1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
23 
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
26 
27 #include "VPlan.h"
28 #include "llvm/Support/InstructionCost.h"
29 
30 namespace llvm {
31 
32 class LoopInfo;
33 class LoopVectorizationLegality;
34 class LoopVectorizationCostModel;
35 class PredicatedScalarEvolution;
36 class LoopVectorizeHints;
37 class OptimizationRemarkEmitter;
38 class TargetTransformInfo;
39 class TargetLibraryInfo;
40 class VPRecipeBuilder;
41 
42 /// VPlan-based builder utility analogous to IRBuilder.
43 class VPBuilder {
44   VPBasicBlock *BB = nullptr;
45   VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
46 
47   VPInstruction *createInstruction(unsigned Opcode,
48                                    ArrayRef<VPValue *> Operands, DebugLoc DL) {
49     VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL);
50     if (BB)
51       BB->insert(Instr, InsertPt);
52     return Instr;
53   }
54 
55   VPInstruction *createInstruction(unsigned Opcode,
56                                    std::initializer_list<VPValue *> Operands,
57                                    DebugLoc DL) {
58     return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL);
59   }
60 
61 public:
62   VPBuilder() = default;
63 
64   /// Clear the insertion point: created instructions will not be inserted into
65   /// a block.
66   void clearInsertionPoint() {
67     BB = nullptr;
68     InsertPt = VPBasicBlock::iterator();
69   }
70 
71   VPBasicBlock *getInsertBlock() const { return BB; }
72   VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
73 
74   /// InsertPoint - A saved insertion point.
75   class VPInsertPoint {
76     VPBasicBlock *Block = nullptr;
77     VPBasicBlock::iterator Point;
78 
79   public:
80     /// Creates a new insertion point which doesn't point to anything.
81     VPInsertPoint() = default;
82 
83     /// Creates a new insertion point at the given location.
84     VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
85         : Block(InsertBlock), Point(InsertPoint) {}
86 
87     /// Returns true if this insert point is set.
88     bool isSet() const { return Block != nullptr; }
89 
90     VPBasicBlock *getBlock() const { return Block; }
91     VPBasicBlock::iterator getPoint() const { return Point; }
92   };
93 
94   /// Sets the current insert point to a previously-saved location.
95   void restoreIP(VPInsertPoint IP) {
96     if (IP.isSet())
97       setInsertPoint(IP.getBlock(), IP.getPoint());
98     else
99       clearInsertionPoint();
100   }
101 
102   /// This specifies that created VPInstructions should be appended to the end
103   /// of the specified block.
104   void setInsertPoint(VPBasicBlock *TheBB) {
105     assert(TheBB && "Attempting to set a null insert point");
106     BB = TheBB;
107     InsertPt = BB->end();
108   }
109 
110   /// This specifies that created instructions should be inserted at the
111   /// specified point.
112   void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
113     BB = TheBB;
114     InsertPt = IP;
115   }
116 
117   /// Insert and return the specified instruction.
118   VPInstruction *insert(VPInstruction *I) const {
119     BB->insert(I, InsertPt);
120     return I;
121   }
122 
123   /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
124   /// its underlying Instruction.
125   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
126                         Instruction *Inst = nullptr) {
127     DebugLoc DL;
128     if (Inst)
129       DL = Inst->getDebugLoc();
130     VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL);
131     NewVPInst->setUnderlyingValue(Inst);
132     return NewVPInst;
133   }
134   VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
135                         DebugLoc DL) {
136     return createInstruction(Opcode, Operands, DL);
137   }
138 
139   VPValue *createNot(VPValue *Operand, DebugLoc DL) {
140     return createInstruction(VPInstruction::Not, {Operand}, DL);
141   }
142 
143   VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
144     return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL);
145   }
146 
147   VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) {
148     return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL);
149   }
150 
151   VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
152                         DebugLoc DL) {
153     return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL);
154   }
155 
156   //===--------------------------------------------------------------------===//
157   // RAII helpers.
158   //===--------------------------------------------------------------------===//
159 
160   /// RAII object that stores the current insertion point and restores it when
161   /// the object is destroyed.
162   class InsertPointGuard {
163     VPBuilder &Builder;
164     VPBasicBlock *Block;
165     VPBasicBlock::iterator Point;
166 
167   public:
168     InsertPointGuard(VPBuilder &B)
169         : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
170 
171     InsertPointGuard(const InsertPointGuard &) = delete;
172     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
173 
174     ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
175   };
176 };
177 
178 /// TODO: The following VectorizationFactor was pulled out of
179 /// LoopVectorizationCostModel class. LV also deals with
180 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
181 /// We need to streamline them.
182 
183 /// Information about vectorization costs.
184 struct VectorizationFactor {
185   /// Vector width with best cost.
186   ElementCount Width;
187   /// Cost of the loop with that width.
188   InstructionCost Cost;
189 
190   /// Cost of the scalar loop.
191   InstructionCost ScalarCost;
192 
193   /// The minimum trip count required to make vectorization profitable, e.g. due
194   /// to runtime checks.
195   ElementCount MinProfitableTripCount;
196 
197   VectorizationFactor(ElementCount Width, InstructionCost Cost,
198                       InstructionCost ScalarCost)
199       : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
200 
201   /// Width 1 means no vectorization, cost 0 means uncomputed cost.
