICapture.getRegUsageForType(VectorType::get(Ty, VF)); 6392 }; 6393 6394 for (unsigned int i = 0, s = IdxToInstr.size(); i < s; ++i) { 6395 Instruction *I = IdxToInstr[i]; 6396 6397 // Remove all of the instructions that end at this location. 6398 InstrList &List = TransposeEnds[i]; 6399 for (Instruction *ToRemove : List) 6400 OpenIntervals.erase(ToRemove); 6401 6402 // Ignore instructions that are never used within the loop. 6403 if (!Ends.count(I)) 6404 continue; 6405 6406 // Skip ignored values. 6407 if (ValuesToIgnore.count(I)) 6408 continue; 6409 6410 // For each VF find the maximum usage of registers. 6411 for (unsigned j = 0, e = VFs.size(); j < e; ++j) { 6412 // Count the number of live intervals. 6413 SmallMapVector<unsigned, unsigned, 4> RegUsage; 6414 6415 if (VFs[j].isScalar()) { 6416 for (auto Inst : OpenIntervals) { 6417 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6418 if (RegUsage.find(ClassID) == RegUsage.end()) 6419 RegUsage[ClassID] = 1; 6420 else 6421 RegUsage[ClassID] += 1; 6422 } 6423 } else { 6424 collectUniformsAndScalars(VFs[j]); 6425 for (auto Inst : OpenIntervals) { 6426 // Skip ignored values for VF > 1. 6427 if (VecValuesToIgnore.count(Inst)) 6428 continue; 6429 if (isScalarAfterVectorization(Inst, VFs[j])) { 6430 unsigned ClassID = TTI.getRegisterClassForType(false, Inst->getType()); 6431 if (RegUsage.find(ClassID) == RegUsage.end()) 6432 RegUsage[ClassID] = 1; 6433 else 6434 RegUsage[ClassID] += 1; 6435 } else { 6436 unsigned ClassID = TTI.getRegisterClassForType(true, Inst->getType()); 6437 if (RegUsage.find(ClassID) == RegUsage.end()) 6438 RegUsage[ClassID] = GetRegUsage(Inst->getType(), VFs[j]); 6439 else 6440 RegUsage[ClassID] += GetRegUsage(Inst->getType(), VFs[j]); 6441 } 6442 } 6443 } 6444 6445 for (auto& pair : RegUsage) { 6446 if (MaxUsages[j].find(pair.first) != MaxUsages[j].end()) 6447 MaxUsages[j][pair.first] = std::max(MaxUsages[j][pair.first], pair.second); 6448 else 6449 MaxUsages[j][pair.first] = pair.second; 6450 } 6451 } 6452 6453 LLVM_DEBUG(dbgs() << "LV(REG): At #" << i << " Interval # " 6454 << OpenIntervals.size() << '\n'); 6455 6456 // Add the current instruction to the list of open intervals. 6457 OpenIntervals.insert(I); 6458 } 6459 6460 for (unsigned i = 0, e = VFs.size(); i < e; ++i) { 6461 SmallMapVector<unsigned, unsigned, 4> Invariant; 6462 6463 for (auto Inst : LoopInvariants) { 6464 unsigned Usage = 6465 VFs[i].isScalar() ? 1 : GetRegUsage(Inst->getType(), VFs[i]); 6466 unsigned ClassID = 6467 TTI.getRegisterClassForType(VFs[i].isVector(), Inst->getType()); 6468 if (Invariant.find(ClassID) == Invariant.end()) 6469 Invariant[ClassID] = Usage; 6470 else 6471 Invariant[ClassID] += Usage; 6472 } 6473 6474 LLVM_DEBUG({ 6475 dbgs() << "LV(REG): VF = " << VFs[i] << '\n'; 6476 dbgs() << "LV(REG): Found max usage: " << MaxUsages[i].size() 6477 << " item\n"; 6478 for (const auto &pair : MaxUsages[i]) { 6479 dbgs() << "LV(REG): RegisterClass: " 6480 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6481 << " registers\n"; 6482 } 6483 dbgs() << "LV(REG): Found invariant usage: " << Invariant.size() 6484 << " item\n"; 6485 for (const auto &pair : Invariant) { 6486 dbgs() << "LV(REG): RegisterClass: " 6487 << TTI.getRegisterClassName(pair.first) << ", " << pair.second 6488 << " registers\n"; 6489 } 6490 }); 6491 6492 RU.LoopInvariantRegs = Invariant; 6493 RU.MaxLocalUsers = MaxUsages[i]; 6494 RUs[i] = RU; 6495 } 6496 6497 return RUs; 6498 } 6499 6500 bool LoopVectorizationCostModel::useEmulatedMaskMemRefHack(Instruction *I){ 6501 // TODO: Cost model for emulated masked load/store is completely 6502 // broken. This hack guides the cost model to use an artificially 6503 // high enough value to practically disable vectorization with such 6504 // operations, except where previously deployed legality hack allowed 6505 // using very low cost values. This is to avoid regressions coming simply 6506 // from moving "masked load/store" check from legality to cost model. 6507 // Masked Load/Gather emulation was previously never allowed. 6508 // Limited number of Masked Store/Scatter emulation was allowed. 6509 assert(isPredicatedInst(I) && "Expecting a scalar emulated instruction"); 6510 return isa<LoadInst>(I) || 6511 (isa<StoreInst>(I) && 6512 NumPredStores > NumberOfStoresToPredicate); 6513 } 6514 6515 void LoopVectorizationCostModel::collectInstsToScalarize(ElementCount VF) { 6516 // If we aren't vectorizing the loop, or if we've already collected the 6517 // instructions to scalarize, there's nothing to do. Collection may already 6518 // have occurred if we have a user-selected VF and are now computing the 6519 // expected cost for interleaving. 6520 if (VF.isScalar() || VF.isZero() || 6521 InstsToScalarize.find(VF) != InstsToScalarize.end()) 6522 return; 6523 6524 // Initialize a mapping for VF in InstsToScalalarize. If we find that it's 6525 // not profitable to scalarize any instructions, the presence of VF in the 6526 // map will indicate that we've analyzed it already. 6527 ScalarCostsTy &ScalarCostsVF = InstsToScalarize[VF]; 6528 6529 // Find all the instructions that are scalar with predication in the loop and 6530 // determine if it would be better to not if-convert the blocks they are in. 6531 // If so, we also record the instructions to scalarize. 6532 for (BasicBlock *BB : TheLoop->blocks()) { 6533 if (!blockNeedsPredication(BB)) 6534 continue; 6535 for (Instruction &I : *BB) 6536 if (isScalarWithPredication(&I)) { 6537 ScalarCostsTy ScalarCosts; 6538 // Do not apply discount logic if hacked cost is needed 6539 // for emulated masked memrefs. 6540 if (!useEmulatedMaskMemRefHack(&I) && 6541 computePredInstDiscount(&I, ScalarCosts, VF) >= 0) 6542 ScalarCostsVF.insert(ScalarCosts.begin(), ScalarCosts.end()); 6543 // Remember that BB will remain after vectorization. 6544 PredicatedBBsAfterVectorization.insert(BB); 6545 } 6546 } 6547 } 6548 6549 int LoopVectorizationCostModel::computePredInstDiscount( 6550 Instruction *PredInst, ScalarCostsTy &ScalarCosts, ElementCount VF) { 6551 assert(!isUniformAfterVectorization(PredInst, VF) && 6552 "Instruction marked uniform-after-vectorization will be predicated"); 6553 6554 // Initialize the discount to zero, meaning that the scalar version and the 6555 // vector version cost the same. 6556 InstructionCost Discount = 0; 6557 6558 // Holds instructions to analyze. The instructions we visit are mapped in 6559 // ScalarCosts. Those instructions are the ones that would be scalarized if 6560 // we find that the scalar version costs less. 6561 SmallVector<Instruction *, 8> Worklist; 6562 6563 // Returns true if the given instruction can be scalarized. 6564 auto canBeScalarized = [&](Instruction *I) -> bool { 6565 // We only attempt to scalarize instructions forming a single-use chain 6566 // from the original predicated block that would otherwise be vectorized. 6567 // Although not strictly necessary, we give up on instructions we know will 6568 // already be scalar to avoid traversing chains that are unlikely to be 6569 // beneficial. 6570 if (!I->hasOneUse() || PredInst->getParent() != I->getParent() || 6571 isScalarAfterVectorization(I, VF)) 6572 return false; 6573 6574 // If the instruction is scalar with predication, it will be analyzed 6575 // separately. We ignore it within the context of PredInst. 6576 if (isScalarWithPredication(I)) 6577 return false; 6578 6579 // If any of the instruction's operands are uniform after vectorization, 6580 // the instruction cannot be scalarized. This prevents, for example, a 6581 // masked load from being scalarized. 6582 // 6583 // We assume we will only emit a value for lane zero of an instruction 6584 // marked uniform after vectorization, rather than VF identical values. 6585 // Thus, if we scalarize an instruction that uses a uniform, we would 6586 // create uses of values corresponding to the lanes we aren't emitting code 6587 // for. This behavior can be changed by allowing getScalarValue to clone 6588 // the lane zero values for uniforms rather than asserting. 6589 for (Use &U : I->operands()) 6590 if (auto *J = dyn_cast<Instruction>(U.get())) 6591 if (isUniformAfterVectorization(J, VF)) 6592 return false; 6593 6594 // Otherwise, we can scalarize the instruction. 6595 return true; 6596 }; 6597 6598 // Compute the expected cost discount from scalarizing the entire expression 6599 // feeding the predicated instruction. We currently only consider expressions 6600 // that are single-use instruction chains. 6601 Worklist.push_back(PredInst); 6602 while (!Worklist.empty()) { 6603 Instruction *I = Worklist.pop_back_val(); 6604 6605 // If we've already analyzed the instruction, there's nothing to do. 6606 if (ScalarCosts.find(I) != ScalarCosts.end()) 6607 continue; 6608 6609 // Compute the cost of the vector instruction. Note that this cost already 6610 // includes the scalarization overhead of the predicated instruction. 6611 InstructionCost VectorCost = getInstructionCost(I, VF).first; 6612 6613 // Compute the cost of the scalarized instruction. This cost is the cost of 6614 // the instruction as if it wasn't if-converted and instead remained in the 6615 // predicated block. We will scale this cost by block probability after 6616 // computing the scalarization overhead. 6617 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6618 InstructionCost ScalarCost = 6619 VF.getKnownMinValue() * 6620 getInstructionCost(I, ElementCount::getFixed(1)).first; 6621 6622 // Compute the scalarization overhead of needed insertelement instructions 6623 // and phi nodes. 6624 if (isScalarWithPredication(I) && !I->getType()->isVoidTy()) { 6625 ScalarCost += TTI.getScalarizationOverhead( 6626 cast<VectorType>(ToVectorTy(I->getType(), VF)), 6627 APInt::getAllOnesValue(VF.getKnownMinValue()), true, false); 6628 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6629 ScalarCost += 6630 VF.getKnownMinValue() * 6631 TTI.getCFInstrCost(Instruction::PHI, TTI::TCK_RecipThroughput); 6632 } 6633 6634 // Compute the scalarization overhead of needed extractelement 6635 // instructions. For each of the instruction's operands, if the operand can 6636 // be scalarized, add it to the worklist; otherwise, account for the 6637 // overhead. 6638 for (Use &U : I->operands()) 6639 if (auto *J = dyn_cast<Instruction>(U.get())) { 6640 assert(VectorType::isValidElementType(J->getType()) && 6641 "Instruction has non-scalar type"); 6642 if (canBeScalarized(J)) 6643 Worklist.push_back(J); 6644 else if (needsExtract(J, VF)) { 6645 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6646 ScalarCost += TTI.getScalarizationOverhead( 6647 cast<VectorType>(ToVectorTy(J->getType(), VF)), 6648 APInt::getAllOnesValue(VF.getKnownMinValue()), false, true); 6649 } 6650 } 6651 6652 // Scale the total scalar cost by block probability. 6653 ScalarCost /= getReciprocalPredBlockProb(); 6654 6655 // Compute the discount. A non-negative discount means the vector version 6656 // of the instruction costs more, and scalarizing would be beneficial. 6657 Discount += VectorCost - ScalarCost; 6658 ScalarCosts[I] = ScalarCost; 6659 } 6660 6661 return *Discount.getValue(); 6662 } 6663 6664 LoopVectorizationCostModel::VectorizationCostTy 6665 LoopVectorizationCostModel::expectedCost(ElementCount VF) { 6666 VectorizationCostTy Cost; 6667 6668 // For each block. 6669 for (BasicBlock *BB : TheLoop->blocks()) { 6670 VectorizationCostTy BlockCost; 6671 6672 // For each instruction in the old loop. 6673 for (Instruction &I : BB->instructionsWithoutDebug()) { 6674 // Skip ignored values. 6675 if (ValuesToIgnore.count(&I) || 6676 (VF.isVector() && VecValuesToIgnore.count(&I))) 6677 continue; 6678 6679 VectorizationCostTy C = getInstructionCost(&I, VF); 6680 6681 // Check if we should override the cost. 6682 if (ForceTargetInstructionCost.getNumOccurrences() > 0) 6683 C.first = InstructionCost(ForceTargetInstructionCost); 6684 6685 BlockCost.first += C.first; 6686 BlockCost.second |= C.second; 6687 LLVM_DEBUG(dbgs() << "LV: Found an estimated cost of " << C.first 6688 << " for VF " << VF << " For instruction: " << I 6689 << '\n'); 6690 } 6691 6692 // If we are vectorizing a predicated block, it will have been 6693 // if-converted. This means that the block's instructions (aside from 6694 // stores and instructions that may divide by zero) will now be 6695 // unconditionally executed. For the scalar case, we may not always execute 6696 // the predicated block, if it is an if-else block. Thus, scale the block's 6697 // cost by the probability of executing it. blockNeedsPredication from 6698 // Legal is used so as to not include all blocks in tail folded loops. 6699 if (VF.isScalar() && Legal->blockNeedsPredication(BB)) 6700 BlockCost.first /= getReciprocalPredBlockProb(); 6701 6702 Cost.first += BlockCost.first; 6703 Cost.second |= BlockCost.second; 6704 } 6705 6706 return Cost; 6707 } 6708 6709 /// Gets Address Access SCEV after verifying that the access pattern 6710 /// is loop invariant except the induction variable dependence. 6711 /// 6712 /// This SCEV can be sent to the Target in order to estimate the address 6713 /// calculation cost. 6714 static const SCEV *getAddressAccessSCEV( 6715 Value *Ptr, 6716 LoopVectorizationLegality *Legal, 6717 PredicatedScalarEvolution &PSE, 6718 const Loop *TheLoop) { 6719 6720 auto *Gep = dyn_cast<GetElementPtrInst>(Ptr); 6721 if (!Gep) 6722 return nullptr; 6723 6724 // We are looking for a gep with all loop invariant indices except for one 6725 // which should be an induction variable. 6726 auto SE = PSE.getSE(); 6727 unsigned NumOperands = Gep->getNumOperands(); 6728 for (unsigned i = 1; i < NumOperands; ++i) { 6729 Value *Opd = Gep->getOperand(i); 6730 if (!SE->isLoopInvariant(SE->getSCEV(Opd), TheLoop) && 6731 !Legal->isInductionVariable(Opd)) 6732 return nullptr; 6733 } 6734 6735 // Now we know we have a GEP ptr, %inv, %ind, %inv. return the Ptr SCEV. 6736 return PSE.getSCEV(Ptr); 6737 } 6738 6739 static bool isStrideMul(Instruction *I, LoopVectorizationLegality *Legal) { 6740 return Legal->hasStride(I->getOperand(0)) || 6741 Legal->hasStride(I->getOperand(1)); 6742 } 6743 6744 InstructionCost 6745 LoopVectorizationCostModel::getMemInstScalarizationCost(Instruction *I, 6746 ElementCount VF) { 6747 assert(VF.isVector() && 6748 "Scalarization cost of instruction implies vectorization."); 6749 assert(!VF.isScalable() && "scalable vectors not yet supported."); 6750 Type *ValTy = getMemInstValueType(I); 6751 auto SE = PSE.getSE(); 6752 6753 unsigned AS = getLoadStoreAddressSpace(I); 6754 Value *Ptr = getLoadStorePointerOperand(I); 6755 Type *PtrTy = ToVectorTy(Ptr->getType(), VF); 6756 6757 // Figure out whether the access is strided and get the stride value 6758 // if it's known in compile time 6759 const SCEV *PtrSCEV = getAddressAccessSCEV(Ptr, Legal, PSE, TheLoop); 6760 6761 // Get the cost of the scalar memory instruction and address computation. 6762 InstructionCost Cost = 6763 VF.getKnownMinValue() * TTI.getAddressComputationCost(PtrTy, SE, PtrSCEV); 6764 6765 // Don't pass *I here, since it is scalar but will actually be part of a 6766 // vectorized loop where the user of it is a vectorized instruction. 6767 const Align Alignment = getLoadStoreAlignment(I); 6768 Cost += VF.getKnownMinValue() * 6769 TTI.getMemoryOpCost(I->getOpcode(), ValTy->getScalarType(), Alignment, 6770 AS, TTI::TCK_RecipThroughput); 6771 6772 // Get the overhead of the extractelement and insertelement instructions 6773 // we might create due to scalarization. 6774 Cost += getScalarizationOverhead(I, VF); 6775 6776 // If we have a predicated store, it may not be executed for each vector 6777 // lane. Scale the cost by the probability of executing the predicated 6778 // block. 6779 if (isPredicatedInst(I)) { 6780 Cost /= getReciprocalPredBlockProb(); 6781 6782 if (useEmulatedMaskMemRefHack(I)) 6783 // Artificially setting to a high enough value to practically disable 6784 // vectorization with such operations. 6785 Cost = 3000000; 6786 } 6787 6788 return Cost; 6789 } 6790 6791 InstructionCost 6792 LoopVectorizationCostModel::getConsecutiveMemOpCost(Instruction *I, 6793 ElementCount VF) { 6794 Type *ValTy = getMemInstValueType(I); 6795 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6796 Value *Ptr = getLoadStorePointerOperand(I); 6797 unsigned AS = getLoadStoreAddressSpace(I); 6798 int ConsecutiveStride = Legal->isConsecutivePtr(Ptr); 6799 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6800 6801 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 6802 "Stride should be 1 or -1 for consecutive memory access"); 6803 const Align Alignment = getLoadStoreAlignment(I); 6804 InstructionCost Cost = 0; 6805 if (Legal->isMaskRequired(I)) 6806 Cost += TTI.getMaskedMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6807 CostKind); 6808 else 6809 Cost += TTI.getMemoryOpCost(I->getOpcode(), VectorTy, Alignment, AS, 6810 CostKind, I); 6811 6812 bool Reverse = ConsecutiveStride < 0; 6813 if (Reverse) 6814 Cost += TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6815 return Cost; 6816 } 6817 6818 InstructionCost 6819 LoopVectorizationCostModel::getUniformMemOpCost(Instruction *I, 6820 ElementCount VF) { 6821 assert(Legal->isUniformMemOp(*I)); 6822 6823 Type *ValTy = getMemInstValueType(I); 6824 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6825 const Align Alignment = getLoadStoreAlignment(I); 6826 unsigned AS = getLoadStoreAddressSpace(I); 6827 enum TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 6828 if (isa<LoadInst>(I)) { 6829 return TTI.getAddressComputationCost(ValTy) + 6830 TTI.getMemoryOpCost(Instruction::Load, ValTy, Alignment, AS, 6831 CostKind) + 6832 TTI.getShuffleCost(TargetTransformInfo::SK_Broadcast, VectorTy); 6833 } 6834 StoreInst *SI = cast<StoreInst>(I); 6835 6836 bool isLoopInvariantStoreValue = Legal->isUniform(SI->getValueOperand()); 6837 return TTI.getAddressComputationCost(ValTy) + 6838 TTI.getMemoryOpCost(Instruction::Store, ValTy, Alignment, AS, 6839 CostKind) + 6840 (isLoopInvariantStoreValue 6841 ? 