1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 29 namespace llvm { 30 31 class LoopInfo; 32 class LoopVectorizationLegality; 33 class LoopVectorizationCostModel; 34 class PredicatedScalarEvolution; 35 class LoopVectorizationRequirements; 36 class LoopVectorizeHints; 37 class OptimizationRemarkEmitter; 38 class TargetTransformInfo; 39 class TargetLibraryInfo; 40 class VPRecipeBuilder; 41 42 /// VPlan-based builder utility analogous to IRBuilder. 43 class VPBuilder { 44 VPBasicBlock *BB = nullptr; 45 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 46 47 VPInstruction *createInstruction(unsigned Opcode, 48 ArrayRef<VPValue *> Operands) { 49 VPInstruction *Instr = new VPInstruction(Opcode, Operands); 50 if (BB) 51 BB->insert(Instr, InsertPt); 52 return Instr; 53 } 54 55 VPInstruction *createInstruction(unsigned Opcode, 56 std::initializer_list<VPValue *> Operands) { 57 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); 58 } 59 60 public: 61 VPBuilder() {} 62 63 /// Clear the insertion point: created instructions will not be inserted into 64 /// a block. 65 void clearInsertionPoint() { 66 BB = nullptr; 67 InsertPt = VPBasicBlock::iterator(); 68 } 69 70 VPBasicBlock *getInsertBlock() const { return BB; } 71 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 72 73 /// InsertPoint - A saved insertion point. 74 class VPInsertPoint { 75 VPBasicBlock *Block = nullptr; 76 VPBasicBlock::iterator Point; 77 78 public: 79 /// Creates a new insertion point which doesn't point to anything. 80 VPInsertPoint() = default; 81 82 /// Creates a new insertion point at the given location. 83 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 84 : Block(InsertBlock), Point(InsertPoint) {} 85 86 /// Returns true if this insert point is set. 87 bool isSet() const { return Block != nullptr; } 88 89 VPBasicBlock *getBlock() const { return Block; } 90 VPBasicBlock::iterator getPoint() const { return Point; } 91 }; 92 93 /// Sets the current insert point to a previously-saved location. 94 void restoreIP(VPInsertPoint IP) { 95 if (IP.isSet()) 96 setInsertPoint(IP.getBlock(), IP.getPoint()); 97 else 98 clearInsertionPoint(); 99 } 100 101 /// This specifies that created VPInstructions should be appended to the end 102 /// of the specified block. 103 void setInsertPoint(VPBasicBlock *TheBB) { 104 assert(TheBB && "Attempting to set a null insert point"); 105 BB = TheBB; 106 InsertPt = BB->end(); 107 } 108 109 /// This specifies that created instructions should be inserted at the 110 /// specified point. 111 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 112 BB = TheBB; 113 InsertPt = IP; 114 } 115 116 /// Insert and return the specified instruction. 117 VPInstruction *insert(VPInstruction *I) const { 118 BB->insert(I, InsertPt); 119 return I; 120 } 121 122 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 123 /// its underlying Instruction. 124 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 125 Instruction *Inst = nullptr) { 126 VPInstruction *NewVPInst = createInstruction(Opcode, Operands); 127 NewVPInst->setUnderlyingValue(Inst); 128 return NewVPInst; 129 } 130 131 VPValue *createNot(VPValue *Operand) { 132 return createInstruction(VPInstruction::Not, {Operand}); 133 } 134 135 VPValue *createAnd(VPValue *LHS, VPValue *RHS) { 136 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); 137 } 138 139 VPValue *createOr(VPValue *LHS, VPValue *RHS) { 140 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); 141 } 142 143 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) { 144 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}); 145 } 146 147 //===--------------------------------------------------------------------===// 148 // RAII helpers. 149 //===--------------------------------------------------------------------===// 150 151 /// RAII object that stores the current insertion point and restores it when 152 /// the object is destroyed. 153 class InsertPointGuard { 154 VPBuilder &Builder; 155 VPBasicBlock *Block; 156 VPBasicBlock::iterator Point; 157 158 public: 159 InsertPointGuard(VPBuilder &B) 160 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 161 162 InsertPointGuard(const InsertPointGuard &) = delete; 163 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 164 165 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 166 }; 167 }; 168 169 /// TODO: The following VectorizationFactor was pulled out of 170 /// LoopVectorizationCostModel class. LV also deals with 171 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 172 /// We need to streamline them. 173 174 /// Information about vectorization costs. 175 struct VectorizationFactor { 176 /// Vector width with best cost. 177 ElementCount Width; 178 /// Cost of the loop with that width. 179 InstructionCost Cost; 180 181 VectorizationFactor(ElementCount Width, InstructionCost Cost) 182 : Width(Width), Cost(Cost) {} 183 184 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 185 static VectorizationFactor Disabled() { 186 return {ElementCount::getFixed(1), 0}; 187 } 188 189 bool operator==(const VectorizationFactor &rhs) const { 190 return Width == rhs.Width && Cost == rhs.Cost; 191 } 192 193 bool operator!=(const VectorizationFactor &rhs) const { 194 return !