1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file provides a LoopVectorizationPlanner class. 11 /// InnerLoopVectorizer vectorizes loops which contain only one basic 12 /// LoopVectorizationPlanner - drives the vectorization process after having 13 /// passed Legality checks. 14 /// The planner builds and optimizes the Vectorization Plans which record the 15 /// decisions how to vectorize the given loop. In particular, represent the 16 /// control-flow of the vectorized version, the replication of instructions that 17 /// are to be scalarized, and interleave access groups. 18 /// 19 /// Also provides a VPlan-based builder utility analogous to IRBuilder. 20 /// It provides an instruction-level API for generating VPInstructions while 21 /// abstracting away the Recipe manipulation details. 22 //===----------------------------------------------------------------------===// 23 24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 26 27 #include "VPlan.h" 28 #include "llvm/Support/InstructionCost.h" 29 30 namespace llvm { 31 32 class LoopInfo; 33 class LoopVectorizationLegality; 34 class LoopVectorizationCostModel; 35 class PredicatedScalarEvolution; 36 class LoopVectorizeHints; 37 class OptimizationRemarkEmitter; 38 class TargetTransformInfo; 39 class TargetLibraryInfo; 40 class VPRecipeBuilder; 41 42 /// VPlan-based builder utility analogous to IRBuilder. 43 class VPBuilder { 44 VPBasicBlock *BB = nullptr; 45 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator(); 46 47 VPInstruction *createInstruction(unsigned Opcode, 48 ArrayRef<VPValue *> Operands, DebugLoc DL) { 49 VPInstruction *Instr = new VPInstruction(Opcode, Operands, DL); 50 if (BB) 51 BB->insert(Instr, InsertPt); 52 return Instr; 53 } 54 55 VPInstruction *createInstruction(unsigned Opcode, 56 std::initializer_list<VPValue *> Operands, 57 DebugLoc DL) { 58 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL); 59 } 60 61 public: 62 VPBuilder() = default; 63 64 /// Clear the insertion point: created instructions will not be inserted into 65 /// a block. 66 void clearInsertionPoint() { 67 BB = nullptr; 68 InsertPt = VPBasicBlock::iterator(); 69 } 70 71 VPBasicBlock *getInsertBlock() const { return BB; } 72 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; } 73 74 /// InsertPoint - A saved insertion point. 75 class VPInsertPoint { 76 VPBasicBlock *Block = nullptr; 77 VPBasicBlock::iterator Point; 78 79 public: 80 /// Creates a new insertion point which doesn't point to anything. 81 VPInsertPoint() = default; 82 83 /// Creates a new insertion point at the given location. 84 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint) 85 : Block(InsertBlock), Point(InsertPoint) {} 86 87 /// Returns true if this insert point is set. 88 bool isSet() const { return Block != nullptr; } 89 90 VPBasicBlock *getBlock() const { return Block; } 91 VPBasicBlock::iterator getPoint() const { return Point; } 92 }; 93 94 /// Sets the current insert point to a previously-saved location. 95 void restoreIP(VPInsertPoint IP) { 96 if (IP.isSet()) 97 setInsertPoint(IP.getBlock(), IP.getPoint()); 98 else 99 clearInsertionPoint(); 100 } 101 102 /// This specifies that created VPInstructions should be appended to the end 103 /// of the specified block. 104 void setInsertPoint(VPBasicBlock *TheBB) { 105 assert(TheBB && "Attempting to set a null insert point"); 106 BB = TheBB; 107 InsertPt = BB->end(); 108 } 109 110 /// This specifies that created instructions should be inserted at the 111 /// specified point. 112 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) { 113 BB = TheBB; 114 InsertPt = IP; 115 } 116 117 /// Insert and return the specified instruction. 118 VPInstruction *insert(VPInstruction *I) const { 119 BB->insert(I, InsertPt); 120 return I; 121 } 122 123 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as 124 /// its underlying Instruction. 