0 6842 : TTI.getVectorInstrCost(Instruction::ExtractElement, VectorTy, 6843 VF.getKnownMinValue() - 1)); 6844 } 6845 6846 InstructionCost 6847 LoopVectorizationCostModel::getGatherScatterCost(Instruction *I, 6848 ElementCount VF) { 6849 Type *ValTy = getMemInstValueType(I); 6850 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6851 const Align Alignment = getLoadStoreAlignment(I); 6852 const Value *Ptr = getLoadStorePointerOperand(I); 6853 6854 return TTI.getAddressComputationCost(VectorTy) + 6855 TTI.getGatherScatterOpCost( 6856 I->getOpcode(), VectorTy, Ptr, Legal->isMaskRequired(I), Alignment, 6857 TargetTransformInfo::TCK_RecipThroughput, I); 6858 } 6859 6860 InstructionCost 6861 LoopVectorizationCostModel::getInterleaveGroupCost(Instruction *I, 6862 ElementCount VF) { 6863 // TODO: Once we have support for interleaving with scalable vectors 6864 // we can calculate the cost properly here. 6865 if (VF.isScalable()) 6866 return InstructionCost::getInvalid(); 6867 6868 Type *ValTy = getMemInstValueType(I); 6869 auto *VectorTy = cast<VectorType>(ToVectorTy(ValTy, VF)); 6870 unsigned AS = getLoadStoreAddressSpace(I); 6871 6872 auto Group = getInterleavedAccessGroup(I); 6873 assert(Group && "Fail to get an interleaved access group."); 6874 6875 unsigned InterleaveFactor = Group->getFactor(); 6876 auto *WideVecTy = VectorType::get(ValTy, VF * InterleaveFactor); 6877 6878 // Holds the indices of existing members in an interleaved load group. 6879 // An interleaved store group doesn't need this as it doesn't allow gaps. 6880 SmallVector<unsigned, 4> Indices; 6881 if (isa<LoadInst>(I)) { 6882 for (unsigned i = 0; i < InterleaveFactor; i++) 6883 if (Group->getMember(i)) 6884 Indices.push_back(i); 6885 } 6886 6887 // Calculate the cost of the whole interleaved group. 6888 bool UseMaskForGaps = 6889 Group->requiresScalarEpilogue() && !isScalarEpilogueAllowed(); 6890 InstructionCost Cost = TTI.getInterleavedMemoryOpCost( 6891 I->getOpcode(), WideVecTy, Group->getFactor(), Indices, Group->getAlign(), 6892 AS, TTI::TCK_RecipThroughput, Legal->isMaskRequired(I), UseMaskForGaps); 6893 6894 if (Group->isReverse()) { 6895 // TODO: Add support for reversed masked interleaved access. 6896 assert(!Legal->isMaskRequired(I) && 6897 "Reverse masked interleaved access not supported."); 6898 Cost += Group->getNumMembers() * 6899 TTI.getShuffleCost(TargetTransformInfo::SK_Reverse, VectorTy, 0); 6900 } 6901 return Cost; 6902 } 6903 6904 InstructionCost LoopVectorizationCostModel::getReductionPatternCost( 6905 Instruction *I, ElementCount VF, Type *Ty, TTI::TargetCostKind CostKind) { 6906 // Early exit for no inloop reductions 6907 if (InLoopReductionChains.empty() || VF.isScalar() || !isa<VectorType>(Ty)) 6908 return InstructionCost::getInvalid(); 6909 auto *VectorTy = cast<VectorType>(Ty); 6910 6911 // We are looking for a pattern of, and finding the minimal acceptable cost: 6912 // reduce(mul(ext(A), ext(B))) or 6913 // reduce(mul(A, B)) or 6914 // reduce(ext(A)) or 6915 // reduce(A). 6916 // The basic idea is that we walk down the tree to do that, finding the root 6917 // reduction instruction in InLoopReductionImmediateChains. From there we find 6918 // the pattern of mul/ext and test the cost of the entire pattern vs the cost 6919 // of the components. If the reduction cost is lower then we return it for the 6920 // reduction instruction and 0 for the other instructions in the pattern. If 6921 // it is not we return an invalid cost specifying the orignal cost method 6922 // should be used. 6923 Instruction *RetI = I; 6924 if ((RetI->getOpcode() == Instruction::SExt || 6925 RetI->getOpcode() == Instruction::ZExt)) { 6926 if (!RetI->hasOneUser()) 6927 return InstructionCost::getInvalid(); 6928 RetI = RetI->user_back(); 6929 } 6930 if (RetI->getOpcode() == Instruction::Mul && 6931 RetI->user_back()->getOpcode() == Instruction::Add) { 6932 if (!RetI->hasOneUser()) 6933 return InstructionCost::getInvalid(); 6934 RetI = RetI->user_back(); 6935 } 6936 6937 // Test if the found instruction is a reduction, and if not return an invalid 6938 // cost specifying the parent to use the original cost modelling. 6939 if (!InLoopReductionImmediateChains.count(RetI)) 6940 return InstructionCost::getInvalid(); 6941 6942 // Find the reduction this chain is a part of and calculate the basic cost of 6943 // the reduction on its own. 6944 Instruction *LastChain = InLoopReductionImmediateChains[RetI]; 6945 Instruction *ReductionPhi = LastChain; 6946 while (!isa<PHINode>(ReductionPhi)) 6947 ReductionPhi = InLoopReductionImmediateChains[ReductionPhi]; 6948 6949 RecurrenceDescriptor RdxDesc = 6950 Legal->getReductionVars()[cast<PHINode>(ReductionPhi)]; 6951 unsigned BaseCost = TTI.getArithmeticReductionCost(RdxDesc.getOpcode(), 6952 VectorTy, false, CostKind); 6953 6954 // Get the operand that was not the reduction chain and match it to one of the 6955 // patterns, returning the better cost if it is found. 6956 Instruction *RedOp = RetI->getOperand(1) == LastChain 6957 ? dyn_cast<Instruction>(RetI->getOperand(0)) 6958 : dyn_cast<Instruction>(RetI->getOperand(1)); 6959 6960 VectorTy = VectorType::get(I->getOperand(0)->getType(), VectorTy); 6961 6962 if (RedOp && (isa<SExtInst>(RedOp) || isa<ZExtInst>(RedOp)) && 6963 !TheLoop->isLoopInvariant(RedOp)) { 6964 bool IsUnsigned = isa<ZExtInst>(RedOp); 6965 auto *ExtType = VectorType::get(RedOp->getOperand(0)->getType(), VectorTy); 6966 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6967 /*IsMLA=*/false, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6968 CostKind); 6969 6970 unsigned ExtCost = 6971 TTI.getCastInstrCost(RedOp->getOpcode(), VectorTy, ExtType, 6972 TTI::CastContextHint::None, CostKind, RedOp); 6973 if (RedCost.isValid() && RedCost < BaseCost + ExtCost) 6974 return I == RetI ? *RedCost.getValue() : 0; 6975 } else if (RedOp && RedOp->getOpcode() == Instruction::Mul) { 6976 Instruction *Mul = RedOp; 6977 Instruction *Op0 = dyn_cast<Instruction>(Mul->getOperand(0)); 6978 Instruction *Op1 = dyn_cast<Instruction>(Mul->getOperand(1)); 6979 if (Op0 && Op1 && (isa<SExtInst>(Op0) || isa<ZExtInst>(Op0)) && 6980 Op0->getOpcode() == Op1->getOpcode() && 6981 Op0->getOperand(0)->getType() == Op1->getOperand(0)->getType() && 6982 !TheLoop->isLoopInvariant(Op0) && !TheLoop->isLoopInvariant(Op1)) { 6983 bool IsUnsigned = isa<ZExtInst>(Op0); 6984 auto *ExtType = VectorType::get(Op0->getOperand(0)->getType(), VectorTy); 6985 // reduce(mul(ext, ext)) 6986 unsigned ExtCost = 6987 TTI.getCastInstrCost(Op0->getOpcode(), VectorTy, ExtType, 6988 TTI::CastContextHint::None, CostKind, Op0); 6989 unsigned MulCost = 6990 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 6991 6992 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 6993 /*IsMLA=*/true, IsUnsigned, RdxDesc.getRecurrenceType(), ExtType, 6994 CostKind); 6995 6996 if (RedCost.isValid() && RedCost < ExtCost * 2 + MulCost + BaseCost) 6997 return I == RetI ? *RedCost.getValue() : 0; 6998 } else { 6999 unsigned MulCost = 7000 TTI.getArithmeticInstrCost(Mul->getOpcode(), VectorTy, CostKind); 7001 7002 InstructionCost RedCost = TTI.getExtendedAddReductionCost( 7003 /*IsMLA=*/true, true, RdxDesc.getRecurrenceType(), VectorTy, 7004 CostKind); 7005 7006 if (RedCost.isValid() && RedCost < MulCost + BaseCost) 7007 return I == RetI ? *RedCost.getValue() : 0; 7008 } 7009 } 7010 7011 return I == RetI ? BaseCost : InstructionCost::getInvalid(); 7012 } 7013 7014 InstructionCost 7015 LoopVectorizationCostModel::getMemoryInstructionCost(Instruction *I, 7016 ElementCount VF) { 7017 // Calculate scalar cost only. Vectorization cost should be ready at this 7018 // moment. 7019 if (VF.isScalar()) { 7020 Type *ValTy = getMemInstValueType(I); 7021 const Align Alignment = getLoadStoreAlignment(I); 7022 unsigned AS = getLoadStoreAddressSpace(I); 7023 7024 return TTI.getAddressComputationCost(ValTy) + 7025 TTI.getMemoryOpCost(I->getOpcode(), ValTy, Alignment, AS, 7026 TTI::TCK_RecipThroughput, I); 7027 } 7028 return getWideningCost(I, VF); 7029 } 7030 7031 LoopVectorizationCostModel::VectorizationCostTy 7032 LoopVectorizationCostModel::getInstructionCost(Instruction *I, 7033 ElementCount VF) { 7034 // If we know that this instruction will remain uniform, check the cost of 7035 // the scalar version. 7036 if (isUniformAfterVectorization(I, VF)) 7037 VF = ElementCount::getFixed(1); 7038 7039 if (VF.isVector() && isProfitableToScalarize(I, VF)) 7040 return VectorizationCostTy(InstsToScalarize[VF][I], false); 7041 7042 // Forced scalars do not have any scalarization overhead. 7043 auto ForcedScalar = ForcedScalars.find(VF); 7044 if (VF.isVector() && ForcedScalar != ForcedScalars.end()) { 7045 auto InstSet = ForcedScalar->second; 7046 if (InstSet.count(I)) 7047 return VectorizationCostTy( 7048 (getInstructionCost(I, ElementCount::getFixed(1)).first * 7049 VF.getKnownMinValue()), 7050 false); 7051 } 7052 7053 Type *VectorTy; 7054 InstructionCost C = getInstructionCost(I, VF, VectorTy); 7055 7056 bool TypeNotScalarized = 7057 VF.isVector() && VectorTy->isVectorTy() && 7058 TTI.getNumberOfParts(VectorTy) < VF.getKnownMinValue(); 7059 return VectorizationCostTy(C, TypeNotScalarized); 7060 } 7061 7062 InstructionCost 7063 LoopVectorizationCostModel::getScalarizationOverhead(Instruction *I, 7064 ElementCount VF) { 7065 7066 if (VF.isScalable()) 7067 return InstructionCost::getInvalid(); 7068 7069 if (VF.isScalar()) 7070 return 0; 7071 7072 InstructionCost Cost = 0; 7073 Type *RetTy = ToVectorTy(I->getType(), VF); 7074 if (!RetTy->isVoidTy() && 7075 (!isa<LoadInst>(I) || !TTI.supportsEfficientVectorElementLoadStore())) 7076 Cost += TTI.getScalarizationOverhead( 7077 cast<VectorType>(RetTy), APInt::getAllOnesValue(VF.getKnownMinValue()), 7078 true, false); 7079 7080 // Some targets keep addresses scalar. 7081 if (isa<LoadInst>(I) && !TTI.prefersVectorizedAddressing()) 7082 return Cost; 7083 7084 // Some targets support efficient element stores. 7085 if (isa<StoreInst>(I) && TTI.supportsEfficientVectorElementLoadStore()) 7086 return Cost; 7087 7088 // Collect operands to consider. 7089 CallInst *CI = dyn_cast<CallInst>(I); 7090 Instruction::op_range Ops = CI ? CI->arg_operands() : I->operands(); 7091 7092 // Skip operands that do not require extraction/scalarization and do not incur 7093 // any overhead. 7094 return Cost + TTI.getOperandsScalarizationOverhead( 7095 filterExtractingOperands(Ops, VF), VF.getKnownMinValue()); 7096 } 7097 7098 void LoopVectorizationCostModel::setCostBasedWideningDecision(ElementCount VF) { 7099 if (VF.isScalar()) 7100 return; 7101 NumPredStores = 0; 7102 for (BasicBlock *BB : TheLoop->blocks()) { 7103 // For each instruction in the old loop. 7104 for (Instruction &I : *BB) { 7105 Value *Ptr = getLoadStorePointerOperand(&I); 7106 if (!Ptr) 7107 continue; 7108 7109 // TODO: We should generate better code and update the cost model for 7110 // predicated uniform stores. Today they are treated as any other 7111 // predicated store (see added test cases in 7112 // invariant-store-vectorization.ll). 7113 if (isa<StoreInst>(&I) && isScalarWithPredication(&I)) 7114 NumPredStores++; 7115 7116 if (Legal->isUniformMemOp(I)) { 7117 // TODO: Avoid replicating loads and stores instead of 7118 // relying on instcombine to remove them. 7119 // Load: Scalar load + broadcast 7120 // Store: Scalar store + isLoopInvariantStoreValue ? 0 : extract 7121 InstructionCost Cost = getUniformMemOpCost(&I, VF); 7122 setWideningDecision(&I, VF, CM_Scalarize, Cost); 7123 continue; 7124 } 7125 7126 // We assume that widening is the best solution when possible. 7127 if (memoryInstructionCanBeWidened(&I, VF)) { 7128 InstructionCost Cost = getConsecutiveMemOpCost(&I, VF); 7129 int ConsecutiveStride = 7130 Legal->isConsecutivePtr(getLoadStorePointerOperand(&I)); 7131 assert((ConsecutiveStride == 1 || ConsecutiveStride == -1) && 7132 "Expected consecutive stride."); 7133 InstWidening Decision = 7134 ConsecutiveStride == 1 ? CM_Widen : CM_Widen_Reverse; 7135 setWideningDecision(&I, VF, Decision, Cost); 7136 continue; 7137 } 7138 7139 // Choose between Interleaving, Gather/Scatter or Scalarization. 7140 InstructionCost InterleaveCost = InstructionCost::getInvalid(); 7141 unsigned NumAccesses = 1; 7142 if (isAccessInterleaved(&I)) { 7143 auto Group = getInterleavedAccessGroup(&I); 7144 assert(Group && "Fail to get an interleaved access group."); 7145 7146 // Make one decision for the whole group. 7147 if (getWideningDecision(&I, VF) != CM_Unknown) 7148 continue; 7149 7150 NumAccesses = Group->getNumMembers(); 7151 if (interleavedAccessCanBeWidened(&I, VF)) 7152 InterleaveCost = getInterleaveGroupCost(&I, VF); 7153 } 7154 7155 InstructionCost GatherScatterCost = 7156 isLegalGatherOrScatter(&I) 7157 ? getGatherScatterCost(&I, VF) * NumAccesses 7158 : InstructionCost::getInvalid(); 7159 7160 InstructionCost ScalarizationCost = 7161 !VF.isScalable() ? getMemInstScalarizationCost(&I, VF) * NumAccesses 7162 : InstructionCost::getInvalid(); 7163 7164 // Choose better solution for the current VF, 7165 // write down this decision and use it during vectorization. 7166 InstructionCost Cost; 7167 InstWidening Decision; 7168 if (InterleaveCost <= GatherScatterCost && 7169 InterleaveCost < ScalarizationCost) { 7170 Decision = CM_Interleave; 7171 Cost = InterleaveCost; 7172 } else if (GatherScatterCost < ScalarizationCost) { 7173 Decision = CM_GatherScatter; 7174 Cost = GatherScatterCost; 7175 } else { 7176 assert(!VF.isScalable() && 7177 "We cannot yet scalarise for scalable vectors"); 7178 Decision = CM_Scalarize; 7179 Cost = ScalarizationCost; 7180 } 7181 // If the instructions belongs to an interleave group, the whole group 7182 // receives the same decision. The whole group receives the cost, but 7183 // the cost will actually be assigned to one instruction. 7184 if (auto Group = getInterleavedAccessGroup(&I)) 7185 setWideningDecision(Group, VF, Decision, Cost); 7186 else 7187 setWideningDecision(&I, VF, Decision, Cost); 7188 } 7189 } 7190 7191 // Make sure that any load of address and any other address computation 7192 // remains scalar unless there is gather/scatter support. This avoids 7193 // inevitable extracts into address registers, and also has the benefit of 7194 // activating LSR more, since that pass can't optimize vectorized 7195 // addresses. 7196 if (TTI.prefersVectorizedAddressing()) 7197 return; 7198 7199 // Start with all scalar pointer uses. 7200 SmallPtrSet<Instruction *, 8> AddrDefs; 7201 for (BasicBlock *BB : TheLoop->blocks()) 7202 for (Instruction &I : *BB) { 7203 Instruction *PtrDef = 7204 dyn_cast_or_null<Instruction>(getLoadStorePointerOperand(&I)); 7205 if (PtrDef && TheLoop->contains(PtrDef) && 7206 getWideningDecision(&I, VF) != CM_GatherScatter) 7207 AddrDefs.insert(PtrDef); 7208 } 7209 7210 // Add all instructions used to generate the addresses. 7211 SmallVector<Instruction *, 4> Worklist; 7212 append_range(Worklist, AddrDefs); 7213 while (!Worklist.empty()) { 7214 Instruction *I = Worklist.pop_back_val(); 7215 for (auto &Op : I->operands()) 7216 if (auto *InstOp = dyn_cast<Instruction>(Op)) 7217 if ((InstOp->getParent() == I->getParent()) && !isa<PHINode>(InstOp) && 7218 AddrDefs.insert(InstOp).second) 7219 Worklist.push_back(InstOp); 7220 } 7221 7222 for (auto *I : AddrDefs) { 7223 if (isa<LoadInst>(I)) { 7224 // Setting the desired widening decision should ideally be handled in 7225 // by cost functions, but since this involves the task of finding out 7226 // if the loaded register is involved in an address computation, it is 7227 // instead changed here when we know this is the case. 7228 InstWidening Decision = getWideningDecision(I, VF); 7229 if (Decision == CM_Widen || Decision == CM_Widen_Reverse) 7230 // Scalarize a widened load of address. 7231 setWideningDecision( 7232 I, VF, CM_Scalarize, 7233 (VF.getKnownMinValue() * 7234 getMemoryInstructionCost(I, ElementCount::getFixed(1)))); 7235 else if (auto Group = getInterleavedAccessGroup(I)) { 7236 // Scalarize an interleave group of address loads. 7237 for (unsigned I = 0; I < Group->getFactor(); ++I) { 7238 if (Instruction *Member = Group->getMember(I)) 7239 setWideningDecision( 7240 Member, VF, CM_Scalarize, 7241 (VF.getKnownMinValue() * 7242 getMemoryInstructionCost(Member, ElementCount::getFixed(1)))); 7243 } 7244 } 7245 } else 7246 // Make sure I gets scalarized and a cost estimate without 7247 // scalarization overhead. 7248 ForcedScalars[VF].insert(I); 7249 } 7250 } 7251 7252 InstructionCost 7253 LoopVectorizationCostModel::getInstructionCost(Instruction *I, ElementCount VF, 7254 Type *&VectorTy) { 7255 Type *RetTy = I->getType(); 7256 if (canTruncateToMinimalBitwidth(I, VF)) 7257 RetTy = IntegerType::get(RetTy->getContext(), MinBWs[I]); 7258 VectorTy = isScalarAfterVectorization(I, VF) ? RetTy : ToVectorTy(RetTy, VF); 7259 auto SE = PSE.getSE(); 7260 TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput; 7261 7262 // TODO: We need to estimate the cost of intrinsic calls. 7263 switch (I->getOpcode()) { 7264 case Instruction::GetElementPtr: 7265 // We mark this instruction as zero-cost because the cost of GEPs in 7266 // vectorized code depends on whether the corresponding memory instruction 7267 // is scalarized or not. Therefore, we handle GEPs with the memory 7268 // instruction cost. 7269 return 0; 7270 case Instruction::Br: { 7271 // In cases of scalarized and predicated instructions, there will be VF 7272 // predicated blocks in the vectorized loop. Each branch around these 7273 // blocks requires also an extract of its vector compare i1 element. 7274 bool ScalarPredicatedBB = false; 7275 BranchInst *BI = cast<BranchInst>(I); 7276 if (VF.isVector() && BI->isConditional() && 7277 (PredicatedBBsAfterVectorization.count(BI->getSuccessor(0)) || 7278 PredicatedBBsAfterVectorization.count(BI->getSuccessor(1)))) 7279 ScalarPredicatedBB = true; 7280 7281 if (ScalarPredicatedBB) { 7282 // Return cost for branches around scalarized and predicated blocks. 7283 assert(!VF.isScalable() && "scalable vectors not yet supported."); 7284 auto *Vec_i1Ty = 7285 VectorType::get(IntegerType::getInt1Ty(RetTy->getContext()), VF); 7286 return (TTI.getScalarizationOverhead( 7287 Vec_i1Ty, APInt::getAllOnesValue(VF.getKnownMinValue()), 7288 false, true) + 7289 (TTI.getCFInstrCost(Instruction::Br, CostKind) * 7290 VF.getKnownMinValue())); 7291 } else if (I->getParent() == TheLoop->getLoopLatch() || VF.isScalar()) 7292 // The back-edge branch will remain, as will all scalar branches. 7293 return TTI.getCFInstrCost(Instruction::Br, CostKind); 7294 else 7295 // This branch will be eliminated by if-conversion. 7296 return 0; 7297 // Note: We currently assume zero cost for an unconditional branch inside 7298 // a predicated block since it will become a fall-through, although we 7299 // may decide in the future to call TTI for all branches. 