202   static VectorizationFactor Disabled() {
203     return {ElementCount::getFixed(1), 0, 0};
204   }
205 
206   bool operator==(const VectorizationFactor &rhs) const {
207     return Width == rhs.Width && Cost == rhs.Cost;
208   }
209 
210   bool operator!=(const VectorizationFactor &rhs) const {
211     return !(*this == rhs);
212   }
213 };
214 
215 /// A class that represents two vectorization factors (initialized with 0 by
216 /// default). One for fixed-width vectorization and one for scalable
217 /// vectorization. This can be used by the vectorizer to choose from a range of
218 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
219 /// vectorize with.
220 struct FixedScalableVFPair {
221   ElementCount FixedVF;
222   ElementCount ScalableVF;
223 
224   FixedScalableVFPair()
225       : FixedVF(ElementCount::getFixed(0)),
226         ScalableVF(ElementCount::getScalable(0)) {}
227   FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
228     *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
229   }
230   FixedScalableVFPair(const ElementCount &FixedVF,
231                       const ElementCount &ScalableVF)
232       : FixedVF(FixedVF), ScalableVF(ScalableVF) {
233     assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
234            "Invalid scalable properties");
235   }
236 
237   static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
238 
239   /// \return true if either fixed- or scalable VF is non-zero.
240   explicit operator bool() const { return FixedVF || ScalableVF; }
241 
242   /// \return true if either fixed- or scalable VF is a valid vector VF.
243   bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
244 };
245 
246 /// Planner drives the vectorization process after having passed
247 /// Legality checks.
248 class LoopVectorizationPlanner {
249   /// The loop that we evaluate.
250   Loop *OrigLoop;
251 
252   /// Loop Info analysis.
253   LoopInfo *LI;
254 
255   /// Target Library Info.
256   const TargetLibraryInfo *TLI;
257 
258   /// Target Transform Info.
259   const TargetTransformInfo *TTI;
260 
261   /// The legality analysis.
262   LoopVectorizationLegality *Legal;
263 
264   /// The profitability analysis.
265   LoopVectorizationCostModel &CM;
266 
267   /// The interleaved access analysis.
268   InterleavedAccessInfo &IAI;
269 
270   PredicatedScalarEvolution &PSE;
271 
272   const LoopVectorizeHints &Hints;
273 
274   OptimizationRemarkEmitter *ORE;
275 
276   SmallVector<VPlanPtr, 4> VPlans;
277 
278   /// A builder used to construct the current plan.
279   VPBuilder Builder;
280 
281 public:
282   LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI,
283                            const TargetTransformInfo *TTI,
284                            LoopVectorizationLegality *Legal,
285                            LoopVectorizationCostModel &CM,
286                            InterleavedAccessInfo &IAI,
287                            PredicatedScalarEvolution &PSE,
288                            const LoopVectorizeHints &Hints,
289                            OptimizationRemarkEmitter *ORE)
290       : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI),
291         PSE(PSE), Hints(Hints), ORE(ORE) {}
292 
293   /// Plan how to best vectorize, return the best VF and its cost, or None if
294   /// vectorization and interleaving should be avoided up front.
295   Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
296 
297   /// Use the VPlan-native path to plan how to best vectorize, return the best
298   /// VF and its cost.
299   VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
300 
301   /// Return the best VPlan for \p VF.
302   VPlan &getBestPlanFor(ElementCount VF) const;
303 
304   /// Generate the IR code for the body of the vectorized loop according to the
305   /// best selected \p VF, \p UF and VPlan \p BestPlan.
306   /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
307   /// vectorization re-using plans for both the main and epilogue vector loops.
308   /// It should be removed once the re-use issue has been fixed.
309   void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
310                    InnerLoopVectorizer &LB, DominatorTree *DT,
311                    bool IsEpilogueVectorization);
312 
313 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
314   void printPlans(raw_ostream &O);
315 #endif
316 
317   /// Look through the existing plans and return true if we have one with all
318   /// the vectorization factors in question.
319   bool hasPlanWithVF(ElementCount VF) const {
320     return any_of(VPlans,
321                   [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
322   }
323 
324   /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
325   /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
326   /// returned value holds for the entire \p Range.
327   static bool
328   getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
329                            VFRange &Range);
330 
331   /// Check if the number of runtime checks exceeds the threshold.
332   bool requiresTooManyRuntimeChecks() const;
333 
334 protected:
335   /// Collect the instructions from the original loop that would be trivially
336   /// dead in the vectorized loop if generated.
337   void collectTriviallyDeadInstructions(
338       SmallPtrSetImpl<Instruction *> &DeadInstructions);
339 
340   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
341   /// according to the information gathered by Legal when it checked if it is
342   /// legal to vectorize the loop.
343   void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
344 
345 private:
346   /// Build a VPlan according to the information gathered by Legal. \return a
347   /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
348   /// exclusive, possibly decreasing \p Range.End.
349   VPlanPtr buildVPlan(VFRange &Range);
350 
351   /// Build a VPlan using VPRecipes according to the information gather by
352   /// Legal. This method is only used for the legacy inner loop vectorizer.
353   VPlanPtr buildVPlanWithVPRecipes(
354       VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions,
355       const MapVector<Instruction *, Instruction *> &SinkAfter);
356 
357   /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
358   /// according to the information gathered by Legal when it checked if it is
359   /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
360   void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
361 
362   // Adjust the recipes for reductions. For in-loop reductions the chain of
363   // instructions leading from the loop exit instr to the phi need to be
364   // converted to reductions, with one operand being vector and the other being
365   // the scalar reduction chain. For other reductions, a select is introduced
366   // between the phi and live-out recipes when folding the tail.
367   void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
368                                   VPRecipeBuilder &RecipeBuilder,
369                                   ElementCount MinVF);
370 };
371 
372 } // namespace llvm
373 
374 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
375