1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/Analysis/LoopInfo.h" 29 #include "llvm/Analysis/TargetLibraryInfo.h" 30 #include "llvm/Analysis/TargetTransformInfo.h" 31 32 namespace llvm { 33 34 class LoopVectorizationLegality; 35 class LoopVectorizationCostModel; 36 class PredicatedScalarEvolution; 37 class LoopVectorizationRequirements; 38 class LoopVectorizeHints; 39 class OptimizationRemarkEmitter; 40 class VPRecipeBuilder; 41 42 /// VPlan-based builder utility analogous to IRBuilder. 43 class VPBuilder { 44 VPBasicBlock *BB = nullptr; 45 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 46 47 VPInstruction *createInstruction(unsigned Opcode, 48 ArrayRef<VPValue *> Operands) { 49 VPInstruction *Instr = new VPInstruction(Opcode, Operands); 50 if (BB) 51 BB->insert(Instr, InsertPt); 52 return Instr; 53 } 54 55 VPInstruction *createInstruction(unsigned Opcode, 56 std::initializer_list<VPValue *> Operands) { 57 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands)); 58 } 59 60 public: 61 VPBuilder() {} 62 63 /// Clear the insertion point: created instructions will not be inserted into 64 /// a block. 65 void clearInsertionPoint() { 66 BB = nullptr; 67 InsertPt = VPBasicBlock::iterator(); 68 } 69 70 VPBasicBlock *getInsertBlock() const { return BB; } 71 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 72 73 /// InsertPoint - A saved insertion point. 74 class VPInsertPoint { 75 VPBasicBlock *Block = nullptr; 76 VPBasicBlock::iterator Point; 77 78 public: 79 /// Creates a new insertion point which doesn't point to anything. 80 VPInsertPoint() = default; 81 82 /// Creates a new insertion point at the given location. 83 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 84 : Block(InsertBlock), Point(InsertPoint) {} 85 86 /// Returns true if this insert point is set. 87 bool isSet() const { return Block != nullptr; } 88 89 VPBasicBlock *getBlock() const { return Block; } 90 VPBasicBlock::iterator getPoint() const { return Point; } 91 }; 92 93 /// Sets the current insert point to a previously-saved location. 94 void restoreIP(VPInsertPoint IP) { 95 if (IP.isSet()) 96 setInsertPoint(IP.getBlock(), IP.getPoint()); 97 else 98 clearInsertionPoint(); 99 } 100 101 /// This specifies that created VPInstructions should be appended to the end 102 /// of the specified block. 103 void setInsertPoint(VPBasicBlock *TheBB) { 104 assert(TheBB && "Attempting to set a null insert point"); 105 BB = TheBB; 106 InsertPt = BB->end(); 107 } 108 109 /// This specifies that created instructions should be inserted at the 110 /// specified point. 111 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 112 BB = TheBB; 113 InsertPt = IP; 114 } 115 116 /// Insert and return the specified instruction. 117 VPInstruction *insert(VPInstruction *I) const { 118 BB->insert(I, InsertPt); 119 return I; 120 } 121 122 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 123 /// its underlying Instruction. 124 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 125 Instruction *Inst = nullptr) { 126 VPInstruction *NewVPInst = createInstruction(Opcode, Operands); 127 NewVPInst->setUnderlyingValue(Inst); 128 return NewVPInst; 129 } 130 VPValue *createNaryOp(unsigned Opcode, 131 std::initializer_list<VPValue *> Operands, 132 Instruction *Inst = nullptr) { 133 return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst); 134 } 135 136 VPValue *createNot(VPValue *Operand) { 137 return createInstruction(VPInstruction::Not, {Operand}); 138 } 139 140 VPValue *createAnd(VPValue *LHS, VPValue *RHS) { 141 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}); 142 } 143 144 VPValue *createOr(VPValue *LHS, VPValue *RHS) { 145 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}); 146 } 147 148 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal) { 149 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}); 150 } 151 152 //===--------------------------------------------------------------------===// 153 // RAII helpers. 154 //===--------------------------------------------------------------------===// 155 156 /// RAII object that stores the current insertion point and restores it when 157 /// the object is destroyed. 158 class InsertPointGuard { 159 VPBuilder &Builder; 160 VPBasicBlock *Block; 161 VPBasicBlock::iterator Point; 162 163 public: 164 InsertPointGuard(VPBuilder &B) 165 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 166 167 InsertPointGuard(const InsertPointGuard &) = delete; 168 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 169 170 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 171 }; 172 }; 173 174 /// TODO: The following VectorizationFactor was pulled out of 175 /// LoopVectorizationCostModel class. LV also deals with 176 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 177 /// We need to streamline them. 178 179 /// Information about vectorization costs 180 struct VectorizationFactor { 181 // Vector width with best cost 182 ElementCount Width; 183 // Cost of the loop with that width 184 unsigned Cost; 185 186 // Width 1 means no vectorization, cost 0 means uncomputed cost. 187 static VectorizationFactor Disabled() { 188 return {ElementCount::getFixed(1), 0}; 189 } 190 191 bool operator==(const VectorizationFactor &rhs) const { 192 return Width == rhs.Width && Cost == rhs.Cost; 193 } 194 195 bool operator!