7300 } 7301 case Instruction::PHI: { 7302 auto *Phi = cast<PHINode>(I); 7303 7304 // First-order recurrences are replaced by vector shuffles inside the loop. 7305 // NOTE: Don't use ToVectorTy as SK_ExtractSubvector expects a vector type. 7306 if (VF.isVector() && Legal->isFirstOrderRecurrence(Phi)) 7307 return TTI.getShuffleCost( 7308 TargetTransformInfo::SK_ExtractSubvector, cast<VectorType>(VectorTy), 7309 VF.getKnownMinValue() - 1, FixedVectorType::get(RetTy, 1)); 7310 7311 // Phi nodes in non-header blocks (not inductions, reductions, etc.) are 7312 // converted into select instructions. We require N - 1 selects per phi 7313 // node, where N is the number of incoming values. 7314 if (VF.isVector() && Phi->getParent() != TheLoop->getHeader()) 7315 return (Phi->getNumIncomingValues() - 1) * 7316 TTI.getCmpSelInstrCost( 7317 Instruction::Select, ToVectorTy(Phi->getType(), VF), 7318 ToVectorTy(Type::getInt1Ty(Phi->getContext()), VF), 7319 CmpInst::BAD_ICMP_PREDICATE, CostKind); 7320 7321 return TTI.getCFInstrCost(Instruction::PHI, CostKind); 7322 } 7323 case Instruction::UDiv: 7324 case Instruction::SDiv: 7325 case Instruction::URem: 7326 case Instruction::SRem: 7327 // If we have a predicated instruction, it may not be executed for each 7328 // vector lane. Get the scalarization cost and scale this amount by the 7329 // probability of executing the predicated block. If the instruction is not 7330 // predicated, we fall through to the next case. 7331 if (VF.isVector() && isScalarWithPredication(I)) { 7332 InstructionCost Cost = 0; 7333 7334 // These instructions have a non-void type, so account for the phi nodes 7335 // that we will create. This cost is likely to be zero. The phi node 7336 // cost, if any, should be scaled by the block probability because it 7337 // models a copy at the end of each predicated block. 7338 Cost += VF.getKnownMinValue() * 7339 TTI.getCFInstrCost(Instruction::PHI, CostKind); 7340 7341 // The cost of the non-predicated instruction. 7342 Cost += VF.getKnownMinValue() * 7343 TTI.getArithmeticInstrCost(I->getOpcode(), RetTy, CostKind); 7344 7345 // The cost of insertelement and extractelement instructions needed for 7346 // scalarization. 7347 Cost += getScalarizationOverhead(I, VF); 7348 7349 // Scale the cost by the probability of executing the predicated blocks. 7350 // This assumes the predicated block for each vector lane is equally 7351 // likely. 7352 return Cost / getReciprocalPredBlockProb(); 7353 } 7354 LLVM_FALLTHROUGH; 7355 case Instruction::Add: 7356 case Instruction::FAdd: 7357 case Instruction::Sub: 7358 case Instruction::FSub: 7359 case Instruction::Mul: 7360 case Instruction::FMul: 7361 case Instruction::FDiv: 7362 case Instruction::FRem: 7363 case Instruction::Shl: 7364 case Instruction::LShr: 7365 case Instruction::AShr: 7366 case Instruction::And: 7367 case Instruction::Or: 7368 case Instruction::Xor: { 7369 // Since we will replace the stride by 1 the multiplication should go away. 7370 if (I->getOpcode() == Instruction::Mul && isStrideMul(I, Legal)) 7371 return 0; 7372 7373 // Detect reduction patterns 7374 InstructionCost RedCost; 7375 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7376 .isValid()) 7377 return RedCost; 7378 7379 // Certain instructions can be cheaper to vectorize if they have a constant 7380 // second vector operand. One example of this are shifts on x86. 7381 Value *Op2 = I->getOperand(1); 7382 TargetTransformInfo::OperandValueProperties Op2VP; 7383 TargetTransformInfo::OperandValueKind Op2VK = 7384 TTI.getOperandInfo(Op2, Op2VP); 7385 if (Op2VK == TargetTransformInfo::OK_AnyValue && Legal->isUniform(Op2)) 7386 Op2VK = TargetTransformInfo::OK_UniformValue; 7387 7388 SmallVector<const Value *, 4> Operands(I->operand_values()); 7389 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7390 return N * TTI.getArithmeticInstrCost( 7391 I->getOpcode(), VectorTy, CostKind, 7392 TargetTransformInfo::OK_AnyValue, 7393 Op2VK, TargetTransformInfo::OP_None, Op2VP, Operands, I); 7394 } 7395 case Instruction::FNeg: { 7396 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 7397 unsigned N = isScalarAfterVectorization(I, VF) ? VF.getKnownMinValue() : 1; 7398 return N * TTI.getArithmeticInstrCost( 7399 I->getOpcode(), VectorTy, CostKind, 7400 TargetTransformInfo::OK_AnyValue, 7401 TargetTransformInfo::OK_AnyValue, 7402 TargetTransformInfo::OP_None, TargetTransformInfo::OP_None, 7403 I->getOperand(0), I); 7404 } 7405 case Instruction::Select: { 7406 SelectInst *SI = cast<SelectInst>(I); 7407 const SCEV *CondSCEV = SE->getSCEV(SI->getCondition()); 7408 bool ScalarCond = (SE->isLoopInvariant(CondSCEV, TheLoop)); 7409 Type *CondTy = SI->getCondition()->getType(); 7410 if (!ScalarCond) 7411 CondTy = VectorType::get(CondTy, VF); 7412 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, CondTy, 7413 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7414 } 7415 case Instruction::ICmp: 7416 case Instruction::FCmp: { 7417 Type *ValTy = I->getOperand(0)->getType(); 7418 Instruction *Op0AsInstruction = dyn_cast<Instruction>(I->getOperand(0)); 7419 if (canTruncateToMinimalBitwidth(Op0AsInstruction, VF)) 7420 ValTy = IntegerType::get(ValTy->getContext(), MinBWs[Op0AsInstruction]); 7421 VectorTy = ToVectorTy(ValTy, VF); 7422 return TTI.getCmpSelInstrCost(I->getOpcode(), VectorTy, nullptr, 7423 CmpInst::BAD_ICMP_PREDICATE, CostKind, I); 7424 } 7425 case Instruction::Store: 7426 case Instruction::Load: { 7427 ElementCount Width = VF; 7428 if (Width.isVector()) { 7429 InstWidening Decision = getWideningDecision(I, Width); 7430 assert(Decision != CM_Unknown && 7431 "CM decision should be taken at this point"); 7432 if (Decision == CM_Scalarize) 7433 Width = ElementCount::getFixed(1); 7434 } 7435 VectorTy = ToVectorTy(getMemInstValueType(I), Width); 7436 return getMemoryInstructionCost(I, VF); 7437 } 7438 case Instruction::ZExt: 7439 case Instruction::SExt: 7440 case Instruction::FPToUI: 7441 case Instruction::FPToSI: 7442 case Instruction::FPExt: 7443 case Instruction::PtrToInt: 7444 case Instruction::IntToPtr: 7445 case Instruction::SIToFP: 7446 case Instruction::UIToFP: 7447 case Instruction::Trunc: 7448 case Instruction::FPTrunc: 7449 case Instruction::BitCast: { 7450 // Computes the CastContextHint from a Load/Store instruction. 7451 auto ComputeCCH = [&](Instruction *I) -> TTI::CastContextHint { 7452 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 7453 "Expected a load or a store!"); 7454 7455 if (VF.isScalar() || !TheLoop->contains(I)) 7456 return TTI::CastContextHint::Normal; 7457 7458 switch (getWideningDecision(I, VF)) { 7459 case LoopVectorizationCostModel::CM_GatherScatter: 7460 return TTI::CastContextHint::GatherScatter; 7461 case LoopVectorizationCostModel::CM_Interleave: 7462 return TTI::CastContextHint::Interleave; 7463 case LoopVectorizationCostModel::CM_Scalarize: 7464 case LoopVectorizationCostModel::CM_Widen: 7465 return Legal->isMaskRequired(I) ? TTI::CastContextHint::Masked 7466 : TTI::CastContextHint::Normal; 7467 case LoopVectorizationCostModel::CM_Widen_Reverse: 7468 return TTI::CastContextHint::Reversed; 7469 case LoopVectorizationCostModel::CM_Unknown: 7470 llvm_unreachable("Instr did not go through cost modelling?"); 7471 } 7472 7473 llvm_unreachable("Unhandled case!"); 7474 }; 7475 7476 unsigned Opcode = I->getOpcode(); 7477 TTI::CastContextHint CCH = TTI::CastContextHint::None; 7478 // For Trunc, the context is the only user, which must be a StoreInst. 7479 if (Opcode == Instruction::Trunc || Opcode == Instruction::FPTrunc) { 7480 if (I->hasOneUse()) 7481 if (StoreInst *Store = dyn_cast<StoreInst>(*I->user_begin())) 7482 CCH = ComputeCCH(Store); 7483 } 7484 // For Z/Sext, the context is the operand, which must be a LoadInst. 7485 else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt || 7486 Opcode == Instruction::FPExt) { 7487 if (LoadInst *Load = dyn_cast<LoadInst>(I->getOperand(0))) 7488 CCH = ComputeCCH(Load); 7489 } 7490 7491 // We optimize the truncation of induction variables having constant 7492 // integer steps. The cost of these truncations is the same as the scalar 7493 // operation. 7494 if (isOptimizableIVTruncate(I, VF)) { 7495 auto *Trunc = cast<TruncInst>(I); 7496 return TTI.getCastInstrCost(Instruction::Trunc, Trunc->getDestTy(), 7497 Trunc->getSrcTy(), CCH, CostKind, Trunc); 7498 } 7499 7500 // Detect reduction patterns 7501 InstructionCost RedCost; 7502 if ((RedCost = getReductionPatternCost(I, VF, VectorTy, CostKind)) 7503 .isValid()) 7504 return RedCost; 7505 7506 Type *SrcScalarTy = I->getOperand(0)->getType(); 7507 Type *SrcVecTy = 7508 VectorTy->isVectorTy() ? ToVectorTy(SrcScalarTy, VF) : SrcScalarTy; 7509 if (canTruncateToMinimalBitwidth(I, VF)) { 7510 // This cast is going to be shrunk. This may remove the cast or it might 7511 // turn it into slightly different cast. For example, if MinBW == 16, 7512 // "zext i8 %1 to i32" becomes "zext i8 %1 to i16". 7513 // 7514 // Calculate the modified src and dest types. 7515 Type *MinVecTy = VectorTy; 7516 if (Opcode == Instruction::Trunc) { 7517 SrcVecTy = smallestIntegerVectorType(SrcVecTy, MinVecTy); 7518 VectorTy = 7519 largestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7520 } else if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) { 7521 SrcVecTy = largestIntegerVectorType(SrcVecTy, MinVecTy); 7522 VectorTy = 7523 smallestIntegerVectorType(ToVectorTy(I->getType(), VF), MinVecTy); 7524 } 7525 } 7526 7527 unsigned N; 7528 if (isScalarAfterVectorization(I, VF)) { 7529 assert(!VF.isScalable() && "VF is assumed to be non scalable"); 7530 N = VF.getKnownMinValue(); 7531 } else 7532 N = 1; 7533 return N * 7534 TTI.getCastInstrCost(Opcode, VectorTy, SrcVecTy, CCH, CostKind, I); 7535 } 7536 case Instruction::Call: { 7537 bool NeedToScalarize; 7538 CallInst *CI = cast<CallInst>(I); 7539 InstructionCost CallCost = getVectorCallCost(CI, VF, NeedToScalarize); 7540 if (getVectorIntrinsicIDForCall(CI, TLI)) { 7541 InstructionCost IntrinsicCost = getVectorIntrinsicCost(CI, VF); 7542 return std::min(CallCost, IntrinsicCost); 7543 } 7544 return CallCost; 7545 } 7546 case Instruction::ExtractValue: 7547 return TTI.getInstructionCost(I, TTI::TCK_RecipThroughput); 7548 default: 7549 // The cost of executing VF copies of the scalar instruction. This opcode 7550 // is unknown. Assume that it is the same as 'mul'. 7551 return VF.getKnownMinValue() * TTI.getArithmeticInstrCost( 7552 Instruction::Mul, VectorTy, CostKind) + 7553 getScalarizationOverhead(I, VF); 7554 } // end of switch. 7555 } 7556 7557 char LoopVectorize::ID = 0; 7558 7559 static const char lv_name[] = "Loop Vectorization"; 7560 7561 INITIALIZE_PASS_BEGIN(LoopVectorize, LV_NAME, lv_name, false, false) 7562 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 7563 INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) 7564 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 7565 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 7566 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 7567 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) 7568 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 7569 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 7570 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 7571 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) 7572 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) 7573 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) 7574 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 7575 INITIALIZE_PASS_DEPENDENCY(InjectTLIMappingsLegacy) 7576 INITIALIZE_PASS_END(LoopVectorize, LV_NAME, lv_name, false, false) 7577 7578 namespace llvm { 7579 7580 Pass *createLoopVectorizePass() { return new LoopVectorize(); } 7581 7582 Pass *createLoopVectorizePass(bool InterleaveOnlyWhenForced, 7583 bool VectorizeOnlyWhenForced) { 7584 return new LoopVectorize(InterleaveOnlyWhenForced, VectorizeOnlyWhenForced); 7585 } 7586 7587 } // end namespace llvm 7588 7589 bool LoopVectorizationCostModel::isConsecutiveLoadOrStore(Instruction *Inst) { 7590 // Check if the pointer operand of a load or store instruction is 7591 // consecutive. 7592 if (auto *Ptr = getLoadStorePointerOperand(Inst)) 7593 return Legal->isConsecutivePtr(Ptr); 7594 return false; 7595 } 7596 7597 void LoopVectorizationCostModel::collectValuesToIgnore() { 7598 // Ignore ephemeral values. 7599 CodeMetrics::collectEphemeralValues(TheLoop, AC, ValuesToIgnore); 7600 7601 // Ignore type-promoting instructions we identified during reduction 7602 // detection. 7603 for (auto &Reduction : Legal->getReductionVars()) { 7604 RecurrenceDescriptor &RedDes = Reduction.second; 7605 const SmallPtrSetImpl<Instruction *> &Casts = RedDes.getCastInsts(); 7606 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7607 } 7608 // Ignore type-casting instructions we identified during induction 7609 // detection. 7610 for (auto &Induction : Legal->getInductionVars()) { 7611 InductionDescriptor &IndDes = Induction.second; 7612 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7613 VecValuesToIgnore.insert(Casts.begin(), Casts.end()); 7614 } 7615 } 7616 7617 void LoopVectorizationCostModel::collectInLoopReductions() { 7618 for (auto &Reduction : Legal->getReductionVars()) { 7619 PHINode *Phi = Reduction.first; 7620 RecurrenceDescriptor &RdxDesc = Reduction.second; 7621 7622 // We don't collect reductions that are type promoted (yet). 7623 if (RdxDesc.getRecurrenceType() != Phi->getType()) 7624 continue; 7625 7626 // If the target would prefer this reduction to happen "in-loop", then we 7627 // want to record it as such. 7628 unsigned Opcode = RdxDesc.getOpcode(); 7629 if (!PreferInLoopReductions && 7630 !TTI.preferInLoopReduction(Opcode, Phi->getType(), 7631 TargetTransformInfo::ReductionFlags())) 7632 continue; 7633 7634 // Check that we can correctly put the reductions into the loop, by 7635 // finding the chain of operations that leads from the phi to the loop 7636 // exit value. 7637 SmallVector<Instruction *, 4> ReductionOperations = 7638 RdxDesc.getReductionOpChain(Phi, TheLoop); 7639 bool InLoop = !ReductionOperations.empty(); 7640 if (InLoop) { 7641 InLoopReductionChains[Phi] = ReductionOperations; 7642 // Add the elements to InLoopReductionImmediateChains for cost modelling. 7643 Instruction *LastChain = Phi; 7644 for (auto *I : ReductionOperations) { 7645 InLoopReductionImmediateChains[I] = LastChain; 7646 LastChain = I; 7647 } 7648 } 7649 LLVM_DEBUG(dbgs() << "LV: Using " << (InLoop ? "inloop" : "out of loop") 7650 << " reduction for phi: " << *Phi << "\n"); 7651 } 7652 } 7653 7654 // TODO: we could return a pair of values that specify the max VF and 7655 // min VF, to be used in `buildVPlans(MinVF, MaxVF)` instead of 7656 // `buildVPlans(VF, VF)`. We cannot do it because VPLAN at the moment 7657 // doesn't have a cost model that can choose which plan to execute if 7658 // more than one is generated. 7659 static unsigned determineVPlanVF(const unsigned WidestVectorRegBits, 7660 LoopVectorizationCostModel &CM) { 7661 unsigned WidestType; 7662 std::tie(std::ignore, WidestType) = CM.getSmallestAndWidestTypes(); 7663 return WidestVectorRegBits / WidestType; 7664 } 7665 7666 VectorizationFactor 7667 LoopVectorizationPlanner::planInVPlanNativePath(ElementCount UserVF) { 7668 assert(!UserVF.isScalable() && "scalable vectors not yet supported"); 7669 ElementCount VF = UserVF; 7670 // Outer loop handling: They may require CFG and instruction level 7671 // transformations before even evaluating whether vectorization is profitable. 7672 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 7673 // the vectorization pipeline. 7674 if (!OrigLoop->isInnermost()) { 7675 // If the user doesn't provide a vectorization factor, determine a 7676 // reasonable one. 7677 if (UserVF.isZero()) { 7678 VF = ElementCount::getFixed( 7679 determineVPlanVF(TTI->getRegisterBitWidth(true /* Vector*/), CM)); 7680 LLVM_DEBUG(dbgs() << "LV: VPlan computed VF " << VF << ".\n"); 7681 7682 // Make sure we have a VF > 1 for stress testing. 7683 if (VPlanBuildStressTest && (VF.isScalar() || VF.isZero())) { 7684 LLVM_DEBUG(dbgs() << "LV: VPlan stress testing: " 7685 << "overriding computed VF.\n"); 7686 VF = ElementCount::getFixed(4); 7687 } 7688 } 7689 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 7690 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7691 "VF needs to be a power of two"); 7692 LLVM_DEBUG(dbgs() << "LV: Using " << (!UserVF.isZero() ? "user " : "") 7693 << "VF " << VF << " to build VPlans.\n"); 7694 buildVPlans(VF, VF); 7695 7696 // For VPlan build stress testing, we bail out after VPlan construction. 7697 if (VPlanBuildStressTest) 7698 return VectorizationFactor::Disabled(); 7699 7700 return {VF, 0 /*Cost*/}; 7701 } 7702 7703 LLVM_DEBUG( 7704 dbgs() << "LV: Not vectorizing. Inner loops aren't supported in the " 7705 "VPlan-native path.\n"); 7706 return VectorizationFactor::Disabled(); 7707 } 7708 7709 Optional<VectorizationFactor> 7710 LoopVectorizationPlanner::plan(ElementCount UserVF, unsigned UserIC) { 7711 assert(OrigLoop->isInnermost() && "Inner loop expected."); 7712 Optional<ElementCount> MaybeMaxVF = CM.computeMaxVF(UserVF, UserIC); 7713 if (!MaybeMaxVF) // Cases that should not to be vectorized nor interleaved. 7714 return None; 7715 7716 // Invalidate interleave groups if all blocks of loop will be predicated. 7717 if (CM.blockNeedsPredication(OrigLoop->getHeader()) && 7718 !useMaskedInterleavedAccesses(*TTI)) { 7719 LLVM_DEBUG( 7720 dbgs() 7721 << "LV: Invalidate all interleaved groups due to fold-tail by masking " 7722 "which requires masked-interleaved support.\n"); 7723 if (CM.InterleaveInfo.invalidateGroups()) 7724 // Invalidating interleave groups also requires invalidating all decisions 7725 // based on them, which includes widening decisions and uniform and scalar 7726 // values. 7727 CM.invalidateCostModelingDecisions(); 7728 } 7729 7730 ElementCount MaxVF = MaybeMaxVF.getValue(); 7731 assert(MaxVF.isNonZero() && "MaxVF is zero."); 7732 7733 bool UserVFIsLegal = ElementCount::isKnownLE(UserVF, MaxVF); 7734 if (!UserVF.isZero() && 7735 (UserVFIsLegal || (UserVF.isScalable() && MaxVF.isScalable()))) { 7736 // FIXME: MaxVF is temporarily used inplace of UserVF for illegal scalable 7737 // VFs here, this should be reverted to only use legal UserVFs once the 7738 // loop below supports scalable VFs. 7739 ElementCount VF = UserVFIsLegal ? UserVF : MaxVF; 7740 LLVM_DEBUG(dbgs() << "LV: Using " << (UserVFIsLegal ? "user" : "max") 7741 << " VF " << VF << ".