(*this == rhs); 195 } 196 }; 197 198 /// A class that represents two vectorization factors (initialized with 0 by 199 /// default). One for fixed-width vectorization and one for scalable 200 /// vectorization. This can be used by the vectorizer to choose from a range of 201 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 202 /// vectorize with. 203 struct FixedScalableVFPair { 204 ElementCount FixedVF; 205 ElementCount ScalableVF; 206 207 FixedScalableVFPair() 208 : FixedVF(ElementCount::getFixed(0)), 209 ScalableVF(ElementCount::getScalable(0)) {} 210 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 211 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 212 } 213 FixedScalableVFPair(const ElementCount &FixedVF, 214 const ElementCount &ScalableVF) 215 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 216 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 217 "Invalid scalable properties"); 218 } 219 220 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 221 222 /// \return true if either fixed- or scalable VF is non-zero. 223 explicit operator bool() const { return FixedVF || ScalableVF; } 224 225 /// \return true if either fixed- or scalable VF is a valid vector VF. 226 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 227 }; 228 229 /// Planner drives the vectorization process after having passed 230 /// Legality checks. 231 class LoopVectorizationPlanner { 232 /// The loop that we evaluate. 233 Loop *OrigLoop; 234 235 /// Loop Info analysis. 236 LoopInfo *LI; 237 238 /// Target Library Info. 239 const TargetLibraryInfo *TLI; 240 241 /// Target Transform Info. 242 const TargetTransformInfo *TTI; 243 244 /// The legality analysis. 245 LoopVectorizationLegality *Legal; 246 247 /// The profitability analysis. 248 LoopVectorizationCostModel &CM; 249 250 /// The interleaved access analysis. 251 InterleavedAccessInfo &IAI; 252 253 PredicatedScalarEvolution &PSE; 254 255 const LoopVectorizeHints &Hints; 256 257 LoopVectorizationRequirements &Requirements; 258 259 OptimizationRemarkEmitter *ORE; 260 261 SmallVector<VPlanPtr, 4> VPlans; 262 263 /// A builder used to construct the current plan. 264 VPBuilder Builder; 265 266 public: 267 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 268 const TargetTransformInfo *TTI, 269 LoopVectorizationLegality *Legal, 270 LoopVectorizationCostModel &CM, 271 InterleavedAccessInfo &IAI, 272 PredicatedScalarEvolution &PSE, 273 const LoopVectorizeHints &Hints, 274 LoopVectorizationRequirements &Requirements, 275 OptimizationRemarkEmitter *ORE) 276 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 277 PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {} 278 279 /// Plan how to best vectorize, return the best VF and its cost, or None if 280 /// vectorization and interleaving should be avoided up front. 281 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 282 283 /// Use the VPlan-native path to plan how to best vectorize, return the best 284 /// VF and its cost. 285 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 286 287 /// Return the best VPlan for \p VF. 288 VPlan &getBestPlanFor(ElementCount VF) const; 289 290 /// Generate the IR code for the body of the vectorized loop according to the 291 /// best selected \p VF, \p UF and VPlan \p BestPlan. 292 void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 293 InnerLoopVectorizer &LB, DominatorTree *DT); 294 295 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 296 void printPlans(raw_ostream &O); 297 #endif 298 299 /// Look through the existing plans and return true if we have one with all 300 /// the vectorization factors in question. 301 bool hasPlanWithVF(ElementCount VF) const { 302 return any_of(VPlans, 303 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 304 } 305 306 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 307 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 308 /// returned value holds for the entire \p Range. 309 static bool 310 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 311 VFRange &Range); 312 313 protected: 314 /// Collect the instructions from the original loop that would be trivially 315 /// dead in the vectorized loop if generated. 316 void collectTriviallyDeadInstructions( 317 SmallPtrSetImpl<Instruction *> &DeadInstructions); 318 319 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 320 /// according to the information gathered by Legal when it checked if it is 321 /// legal to vectorize the loop. 322 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 323 324 private: 325 /// Build a VPlan according to the information gathered by Legal. \return a 326 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 327 /// exclusive, possibly decreasing \p Range.End. 328 VPlanPtr buildVPlan(VFRange &Range); 329 330 /// Build a VPlan using VPRecipes according to the information gather by 331 /// Legal. This method is only used for the legacy inner loop vectorizer. 332 VPlanPtr buildVPlanWithVPRecipes( 333 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 334 const MapVector<Instruction *, Instruction *> &SinkAfter); 335 336 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 337 /// according to the information gathered by Legal when it checked if it is 338 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 339 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 340 341 // Adjust the recipes for reductions. For in-loop reductions the chain of 342 // instructions leading from the loop exit instr to the phi need to be 343 // converted to reductions, with one operand being vector and the other being 344 // the scalar reduction chain. For other reductions, a select is introduced 345 // between the phi and live-out recipes when folding the tail. 346 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan, 347 VPRecipeBuilder &RecipeBuilder, 348 ElementCount MinVF); 349 }; 350 351 } // namespace llvm 352 353 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 354