=(const VectorizationFactor &rhs) const { 196 return !(*this == rhs); 197 } 198 }; 199 200 /// Planner drives the vectorization process after having passed 201 /// Legality checks. 202 class LoopVectorizationPlanner { 203 /// The loop that we evaluate. 204 Loop *OrigLoop; 205 206 /// Loop Info analysis. 207 LoopInfo *LI; 208 209 /// Target Library Info. 210 const TargetLibraryInfo *TLI; 211 212 /// Target Transform Info. 213 const TargetTransformInfo *TTI; 214 215 /// The legality analysis. 216 LoopVectorizationLegality *Legal; 217 218 /// The profitability analysis. 219 LoopVectorizationCostModel &CM; 220 221 /// The interleaved access analysis. 222 InterleavedAccessInfo &IAI; 223 224 PredicatedScalarEvolution &PSE; 225 226 const LoopVectorizeHints &Hints; 227 228 LoopVectorizationRequirements &Requirements; 229 230 OptimizationRemarkEmitter *ORE; 231 232 SmallVector<VPlanPtr, 4> VPlans; 233 234 /// A builder used to construct the current plan. 235 VPBuilder Builder; 236 237 /// The best number of elements of the vector types used in the 238 /// transformed loop. BestVF = None means that vectorization is 239 /// disabled. 240 Optional<ElementCount> BestVF = None; 241 unsigned BestUF = 0; 242 243 public: 244 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 245 const TargetTransformInfo *TTI, 246 LoopVectorizationLegality *Legal, 247 LoopVectorizationCostModel &CM, 248 InterleavedAccessInfo &IAI, 249 PredicatedScalarEvolution &PSE, 250 const LoopVectorizeHints &Hints, 251 LoopVectorizationRequirements &Requirements, 252 OptimizationRemarkEmitter *ORE) 253 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 254 PSE(PSE), Hints(Hints), Requirements(Requirements), ORE(ORE) {} 255 256 /// Plan how to best vectorize, return the best VF and its cost, or None if 257 /// vectorization and interleaving should be avoided up front. 258 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 259 260 /// Use the VPlan-native path to plan how to best vectorize, return the best 261 /// VF and its cost. 262 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 263 264 /// Finalize the best decision and dispose of all other VPlans. 265 void setBestPlan(ElementCount VF, unsigned UF); 266 267 /// Generate the IR code for the body of the vectorized loop according to the 268 /// best selected VPlan. 269 void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT); 270 271 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 272 void printPlans(raw_ostream &O); 273 #endif 274 275 /// Look through the existing plans and return true if we have one with all 276 /// the vectorization factors in question. 277 bool hasPlanWithVFs(const ArrayRef<ElementCount> VFs) const { 278 return any_of(VPlans, [&](const VPlanPtr &Plan) { 279 return all_of(VFs, [&](const ElementCount &VF) { 280 return Plan->hasVF(VF); 281 }); 282 }); 283 } 284 285 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 286 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 287 /// returned value holds for the entire \p Range. 288 static bool 289 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 290 VFRange &Range); 291 292 protected: 293 /// Collect the instructions from the original loop that would be trivially 294 /// dead in the vectorized loop if generated. 295 void collectTriviallyDeadInstructions( 296 SmallPtrSetImpl<Instruction *> &DeadInstructions); 297 298 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 299 /// according to the information gathered by Legal when it checked if it is 300 /// legal to vectorize the loop. 301 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 302 303 private: 304 /// Build a VPlan according to the information gathered by Legal. \return a 305 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 306 /// exclusive, possibly decreasing \p Range.End. 307 VPlanPtr buildVPlan(VFRange &Range); 308 309 /// Build a VPlan using VPRecipes according to the information gather by 310 /// Legal. This method is only used for the legacy inner loop vectorizer. 311 VPlanPtr buildVPlanWithVPRecipes( 312 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 313 const DenseMap<Instruction *, Instruction *> &SinkAfter); 314 315 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 316 /// according to the information gathered by Legal when it checked if it is 317 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 318 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 319 320 /// Adjust the recipes for any inloop reductions. The chain of instructions 321 /// leading from the loop exit instr to the phi need to be converted to 322 /// reductions, with one operand being vector and the other being the scalar 323 /// reduction chain. 324 void adjustRecipesForInLoopReductions(VPlanPtr &Plan, 325 VPRecipeBuilder &RecipeBuilder); 326 }; 327 328 } // namespace llvm 329 330 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 331