\n"); 7742 assert(isPowerOf2_32(VF.getKnownMinValue()) && 7743 "VF needs to be a power of two"); 7744 // Collect the instructions (and their associated costs) that will be more 7745 // profitable to scalarize. 7746 CM.selectUserVectorizationFactor(VF); 7747 CM.collectInLoopReductions(); 7748 buildVPlansWithVPRecipes(VF, VF); 7749 LLVM_DEBUG(printPlans(dbgs())); 7750 return {{VF, 0}}; 7751 } 7752 7753 assert(!MaxVF.isScalable() && 7754 "Scalable vectors not yet supported beyond this point"); 7755 7756 for (ElementCount VF = ElementCount::getFixed(1); 7757 ElementCount::isKnownLE(VF, MaxVF); VF *= 2) { 7758 // Collect Uniform and Scalar instructions after vectorization with VF. 7759 CM.collectUniformsAndScalars(VF); 7760 7761 // Collect the instructions (and their associated costs) that will be more 7762 // profitable to scalarize. 7763 if (VF.isVector()) 7764 CM.collectInstsToScalarize(VF); 7765 } 7766 7767 CM.collectInLoopReductions(); 7768 7769 buildVPlansWithVPRecipes(ElementCount::getFixed(1), MaxVF); 7770 LLVM_DEBUG(printPlans(dbgs())); 7771 if (MaxVF.isScalar()) 7772 return VectorizationFactor::Disabled(); 7773 7774 // Select the optimal vectorization factor. 7775 return CM.selectVectorizationFactor(MaxVF); 7776 } 7777 7778 void LoopVectorizationPlanner::setBestPlan(ElementCount VF, unsigned UF) { 7779 LLVM_DEBUG(dbgs() << "Setting best plan to VF=" << VF << ", UF=" << UF 7780 << '\n'); 7781 BestVF = VF; 7782 BestUF = UF; 7783 7784 erase_if(VPlans, [VF](const VPlanPtr &Plan) { 7785 return !Plan->hasVF(VF); 7786 }); 7787 assert(VPlans.size() == 1 && "Best VF has not a single VPlan."); 7788 } 7789 7790 void LoopVectorizationPlanner::executePlan(InnerLoopVectorizer &ILV, 7791 DominatorTree *DT) { 7792 // Perform the actual loop transformation. 7793 7794 // 1. Create a new empty loop. Unlink the old loop and connect the new one. 7795 VPCallbackILV CallbackILV(ILV); 7796 7797 assert(BestVF.hasValue() && "Vectorization Factor is missing"); 7798 assert(VPlans.size() == 1 && "Not a single VPlan to execute."); 7799 7800 VPTransformState State{*BestVF, BestUF, 7801 LI, DT, 7802 ILV.Builder, ILV.VectorLoopValueMap, 7803 &ILV, VPlans.front().get(), 7804 CallbackILV}; 7805 State.CFG.PrevBB = ILV.createVectorizedLoopSkeleton(); 7806 State.TripCount = ILV.getOrCreateTripCount(nullptr); 7807 State.CanonicalIV = ILV.Induction; 7808 7809 ILV.printDebugTracesAtStart(); 7810 7811 //===------------------------------------------------===// 7812 // 7813 // Notice: any optimization or new instruction that go 7814 // into the code below should also be implemented in 7815 // the cost-model. 7816 // 7817 //===------------------------------------------------===// 7818 7819 // 2. Copy and widen instructions from the old loop into the new loop. 7820 VPlans.front()->execute(&State); 7821 7822 // 3. Fix the vectorized code: take care of header phi's, live-outs, 7823 // predication, updating analyses. 7824 ILV.fixVectorizedLoop(State); 7825 7826 ILV.printDebugTracesAtEnd(); 7827 } 7828 7829 void LoopVectorizationPlanner::collectTriviallyDeadInstructions( 7830 SmallPtrSetImpl<Instruction *> &DeadInstructions) { 7831 7832 // We create new control-flow for the vectorized loop, so the original exit 7833 // conditions will be dead after vectorization if it's only used by the 7834 // terminator 7835 SmallVector<BasicBlock*> ExitingBlocks; 7836 OrigLoop->getExitingBlocks(ExitingBlocks); 7837 for (auto *BB : ExitingBlocks) { 7838 auto *Cmp = dyn_cast<Instruction>(BB->getTerminator()->getOperand(0)); 7839 if (!Cmp || !Cmp->hasOneUse()) 7840 continue; 7841 7842 // TODO: we should introduce a getUniqueExitingBlocks on Loop 7843 if (!DeadInstructions.insert(Cmp).second) 7844 continue; 7845 7846 // The operands of the icmp is often a dead trunc, used by IndUpdate. 7847 // TODO: can recurse through operands in general 7848 for (Value *Op : Cmp->operands()) { 7849 if (isa<TruncInst>(Op) && Op->hasOneUse()) 7850 DeadInstructions.insert(cast<Instruction>(Op)); 7851 } 7852 } 7853 7854 // We create new "steps" for induction variable updates to which the original 7855 // induction variables map. An original update instruction will be dead if 7856 // all its users except the induction variable are dead. 7857 auto *Latch = OrigLoop->getLoopLatch(); 7858 for (auto &Induction : Legal->getInductionVars()) { 7859 PHINode *Ind = Induction.first; 7860 auto *IndUpdate = cast<Instruction>(Ind->getIncomingValueForBlock(Latch)); 7861 7862 // If the tail is to be folded by masking, the primary induction variable, 7863 // if exists, isn't dead: it will be used for masking. Don't kill it. 7864 if (CM.foldTailByMasking() && IndUpdate == Legal->getPrimaryInduction()) 7865 continue; 7866 7867 if (llvm::all_of(IndUpdate->users(), [&](User *U) -> bool { 7868 return U == Ind || DeadInstructions.count(cast<Instruction>(U)); 7869 })) 7870 DeadInstructions.insert(IndUpdate); 7871 7872 // We record as "Dead" also the type-casting instructions we had identified 7873 // during induction analysis. We don't need any handling for them in the 7874 // vectorized loop because we have proven that, under a proper runtime 7875 // test guarding the vectorized loop, the value of the phi, and the casted 7876 // value of the phi, are the same. The last instruction in this casting chain 7877 // will get its scalar/vector/widened def from the scalar/vector/widened def 7878 // of the respective phi node. Any other casts in the induction def-use chain 7879 // have no other uses outside the phi update chain, and will be ignored. 7880 InductionDescriptor &IndDes = Induction.second; 7881 const SmallVectorImpl<Instruction *> &Casts = IndDes.getCastInsts(); 7882 DeadInstructions.insert(Casts.begin(), Casts.end()); 7883 } 7884 } 7885 7886 Value *InnerLoopUnroller::reverseVector(Value *Vec) { return Vec; } 7887 7888 Value *InnerLoopUnroller::getBroadcastInstrs(Value *V) { return V; } 7889 7890 Value *InnerLoopUnroller::getStepVector(Value *Val, int StartIdx, Value *Step, 7891 Instruction::BinaryOps BinOp) { 7892 // When unrolling and the VF is 1, we only need to add a simple scalar. 7893 Type *Ty = Val->getType(); 7894 assert(!Ty->isVectorTy() && "Val must be a scalar"); 7895 7896 if (Ty->isFloatingPointTy()) { 7897 Constant *C = ConstantFP::get(Ty, (double)StartIdx); 7898 7899 // Floating point operations had to be 'fast' to enable the unrolling. 7900 Value *MulOp = addFastMathFlag(Builder.CreateFMul(C, Step)); 7901 return addFastMathFlag(Builder.CreateBinOp(BinOp, Val, MulOp)); 7902 } 7903 Constant *C = ConstantInt::get(Ty, StartIdx); 7904 return Builder.CreateAdd(Val, Builder.CreateMul(C, Step), "induction"); 7905 } 7906 7907 static void AddRuntimeUnrollDisableMetaData(Loop *L) { 7908 SmallVector<Metadata *, 4> MDs; 7909 // Reserve first location for self reference to the LoopID metadata node. 7910 MDs.push_back(nullptr); 7911 bool IsUnrollMetadata = false; 7912 MDNode *LoopID = L->getLoopID(); 7913 if (LoopID) { 7914 // First find existing loop unrolling disable metadata. 7915 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 7916 auto *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); 7917 if (MD) { 7918 const auto *S = dyn_cast<MDString>(MD->getOperand(0)); 7919 IsUnrollMetadata = 7920 S && S->getString().startswith("llvm.loop.unroll.disable"); 7921 } 7922 MDs.push_back(LoopID->getOperand(i)); 7923 } 7924 } 7925 7926 if (!IsUnrollMetadata) { 7927 // Add runtime unroll disable metadata. 7928 LLVMContext &Context = L->getHeader()->getContext(); 7929 SmallVector<Metadata *, 1> DisableOperands; 7930 DisableOperands.push_back( 7931 MDString::get(Context, "llvm.loop.unroll.runtime.disable")); 7932 MDNode *DisableNode = MDNode::get(Context, DisableOperands); 7933 MDs.push_back(DisableNode); 7934 MDNode *NewLoopID = MDNode::get(Context, MDs); 7935 // Set operand 0 to refer to the loop id itself. 7936 NewLoopID->replaceOperandWith(0, NewLoopID); 7937 L->setLoopID(NewLoopID); 7938 } 7939 } 7940 7941 //===--------------------------------------------------------------------===// 7942 // EpilogueVectorizerMainLoop 7943 //===--------------------------------------------------------------------===// 7944 7945 /// This function is partially responsible for generating the control flow 7946 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 7947 BasicBlock *EpilogueVectorizerMainLoop::createEpilogueVectorizedLoopSkeleton() { 7948 MDNode *OrigLoopID = OrigLoop->getLoopID(); 7949 Loop *Lp = createVectorLoopSkeleton(""); 7950 7951 // Generate the code to check the minimum iteration count of the vector 7952 // epilogue (see below). 7953 EPI.EpilogueIterationCountCheck = 7954 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, true); 7955 EPI.EpilogueIterationCountCheck->setName("iter.check"); 7956 7957 // Generate the code to check any assumptions that we've made for SCEV 7958 // expressions. 7959 BasicBlock *SavedPreHeader = LoopVectorPreHeader; 7960 emitSCEVChecks(Lp, LoopScalarPreHeader); 7961 7962 // If a safety check was generated save it. 7963 if (SavedPreHeader != LoopVectorPreHeader) 7964 EPI.SCEVSafetyCheck = SavedPreHeader; 7965 7966 // Generate the code that checks at runtime if arrays overlap. We put the 7967 // checks into a separate block to make the more common case of few elements 7968 // faster. 7969 SavedPreHeader = LoopVectorPreHeader; 7970 emitMemRuntimeChecks(Lp, LoopScalarPreHeader); 7971 7972 // If a safety check was generated save/overwite it. 7973 if (SavedPreHeader != LoopVectorPreHeader) 7974 EPI.MemSafetyCheck = SavedPreHeader; 7975 7976 // Generate the iteration count check for the main loop, *after* the check 7977 // for the epilogue loop, so that the path-length is shorter for the case 7978 // that goes directly through the vector epilogue. The longer-path length for 7979 // the main loop is compensated for, by the gain from vectorizing the larger 7980 // trip count. Note: the branch will get updated later on when we vectorize 7981 // the epilogue. 7982 EPI.MainLoopIterationCountCheck = 7983 emitMinimumIterationCountCheck(Lp, LoopScalarPreHeader, false); 7984 7985 // Generate the induction variable. 7986 OldInduction = Legal->getPrimaryInduction(); 7987 Type *IdxTy = Legal->getWidestInductionType(); 7988 Value *StartIdx = ConstantInt::get(IdxTy, 0); 7989 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 7990 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 7991 EPI.VectorTripCount = CountRoundDown; 7992 Induction = 7993 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 7994 getDebugLocFromInstOrOperands(OldInduction)); 7995 7996 // Skip induction resume value creation here because they will be created in 7997 // the second pass. If we created them here, they wouldn't be used anyway, 7998 // because the vplan in the second pass still contains the inductions from the 7999 // original loop. 8000 8001 return completeLoopSkeleton(Lp, OrigLoopID); 8002 } 8003 8004 void EpilogueVectorizerMainLoop::printDebugTracesAtStart() { 8005 LLVM_DEBUG({ 8006 dbgs() << "Create Skeleton for epilogue vectorized loop (first pass)\n" 8007 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8008 << ", Main Loop UF:" << EPI.MainLoopUF 8009 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8010 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8011 }); 8012 } 8013 8014 void EpilogueVectorizerMainLoop::printDebugTracesAtEnd() { 8015 DEBUG_WITH_TYPE(VerboseDebug, { 8016 dbgs() << "intermediate fn:\n" << *Induction->getFunction() << "\n"; 8017 }); 8018 } 8019 8020 BasicBlock *EpilogueVectorizerMainLoop::emitMinimumIterationCountCheck( 8021 Loop *L, BasicBlock *Bypass, bool ForEpilogue) { 8022 assert(L && "Expected valid Loop."); 8023 assert(Bypass && "Expected valid bypass basic block."); 8024 unsigned VFactor = 8025 ForEpilogue ? EPI.EpilogueVF.getKnownMinValue() : VF.getKnownMinValue(); 8026 unsigned UFactor = ForEpilogue ? EPI.EpilogueUF : UF; 8027 Value *Count = getOrCreateTripCount(L); 8028 // Reuse existing vector loop preheader for TC checks. 8029 // Note that new preheader block is generated for vector loop. 8030 BasicBlock *const TCCheckBlock = LoopVectorPreHeader; 8031 IRBuilder<> Builder(TCCheckBlock->getTerminator()); 8032 8033 // Generate code to check if the loop's trip count is less than VF * UF of the 8034 // main vector loop. 8035 auto P = 8036 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8037 8038 Value *CheckMinIters = Builder.CreateICmp( 8039 P, Count, ConstantInt::get(Count->getType(), VFactor * UFactor), 8040 "min.iters.check"); 8041 8042 if (!ForEpilogue) 8043 TCCheckBlock->setName("vector.main.loop.iter.check"); 8044 8045 // Create new preheader for vector loop. 8046 LoopVectorPreHeader = SplitBlock(TCCheckBlock, TCCheckBlock->getTerminator(), 8047 DT, LI, nullptr, "vector.ph"); 8048 8049 if (ForEpilogue) { 8050 assert(DT->properlyDominates(DT->getNode(TCCheckBlock), 8051 DT->getNode(Bypass)->getIDom()) && 8052 "TC check is expected to dominate Bypass"); 8053 8054 // Update dominator for Bypass & LoopExit. 8055 DT->changeImmediateDominator(Bypass, TCCheckBlock); 8056 DT->changeImmediateDominator(LoopExitBlock, TCCheckBlock); 8057 8058 LoopBypassBlocks.push_back(TCCheckBlock); 8059 8060 // Save the trip count so we don't have to regenerate it in the 8061 // vec.epilog.iter.check. This is safe to do because the trip count 8062 // generated here dominates the vector epilog iter check. 8063 EPI.TripCount = Count; 8064 } 8065 8066 ReplaceInstWithInst( 8067 TCCheckBlock->getTerminator(), 8068 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8069 8070 return TCCheckBlock; 8071 } 8072 8073 //===--------------------------------------------------------------------===// 8074 // EpilogueVectorizerEpilogueLoop 8075 //===--------------------------------------------------------------------===// 8076 8077 /// This function is partially responsible for generating the control flow 8078 /// depicted in https://llvm.org/docs/Vectorizers.html#epilogue-vectorization. 8079 BasicBlock * 8080 EpilogueVectorizerEpilogueLoop::createEpilogueVectorizedLoopSkeleton() { 8081 MDNode *OrigLoopID = OrigLoop->getLoopID(); 8082 Loop *Lp = createVectorLoopSkeleton("vec.epilog."); 8083 8084 // Now, compare the remaining count and if there aren't enough iterations to 8085 // execute the vectorized epilogue skip to the scalar part. 8086 BasicBlock *VecEpilogueIterationCountCheck = LoopVectorPreHeader; 8087 VecEpilogueIterationCountCheck->setName("vec.epilog.iter.check"); 8088 LoopVectorPreHeader = 8089 SplitBlock(LoopVectorPreHeader, LoopVectorPreHeader->getTerminator(), DT, 8090 LI, nullptr, "vec.epilog.ph"); 8091 emitMinimumVectorEpilogueIterCountCheck(Lp, LoopScalarPreHeader, 8092 VecEpilogueIterationCountCheck); 8093 8094 // Adjust the control flow taking the state info from the main loop 8095 // vectorization into account. 8096 assert(EPI.MainLoopIterationCountCheck && EPI.EpilogueIterationCountCheck && 8097 "expected this to be saved from the previous pass."); 8098 EPI.MainLoopIterationCountCheck->getTerminator()->replaceUsesOfWith( 8099 VecEpilogueIterationCountCheck, LoopVectorPreHeader); 8100 8101 DT->changeImmediateDominator(LoopVectorPreHeader, 8102 EPI.MainLoopIterationCountCheck); 8103 8104 EPI.EpilogueIterationCountCheck->getTerminator()->replaceUsesOfWith( 8105 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8106 8107 if (EPI.SCEVSafetyCheck) 8108 EPI.SCEVSafetyCheck->getTerminator()->replaceUsesOfWith( 8109 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8110 if (EPI.MemSafetyCheck) 8111 EPI.MemSafetyCheck->getTerminator()->replaceUsesOfWith( 8112 VecEpilogueIterationCountCheck, LoopScalarPreHeader); 8113 8114 DT->changeImmediateDominator( 8115 VecEpilogueIterationCountCheck, 8116 VecEpilogueIterationCountCheck->getSinglePredecessor()); 8117 8118 DT->changeImmediateDominator(LoopScalarPreHeader, 8119 EPI.EpilogueIterationCountCheck); 8120 DT->changeImmediateDominator(LoopExitBlock, EPI.EpilogueIterationCountCheck); 8121 8122 // Keep track of bypass blocks, as they feed start values to the induction 8123 // phis in the scalar loop preheader. 8124 if (EPI.SCEVSafetyCheck) 8125 LoopBypassBlocks.push_back(EPI.SCEVSafetyCheck); 8126 if (EPI.MemSafetyCheck) 8127 LoopBypassBlocks.push_back(EPI.MemSafetyCheck); 8128 LoopBypassBlocks.push_back(EPI.EpilogueIterationCountCheck); 8129 8130 // Generate a resume induction for the vector epilogue and put it in the 8131 // vector epilogue preheader 8132 Type *IdxTy = Legal->getWidestInductionType(); 8133 PHINode *EPResumeVal = PHINode::Create(IdxTy, 2, "vec.epilog.resume.val", 8134 LoopVectorPreHeader->getFirstNonPHI()); 8135 EPResumeVal->addIncoming(EPI.VectorTripCount, VecEpilogueIterationCountCheck); 8136 EPResumeVal->addIncoming(ConstantInt::get(IdxTy, 0), 8137 EPI.MainLoopIterationCountCheck); 8138 8139 // Generate the induction variable. 8140 OldInduction = Legal->getPrimaryInduction(); 8141 Value *CountRoundDown = getOrCreateVectorTripCount(Lp); 8142 Constant *Step = ConstantInt::get(IdxTy, VF.getKnownMinValue() * UF); 8143 Value *StartIdx = EPResumeVal; 8144 Induction = 8145 createInductionVariable(Lp, StartIdx, CountRoundDown, Step, 8146 getDebugLocFromInstOrOperands(OldInduction)); 8147 8148 // Generate induction resume values. These variables save the new starting 8149 // indexes for the scalar loop. They are used to test if there are any tail 8150 // iterations left once the vector loop has completed. 8151 // Note that when the vectorized epilogue is skipped due to iteration count 8152 // check, then the resume value for the induction variable comes from 8153 // the trip count of the main vector loop, hence passing the AdditionalBypass 8154 // argument. 