125 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 126 Instruction *Inst = nullptr) { 127 DebugLoc DL; 128 if (Inst) 129 DL = Inst->getDebugLoc(); 130 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL); 131 NewVPInst->setUnderlyingValue(Inst); 132 return NewVPInst; 133 } 134 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands, 135 DebugLoc DL) { 136 return createInstruction(Opcode, Operands, DL); 137 } 138 139 VPValue *createNot(VPValue *Operand, DebugLoc DL) { 140 return createInstruction(VPInstruction::Not, {Operand}, DL); 141 } 142 143 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL) { 144 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL); 145 } 146 147 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL) { 148 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL); 149 } 150 151 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal, 152 DebugLoc DL) { 153 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL); 154 } 155 156 //===--------------------------------------------------------------------===// 157 // RAII helpers. 158 //===--------------------------------------------------------------------===// 159 160 /// RAII object that stores the current insertion point and restores it when 161 /// the object is destroyed. 162 class InsertPointGuard { 163 VPBuilder &Builder; 164 VPBasicBlock *Block; 165 VPBasicBlock::iterator Point; 166 167 public: 168 InsertPointGuard(VPBuilder &B) 169 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {} 170 171 InsertPointGuard(const InsertPointGuard &) = delete; 172 InsertPointGuard &operator=(const InsertPointGuard &) = delete; 173 174 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); } 175 }; 176 }; 177 178 /// TODO: The following VectorizationFactor was pulled out of 179 /// LoopVectorizationCostModel class. LV also deals with 180 /// VectorizerParams::VectorizationFactor and VectorizationCostTy. 181 /// We need to streamline them. 182 183 /// Information about vectorization costs. 184 struct VectorizationFactor { 185 /// Vector width with best cost. 186 ElementCount Width; 187 /// Cost of the loop with that width. 188 InstructionCost Cost; 189 190 /// Cost of the scalar loop. 191 InstructionCost ScalarCost; 192 193 /// The minimum trip count required to make vectorization profitable, e.g. due 194 /// to runtime checks. 195 ElementCount MinProfitableTripCount; 196 197 VectorizationFactor(ElementCount Width, InstructionCost Cost, 198 InstructionCost ScalarCost) 199 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {} 200 201 /// Width 1 means no vectorization, cost 0 means uncomputed cost. 202 static VectorizationFactor Disabled() { 203 return {ElementCount::getFixed(1), 0, 0}; 204 } 205 206 bool operator==(const VectorizationFactor &rhs) const { 207 return Width == rhs.Width && Cost == rhs.Cost; 208 } 209 210 bool operator!=(const VectorizationFactor &rhs) const { 211 return !(*this == rhs); 212 } 213 }; 214 215 /// A class that represents two vectorization factors (initialized with 0 by 216 /// default). One for fixed-width vectorization and one for scalable 217 /// vectorization. This can be used by the vectorizer to choose from a range of 218 /// fixed and/or scalable VFs in order to find the most cost-effective VF to 219 /// vectorize with. 220 struct FixedScalableVFPair { 221 ElementCount FixedVF; 222 ElementCount ScalableVF; 223 224 FixedScalableVFPair() 225 : FixedVF(ElementCount::getFixed(0)), 226 ScalableVF(ElementCount::getScalable(0)) {} 227 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() { 228 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max; 229 } 230 FixedScalableVFPair(const ElementCount &FixedVF, 231 const ElementCount &ScalableVF) 232 : FixedVF(FixedVF), ScalableVF(ScalableVF) { 233 assert(!FixedVF.isScalable() && ScalableVF.isScalable() && 234 "Invalid scalable properties"); 235 } 236 237 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); } 238 239 /// \return true if either fixed- or scalable VF is non-zero. 240 explicit operator bool() const { return FixedVF || ScalableVF; } 241 242 /// \return true if either fixed- or scalable VF is a valid vector VF. 243 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); } 244 }; 245 246 /// Planner drives the vectorization process after having passed 247 /// Legality checks. 248 class LoopVectorizationPlanner { 249 /// The loop that we evaluate. 250 Loop *OrigLoop; 251 252 /// Loop Info analysis. 253 LoopInfo *LI; 254 255 /// Target Library Info. 256 const TargetLibraryInfo *TLI; 257 258 /// Target Transform Info. 259 const TargetTransformInfo *TTI; 260 261 /// The legality analysis. 262 LoopVectorizationLegality *Legal; 263 264 /// The profitability analysis. 265 LoopVectorizationCostModel &CM; 266 267 /// The interleaved access analysis. 