1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/TargetLibraryInfo.h"
30 #include "llvm/Analysis/TargetTransformInfo.h"
31 
32 namespace llvm {
33 
34 class LoopVectorizationLegality;
35 class LoopVectorizationCostModel;
36 class PredicatedScalarEvolution;
37 class VPRecipeBuilder;
38 
39 /// VPlan-based builder utility analogous to IRBuilder.
40 class VPBuilder {
41   VPBasicBlock *BB = nullptr;
42   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
43 
44   VPInstruction *createInstruction(unsigned Opcode,
45                                    ArrayRef<VPValue *> Operands) {
46     VPInstruction *Instr = new VPInstruction(Opcode, Operands);
47     if (BB)
48       BB->insert(Instr, InsertPt);
49     return Instr;
50   }
51 
52   VPInstruction *createInstruction(unsigned Opcode,
53                                    std::initializer_list<VPValue *> Operands) {
54     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands));
55   }
56 
57 public:
58   VPBuilder() {}
59 
60   /// Clear the insertion point: created instructions will not be inserted into
61   /// a block.
62   void clearInsertionPoint() {
63     BB = nullptr;
64     InsertPt = VPBasicBlock::iterator();
65   }
66 
67   VPBasicBlock *getInsertBlock() const { return BB; }
68   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
69 
70   /// InsertPoint - A saved insertion point.
71   class VPInsertPoint {
72     VPBasicBlock *Block = nullptr;
73     VPBasicBlock::iterator Point;
74 
75   public:
76     /// Creates a new insertion point which doesn't point to anything.
77     VPInsertPoint() = default;
78 
79     /// Creates a new insertion point at the given location.
80     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
81         : Block(InsertBlock), Point(InsertPoint) {}
82 
83     /// Returns true if this insert point is set.
84     bool isSet() const { return Block != nullptr; }
85 
86     VPBasicBlock *getBlock() const { return Block; }
87     VPBasicBlock::iterator getPoint() const { return Point; }
88   };
89 
90   /// Sets the current insert point to a previously-saved location.
91   void restoreIP(VPInsertPoint IP) {
92     if (IP.isSet())
93       setInsertPoint(IP.getBlock(), IP.getPoint());
94     else
95       clearInsertionPoint();
96   }
97 
98   /// This specifies that created VPInstructions should be appended to the end
99   /// of the specified block.
100   void setInsertPoint(VPBasicBlock *TheBB) {
101     assert(TheBB && "Attempting to set a null insert point");
102     BB = TheBB;
103     InsertPt = BB->end();
104   }
105 
106   /// This specifies that created instructions should be inserted at the
107   /// specified point.
108   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
109     BB = TheBB;
110     InsertPt = IP;
111   }
112 
113   /// Insert and return the specified instruction.
114   VPInstruction *insert(VPInstruction *I) const {
115     BB->insert(I, InsertPt);
116     return I;
117   }
118 
119   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
120   /// its underlying Instruction.
121   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
122                         Instruction *Inst = nullptr) {
123     VPInstruction *NewVPInst = createInstruction(Opcode, Operands);
124     NewVPInst->setUnderlyingValue(Inst);
125     return NewVPInst;
126   }
127   VPValue *createNaryOp(unsigned Opcode,
128                         std::initializer_list<VPValue *> Operands,
129                         Instruction *Inst = nullptr) {
130     return createNaryOp(Opcode, ArrayRef<VPValue *>(Operands), Inst);
131   }
132 
133   VPValue *createNot(VPValue *Operand) {
134     return createInstruction(VPInstruction::Not, {Operand});
135   }
136 
137   VPValue *createAnd(VPValue *LHS, VPValue *RHS) {
138     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS});
139   }
140 
141   VPValue *createOr(VPValue *LHS, VPValue *RHS) {
142     return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS});
143   }
144 
145   //===--------------------------------------------------------------------===//
146   // RAII helpers.
147   //===--------------------------------------------------------------------===//
148 
149   /// RAII object that stores the current insertion point and restores it when
150   /// the object is destroyed.
151   class InsertPointGuard {
152     VPBuilder &Builder;
153     VPBasicBlock *Block;
154     VPBasicBlock::iterator Point;
155 
156   public:
157     InsertPointGuard(VPBuilder &B)
158         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
159 
160     InsertPointGuard(const InsertPointGuard &) = delete;
161     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
162 
163     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
164   };
165 };
166 
167 /// TODO: The following VectorizationFactor was pulled out of
168 /// LoopVectorizationCostModel class. LV also deals with
169 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
170 /// We need to streamline them.
171 
172 /// Information about vectorization costs
173 struct VectorizationFactor {
174   // Vector width with best cost
175   unsigned Width;
176   // Cost of the loop with that width
177   unsigned Cost;
178 
179   // Width 1 means no vectorization, cost 0 means uncomputed cost.