8155 createInductionResumeValues(Lp, CountRoundDown, 8156 {VecEpilogueIterationCountCheck, 8157 EPI.VectorTripCount} /* AdditionalBypass */); 8158 8159 AddRuntimeUnrollDisableMetaData(Lp); 8160 return completeLoopSkeleton(Lp, OrigLoopID); 8161 } 8162 8163 BasicBlock * 8164 EpilogueVectorizerEpilogueLoop::emitMinimumVectorEpilogueIterCountCheck( 8165 Loop *L, BasicBlock *Bypass, BasicBlock *Insert) { 8166 8167 assert(EPI.TripCount && 8168 "Expected trip count to have been safed in the first pass."); 8169 assert( 8170 (!isa<Instruction>(EPI.TripCount) || 8171 DT->dominates(cast<Instruction>(EPI.TripCount)->getParent(), Insert)) && 8172 "saved trip count does not dominate insertion point."); 8173 Value *TC = EPI.TripCount; 8174 IRBuilder<> Builder(Insert->getTerminator()); 8175 Value *Count = Builder.CreateSub(TC, EPI.VectorTripCount, "n.vec.remaining"); 8176 8177 // Generate code to check if the loop's trip count is less than VF * UF of the 8178 // vector epilogue loop. 8179 auto P = 8180 Cost->requiresScalarEpilogue() ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT; 8181 8182 Value *CheckMinIters = Builder.CreateICmp( 8183 P, Count, 8184 ConstantInt::get(Count->getType(), 8185 EPI.EpilogueVF.getKnownMinValue() * EPI.EpilogueUF), 8186 "min.epilog.iters.check"); 8187 8188 ReplaceInstWithInst( 8189 Insert->getTerminator(), 8190 BranchInst::Create(Bypass, LoopVectorPreHeader, CheckMinIters)); 8191 8192 LoopBypassBlocks.push_back(Insert); 8193 return Insert; 8194 } 8195 8196 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtStart() { 8197 LLVM_DEBUG({ 8198 dbgs() << "Create Skeleton for epilogue vectorized loop (second pass)\n" 8199 << "Main Loop VF:" << EPI.MainLoopVF.getKnownMinValue() 8200 << ", Main Loop UF:" << EPI.MainLoopUF 8201 << ", Epilogue Loop VF:" << EPI.EpilogueVF.getKnownMinValue() 8202 << ", Epilogue Loop UF:" << EPI.EpilogueUF << "\n"; 8203 }); 8204 } 8205 8206 void EpilogueVectorizerEpilogueLoop::printDebugTracesAtEnd() { 8207 DEBUG_WITH_TYPE(VerboseDebug, { 8208 dbgs() << "final fn:\n" << *Induction->getFunction() << "\n"; 8209 }); 8210 } 8211 8212 bool LoopVectorizationPlanner::getDecisionAndClampRange( 8213 const std::function<bool(ElementCount)> &Predicate, VFRange &Range) { 8214 assert(!Range.isEmpty() && "Trying to test an empty VF range."); 8215 bool PredicateAtRangeStart = Predicate(Range.Start); 8216 8217 for (ElementCount TmpVF = Range.Start * 2; 8218 ElementCount::isKnownLT(TmpVF, Range.End); TmpVF *= 2) 8219 if (Predicate(TmpVF) != PredicateAtRangeStart) { 8220 Range.End = TmpVF; 8221 break; 8222 } 8223 8224 return PredicateAtRangeStart; 8225 } 8226 8227 /// Build VPlans for the full range of feasible VF's = {\p MinVF, 2 * \p MinVF, 8228 /// 4 * \p MinVF, ..., \p MaxVF} by repeatedly building a VPlan for a sub-range 8229 /// of VF's starting at a given VF and extending it as much as possible. Each 8230 /// vectorization decision can potentially shorten this sub-range during 8231 /// buildVPlan(). 8232 void LoopVectorizationPlanner::buildVPlans(ElementCount MinVF, 8233 ElementCount MaxVF) { 8234 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8235 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8236 VFRange SubRange = {VF, MaxVFPlusOne}; 8237 VPlans.push_back(buildVPlan(SubRange)); 8238 VF = SubRange.End; 8239 } 8240 } 8241 8242 VPValue *VPRecipeBuilder::createEdgeMask(BasicBlock *Src, BasicBlock *Dst, 8243 VPlanPtr &Plan) { 8244 assert(is_contained(predecessors(Dst), Src) && "Invalid edge"); 8245 8246 // Look for cached value. 8247 std::pair<BasicBlock *, BasicBlock *> Edge(Src, Dst); 8248 EdgeMaskCacheTy::iterator ECEntryIt = EdgeMaskCache.find(Edge); 8249 if (ECEntryIt != EdgeMaskCache.end()) 8250 return ECEntryIt->second; 8251 8252 VPValue *SrcMask = createBlockInMask(Src, Plan); 8253 8254 // The terminator has to be a branch inst! 8255 BranchInst *BI = dyn_cast<BranchInst>(Src->getTerminator()); 8256 assert(BI && "Unexpected terminator found"); 8257 8258 if (!BI->isConditional() || BI->getSuccessor(0) == BI->getSuccessor(1)) 8259 return EdgeMaskCache[Edge] = SrcMask; 8260 8261 // If source is an exiting block, we know the exit edge is dynamically dead 8262 // in the vector loop, and thus we don't need to restrict the mask. Avoid 8263 // adding uses of an otherwise potentially dead instruction. 8264 if (OrigLoop->isLoopExiting(Src)) 8265 return EdgeMaskCache[Edge] = SrcMask; 8266 8267 VPValue *EdgeMask = Plan->getOrAddVPValue(BI->getCondition()); 8268 assert(EdgeMask && "No Edge Mask found for condition"); 8269 8270 if (BI->getSuccessor(0) != Dst) 8271 EdgeMask = Builder.createNot(EdgeMask); 8272 8273 if (SrcMask) { // Otherwise block in-mask is all-one, no need to AND. 8274 // The condition is 'SrcMask && EdgeMask', which is equivalent to 8275 // 'select i1 SrcMask, i1 EdgeMask, i1 false'. 8276 // The select version does not introduce new UB if SrcMask is false and 8277 // EdgeMask is poison. Using 'and' here introduces undefined behavior. 8278 VPValue *False = Plan->getOrAddVPValue( 8279 ConstantInt::getFalse(BI->getCondition()->getType())); 8280 EdgeMask = Builder.createSelect(SrcMask, EdgeMask, False); 8281 } 8282 8283 return EdgeMaskCache[Edge] = EdgeMask; 8284 } 8285 8286 VPValue *VPRecipeBuilder::createBlockInMask(BasicBlock *BB, VPlanPtr &Plan) { 8287 assert(OrigLoop->contains(BB) && "Block is not a part of a loop"); 8288 8289 // Look for cached value. 8290 BlockMaskCacheTy::iterator BCEntryIt = BlockMaskCache.find(BB); 8291 if (BCEntryIt != BlockMaskCache.end()) 8292 return BCEntryIt->second; 8293 8294 // All-one mask is modelled as no-mask following the convention for masked 8295 // load/store/gather/scatter. Initialize BlockMask to no-mask. 8296 VPValue *BlockMask = nullptr; 8297 8298 if (OrigLoop->getHeader() == BB) { 8299 if (!CM.blockNeedsPredication(BB)) 8300 return BlockMaskCache[BB] = BlockMask; // Loop incoming mask is all-one. 8301 8302 // Create the block in mask as the first non-phi instruction in the block. 8303 VPBuilder::InsertPointGuard Guard(Builder); 8304 auto NewInsertionPoint = Builder.getInsertBlock()->getFirstNonPhi(); 8305 Builder.setInsertPoint(Builder.getInsertBlock(), NewInsertionPoint); 8306 8307 // Introduce the early-exit compare IV <= BTC to form header block mask. 8308 // This is used instead of IV < TC because TC may wrap, unlike BTC. 8309 // Start by constructing the desired canonical IV. 8310 VPValue *IV = nullptr; 8311 if (Legal->getPrimaryInduction()) 8312 IV = Plan->getOrAddVPValue(Legal->getPrimaryInduction()); 8313 else { 8314 auto IVRecipe = new VPWidenCanonicalIVRecipe(); 8315 Builder.getInsertBlock()->insert(IVRecipe, NewInsertionPoint); 8316 IV = IVRecipe->getVPValue(); 8317 } 8318 VPValue *BTC = Plan->getOrCreateBackedgeTakenCount(); 8319 bool TailFolded = !CM.isScalarEpilogueAllowed(); 8320 8321 if (TailFolded && CM.TTI.emitGetActiveLaneMask()) { 8322 // While ActiveLaneMask is a binary op that consumes the loop tripcount 8323 // as a second argument, we only pass the IV here and extract the 8324 // tripcount from the transform state where codegen of the VP instructions 8325 // happen. 8326 BlockMask = Builder.createNaryOp(VPInstruction::ActiveLaneMask, {IV}); 8327 } else { 8328 BlockMask = Builder.createNaryOp(VPInstruction::ICmpULE, {IV, BTC}); 8329 } 8330 return BlockMaskCache[BB] = BlockMask; 8331 } 8332 8333 // This is the block mask. We OR all incoming edges. 8334 for (auto *Predecessor : predecessors(BB)) { 8335 VPValue *EdgeMask = createEdgeMask(Predecessor, BB, Plan); 8336 if (!EdgeMask) // Mask of predecessor is all-one so mask of block is too. 8337 return BlockMaskCache[BB] = EdgeMask; 8338 8339 if (!BlockMask) { // BlockMask has its initialized nullptr value. 8340 BlockMask = EdgeMask; 8341 continue; 8342 } 8343 8344 BlockMask = Builder.createOr(BlockMask, EdgeMask); 8345 } 8346 8347 return BlockMaskCache[BB] = BlockMask; 8348 } 8349 8350 VPRecipeBase *VPRecipeBuilder::tryToWidenMemory(Instruction *I, VFRange &Range, 8351 VPlanPtr &Plan) { 8352 assert((isa<LoadInst>(I) || isa<StoreInst>(I)) && 8353 "Must be called with either a load or store"); 8354 8355 auto willWiden = [&](ElementCount VF) -> bool { 8356 if (VF.isScalar()) 8357 return false; 8358 LoopVectorizationCostModel::InstWidening Decision = 8359 CM.getWideningDecision(I, VF); 8360 assert(Decision != LoopVectorizationCostModel::CM_Unknown && 8361 "CM decision should be taken at this point."); 8362 if (Decision == LoopVectorizationCostModel::CM_Interleave) 8363 return true; 8364 if (CM.isScalarAfterVectorization(I, VF) || 8365 CM.isProfitableToScalarize(I, VF)) 8366 return false; 8367 return Decision != LoopVectorizationCostModel::CM_Scalarize; 8368 }; 8369 8370 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8371 return nullptr; 8372 8373 VPValue *Mask = nullptr; 8374 if (Legal->isMaskRequired(I)) 8375 Mask = createBlockInMask(I->getParent(), Plan); 8376 8377 VPValue *Addr = Plan->getOrAddVPValue(getLoadStorePointerOperand(I)); 8378 if (LoadInst *Load = dyn_cast<LoadInst>(I)) 8379 return new VPWidenMemoryInstructionRecipe(*Load, Addr, Mask); 8380 8381 StoreInst *Store = cast<StoreInst>(I); 8382 VPValue *StoredValue = Plan->getOrAddVPValue(Store->getValueOperand()); 8383 return new VPWidenMemoryInstructionRecipe(*Store, Addr, StoredValue, Mask); 8384 } 8385 8386 VPWidenIntOrFpInductionRecipe * 8387 VPRecipeBuilder::tryToOptimizeInductionPHI(PHINode *Phi, VPlan &Plan) const { 8388 // Check if this is an integer or fp induction. If so, build the recipe that 8389 // produces its scalar and vector values. 8390 InductionDescriptor II = Legal->getInductionVars().lookup(Phi); 8391 if (II.getKind() == InductionDescriptor::IK_IntInduction || 8392 II.getKind() == InductionDescriptor::IK_FpInduction) { 8393 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8394 const SmallVectorImpl<Instruction *> &Casts = II.getCastInsts(); 8395 return new VPWidenIntOrFpInductionRecipe( 8396 Phi, Start, Casts.empty() ? nullptr : Casts.front()); 8397 } 8398 8399 return nullptr; 8400 } 8401 8402 VPWidenIntOrFpInductionRecipe * 8403 VPRecipeBuilder::tryToOptimizeInductionTruncate(TruncInst *I, VFRange &Range, 8404 VPlan &Plan) const { 8405 // Optimize the special case where the source is a constant integer 8406 // induction variable. Notice that we can only optimize the 'trunc' case 8407 // because (a) FP conversions lose precision, (b) sext/zext may wrap, and 8408 // (c) other casts depend on pointer size. 8409 8410 // Determine whether \p K is a truncation based on an induction variable that 8411 // can be optimized. 8412 auto isOptimizableIVTruncate = 8413 [&](Instruction *K) -> std::function<bool(ElementCount)> { 8414 return [=](ElementCount VF) -> bool { 8415 return CM.isOptimizableIVTruncate(K, VF); 8416 }; 8417 }; 8418 8419 if (LoopVectorizationPlanner::getDecisionAndClampRange( 8420 isOptimizableIVTruncate(I), Range)) { 8421 8422 InductionDescriptor II = 8423 Legal->getInductionVars().lookup(cast<PHINode>(I->getOperand(0))); 8424 VPValue *Start = Plan.getOrAddVPValue(II.getStartValue()); 8425 return new VPWidenIntOrFpInductionRecipe(cast<PHINode>(I->getOperand(0)), 8426 Start, nullptr, I); 8427 } 8428 return nullptr; 8429 } 8430 8431 VPBlendRecipe *VPRecipeBuilder::tryToBlend(PHINode *Phi, VPlanPtr &Plan) { 8432 // We know that all PHIs in non-header blocks are converted into selects, so 8433 // we don't have to worry about the insertion order and we can just use the 8434 // builder. At this point we generate the predication tree. There may be 8435 // duplications since this is a simple recursive scan, but future 8436 // optimizations will clean it up. 8437 8438 SmallVector<VPValue *, 2> Operands; 8439 unsigned NumIncoming = Phi->getNumIncomingValues(); 8440 for (unsigned In = 0; In < NumIncoming; In++) { 8441 VPValue *EdgeMask = 8442 createEdgeMask(Phi->getIncomingBlock(In), Phi->getParent(), Plan); 8443 assert((EdgeMask || NumIncoming == 1) && 8444 "Multiple predecessors with one having a full mask"); 8445 Operands.push_back(Plan->getOrAddVPValue(Phi->getIncomingValue(In))); 8446 if (EdgeMask) 8447 Operands.push_back(EdgeMask); 8448 } 8449 return new VPBlendRecipe(Phi, Operands); 8450 } 8451 8452 VPWidenCallRecipe *VPRecipeBuilder::tryToWidenCall(CallInst *CI, VFRange &Range, 8453 VPlan &Plan) const { 8454 8455 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8456 [this, CI](ElementCount VF) { 8457 return CM.isScalarWithPredication(CI, VF); 8458 }, 8459 Range); 8460 8461 if (IsPredicated) 8462 return nullptr; 8463 8464 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8465 if (ID && (ID == Intrinsic::assume || ID == Intrinsic::lifetime_end || 8466 ID == Intrinsic::lifetime_start || ID == Intrinsic::sideeffect || 8467 ID == Intrinsic::pseudoprobe || 8468 ID == Intrinsic::experimental_noalias_scope_decl)) 8469 return nullptr; 8470 8471 auto willWiden = [&](ElementCount VF) -> bool { 8472 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); 8473 // The following case may be scalarized depending on the VF. 8474 // The flag shows whether we use Intrinsic or a usual Call for vectorized 8475 // version of the instruction. 8476 // Is it beneficial to perform intrinsic call compared to lib call? 8477 bool NeedToScalarize = false; 8478 InstructionCost CallCost = CM.getVectorCallCost(CI, VF, NeedToScalarize); 8479 InstructionCost IntrinsicCost = ID ? CM.getVectorIntrinsicCost(CI, VF) : 0; 8480 bool UseVectorIntrinsic = ID && IntrinsicCost <= CallCost; 8481 assert(IntrinsicCost.isValid() && CallCost.isValid() && 8482 "Cannot have invalid costs while widening"); 8483 return UseVectorIntrinsic || !NeedToScalarize; 8484 }; 8485 8486 if (!LoopVectorizationPlanner::getDecisionAndClampRange(willWiden, Range)) 8487 return nullptr; 8488 8489 return new VPWidenCallRecipe(*CI, Plan.mapToVPValues(CI->arg_operands())); 8490 } 8491 8492 bool VPRecipeBuilder::shouldWiden(Instruction *I, VFRange &Range) const { 8493 assert(!isa<BranchInst>(I) && !isa<PHINode>(I) && !isa<LoadInst>(I) && 8494 !isa<StoreInst>(I) && "Instruction should have been handled earlier"); 8495 // Instruction should be widened, unless it is scalar after vectorization, 8496 // scalarization is profitable or it is predicated. 8497 auto WillScalarize = [this, I](ElementCount VF) -> bool { 8498 return CM.isScalarAfterVectorization(I, VF) || 8499 CM.isProfitableToScalarize(I, VF) || 8500 CM.isScalarWithPredication(I, VF); 8501 }; 8502 return !LoopVectorizationPlanner::getDecisionAndClampRange(WillScalarize, 8503 Range); 8504 } 8505 8506 VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I, VPlan &Plan) const { 8507 auto IsVectorizableOpcode = [](unsigned Opcode) { 8508 switch (Opcode) { 8509 case Instruction::Add: 8510 case Instruction::And: 8511 case Instruction::AShr: 8512 case Instruction::BitCast: 8513 case Instruction::FAdd: 8514 case Instruction::FCmp: 8515 case Instruction::FDiv: 8516 case Instruction::FMul: 8517 case Instruction::FNeg: 8518 case Instruction::FPExt: 8519 case Instruction::FPToSI: 8520 case Instruction::FPToUI: 8521 case Instruction::FPTrunc: 8522 case Instruction::FRem: 8523 case Instruction::FSub: 8524 case Instruction::ICmp: 8525 case Instruction::IntToPtr: 8526 case Instruction::LShr: 8527 case Instruction::Mul: 8528 case Instruction::Or: 8529 case Instruction::PtrToInt: 8530 case Instruction::SDiv: 8531 case Instruction::Select: 8532 case Instruction::SExt: 8533 case Instruction::Shl: 8534 case Instruction::SIToFP: 8535 case Instruction::SRem: 8536 case Instruction::Sub: 8537 case Instruction::Trunc: 8538 case Instruction::UDiv: 8539 case Instruction::UIToFP: 8540 case Instruction::URem: 8541 case Instruction::Xor: 8542 case Instruction::ZExt: 8543 return true; 8544 } 8545 return false; 8546 }; 8547 8548 if (!IsVectorizableOpcode(I->getOpcode())) 8549 return nullptr; 8550 8551 // Success: widen this instruction. 8552 return new VPWidenRecipe(*I, Plan.mapToVPValues(I->operands())); 8553 } 8554 8555 VPBasicBlock *VPRecipeBuilder::handleReplication( 8556 Instruction *I, VFRange &Range, VPBasicBlock *VPBB, 8557 DenseMap<Instruction *, VPReplicateRecipe *> &PredInst2Recipe, 8558 VPlanPtr &Plan) { 8559 bool IsUniform = LoopVectorizationPlanner::getDecisionAndClampRange( 8560 [&](ElementCount VF) { return CM.isUniformAfterVectorization(I, VF); }, 8561 Range); 8562 8563 bool IsPredicated = LoopVectorizationPlanner::getDecisionAndClampRange( 8564 [&](ElementCount VF) { return CM.isScalarWithPredication(I, VF); }, 8565 Range); 8566 8567 auto *Recipe = new VPReplicateRecipe(I, Plan->mapToVPValues(I->operands()), 8568 IsUniform, IsPredicated); 8569 setRecipe(I, Recipe); 8570 Plan->addVPValue(I, Recipe); 8571 8572 // Find if I uses a predicated instruction. If so, it will use its scalar 8573 // value. Avoid hoisting the insert-element which packs the scalar value into 8574 // a vector value, as that happens iff all users use the vector value. 8575 for (auto &Op : I->operands()) 8576 if (auto *PredInst = dyn_cast<Instruction>(Op)) 8577 if (PredInst2Recipe.find(PredInst) != PredInst2Recipe.end()) 8578 PredInst2Recipe[PredInst]->setAlsoPack(false); 8579 8580 // Finalize the recipe for Instr, first if it is not predicated. 8581 if (!IsPredicated) { 8582 LLVM_DEBUG(dbgs() << "LV: Scalarizing:" << *I << "\n"); 8583 VPBB->appendRecipe(Recipe); 8584 return VPBB; 8585 } 8586 LLVM_DEBUG(dbgs() << "LV: Scalarizing and predicating:" << *I << "\n"); 8587 assert(VPBB->getSuccessors().empty() && 8588 "VPBB has successors when handling predicated replication."); 8589 // Record predicated instructions for above packing optimizations. 8590 PredInst2Recipe[I] = Recipe; 8591 VPBlockBase *Region = createReplicateRegion(I, Recipe, Plan); 8592 VPBlockUtils::insertBlockAfter(Region, VPBB); 8593 auto *RegSucc = new VPBasicBlock(); 8594 VPBlockUtils::insertBlockAfter(RegSucc, Region); 8595 return RegSucc; 8596 } 8597 8598 VPRegionBlock *VPRecipeBuilder::createReplicateRegion(Instruction *Instr, 8599 VPRecipeBase *PredRecipe, 8600 VPlanPtr &Plan) { 8601 // Instructions marked for predication are replicated and placed under an 8602 // if-then construct to prevent side-effects. 8603 8604 // Generate recipes to compute the block mask for this region. 8605 VPValue *BlockInMask = createBlockInMask(Instr->getParent(), Plan); 8606 8607 // Build the triangular if-then region. 8608 std::string RegionName = (Twine("pred.") + Instr->getOpcodeName()).str(); 8609 assert(Instr->getParent() && "Predicated instruction not in any basic block"); 8610 auto *BOMRecipe = new VPBranchOnMaskRecipe(BlockInMask); 8611 auto *Entry = new VPBasicBlock(Twine(RegionName) + ".entry", BOMRecipe); 8612 auto *PHIRecipe = Instr->getType()->isVoidTy() 8613 ? nullptr 8614 : new VPPredInstPHIRecipe(Plan->getOrAddVPValue(Instr)); 8615 if (PHIRecipe) { 8616 Plan->removeVPValueFor(Instr); 8617 Plan->addVPValue(Instr, PHIRecipe); 8618 } 8619 auto *Exit = new VPBasicBlock(Twine(RegionName) + ".continue", PHIRecipe); 8620 auto *Pred = new VPBasicBlock(Twine(RegionName) + ".if", PredRecipe); 8621 VPRegionBlock *Region = new VPRegionBlock(Entry, Exit, RegionName, true); 8622 8623 // Note: first set Entry as region entry and then connect successors starting 8624 // from it in order, to propagate the "parent" of each VPBasicBlock. 