1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 32 namespace llvm { 33 34 class LoopVectorizationLegality; 35 class LoopVectorizationCostModel; 36 class PredicatedScalarEvolution; 37 class VPRecipeBuilder; 38 39 /// VPlan-based builder utility analogous to IRBuilder. 40 class VPBuilder { 41 VPBasicBlock *BB = nullptr; 42 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 43 44 VPInstruction *createInstruction(unsigned Opcode, 45 ArrayRef<VPValue *> Operands) { 46 VPInstruction *Instr = new VPInstruction(Opcode, Operands); 47 if (BB) 48 BB->insert(Instr, InsertPt); 49 return Instr; 50 } 51 52 VPInstruction *createInstruction(unsigned Opcode, 53 std::initializer_list<VPValue *> Operands) { 54 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); 55 } 56 57 public: 58 VPBuilder() {} 59 60 /// Clear the insertion point: created instructions will not be inserted into 61 /// a block. 62 void clearInsertionPoint() { 63 BB = nullptr; 64 InsertPt = VPBasicBlock::iterator(); 65 } 66 67 VPBasicBlock *getInsertBlock() const { return BB; } 68 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 69 70 /// InsertPoint - A saved insertion point. 71 class VPInsertPoint { 72 VPBasicBlock *Block = nullptr; 73 VPBasicBlock::iterator Point; 74 75 public: 76 /// Creates a new insertion point which doesn't point to anything. 77 VPInsertPoint() = default; 78 79 /// Creates a new insertion point at the given location. 80 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 81 : Block(InsertBlock), Point(InsertPoint) {} 82 83 /// Returns true if this insert point is set. 84 bool isSet() const { return Block != nullptr; } 85 86 VPBasicBlock *getBlock() const { return Block; } 87 VPBasicBlock::iterator getPoint() const { return Point; } 88 }; 89 90 /// Sets the current insert point to a previously-saved location. 91 void restoreIP(VPInsertPoint IP) { 92 if (IP.isSet()) 93 setInsertPoint(IP.getBlock(), IP.getPoint()); 94 else 95 clearInsertionPoint(); 96 } 97 98 /// This specifies that created VPInstructions should be appended to the end 99 /// of the specified block. 100 void setInsertPoint(VPBasicBlock *TheBB) { 101 assert(TheBB && "Attempting to set a null insert point"); 102 BB = TheBB; 103 InsertPt = BB->end(); 104 } 105 106 /// This specifies that created instructions should be inserted at the 107 /// specified point. 108 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 109 BB = TheBB; 110 InsertPt = IP; 111 } 112 113 /// Insert and return the specified instruction. 114 VPInstruction *insert(VPInstruction *I) const { 115 BB->insert(I, InsertPt); 116 return I; 117 } 118 119 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 120 /// its underlying Instruction. 121 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 122 Instruction *Inst = nullptr) { 123 VPInstruction *NewVPInst = createInstruction(Opcode, Operands); 124 NewVPInst->setUnderlyingValue(Inst); 125 return NewVPInst; 126 } 127 VPValue *createNaryOp(unsigned Opcode, 128 std::initializer_list<VPValue *> Operands, 129 Instruction *Inst = nullptr) { 130 return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst); 131 } 132 133 VPValue *createNot(VPValue *Operand) { 134 return createInstruction(VPInstruction::Not, {Operand}); 135 } 136 137 VPValue *createAnd(VPValue *LHS, VPValue *RHS) { 138 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); 139 } 140 141 VPValue *createOr(VPValue *LHS, VPValue *RHS) { 142 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); 143 } 144 145 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) { 146 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}); 147 } 148 149 //===--------------------------------------------------------------------===// 150 // RAII helpers. 151 //===--------------------------------------------------------------------===// 152 153 /// RAII object that stores the current insertion point and restores it when 154 /// the object is destroyed. 155 class InsertPointGuard { 156 VPBuilder &Builder; 157 VPBasicBlock *Block; 158 VPBasicBlock::iterator Point; 159 160 public: 161 InsertPointGuard(VPBuilder &B) 162 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 163 164 InsertPointGuard(const InsertPointGuard &) = delete; 165 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 166 167 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 168 }; 169 }; 170 171 /// TODO: The following VectorizationFactor was pulled out of 172 /// LoopVectorizationCostModel class. LV also deals with 173 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 174 /// We need to streamline them. 175 176 /// Information about vectorization costs 177 struct VectorizationFactor { 178 // Vector width with best cost 179 ElementCount Width; 180 // Cost of the loop with that width 181 unsigned Cost; 182 183 // Width 1 means no vectorization, cost 0 means uncomputed cost. 184 static VectorizationFactor Disabled() { 185 return {ElementCount::getFixed(1), 0}; 186 } 187 188 bool operator==(const VectorizationFactor &rhs) const { 189 return Width == rhs.Width && Cost == rhs.Cost; 190 } 191 192 bool operator!