268 InterleavedAccessInfo &IAI; 269 270 PredicatedScalarEvolution &PSE; 271 272 const LoopVectorizeHints &Hints; 273 274 OptimizationRemarkEmitter *ORE; 275 276 SmallVector<VPlanPtr, 4> VPlans; 277 278 /// A builder used to construct the current plan. 279 VPBuilder Builder; 280 281 public: 282 LoopVectorizationPlanner(Loop *L, LoopInfo *LI, const TargetLibraryInfo *TLI, 283 const TargetTransformInfo *TTI, 284 LoopVectorizationLegality *Legal, 285 LoopVectorizationCostModel &CM, 286 InterleavedAccessInfo &IAI, 287 PredicatedScalarEvolution &PSE, 288 const LoopVectorizeHints &Hints, 289 OptimizationRemarkEmitter *ORE) 290 : OrigLoop(L), LI(LI), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM), IAI(IAI), 291 PSE(PSE), Hints(Hints), ORE(ORE) {} 292 293 /// Plan how to best vectorize, return the best VF and its cost, or None if 294 /// vectorization and interleaving should be avoided up front. 295 Optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC); 296 297 /// Use the VPlan-native path to plan how to best vectorize, return the best 298 /// VF and its cost. 299 VectorizationFactor planInVPlanNativePath(ElementCount UserVF); 300 301 /// Return the best VPlan for \p VF. 302 VPlan &getBestPlanFor(ElementCount VF) const; 303 304 /// Generate the IR code for the body of the vectorized loop according to the 305 /// best selected \p VF, \p UF and VPlan \p BestPlan. 306 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue 307 /// vectorization re-using plans for both the main and epilogue vector loops. 308 /// It should be removed once the re-use issue has been fixed. 309 void executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan, 310 InnerLoopVectorizer &LB, DominatorTree *DT, 311 bool IsEpilogueVectorization); 312 313 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 314 void printPlans(raw_ostream &O); 315 #endif 316 317 /// Look through the existing plans and return true if we have one with all 318 /// the vectorization factors in question. 319 bool hasPlanWithVF(ElementCount VF) const { 320 return any_of(VPlans, 321 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); }); 322 } 323 324 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying 325 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the 326 /// returned value holds for the entire \p Range. 327 static bool 328 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate, 329 VFRange &Range); 330 331 /// Check if the number of runtime checks exceeds the threshold. 332 bool requiresTooManyRuntimeChecks() const; 333 334 protected: 335 /// Collect the instructions from the original loop that would be trivially 336 /// dead in the vectorized loop if generated. 337 void collectTriviallyDeadInstructions( 338 SmallPtrSetImpl<Instruction *> &DeadInstructions); 339 340 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 341 /// according to the information gathered by Legal when it checked if it is 342 /// legal to vectorize the loop. 343 void buildVPlans(ElementCount MinVF, ElementCount MaxVF); 344 345 private: 346 /// Build a VPlan according to the information gathered by Legal. \return a 347 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End 348 /// exclusive, possibly decreasing \p Range.End. 349 VPlanPtr buildVPlan(VFRange &Range); 350 351 /// Build a VPlan using VPRecipes according to the information gather by 352 /// Legal. This method is only used for the legacy inner loop vectorizer. 353 VPlanPtr buildVPlanWithVPRecipes( 354 VFRange &Range, SmallPtrSetImpl<Instruction *> &DeadInstructions, 355 const MapVector<Instruction *, Instruction *> &SinkAfter); 356 357 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive, 358 /// according to the information gathered by Legal when it checked if it is 359 /// legal to vectorize the loop. This method creates VPlans using VPRecipes. 360 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF); 361 362 // Adjust the recipes for reductions. For in-loop reductions the chain of 363 // instructions leading from the loop exit instr to the phi need to be 364 // converted to reductions, with one operand being vector and the other being 365 // the scalar reduction chain. For other reductions, a select is introduced 366 // between the phi and live-out recipes when folding the tail. 367 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan, 368 VPRecipeBuilder &RecipeBuilder, 369 ElementCount MinVF); 370 }; 371 372 } // namespace llvm 373 374 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H 375