8625 VPBlockUtils::insertTwoBlocksAfter(Pred, Exit, BlockInMask, Entry); 8626 VPBlockUtils::connectBlocks(Pred, Exit); 8627 8628 return Region; 8629 } 8630 8631 VPRecipeBase *VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr, 8632 VFRange &Range, 8633 VPlanPtr &Plan) { 8634 // First, check for specific widening recipes that deal with calls, memory 8635 // operations, inductions and Phi nodes. 8636 if (auto *CI = dyn_cast<CallInst>(Instr)) 8637 return tryToWidenCall(CI, Range, *Plan); 8638 8639 if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr)) 8640 return tryToWidenMemory(Instr, Range, Plan); 8641 8642 VPRecipeBase *Recipe; 8643 if (auto Phi = dyn_cast<PHINode>(Instr)) { 8644 if (Phi->getParent() != OrigLoop->getHeader()) 8645 return tryToBlend(Phi, Plan); 8646 if ((Recipe = tryToOptimizeInductionPHI(Phi, *Plan))) 8647 return Recipe; 8648 8649 if (Legal->isReductionVariable(Phi)) { 8650 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8651 VPValue *StartV = 8652 Plan->getOrAddVPValue(RdxDesc.getRecurrenceStartValue()); 8653 return new VPWidenPHIRecipe(Phi, RdxDesc, *StartV); 8654 } 8655 8656 return new VPWidenPHIRecipe(Phi); 8657 } 8658 8659 if (isa<TruncInst>(Instr) && (Recipe = tryToOptimizeInductionTruncate( 8660 cast<TruncInst>(Instr), Range, *Plan))) 8661 return Recipe; 8662 8663 if (!shouldWiden(Instr, Range)) 8664 return nullptr; 8665 8666 if (auto GEP = dyn_cast<GetElementPtrInst>(Instr)) 8667 return new VPWidenGEPRecipe(GEP, Plan->mapToVPValues(GEP->operands()), 8668 OrigLoop); 8669 8670 if (auto *SI = dyn_cast<SelectInst>(Instr)) { 8671 bool InvariantCond = 8672 PSE.getSE()->isLoopInvariant(PSE.getSCEV(SI->getOperand(0)), OrigLoop); 8673 return new VPWidenSelectRecipe(*SI, Plan->mapToVPValues(SI->operands()), 8674 InvariantCond); 8675 } 8676 8677 return tryToWiden(Instr, *Plan); 8678 } 8679 8680 void LoopVectorizationPlanner::buildVPlansWithVPRecipes(ElementCount MinVF, 8681 ElementCount MaxVF) { 8682 assert(OrigLoop->isInnermost() && "Inner loop expected."); 8683 8684 // Collect instructions from the original loop that will become trivially dead 8685 // in the vectorized loop. We don't need to vectorize these instructions. For 8686 // example, original induction update instructions can become dead because we 8687 // separately emit induction "steps" when generating code for the new loop. 8688 // Similarly, we create a new latch condition when setting up the structure 8689 // of the new loop, so the old one can become dead. 8690 SmallPtrSet<Instruction *, 4> DeadInstructions; 8691 collectTriviallyDeadInstructions(DeadInstructions); 8692 8693 // Add assume instructions we need to drop to DeadInstructions, to prevent 8694 // them from being added to the VPlan. 8695 // TODO: We only need to drop assumes in blocks that get flattend. If the 8696 // control flow is preserved, we should keep them. 8697 auto &ConditionalAssumes = Legal->getConditionalAssumes(); 8698 DeadInstructions.insert(ConditionalAssumes.begin(), ConditionalAssumes.end()); 8699 8700 DenseMap<Instruction *, Instruction *> &SinkAfter = Legal->getSinkAfter(); 8701 // Dead instructions do not need sinking. Remove them from SinkAfter. 8702 for (Instruction *I : DeadInstructions) 8703 SinkAfter.erase(I); 8704 8705 auto MaxVFPlusOne = MaxVF.getWithIncrement(1); 8706 for (ElementCount VF = MinVF; ElementCount::isKnownLT(VF, MaxVFPlusOne);) { 8707 VFRange SubRange = {VF, MaxVFPlusOne}; 8708 VPlans.push_back( 8709 buildVPlanWithVPRecipes(SubRange, DeadInstructions, SinkAfter)); 8710 VF = SubRange.End; 8711 } 8712 } 8713 8714 VPlanPtr LoopVectorizationPlanner::buildVPlanWithVPRecipes( 8715 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 8716 const DenseMap<Instruction *, Instruction *> &SinkAfter) { 8717 8718 // Hold a mapping from predicated instructions to their recipes, in order to 8719 // fix their AlsoPack behavior if a user is determined to replicate and use a 8720 // scalar instead of vector value. 8721 DenseMap<Instruction *, VPReplicateRecipe *> PredInst2Recipe; 8722 8723 SmallPtrSet<const InterleaveGroup<Instruction> *, 1> InterleaveGroups; 8724 8725 VPRecipeBuilder RecipeBuilder(OrigLoop, TLI, Legal, CM, PSE, Builder); 8726 8727 // --------------------------------------------------------------------------- 8728 // Pre-construction: record ingredients whose recipes we'll need to further 8729 // process after constructing the initial VPlan. 8730 // --------------------------------------------------------------------------- 8731 8732 // Mark instructions we'll need to sink later and their targets as 8733 // ingredients whose recipe we'll need to record. 8734 for (auto &Entry : SinkAfter) { 8735 RecipeBuilder.recordRecipeOf(Entry.first); 8736 RecipeBuilder.recordRecipeOf(Entry.second); 8737 } 8738 for (auto &Reduction : CM.getInLoopReductionChains()) { 8739 PHINode *Phi = Reduction.first; 8740 RecurKind Kind = Legal->getReductionVars()[Phi].getRecurrenceKind(); 8741 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8742 8743 RecipeBuilder.recordRecipeOf(Phi); 8744 for (auto &R : ReductionOperations) { 8745 RecipeBuilder.recordRecipeOf(R); 8746 // For min/max reducitons, where we have a pair of icmp/select, we also 8747 // need to record the ICmp recipe, so it can be removed later. 8748 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) 8749 RecipeBuilder.recordRecipeOf(cast<Instruction>(R->getOperand(0))); 8750 } 8751 } 8752 8753 // For each interleave group which is relevant for this (possibly trimmed) 8754 // Range, add it to the set of groups to be later applied to the VPlan and add 8755 // placeholders for its members' Recipes which we'll be replacing with a 8756 // single VPInterleaveRecipe. 8757 for (InterleaveGroup<Instruction> *IG : IAI.getInterleaveGroups()) { 8758 auto applyIG = [IG, this](ElementCount VF) -> bool { 8759 return (VF.isVector() && // Query is illegal for VF == 1 8760 CM.getWideningDecision(IG->getInsertPos(), VF) == 8761 LoopVectorizationCostModel::CM_Interleave); 8762 }; 8763 if (!getDecisionAndClampRange(applyIG, Range)) 8764 continue; 8765 InterleaveGroups.insert(IG); 8766 for (unsigned i = 0; i < IG->getFactor(); i++) 8767 if (Instruction *Member = IG->getMember(i)) 8768 RecipeBuilder.recordRecipeOf(Member); 8769 }; 8770 8771 // --------------------------------------------------------------------------- 8772 // Build initial VPlan: Scan the body of the loop in a topological order to 8773 // visit each basic block after having visited its predecessor basic blocks. 8774 // --------------------------------------------------------------------------- 8775 8776 // Create a dummy pre-entry VPBasicBlock to start building the VPlan. 8777 auto Plan = std::make_unique<VPlan>(); 8778 VPBasicBlock *VPBB = new VPBasicBlock("Pre-Entry"); 8779 Plan->setEntry(VPBB); 8780 8781 // Scan the body of the loop in a topological order to visit each basic block 8782 // after having visited its predecessor basic blocks. 8783 LoopBlocksDFS DFS(OrigLoop); 8784 DFS.perform(LI); 8785 8786 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO())) { 8787 // Relevant instructions from basic block BB will be grouped into VPRecipe 8788 // ingredients and fill a new VPBasicBlock. 8789 unsigned VPBBsForBB = 0; 8790 auto *FirstVPBBForBB = new VPBasicBlock(BB->getName()); 8791 VPBlockUtils::insertBlockAfter(FirstVPBBForBB, VPBB); 8792 VPBB = FirstVPBBForBB; 8793 Builder.setInsertPoint(VPBB); 8794 8795 // Introduce each ingredient into VPlan. 8796 // TODO: Model and preserve debug instrinsics in VPlan. 8797 for (Instruction &I : BB->instructionsWithoutDebug()) { 8798 Instruction *Instr = &I; 8799 8800 // First filter out irrelevant instructions, to ensure no recipes are 8801 // built for them. 8802 if (isa<BranchInst>(Instr) || DeadInstructions.count(Instr)) 8803 continue; 8804 8805 if (auto Recipe = 8806 RecipeBuilder.tryToCreateWidenRecipe(Instr, Range, Plan)) { 8807 for (auto *Def : Recipe->definedValues()) { 8808 auto *UV = Def->getUnderlyingValue(); 8809 Plan->addVPValue(UV, Def); 8810 } 8811 8812 RecipeBuilder.setRecipe(Instr, Recipe); 8813 VPBB->appendRecipe(Recipe); 8814 continue; 8815 } 8816 8817 // Otherwise, if all widening options failed, Instruction is to be 8818 // replicated. This may create a successor for VPBB. 8819 VPBasicBlock *NextVPBB = RecipeBuilder.handleReplication( 8820 Instr, Range, VPBB, PredInst2Recipe, Plan); 8821 if (NextVPBB != VPBB) { 8822 VPBB = NextVPBB; 8823 VPBB->setName(BB->hasName() ? BB->getName() + "." + Twine(VPBBsForBB++) 8824 : ""); 8825 } 8826 } 8827 } 8828 8829 // Discard empty dummy pre-entry VPBasicBlock. Note that other VPBasicBlocks 8830 // may also be empty, such as the last one VPBB, reflecting original 8831 // basic-blocks with no recipes. 8832 VPBasicBlock *PreEntry = cast<VPBasicBlock>(Plan->getEntry()); 8833 assert(PreEntry->empty() && "Expecting empty pre-entry block."); 8834 VPBlockBase *Entry = Plan->setEntry(PreEntry->getSingleSuccessor()); 8835 VPBlockUtils::disconnectBlocks(PreEntry, Entry); 8836 delete PreEntry; 8837 8838 // --------------------------------------------------------------------------- 8839 // Transform initial VPlan: Apply previously taken decisions, in order, to 8840 // bring the VPlan to its final state. 8841 // --------------------------------------------------------------------------- 8842 8843 // Apply Sink-After legal constraints. 8844 for (auto &Entry : SinkAfter) { 8845 VPRecipeBase *Sink = RecipeBuilder.getRecipe(Entry.first); 8846 VPRecipeBase *Target = RecipeBuilder.getRecipe(Entry.second); 8847 // If the target is in a replication region, make sure to move Sink to the 8848 // block after it, not into the replication region itself. 8849 if (auto *Region = 8850 dyn_cast_or_null<VPRegionBlock>(Target->getParent()->getParent())) { 8851 if (Region->isReplicator()) { 8852 assert(Region->getNumSuccessors() == 1 && "Expected SESE region!"); 8853 VPBasicBlock *NextBlock = 8854 cast<VPBasicBlock>(Region->getSuccessors().front()); 8855 Sink->moveBefore(*NextBlock, NextBlock->getFirstNonPhi()); 8856 continue; 8857 } 8858 } 8859 Sink->moveAfter(Target); 8860 } 8861 8862 // Interleave memory: for each Interleave Group we marked earlier as relevant 8863 // for this VPlan, replace the Recipes widening its memory instructions with a 8864 // single VPInterleaveRecipe at its insertion point. 8865 for (auto IG : InterleaveGroups) { 8866 auto *Recipe = cast<VPWidenMemoryInstructionRecipe>( 8867 RecipeBuilder.getRecipe(IG->getInsertPos())); 8868 SmallVector<VPValue *, 4> StoredValues; 8869 for (unsigned i = 0; i < IG->getFactor(); ++i) 8870 if (auto *SI = dyn_cast_or_null<StoreInst>(IG->getMember(i))) 8871 StoredValues.push_back(Plan->getOrAddVPValue(SI->getOperand(0))); 8872 8873 auto *VPIG = new VPInterleaveRecipe(IG, Recipe->getAddr(), StoredValues, 8874 Recipe->getMask()); 8875 VPIG->insertBefore(Recipe); 8876 unsigned J = 0; 8877 for (unsigned i = 0; i < IG->getFactor(); ++i) 8878 if (Instruction *Member = IG->getMember(i)) { 8879 if (!Member->getType()->isVoidTy()) { 8880 VPValue *OriginalV = Plan->getVPValue(Member); 8881 Plan->removeVPValueFor(Member); 8882 Plan->addVPValue(Member, VPIG->getVPValue(J)); 8883 OriginalV->replaceAllUsesWith(VPIG->getVPValue(J)); 8884 J++; 8885 } 8886 RecipeBuilder.getRecipe(Member)->eraseFromParent(); 8887 } 8888 } 8889 8890 // Adjust the recipes for any inloop reductions. 8891 if (Range.Start.isVector()) 8892 adjustRecipesForInLoopReductions(Plan, RecipeBuilder); 8893 8894 // Finally, if tail is folded by masking, introduce selects between the phi 8895 // and the live-out instruction of each reduction, at the end of the latch. 8896 if (CM.foldTailByMasking() && !Legal->getReductionVars().empty()) { 8897 Builder.setInsertPoint(VPBB); 8898 auto *Cond = RecipeBuilder.createBlockInMask(OrigLoop->getHeader(), Plan); 8899 for (auto &Reduction : Legal->getReductionVars()) { 8900 if (CM.isInLoopReduction(Reduction.first)) 8901 continue; 8902 VPValue *Phi = Plan->getOrAddVPValue(Reduction.first); 8903 VPValue *Red = Plan->getOrAddVPValue(Reduction.second.getLoopExitInstr()); 8904 Builder.createNaryOp(Instruction::Select, {Cond, Red, Phi}); 8905 } 8906 } 8907 8908 std::string PlanName; 8909 raw_string_ostream RSO(PlanName); 8910 ElementCount VF = Range.Start; 8911 Plan->addVF(VF); 8912 RSO << "Initial VPlan for VF={" << VF; 8913 for (VF *= 2; ElementCount::isKnownLT(VF, Range.End); VF *= 2) { 8914 Plan->addVF(VF); 8915 RSO << "," << VF; 8916 } 8917 RSO << "},UF>=1"; 8918 RSO.flush(); 8919 Plan->setName(PlanName); 8920 8921 return Plan; 8922 } 8923 8924 VPlanPtr LoopVectorizationPlanner::buildVPlan(VFRange &Range) { 8925 // Outer loop handling: They may require CFG and instruction level 8926 // transformations before even evaluating whether vectorization is profitable. 8927 // Since we cannot modify the incoming IR, we need to build VPlan upfront in 8928 // the vectorization pipeline. 8929 assert(!OrigLoop->isInnermost()); 8930 assert(EnableVPlanNativePath && "VPlan-native path is not enabled."); 8931 8932 // Create new empty VPlan 8933 auto Plan = std::make_unique<VPlan>(); 8934 8935 // Build hierarchical CFG 8936 VPlanHCFGBuilder HCFGBuilder(OrigLoop, LI, *Plan); 8937 HCFGBuilder.buildHierarchicalCFG(); 8938 8939 for (ElementCount VF = Range.Start; ElementCount::isKnownLT(VF, Range.End); 8940 VF *= 2) 8941 Plan->addVF(VF); 8942 8943 if (EnableVPlanPredication) { 8944 VPlanPredicator VPP(*Plan); 8945 VPP.predicate(); 8946 8947 // Avoid running transformation to recipes until masked code generation in 8948 // VPlan-native path is in place. 8949 return Plan; 8950 } 8951 8952 SmallPtrSet<Instruction *, 1> DeadInstructions; 8953 VPlanTransforms::VPInstructionsToVPRecipes( 8954 OrigLoop, Plan, Legal->getInductionVars(), DeadInstructions); 8955 return Plan; 8956 } 8957 8958 // Adjust the recipes for any inloop reductions. The chain of instructions 8959 // leading from the loop exit instr to the phi need to be converted to 8960 // reductions, with one operand being vector and the other being the scalar 8961 // reduction chain. 8962 void LoopVectorizationPlanner::adjustRecipesForInLoopReductions( 8963 VPlanPtr &Plan, VPRecipeBuilder &RecipeBuilder) { 8964 for (auto &Reduction : CM.getInLoopReductionChains()) { 8965 PHINode *Phi = Reduction.first; 8966 RecurrenceDescriptor &RdxDesc = Legal->getReductionVars()[Phi]; 8967 const SmallVector<Instruction *, 4> &ReductionOperations = Reduction.second; 8968 8969 // ReductionOperations are orders top-down from the phi's use to the 8970 // LoopExitValue. We keep a track of the previous item (the Chain) to tell 8971 // which of the two operands will remain scalar and which will be reduced. 8972 // For minmax the chain will be the select instructions. 8973 Instruction *Chain = Phi; 8974 for (Instruction *R : ReductionOperations) { 8975 VPRecipeBase *WidenRecipe = RecipeBuilder.getRecipe(R); 8976 RecurKind Kind = RdxDesc.getRecurrenceKind(); 8977 8978 VPValue *ChainOp = Plan->getVPValue(Chain); 8979 unsigned FirstOpId; 8980 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 8981 assert(isa<VPWidenSelectRecipe>(WidenRecipe) && 8982 "Expected to replace a VPWidenSelectSC"); 8983 FirstOpId = 1; 8984 } else { 8985 assert(isa<VPWidenRecipe>(WidenRecipe) && 8986 "Expected to replace a VPWidenSC"); 8987 FirstOpId = 0; 8988 } 8989 unsigned VecOpId = 8990 R->getOperand(FirstOpId) == Chain ? FirstOpId + 1 : FirstOpId; 8991 VPValue *VecOp = Plan->getVPValue(R->getOperand(VecOpId)); 8992 8993 auto *CondOp = CM.foldTailByMasking() 8994 ? RecipeBuilder.createBlockInMask(R->getParent(), Plan) 8995 : nullptr; 8996 VPReductionRecipe *RedRecipe = new VPReductionRecipe( 8997 &RdxDesc, R, ChainOp, VecOp, CondOp, TTI); 8998 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 8999 Plan->removeVPValueFor(R); 9000 Plan->addVPValue(R, RedRecipe); 9001 WidenRecipe->getParent()->insert(RedRecipe, WidenRecipe->getIterator()); 9002 WidenRecipe->getVPValue()->replaceAllUsesWith(RedRecipe); 9003 WidenRecipe->eraseFromParent(); 9004 9005 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9006 VPRecipeBase *CompareRecipe = 9007 RecipeBuilder.getRecipe(cast<Instruction>(R->getOperand(0))); 9008 assert(isa<VPWidenRecipe>(CompareRecipe) && 9009 "Expected to replace a VPWidenSC"); 9010 assert(cast<VPWidenRecipe>(CompareRecipe)->getNumUsers() == 0 && 9011 "Expected no remaining users"); 9012 CompareRecipe->eraseFromParent(); 9013 } 9014 Chain = R; 9015 } 9016 } 9017 } 9018 9019 Value* LoopVectorizationPlanner::VPCallbackILV:: 9020 getOrCreateVectorValues(Value *V, unsigned Part) { 9021 return ILV.getOrCreateVectorValue(V, Part); 9022 } 9023 9024 Value *LoopVectorizationPlanner::VPCallbackILV::getOrCreateScalarValue( 9025 Value *V, const VPIteration &Instance) { 9026 return ILV.getOrCreateScalarValue(V, Instance); 9027 } 9028 9029 void VPInterleaveRecipe::print(raw_ostream &O, const Twine &Indent, 9030 VPSlotTracker &SlotTracker) const { 9031 O << "\"INTERLEAVE-GROUP with factor " << IG->getFactor() << " at "; 9032 IG->getInsertPos()->printAsOperand(O, false); 9033 O << ", "; 9034 getAddr()->printAsOperand(O, SlotTracker); 9035 VPValue *Mask = getMask(); 9036 if (Mask) { 9037 O << ", "; 9038 Mask->printAsOperand(O, SlotTracker); 9039 } 9040 for (unsigned i = 0; i < IG->getFactor(); ++i) 9041 if (Instruction *I = IG->getMember(i)) 9042 O << "\\l\" +\n" << Indent << "\" " << VPlanIngredient(I) << " " << i; 9043 } 9044 9045 void VPWidenCallRecipe::execute(VPTransformState &State) { 9046 State.ILV->widenCallInstruction(*cast<CallInst>(getUnderlyingInstr()), this, 9047 *this, State); 9048 } 9049 9050 void VPWidenSelectRecipe::execute(VPTransformState &State) { 9051 State.ILV->widenSelectInstruction(*cast<SelectInst>(getUnderlyingInstr()), 9052 this, *this, InvariantCond, State); 9053 } 9054 9055 void VPWidenRecipe::execute(VPTransformState &State) { 9056 State.ILV->widenInstruction(*getUnderlyingInstr(), this, *this, State); 9057 } 9058 9059 void VPWidenGEPRecipe::execute(VPTransformState &State) { 9060 State.ILV->widenGEP(cast<GetElementPtrInst>(getUnderlyingInstr()), this, 9061 *this, State.UF, State.VF, IsPtrLoopInvariant, 9062 IsIndexLoopInvariant, State); 9063 } 9064 9065 void VPWidenIntOrFpInductionRecipe::execute(VPTransformState &State) { 9066 assert(!State.Instance && "Int or FP induction being replicated."); 9067 State.ILV->widenIntOrFpInduction(IV, getStartValue()->getLiveInIRValue(), 9068 getTruncInst(), getVPValue(0), 9069 getCastValue(), State); 9070 } 9071 9072 void VPWidenPHIRecipe::execute(VPTransformState &State) { 9073 Value *StartV = 9074 getStartValue() ? getStartValue()->getLiveInIRValue() : nullptr; 9075 State.ILV->widenPHIInstruction(cast<PHINode>(getUnderlyingValue()), RdxDesc, 9076 StartV, this, State); 9077 } 9078 9079 void VPBlendRecipe::execute(VPTransformState &State) { 9080 State.ILV->setDebugLocFromInst(State.Builder, Phi); 9081 // We know that all PHIs in non-header blocks are converted into 9082 // selects, so we don't have to worry about the insertion order and we 9083 // can just use the builder. 