=(const VectorizationFactor &rhs) const { 193 return !(*this == rhs); 194 } 195 }; 196 197 /// Planner drives the vectorization process after having passed 198 /// Legality checks. 199 class LoopVectorizationPlanner { 200 /// The loop that we evaluate. 201 Loop *OrigLoop; 202 203 /// Loop Info analysis. 204 LoopInfo *LI; 205 206 /// Target Library Info. 207 const TargetLibraryInfo *TLI; 208 209 /// Target Transform Info. 210 const TargetTransformInfo *TTI; 211 212 /// The legality analysis. 213 LoopVectorizationLegality *Legal; 214 215 /// The profitability analysis. 216 LoopVectorizationCostModel &CM; 217 218 /// The interleaved access analysis. 219 InterleavedAccessInfo &IAI; 220 221 PredicatedScalarEvolution &PSE; 222 223 SmallVector<VPlanPtr, 4> VPlans; 224 225 /// A builder used to construct the current plan. 226 VPBuilder Builder; 227 228 /// The best number of elements of the vector types used in the 229 /// transformed loop. BestVF = None means that vectorization is 230 /// disabled. 231 Optional<ElementCount> BestVF = None; 232 unsigned BestUF = 0; 233 234 public: 235 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 236 const TargetTransformInfo *TTI, 237 LoopVectorizationLegality *Legal, 238 LoopVectorizationCostModel &CM, 239 InterleavedAccessInfo &IAI, 240 PredicatedScalarEvolution &PSE) 241 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 242 PSE(PSE) {} 243 244 /// Plan how to best vectorize, return the best VF and its cost, or None if 245 /// vectorization and interleaving should be avoided up front. 246 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 247 248 /// Use the VPlan-native path to plan how to best vectorize, return the best 249 /// VF and its cost. 250 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 251 252 /// Finalize the best decision and dispose of all other VPlans. 253 void setBestPlan(ElementCount VF, unsigned UF); 254 255 /// Generate the IR code for the body of the vectorized loop according to the 256 /// best selected VPlan. 257 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 258 259 void printPlans(raw_ostream &O) { 260 for (const auto &Plan : VPlans) 261 O << *Plan; 262 } 263 264 /// Look through the existing plans and return true if we have one with all 265 /// the vectorization factors in question. 266 bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const { 267 return any_of(VPlans, [&](const VPlanPtr &Plan) { 268 return all_of(VFs, [&](const ElementCount &VF) { 269 return Plan->hasVF(VF); 270 }); 271 }); 272 } 273 274 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 275 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 276 /// returned value holds for the entire \p Range. 277 static bool 278 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 279 VFRange &Range); 280 281 protected: 282 /// Collect the instructions from the original loop that would be trivially 283 /// dead in the vectorized loop if generated. 284 void collectTriviallyDeadInstructions( 285 SmallPtrSetImpl<Instruction *> &DeadInstructions); 286 287 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 288 /// according to the information gathered by Legal when it checked if it is 289 /// legal to vectorize the loop. 290 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 291 292 private: 293 /// Build a VPlan according to the information gathered by Legal. \return a 294 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 295 /// exclusive, possibly decreasing \p Range.End. 296 VPlanPtr buildVPlan(VFRange &Range); 297 298 /// Build a VPlan using VPRecipes according to the information gather by 299 /// Legal. This method is only used for the legacy inner loop vectorizer. 300 VPlanPtr buildVPlanWithVPRecipes( 301 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 302 const DenseMap<Instruction *, Instruction *> &SinkAfter); 303 304 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 305 /// according to the information gathered by Legal when it checked if it is 306 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 307 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 308 309 /// Adjust the recipes for any inloop reductions. The chain of instructions 310 /// leading from the loop exit instr to the phi need to be converted to 311 /// reductions, with one operand being vector and the other being the scalar 312 /// reduction chain. 313 void adjustRecipesForInLoopReductions(VPlanPtr &Plan, 314 VPRecipeBuilder &RecipeBuilder); 315 }; 316 317 } // namespace llvm 318 319 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 320