180   static VectorizationFactor Disabled() { return {1, 0}; }
181 
182   bool operator==(const VectorizationFactor &rhs) const {
183     return Width == rhs.Width && Cost == rhs.Cost;
184   }
185 };
186 
187 /// Planner drives the vectorization process after having passed
188 /// Legality checks.
189 class LoopVectorizationPlanner {
190   /// The loop that we evaluate.
191   Loop *OrigLoop;
192 
193   /// Loop Info analysis.
194   LoopInfo *LI;
195 
196   /// Target Library Info.
197   const TargetLibraryInfo *TLI;
198 
199   /// Target Transform Info.
200   const TargetTransformInfo *TTI;
201 
202   /// The legality analysis.
203   LoopVectorizationLegality *Legal;
204 
205   /// The profitability analysis.
206   LoopVectorizationCostModel &CM;
207 
208   /// The interleaved access analysis.
209   InterleavedAccessInfo &IAI;
210 
211   PredicatedScalarEvolution &PSE;
212 
213   SmallVector<VPlanPtr, 4> VPlans;
214 
215   /// This class is used to enable the VPlan to invoke a method of ILV. This is
216   /// needed until the method is refactored out of ILV and becomes reusable.
217   struct VPCallbackILV : public VPCallback {
218     InnerLoopVectorizer &ILV;
219 
220     VPCallbackILV(InnerLoopVectorizer &ILV) : ILV(ILV) {}
221 
222     Value *getOrCreateVectorValues(Value *V, unsigned Part) override;
223     Value *getOrCreateScalarValue(Value *V,
224                                   const VPIteration &Instance) override;
225   };
226 
227   /// A builder used to construct the current plan.
228   VPBuilder Builder;
229 
230   unsigned BestVF = 0;
231   unsigned BestUF = 0;
232 
233 public:
234   LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
235                            const TargetTransformInfo *TTI,
236                            LoopVectorizationLegality *Legal,
237                            LoopVectorizationCostModel &CM,
238                            InterleavedAccessInfo &IAI,
239                            PredicatedScalarEvolution &PSE)
240       : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
241         PSE(PSE) {}
242 
243   /// Plan how to best vectorize, return the best VF and its cost, or None if
244   /// vectorization and interleaving should be avoided up front.
245   Optional<VectorizationFactor> plan(unsigned UserVF, unsigned UserIC);
246 
247   /// Use the VPlan-native path to plan how to best vectorize, return the best
248   /// VF and its cost.
249   VectorizationFactor planInVPlanNativePath(unsigned UserVF);
250 
251   /// Finalize the best decision and dispose of all other VPlans.
252   void setBestPlan(unsigned VF, unsigned UF);
253 
254   /// Generate the IR code for the body of the vectorized loop according to the
255   /// best selected VPlan.
256   void executePlan(InnerLoopVectorizer &LB, DominatorTree *DT);
257 
258   void printPlans(raw_ostream &O) {
259     for (const auto &Plan : VPlans)
260       O << *Plan;
261   }
262 
263   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
264   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
265   /// returned value holds for the entire \p Range.
266   static bool
267   getDecisionAndClampRange(const std::function<bool(unsigned)> &Predicate,
268                            VFRange &Range);
269 
270 protected:
271   /// Collect the instructions from the original loop that would be trivially
272   /// dead in the vectorized loop if generated.
273   void collectTriviallyDeadInstructions(
274       SmallPtrSetImpl<Instruction *> &DeadInstructions);
275 
276   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
277   /// according to the information gathered by Legal when it checked if it is
278   /// legal to vectorize the loop.
279   void buildVPlans(unsigned MinVF, unsigned MaxVF);
280 
281 private:
282   /// Build a VPlan according to the information gathered by Legal. \return a
283   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
284   /// exclusive, possibly decreasing \p Range.End.
285   VPlanPtr buildVPlan(VFRange &Range);
286 
287   /// Build a VPlan using VPRecipes according to the information gather by
288   /// Legal. This method is only used for the legacy inner loop vectorizer.
289   VPlanPtr buildVPlanWithVPRecipes(
290       VFRange &Range, SmallPtrSetImpl<Value *> &NeedDef,
291       SmallPtrSetImpl<Instruction *> &DeadInstructions,
292       const DenseMap<Instruction *, Instruction *> &SinkAfter);
293 
294   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
295   /// according to the information gathered by Legal when it checked if it is
296   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
297   void buildVPlansWithVPRecipes(unsigned MinVF, unsigned MaxVF);
298 
299   /// Adjust the recipes for any inloop reductions. The chain of instructions
300   /// leading from the loop exit instr to the phi need to be converted to
301   /// reductions, with one operand being vector and the other being the scalar
302   /// reduction chain.
303   void adjustRecipesForInLoopReductions(VPlanPtr &Plan,
304                                         VPRecipeBuilder &RecipeBuilder);
305 };
306 
307 } // namespace llvm
308 
309 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
310