9084 // At this point we generate the predication tree. There may be 9085 // duplications since this is a simple recursive scan, but future 9086 // optimizations will clean it up. 9087 9088 unsigned NumIncoming = getNumIncomingValues(); 9089 9090 // Generate a sequence of selects of the form: 9091 // SELECT(Mask3, In3, 9092 // SELECT(Mask2, In2, 9093 // SELECT(Mask1, In1, 9094 // In0))) 9095 // Note that Mask0 is never used: lanes for which no path reaches this phi and 9096 // are essentially undef are taken from In0. 9097 InnerLoopVectorizer::VectorParts Entry(State.UF); 9098 for (unsigned In = 0; In < NumIncoming; ++In) { 9099 for (unsigned Part = 0; Part < State.UF; ++Part) { 9100 // We might have single edge PHIs (blocks) - use an identity 9101 // 'select' for the first PHI operand. 9102 Value *In0 = State.get(getIncomingValue(In), Part); 9103 if (In == 0) 9104 Entry[Part] = In0; // Initialize with the first incoming value. 9105 else { 9106 // Select between the current value and the previous incoming edge 9107 // based on the incoming mask. 9108 Value *Cond = State.get(getMask(In), Part); 9109 Entry[Part] = 9110 State.Builder.CreateSelect(Cond, In0, Entry[Part], "predphi"); 9111 } 9112 } 9113 } 9114 for (unsigned Part = 0; Part < State.UF; ++Part) 9115 State.set(this, Phi, Entry[Part], Part); 9116 } 9117 9118 void VPInterleaveRecipe::execute(VPTransformState &State) { 9119 assert(!State.Instance && "Interleave group being replicated."); 9120 State.ILV->vectorizeInterleaveGroup(IG, definedValues(), State, getAddr(), 9121 getStoredValues(), getMask()); 9122 } 9123 9124 void VPReductionRecipe::execute(VPTransformState &State) { 9125 assert(!State.Instance && "Reduction being replicated."); 9126 for (unsigned Part = 0; Part < State.UF; ++Part) { 9127 RecurKind Kind = RdxDesc->getRecurrenceKind(); 9128 Value *NewVecOp = State.get(getVecOp(), Part); 9129 if (VPValue *Cond = getCondOp()) { 9130 Value *NewCond = State.get(Cond, Part); 9131 VectorType *VecTy = cast<VectorType>(NewVecOp->getType()); 9132 Constant *Iden = RecurrenceDescriptor::getRecurrenceIdentity( 9133 Kind, VecTy->getElementType()); 9134 Constant *IdenVec = 9135 ConstantVector::getSplat(VecTy->getElementCount(), Iden); 9136 Value *Select = State.Builder.CreateSelect(NewCond, NewVecOp, IdenVec); 9137 NewVecOp = Select; 9138 } 9139 Value *NewRed = 9140 createTargetReduction(State.Builder, TTI, *RdxDesc, NewVecOp); 9141 Value *PrevInChain = State.get(getChainOp(), Part); 9142 Value *NextInChain; 9143 if (RecurrenceDescriptor::isMinMaxRecurrenceKind(Kind)) { 9144 NextInChain = 9145 createMinMaxOp(State.Builder, RdxDesc->getRecurrenceKind(), 9146 NewRed, PrevInChain); 9147 } else { 9148 NextInChain = State.Builder.CreateBinOp( 9149 (Instruction::BinaryOps)getUnderlyingInstr()->getOpcode(), NewRed, 9150 PrevInChain); 9151 } 9152 State.set(this, getUnderlyingInstr(), NextInChain, Part); 9153 } 9154 } 9155 9156 void VPReplicateRecipe::execute(VPTransformState &State) { 9157 if (State.Instance) { // Generate a single instance. 9158 assert(!State.VF.isScalable() && "Can't scalarize a scalable vector"); 9159 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9160 *State.Instance, IsPredicated, State); 9161 // Insert scalar instance packing it into a vector. 9162 if (AlsoPack && State.VF.isVector()) { 9163 // If we're constructing lane 0, initialize to start from poison. 9164 if (State.Instance->Lane == 0) { 9165 assert(!State.VF.isScalable() && "VF is assumed to be non scalable."); 9166 Value *Poison = PoisonValue::get( 9167 VectorType::get(getUnderlyingValue()->getType(), State.VF)); 9168 State.set(this, getUnderlyingInstr(), Poison, State.Instance->Part); 9169 } 9170 State.ILV->packScalarIntoVectorValue(this, *State.Instance, State); 9171 } 9172 return; 9173 } 9174 9175 // Generate scalar instances for all VF lanes of all UF parts, unless the 9176 // instruction is uniform inwhich case generate only the first lane for each 9177 // of the UF parts. 9178 unsigned EndLane = IsUniform ? 1 : State.VF.getKnownMinValue(); 9179 assert((!State.VF.isScalable() || IsUniform) && 9180 "Can't scalarize a scalable vector"); 9181 for (unsigned Part = 0; Part < State.UF; ++Part) 9182 for (unsigned Lane = 0; Lane < EndLane; ++Lane) 9183 State.ILV->scalarizeInstruction(getUnderlyingInstr(), this, *this, 9184 VPIteration(Part, Lane), IsPredicated, 9185 State); 9186 } 9187 9188 void VPBranchOnMaskRecipe::execute(VPTransformState &State) { 9189 assert(State.Instance && "Branch on Mask works only on single instance."); 9190 9191 unsigned Part = State.Instance->Part; 9192 unsigned Lane = State.Instance->Lane; 9193 9194 Value *ConditionBit = nullptr; 9195 VPValue *BlockInMask = getMask(); 9196 if (BlockInMask) { 9197 ConditionBit = State.get(BlockInMask, Part); 9198 if (ConditionBit->getType()->isVectorTy()) 9199 ConditionBit = State.Builder.CreateExtractElement( 9200 ConditionBit, State.Builder.getInt32(Lane)); 9201 } else // Block in mask is all-one. 9202 ConditionBit = State.Builder.getTrue(); 9203 9204 // Replace the temporary unreachable terminator with a new conditional branch, 9205 // whose two destinations will be set later when they are created. 9206 auto *CurrentTerminator = State.CFG.PrevBB->getTerminator(); 9207 assert(isa<UnreachableInst>(CurrentTerminator) && 9208 "Expected to replace unreachable terminator with conditional branch."); 9209 auto *CondBr = BranchInst::Create(State.CFG.PrevBB, nullptr, ConditionBit); 9210 CondBr->setSuccessor(0, nullptr); 9211 ReplaceInstWithInst(CurrentTerminator, CondBr); 9212 } 9213 9214 void VPPredInstPHIRecipe::execute(VPTransformState &State) { 9215 assert(State.Instance && "Predicated instruction PHI works per instance."); 9216 Instruction *ScalarPredInst = 9217 cast<Instruction>(State.get(getOperand(0), *State.Instance)); 9218 BasicBlock *PredicatedBB = ScalarPredInst->getParent(); 9219 BasicBlock *PredicatingBB = PredicatedBB->getSinglePredecessor(); 9220 assert(PredicatingBB && "Predicated block has no single predecessor."); 9221 assert(isa<VPReplicateRecipe>(getOperand(0)) && 9222 "operand must be VPReplicateRecipe"); 9223 9224 // By current pack/unpack logic we need to generate only a single phi node: if 9225 // a vector value for the predicated instruction exists at this point it means 9226 // the instruction has vector users only, and a phi for the vector value is 9227 // needed. In this case the recipe of the predicated instruction is marked to 9228 // also do that packing, thereby "hoisting" the insert-element sequence. 9229 // Otherwise, a phi node for the scalar value is needed. 9230 unsigned Part = State.Instance->Part; 9231 if (State.hasVectorValue(getOperand(0), Part)) { 9232 Value *VectorValue = State.get(getOperand(0), Part); 9233 InsertElementInst *IEI = cast<InsertElementInst>(VectorValue); 9234 PHINode *VPhi = State.Builder.CreatePHI(IEI->getType(), 2); 9235 VPhi->addIncoming(IEI->getOperand(0), PredicatingBB); // Unmodified vector. 9236 VPhi->addIncoming(IEI, PredicatedBB); // New vector with inserted element. 9237 if (State.hasVectorValue(this, Part)) 9238 State.reset(this, VPhi, Part); 9239 else 9240 State.set(this, VPhi, Part); 9241 // NOTE: Currently we need to update the value of the operand, so the next 9242 // predicated iteration inserts its generated value in the correct vector. 9243 State.reset(getOperand(0), VPhi, Part); 9244 } else { 9245 Type *PredInstType = getOperand(0)->getUnderlyingValue()->getType(); 9246 PHINode *Phi = State.Builder.CreatePHI(PredInstType, 2); 9247 Phi->addIncoming(PoisonValue::get(ScalarPredInst->getType()), 9248 PredicatingBB); 9249 Phi->addIncoming(ScalarPredInst, PredicatedBB); 9250 if (State.hasScalarValue(this, *State.Instance)) 9251 State.reset(this, Phi, *State.Instance); 9252 else 9253 State.set(this, Phi, *State.Instance); 9254 // NOTE: Currently we need to update the value of the operand, so the next 9255 // predicated iteration inserts its generated value in the correct vector. 9256 State.reset(getOperand(0), Phi, *State.Instance); 9257 } 9258 } 9259 9260 void VPWidenMemoryInstructionRecipe::execute(VPTransformState &State) { 9261 VPValue *StoredValue = isStore() ? getStoredValue() : nullptr; 9262 State.ILV->vectorizeMemoryInstruction(&Ingredient, State, 9263 StoredValue ? nullptr : getVPValue(), 9264 getAddr(), StoredValue, getMask()); 9265 } 9266 9267 // Determine how to lower the scalar epilogue, which depends on 1) optimising 9268 // for minimum code-size, 2) predicate compiler options, 3) loop hints forcing 9269 // predication, and 4) a TTI hook that analyses whether the loop is suitable 9270 // for predication. 9271 static ScalarEpilogueLowering getScalarEpilogueLowering( 9272 Function *F, Loop *L, LoopVectorizeHints &Hints, ProfileSummaryInfo *PSI, 9273 BlockFrequencyInfo *BFI, TargetTransformInfo *TTI, TargetLibraryInfo *TLI, 9274 AssumptionCache *AC, LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 9275 LoopVectorizationLegality &LVL) { 9276 // 1) OptSize takes precedence over all other options, i.e. if this is set, 9277 // don't look at hints or options, and don't request a scalar epilogue. 9278 // (For PGSO, as shouldOptimizeForSize isn't currently accessible from 9279 // LoopAccessInfo (due to code dependency and not being able to reliably get 9280 // PSI/BFI from a loop analysis under NPM), we cannot suppress the collection 9281 // of strides in LoopAccessInfo::analyzeLoop() and vectorize without 9282 // versioning when the vectorization is forced, unlike hasOptSize. So revert 9283 // back to the old way and vectorize with versioning when forced. See D81345.) 9284 if (F->hasOptSize() || (llvm::shouldOptimizeForSize(L->getHeader(), PSI, BFI, 9285 PGSOQueryType::IRPass) && 9286 Hints.getForce() != LoopVectorizeHints::FK_Enabled)) 9287 return CM_ScalarEpilogueNotAllowedOptSize; 9288 9289 // 2) If set, obey the directives 9290 if (PreferPredicateOverEpilogue.getNumOccurrences()) { 9291 switch (PreferPredicateOverEpilogue) { 9292 case PreferPredicateTy::ScalarEpilogue: 9293 return CM_ScalarEpilogueAllowed; 9294 case PreferPredicateTy::PredicateElseScalarEpilogue: 9295 return CM_ScalarEpilogueNotNeededUsePredicate; 9296 case PreferPredicateTy::PredicateOrDontVectorize: 9297 return CM_ScalarEpilogueNotAllowedUsePredicate; 9298 }; 9299 } 9300 9301 // 3) If set, obey the hints 9302 switch (Hints.getPredicate()) { 9303 case LoopVectorizeHints::FK_Enabled: 9304 return CM_ScalarEpilogueNotNeededUsePredicate; 9305 case LoopVectorizeHints::FK_Disabled: 9306 return CM_ScalarEpilogueAllowed; 9307 }; 9308 9309 // 4) if the TTI hook indicates this is profitable, request predication. 9310 if (TTI->preferPredicateOverEpilogue(L, LI, *SE, *AC, TLI, DT, 9311 LVL.getLAI())) 9312 return CM_ScalarEpilogueNotNeededUsePredicate; 9313 9314 return CM_ScalarEpilogueAllowed; 9315 } 9316 9317 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9318 const VPIteration &Instance) { 9319 set(Def, V, Instance); 9320 ILV->setScalarValue(IRDef, Instance, V); 9321 } 9322 9323 void VPTransformState::set(VPValue *Def, Value *IRDef, Value *V, 9324 unsigned Part) { 9325 set(Def, V, Part); 9326 ILV->setVectorValue(IRDef, Part, V); 9327 } 9328 9329 void VPTransformState::reset(VPValue *Def, Value *IRDef, Value *V, 9330 unsigned Part) { 9331 set(Def, V, Part); 9332 ILV->resetVectorValue(IRDef, Part, V); 9333 } 9334 9335 Value *VPTransformState::get(VPValue *Def, unsigned Part) { 9336 // If Values have been set for this Def return the one relevant for \p Part. 9337 if (hasVectorValue(Def, Part)) 9338 return Data.PerPartOutput[Def][Part]; 9339 9340 if (!hasScalarValue(Def, {Part, 0})) 9341 return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part); 9342 9343 Value *ScalarValue = get(Def, {Part, 0}); 9344 // If we aren't vectorizing, we can just copy the scalar map values over 9345 // to the vector map. 9346 if (VF.isScalar()) { 9347 set(Def, ScalarValue, Part); 9348 return ScalarValue; 9349 } 9350 9351 auto *RepR = dyn_cast<VPReplicateRecipe>(Def); 9352 bool IsUniform = RepR && RepR->isUniform(); 9353 9354 unsigned LastLane = IsUniform ? 0 : VF.getKnownMinValue() - 1; 9355 auto *LastInst = cast<Instruction>(get(Def, {Part, LastLane})); 9356 9357 // Set the insert point after the last scalarized instruction. This 9358 // ensures the insertelement sequence will directly follow the scalar 9359 // definitions. 9360 auto OldIP = Builder.saveIP(); 9361 auto NewIP = std::next(BasicBlock::iterator(LastInst)); 9362 Builder.SetInsertPoint(&*NewIP); 9363 9364 // However, if we are vectorizing, we need to construct the vector values. 9365 // If the value is known to be uniform after vectorization, we can just 9366 // broadcast the scalar value corresponding to lane zero for each unroll 9367 // iteration. Otherwise, we construct the vector values using 9368 // insertelement instructions. Since the resulting vectors are stored in 9369 // VectorLoopValueMap, we will only generate the insertelements once. 9370 Value *VectorValue = nullptr; 9371 if (IsUniform) { 9372 VectorValue = ILV->getBroadcastInstrs(ScalarValue); 9373 set(Def, VectorValue, Part); 9374 } else { 9375 // Initialize packing with insertelements to start from undef. 9376 assert(!VF.isScalable() && "VF is assumed to be non scalable."); 9377 Value *Undef = PoisonValue::get(VectorType::get(LastInst->getType(), VF)); 9378 set(Def, Undef, Part); 9379 for (unsigned Lane = 0; Lane < VF.getKnownMinValue(); ++Lane) 9380 ILV->packScalarIntoVectorValue(Def, {Part, Lane}, *this); 9381 VectorValue = get(Def, Part); 9382 } 9383 Builder.restoreIP(OldIP); 9384 return VectorValue; 9385 } 9386 9387 // Process the loop in the VPlan-native vectorization path. This path builds 9388 // VPlan upfront in the vectorization pipeline, which allows to apply 9389 // VPlan-to-VPlan transformations from the very beginning without modifying the 9390 // input LLVM IR. 9391 static bool processLoopInVPlanNativePath( 9392 Loop *L, PredicatedScalarEvolution &PSE, LoopInfo *LI, DominatorTree *DT, 9393 LoopVectorizationLegality *LVL, TargetTransformInfo *TTI, 9394 TargetLibraryInfo *TLI, DemandedBits *DB, AssumptionCache *AC, 9395 OptimizationRemarkEmitter *ORE, BlockFrequencyInfo *BFI, 9396 ProfileSummaryInfo *PSI, LoopVectorizeHints &Hints) { 9397 9398 if (isa<SCEVCouldNotCompute>(PSE.getBackedgeTakenCount())) { 9399 LLVM_DEBUG(dbgs() << "LV: cannot compute the outer-loop trip count\n"); 9400 return false; 9401 } 9402 assert(EnableVPlanNativePath && "VPlan-native path is disabled."); 9403 Function *F = L->getHeader()->getParent(); 9404 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL->getLAI()); 9405 9406 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9407 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, *LVL); 9408 9409 LoopVectorizationCostModel CM(SEL, L, PSE, LI, LVL, *TTI, TLI, DB, AC, ORE, F, 9410 &Hints, IAI); 9411 // Use the planner for outer loop vectorization. 9412 // TODO: CM is not used at this point inside the planner. Turn CM into an 9413 // optional argument if we don't need it in the future. 9414 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, LVL, CM, IAI, PSE); 9415 9416 // Get user vectorization factor. 9417 ElementCount UserVF = Hints.getWidth(); 9418 9419 // Plan how to best vectorize, return the best VF and its cost. 9420 const VectorizationFactor VF = LVP.planInVPlanNativePath(UserVF); 9421 9422 // If we are stress testing VPlan builds, do not attempt to generate vector 9423 // code. Masked vector code generation support will follow soon. 9424 // Also, do not attempt to vectorize if no vector code will be produced. 9425 if (VPlanBuildStressTest || EnableVPlanPredication || 9426 VectorizationFactor::Disabled() == VF) 9427 return false; 9428 9429 LVP.setBestPlan(VF.Width, 1); 9430 9431 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, 1, LVL, 9432 &CM, BFI, PSI); 9433 LLVM_DEBUG(dbgs() << "Vectorizing outer loop in \"" 9434 << L->getHeader()->getParent()->getName() << "\"\n"); 9435 LVP.executePlan(LB, DT); 9436 9437 // Mark the loop as already vectorized to avoid vectorizing again. 9438 Hints.setAlreadyVectorized(); 9439 9440 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9441 return true; 9442 } 9443 9444 // Emit a remark if there are stores to floats that required a floating point 9445 // extension. If the vectorized loop was generated with floating point there 9446 // will be a performance penalty from the conversion overhead and the change in 9447 // the vector width. 9448 static void checkMixedPrecision(Loop *L, OptimizationRemarkEmitter *ORE) { 9449 SmallVector<Instruction *, 4> Worklist; 9450 for (BasicBlock *BB : L->getBlocks()) { 9451 for (Instruction &Inst : *BB) { 9452 if (auto *S = dyn_cast<StoreInst>(&Inst)) { 9453 if (S->getValueOperand()->getType()->isFloatTy()) 9454 Worklist.push_back(S); 9455 } 9456 } 9457 } 9458 9459 // Traverse the floating point stores upwards searching, for floating point 9460 // conversions. 9461 SmallPtrSet<const Instruction *, 4> Visited; 9462 SmallPtrSet<const Instruction *, 4> EmittedRemark; 9463 while (!Worklist.empty()) { 9464 auto *I = Worklist.pop_back_val(); 9465 if (!L->contains(I)) 9466 continue; 9467 if (!Visited.insert(I).second) 9468 continue; 9469 9470 // Emit a remark if the floating point store required a floating 9471 // point conversion. 9472 // TODO: More work could be done to identify the root cause such as a 9473 // constant or a function return type and point the user to it. 9474 if (isa<FPExtInst>(I) && EmittedRemark.insert(I).second) 9475 ORE->emit([&]() { 9476 return OptimizationRemarkAnalysis(LV_NAME, "VectorMixedPrecision", 9477 I->getDebugLoc(), L->getHeader()) 9478 << "floating point conversion changes vector width. " 9479 << "Mixed floating point precision requires an up/down " 9480 << "cast that will negatively impact performance."; 9481 }); 9482 9483 for (Use &Op : I->operands()) 9484 if (auto *OpI = dyn_cast<Instruction>(Op)) 9485 Worklist.push_back(OpI); 9486 } 9487 } 9488 9489 LoopVectorizePass::LoopVectorizePass(LoopVectorizeOptions Opts) 9490 : InterleaveOnlyWhenForced(Opts.InterleaveOnlyWhenForced || 9491 !EnableLoopInterleaving), 9492 VectorizeOnlyWhenForced(Opts.VectorizeOnlyWhenForced || 9493 !EnableLoopVectorization) {} 9494 9495 bool LoopVectorizePass::processLoop(Loop *L) { 9496 assert((EnableVPlanNativePath || L->isInnermost()) && 9497 "VPlan-native path is not enabled. Only process inner loops."); 9498 9499 #ifndef NDEBUG 9500 const std::string DebugLocStr = getDebugLocString(L); 9501 #endif /* NDEBUG */ 9502 9503 LLVM_DEBUG(dbgs() << "\nLV: Checking a loop in \"" 9504 << L->getHeader()->getParent()->getName() << "\" from " 9505 << DebugLocStr << "\n"); 9506 9507 LoopVectorizeHints Hints(L, InterleaveOnlyWhenForced, *ORE); 9508 9509 LLVM_DEBUG( 9510 dbgs() << "LV: Loop hints:" 9511 << " force=" 9512 << (Hints.getForce() == LoopVectorizeHints::FK_Disabled 9513 ? "disabled" 9514 : (Hints.getForce() == LoopVectorizeHints::FK_Enabled 9515 ? "enabled" 9516 : "?")) 9517 << " width=" << Hints.getWidth() 9518 << " unroll=" << Hints.getInterleave() << "\n"); 9519 9520 // Function containing loop 9521 Function *F = L->getHeader()->getParent(); 9522 9523 // Looking at the diagnostic output is the only way to determine if a loop 9524 // was vectorized (other than looking at the IR or machine code), so it 9525 // is important to generate an optimization remark for each loop. Most of 9526 // these messages are generated as OptimizationRemarkAnalysis. Remarks 9527 // generated as OptimizationRemark and OptimizationRemarkMissed are 9528 // less verbose reporting vectorized loops and unvectorized loops that may 9529 // benefit from vectorization, respectively. 9530 9531 if (!Hints.allowVectorization(F, L, VectorizeOnlyWhenForced)) { 9532 LLVM_DEBUG(dbgs() << "LV: Loop hints prevent vectorization.\n"); 9533 return false; 9534 } 9535 9536 PredicatedScalarEvolution PSE(*SE, *L); 9537 9538 // Check if it is legal to vectorize the loop. 9539 LoopVectorizationRequirements Requirements(*ORE); 9540 LoopVectorizationLegality LVL(L, PSE, DT, TTI, TLI, AA, F, GetLAA, LI, ORE, 9541 &Requirements, &Hints, DB, AC, BFI, PSI); 9542 if (!LVL.canVectorize(EnableVPlanNativePath)) { 9543 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n"); 9544 Hints.emitRemarkWithHints(); 9545 return false; 9546 } 9547 9548 // Check the function attributes and profiles to find out if this function 9549 // should be optimized for size. 9550 ScalarEpilogueLowering SEL = getScalarEpilogueLowering( 9551 F, L, Hints, PSI, BFI, TTI, TLI, AC, LI, PSE.getSE(), DT, LVL); 9552 9553 // Entrance to the VPlan-native vectorization path. Outer loops are processed 9554 // here. They may require CFG and instruction level transformations before 9555 // even evaluating whether vectorization is profitable. Since we cannot modify 9556 // the incoming IR, we need to build VPlan upfront in the vectorization 9557 // pipeline. 9558 if (!L->isInnermost()) 9559 return processLoopInVPlanNativePath(L, PSE, LI, DT, &LVL, TTI, TLI, DB, AC, 9560 ORE, BFI, PSI, Hints); 9561 9562 assert(L->isInnermost() && "Inner loop expected."); 9563 9564 // Check the loop for a trip count threshold: vectorize loops with a tiny trip 9565 // count by optimizing for size, to minimize overheads. 9566 auto ExpectedTC = getSmallBestKnownTC(*SE, L); 9567 if (ExpectedTC && *ExpectedTC < TinyTripCountVectorThreshold) { 9568 LLVM_DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " 9569 << "This loop is worth vectorizing only if no scalar " 9570 << "iteration overheads are incurred."); 9571 if (Hints.getForce() == LoopVectorizeHints::FK_Enabled) 9572 LLVM_DEBUG(dbgs() << " But vectorizing was explicitly forced.\n"); 9573 else { 9574 LLVM_DEBUG(dbgs() << "\n"); 9575 SEL = CM_ScalarEpilogueNotAllowedLowTripLoop; 9576 } 9577 } 9578 9579 // Check the function attributes to see if implicit floats are allowed. 9580 // FIXME: This check doesn't seem possibly correct -- what if the loop is 9581 // an integer loop and the vector instructions selected are purely integer 9582 // vector instructions? 9583 if (F->hasFnAttribute(Attribute::NoImplicitFloat)) { 9584 reportVectorizationFailure( 9585 "Can't vectorize when the NoImplicitFloat attribute is used", 9586 "loop not vectorized due to NoImplicitFloat attribute", 9587 "NoImplicitFloat", ORE, L); 9588 Hints.emitRemarkWithHints(); 9589 return false; 9590 } 9591 9592 // Check if the target supports potentially unsafe FP vectorization. 9593 // FIXME: Add a check for the type of safety issue (denormal, signaling) 9594 // for the target we're vectorizing for, to make sure none of the 9595 // additional fp-math flags can help. 9596 if (Hints.isPotentiallyUnsafe() && 9597 TTI->isFPVectorizationPotentiallyUnsafe()) { 9598 reportVectorizationFailure( 9599 "Potentially unsafe FP op prevents vectorization", 9600 "loop not vectorized due to unsafe FP support.", 9601 "UnsafeFP", ORE, L); 9602 Hints.emitRemarkWithHints(); 9603 return false; 9604 } 9605 9606 bool UseInterleaved = TTI->enableInterleavedAccessVectorization(); 9607 InterleavedAccessInfo IAI(PSE, L, DT, LI, LVL.getLAI()); 9608 9609 // If an override option has been passed in for interleaved accesses, use it. 9610 if (EnableInterleavedMemAccesses.getNumOccurrences() > 0) 9611 UseInterleaved = EnableInterleavedMemAccesses; 9612 9613 // Analyze interleaved memory accesses. 9614 if (UseInterleaved) { 9615 IAI.analyzeInterleaving(useMaskedInterleavedAccesses(*TTI)); 9616 } 9617 9618 // Use the cost model. 9619 LoopVectorizationCostModel CM(SEL, L, PSE, LI, &LVL, *TTI, TLI, DB, AC, ORE, 9620 F, &Hints, IAI); 9621 CM.collectValuesToIgnore(); 9622 9623 // Use the planner for vectorization. 9624 LoopVectorizationPlanner LVP(L, LI, TLI, TTI, &LVL, CM, IAI, PSE); 9625 9626 // Get user vectorization factor and interleave count. 9627 ElementCount UserVF = Hints.getWidth(); 9628 unsigned UserIC = Hints.getInterleave(); 9629 9630 // Plan how to best vectorize, return the best VF and its cost. 9631 Optional<VectorizationFactor> MaybeVF = LVP.plan(UserVF, UserIC); 9632 9633 VectorizationFactor VF = VectorizationFactor::Disabled(); 9634 unsigned IC = 1; 9635 9636 if (MaybeVF) { 9637 VF = *MaybeVF; 9638 // Select the interleave count. 9639 IC = CM.selectInterleaveCount(VF.Width, VF.Cost); 9640 } 9641 9642 // Identify the diagnostic messages that should be produced. 9643 std::pair<StringRef, std::string> VecDiagMsg, IntDiagMsg; 9644 bool VectorizeLoop = true, InterleaveLoop = true; 9645 if (Requirements.doesNotMeet(F, L, Hints)) { 9646 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization " 9647 "requirements.\n"); 9648 Hints.emitRemarkWithHints(); 9649 return false; 9650 } 9651 9652 if (VF.Width.isScalar()) { 9653 LLVM_DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n"); 9654 VecDiagMsg = std::make_pair( 9655 "VectorizationNotBeneficial", 9656 "the cost-model indicates that vectorization is not beneficial"); 9657 VectorizeLoop = false; 9658 } 9659 9660 if (!MaybeVF && UserIC > 1) { 9661 // Tell the user interleaving was avoided up-front, despite being explicitly 9662 // requested. 9663 LLVM_DEBUG(dbgs() << "LV: Ignoring UserIC, because vectorization and " 9664 "interleaving should be avoided up front\n"); 9665 IntDiagMsg = std::make_pair( 9666 "InterleavingAvoided", 9667 "Ignoring UserIC, because interleaving was avoided up front"); 9668 InterleaveLoop = false; 9669 } else if (IC == 1 && UserIC <= 1) { 9670 // Tell the user interleaving is not beneficial. 9671 LLVM_DEBUG(dbgs() << "LV: Interleaving is not beneficial.\n"); 9672 IntDiagMsg = std::make_pair( 9673 "InterleavingNotBeneficial", 9674 "the cost-model indicates that interleaving is not beneficial"); 9675 InterleaveLoop = false; 9676 if (UserIC == 1) { 9677 IntDiagMsg.first = "InterleavingNotBeneficialAndDisabled"; 9678 IntDiagMsg.second += 9679 " and is explicitly disabled or interleave count is set to 1"; 9680 } 9681 } else if (IC > 1 && UserIC == 1) { 9682 // Tell the user interleaving is beneficial, but it explicitly disabled. 9683 LLVM_DEBUG( 9684 dbgs() << "LV: Interleaving is beneficial but is explicitly disabled."); 9685 IntDiagMsg = std::make_pair( 9686 "InterleavingBeneficialButDisabled", 9687 "the cost-model indicates that interleaving is beneficial " 9688 "but is explicitly disabled or interleave count is set to 1"); 9689 InterleaveLoop = false; 9690 } 9691 9692 // Override IC if user provided an interleave count. 9693 IC = UserIC > 0 ? UserIC : IC; 9694 9695 // Emit diagnostic messages, if any. 9696 const char *VAPassName = Hints.vectorizeAnalysisPassName(); 9697 if (!VectorizeLoop && !InterleaveLoop) { 9698 // Do not vectorize or interleaving the loop. 9699 ORE->emit([&]() { 9700 return OptimizationRemarkMissed(VAPassName, VecDiagMsg.first, 9701 L->getStartLoc(), L->getHeader()) 9702 << VecDiagMsg.second; 9703 }); 9704 ORE->emit([&]() { 9705 return OptimizationRemarkMissed(LV_NAME, IntDiagMsg.first, 9706 L->getStartLoc(), L->getHeader()) 9707 << IntDiagMsg.second; 9708 }); 9709 return false; 9710 } else if (!VectorizeLoop && InterleaveLoop) { 9711 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9712 ORE->emit([&]() { 9713 return OptimizationRemarkAnalysis(VAPassName, VecDiagMsg.first, 9714 L->getStartLoc(), L->getHeader()) 9715 << VecDiagMsg.second; 9716 }); 9717 } else if (VectorizeLoop && !InterleaveLoop) { 9718 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9719 << ") in " << DebugLocStr << '\n'); 9720 ORE->emit([&]() { 9721 return OptimizationRemarkAnalysis(LV_NAME, IntDiagMsg.first, 9722 L->getStartLoc(), L->getHeader()) 9723 << IntDiagMsg.second; 9724 }); 9725 } else if (VectorizeLoop && InterleaveLoop) { 9726 LLVM_DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width 9727 << ") in " << DebugLocStr << '\n'); 9728 LLVM_DEBUG(dbgs() << "LV: Interleave Count is " << IC << '\n'); 9729 } 9730 9731 LVP.setBestPlan(VF.Width, IC); 9732 9733 using namespace ore; 9734 bool DisableRuntimeUnroll = false; 9735 MDNode *OrigLoopID = L->getLoopID(); 9736 9737 if (!VectorizeLoop) { 9738 assert(IC > 1 && "interleave count should not be 1 or 0"); 9739 // If we decided that it is not legal to vectorize the loop, then 9740 // interleave it. 9741 InnerLoopUnroller Unroller(L, PSE, LI, DT, TLI, TTI, AC, ORE, IC, &LVL, &CM, 9742 BFI, PSI); 9743 LVP.executePlan(Unroller, DT); 9744 9745 ORE->emit([&]() { 9746 return OptimizationRemark(LV_NAME, "Interleaved", L->getStartLoc(), 9747 L->getHeader()) 9748 << "interleaved loop (interleaved count: " 9749 << NV("InterleaveCount", IC) << ")"; 9750 }); 9751 } else { 9752 // If we decided that it is *legal* to vectorize the loop, then do it. 9753 9754 // Consider vectorizing the epilogue too if it's profitable. 9755 VectorizationFactor EpilogueVF = 9756 CM.selectEpilogueVectorizationFactor(VF.Width, LVP); 9757 if (EpilogueVF.Width.isVector()) { 9758 9759 // The first pass vectorizes the main loop and creates a scalar epilogue 9760 // to be vectorized by executing the plan (potentially with a different 9761 // factor) again shortly afterwards. 9762 EpilogueLoopVectorizationInfo EPI(VF.Width.getKnownMinValue(), IC, 9763 EpilogueVF.Width.getKnownMinValue(), 1); 9764 EpilogueVectorizerMainLoop MainILV(L, PSE, LI, DT, TLI, TTI, AC, ORE, EPI, 9765 &LVL, &CM, BFI, PSI); 9766 9767 LVP.setBestPlan(EPI.MainLoopVF, EPI.MainLoopUF); 9768 LVP.executePlan(MainILV, DT); 9769 ++LoopsVectorized; 9770 9771 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9772 formLCSSARecursively(*L, *DT, LI, SE); 9773 9774 // Second pass vectorizes the epilogue and adjusts the control flow 9775 // edges from the first pass. 9776 LVP.setBestPlan(EPI.EpilogueVF, EPI.EpilogueUF); 9777 EPI.MainLoopVF = EPI.EpilogueVF; 9778 EPI.MainLoopUF = EPI.EpilogueUF; 9779 EpilogueVectorizerEpilogueLoop EpilogILV(L, PSE, LI, DT, TLI, TTI, AC, 9780 ORE, EPI, &LVL, &CM, BFI, PSI); 9781 LVP.executePlan(EpilogILV, DT); 9782 ++LoopsEpilogueVectorized; 9783 9784 if (!MainILV.areSafetyChecksAdded()) 9785 DisableRuntimeUnroll = true; 9786 } else { 9787 InnerLoopVectorizer LB(L, PSE, LI, DT, TLI, TTI, AC, ORE, VF.Width, IC, 9788 &LVL, &CM, BFI, PSI); 9789 LVP.executePlan(LB, DT); 9790 ++LoopsVectorized; 9791 9792 // Add metadata to disable runtime unrolling a scalar loop when there are 9793 // no runtime checks about strides and memory. A scalar loop that is 9794 // rarely used is not worth unrolling. 9795 if (!LB.areSafetyChecksAdded()) 9796 DisableRuntimeUnroll = true; 9797 } 9798 9799 // Report the vectorization decision. 9800 ORE->emit([&]() { 9801 return OptimizationRemark(LV_NAME, "Vectorized", L->getStartLoc(), 9802 L->getHeader()) 9803 << "vectorized loop (vectorization width: " 9804 << NV("VectorizationFactor", VF.Width) 9805 << ", interleaved count: " << NV("InterleaveCount", IC) << ")"; 9806 }); 9807 9808 if (ORE->allowExtraAnalysis(LV_NAME)) 9809 checkMixedPrecision(L, ORE); 9810 } 9811 9812 Optional<MDNode *> RemainderLoopID = 9813 makeFollowupLoopID(OrigLoopID, {LLVMLoopVectorizeFollowupAll, 9814 LLVMLoopVectorizeFollowupEpilogue}); 9815 if (RemainderLoopID.hasValue()) { 9816 L->setLoopID(RemainderLoopID.getValue()); 9817 } else { 9818 if (DisableRuntimeUnroll) 9819 AddRuntimeUnrollDisableMetaData(L); 9820 9821 // Mark the loop as already vectorized to avoid vectorizing again. 9822 Hints.setAlreadyVectorized(); 9823 } 9824 9825 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs())); 9826 return true; 9827 } 9828 9829 LoopVectorizeResult LoopVectorizePass::runImpl( 9830 Function &F, ScalarEvolution &SE_, LoopInfo &LI_, TargetTransformInfo &TTI_, 9831 DominatorTree &DT_, BlockFrequencyInfo &BFI_, TargetLibraryInfo *TLI_, 9832 DemandedBits &DB_, AAResults &AA_, AssumptionCache &AC_, 9833 std::function<const LoopAccessInfo &(Loop &)> &GetLAA_, 9834 OptimizationRemarkEmitter &ORE_, ProfileSummaryInfo *PSI_) { 9835 SE = &SE_; 9836 LI = &LI_; 9837 TTI = &TTI_; 9838 DT = &DT_; 9839 BFI = &BFI_; 9840 TLI = TLI_; 9841 AA = &AA_; 9842 AC = &AC_; 9843 GetLAA = &GetLAA_; 9844 DB = &DB_; 9845 ORE = &ORE_; 9846 PSI = PSI_; 9847 9848 // Don't attempt if 9849 // 1. the target claims to have no vector registers, and 9850 // 2. interleaving won't help ILP. 9851 // 9852 // The second condition is necessary because, even if the target has no 9853 // vector registers, loop vectorization may still enable scalar 9854 // interleaving. 9855 if (!TTI->getNumberOfRegisters(TTI->getRegisterClassForType(true)) && 9856 TTI->getMaxInterleaveFactor(1) < 2) 9857 return LoopVectorizeResult(false, false); 9858 9859 bool Changed = false, CFGChanged = false; 9860 9861 // The vectorizer requires loops to be in simplified form. 9862 // Since simplification may add new inner loops, it has to run before the 9863 // legality and profitability checks. This means running the loop vectorizer 9864 // will simplify all loops, regardless of whether anything end up being 9865 // vectorized. 9866 for (auto &L : *LI) 9867 Changed |= CFGChanged |= 9868 simplifyLoop(L, DT, LI, SE, AC, nullptr, false /* PreserveLCSSA */); 9869 9870 // Build up a worklist of inner-loops to vectorize. This is necessary as 9871 // the act of vectorizing or partially unrolling a loop creates new loops 9872 // and can invalidate iterators across the loops. 9873 SmallVector<Loop *, 8> Worklist; 9874 9875 for (Loop *L : *LI) 9876 collectSupportedLoops(*L, LI, ORE, Worklist); 9877 9878 LoopsAnalyzed += Worklist.size(); 9879 9880 // Now walk the identified inner loops. 9881 while (!Worklist.empty()) { 9882 Loop *L = Worklist.pop_back_val(); 9883 9884 // For the inner loops we actually process, form LCSSA to simplify the 9885 // transform. 9886 Changed |= formLCSSARecursively(*L, *DT, LI, SE); 9887 9888 Changed |= CFGChanged |= processLoop(L); 9889 } 9890 9891 // Process each loop nest in the function. 9892 return LoopVectorizeResult(Changed, CFGChanged); 9893 } 9894 9895 PreservedAnalyses LoopVectorizePass::run(Function &F, 9896 FunctionAnalysisManager &AM) { 9897 auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 9898 auto &LI = AM.getResult<LoopAnalysis>(F); 9899 auto &TTI = AM.getResult<TargetIRAnalysis>(F); 9900 auto &DT = AM.getResult<DominatorTreeAnalysis>(F); 9901 auto &BFI = AM.getResult<BlockFrequencyAnalysis>(F); 9902 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); 9903 auto &AA = AM.getResult<AAManager>(F); 9904 auto &AC = AM.getResult<AssumptionAnalysis>(F); 9905 auto &DB = AM.getResult<DemandedBitsAnalysis>(F); 9906 auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); 9907 MemorySSA *MSSA = EnableMSSALoopDependency 9908 ? &AM.getResult<MemorySSAAnalysis>(F).getMSSA() 9909 : nullptr; 9910 9911 auto &LAM = AM.getResult<LoopAnalysisManagerFunctionProxy>(F).getManager(); 9912 std::function<const LoopAccessInfo &(Loop &)> GetLAA = 9913 [&](Loop &L) -> const LoopAccessInfo & { 9914 LoopStandardAnalysisResults AR = {AA, AC, DT, LI, SE, 9915 TLI, TTI, nullptr, MSSA}; 9916 return LAM.getResult<LoopAccessAnalysis>(L, AR); 9917 }; 9918 auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); 9919 ProfileSummaryInfo *PSI = 9920 MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); 9921 LoopVectorizeResult Result = 9922 runImpl(F, SE, LI, TTI, DT, BFI, &TLI, DB, AA, AC, GetLAA, ORE, PSI); 9923 if (!Result.MadeAnyChange) 9924 return PreservedAnalyses::all(); 9925 PreservedAnalyses PA; 9926 9927 // We currently do not preserve loopinfo/dominator analyses with outer loop 9928 // vectorization. Until this is addressed, mark these analyses as preserved 9929 // only for non-VPlan-native path. 9930 // TODO: Preserve Loop and Dominator analyses for VPlan-native path. 9931 if (!EnableVPlanNativePath) { 9932 PA.preserve<LoopAnalysis>(); 9933 PA.preserve<DominatorTreeAnalysis>(); 9934 } 9935 PA.preserve<BasicAA>(); 9936 PA.preserve<GlobalsAA>(); 9937 if (!Result.MadeCFGChange) 9938 PA.preserveSet<CFGAnalyses>(); 9939 return PA; 9940 } 9941