1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/Analysis/VectorUtils.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
23 
24 using namespace llvm;
25 using namespace PatternMatch;
26 
27 #define LV_NAME "loop-vectorize"
28 #define DEBUG_TYPE LV_NAME
29 
30 extern cl::opt<bool> EnableVPlanPredication;
31 
32 static cl::opt<bool>
33     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
34                        cl::desc("Enable if-conversion during vectorization."));
35 
36 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
37     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
38     cl::desc("The maximum allowed number of runtime memory checks with a "
39              "vectorize(enable) pragma."));
40 
41 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
42     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
43     cl::desc("The maximum number of SCEV checks allowed."));
44 
45 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
46     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
47     cl::desc("The maximum number of SCEV checks allowed with a "
48              "vectorize(enable) pragma"));
49 
50 /// Maximum vectorization interleave count.
51 static const unsigned MaxInterleaveFactor = 16;
52 
53 namespace llvm {
54 
55 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
56   switch (Kind) {
57   case HK_WIDTH:
58     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
59   case HK_UNROLL:
60     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
61   case HK_FORCE:
62     return (Val <= 1);
63   case HK_ISVECTORIZED:
64   case HK_PREDICATE:
65     return (Val == 0 || Val == 1);
66   }
67   return false;
68 }
69 
70 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
71                                        bool InterleaveOnlyWhenForced,
72                                        OptimizationRemarkEmitter &ORE)
73     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
74       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
75       Force("vectorize.enable", FK_Undefined, HK_FORCE),
76       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
77       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), TheLoop(L),
78       ORE(ORE) {
79   // Populate values with existing loop metadata.
80   getHintsFromMetadata();
81 
82   // force-vector-interleave overrides DisableInterleaving.
83   if (VectorizerParams::isInterleaveForced())
84     Interleave.Value = VectorizerParams::VectorizationInterleave;
85 
86   if (IsVectorized.Value != 1)
87     // If the vectorization width and interleaving count are both 1 then
88     // consider the loop to have been already vectorized because there's
89     // nothing more that we can do.
90     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
91   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
92              << "LV: Interleaving disabled by the pass manager\n");
93 }
94 
95 void LoopVectorizeHints::setAlreadyVectorized() {
96   LLVMContext &Context = TheLoop->getHeader()->getContext();
97 
98   MDNode *IsVectorizedMD = MDNode::get(
99       Context,
100       {MDString::get(Context, "llvm.loop.isvectorized"),
101        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
102   MDNode *LoopID = TheLoop->getLoopID();
103   MDNode *NewLoopID =
104       makePostTransformationMetadata(Context, LoopID,
105                                      {Twine(Prefix(), "vectorize.").str(),
106                                       Twine(Prefix(), "interleave.").str()},
107                                      {IsVectorizedMD});
108   TheLoop->setLoopID(NewLoopID);
109 
110   // Update internal cache.
111   IsVectorized.Value = 1;
112 }
113 
114 bool LoopVectorizeHints::allowVectorization(
115     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
116   if (getForce() == LoopVectorizeHints::FK_Disabled) {
117     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
118     emitRemarkWithHints();
119     return false;
120   }
121 
122   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
123     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
124     emitRemarkWithHints();
125     return false;
126   }
127 
128   if (getIsVectorized() == 1) {
129     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
130     // FIXME: Add interleave.disable metadata. This will allow
131     // vectorize.disable to be used without disabling the pass and errors
132     // to differentiate between disabled vectorization and a width of 1.
133     ORE.emit([&]() {
134       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
135                                         "AllDisabled", L->getStartLoc(),
136                                         L->getHeader())
137              << "loop not vectorized: vectorization and interleaving are "
138                 "explicitly disabled, or the loop has already been "
139                 "vectorized";
140     });
141     return false;
142   }
143 
144   return true;
145 }
146 
147 void LoopVectorizeHints::emitRemarkWithHints() const {
148   using namespace ore;
149 
150   ORE.emit([&]() {
151     if (Force.Value == LoopVectorizeHints::FK_Disabled)
152       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
153                                       TheLoop->getStartLoc(),
154                                       TheLoop->getHeader())
155              << "loop not vectorized: vectorization is explicitly disabled";
156     else {
157       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
158                                  TheLoop->getStartLoc(), TheLoop->getHeader());
159       R << "loop not vectorized";
160       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
161         R << " (Force=" << NV("Force", true);
162         if (Width.Value != 0)
163           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
164         if (Interleave.Value != 0)
165           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
166         R << ")";
167       }
168       return R;
169     }
170   });
171 }
172 
173 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
174   if (getWidth() == 1)
175     return LV_NAME;
176   if (getForce() == LoopVectorizeHints::FK_Disabled)
177     return LV_NAME;
178   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
179     return LV_NAME;
180   return OptimizationRemarkAnalysis::AlwaysPrint;
181 }
182 
183 void LoopVectorizeHints::getHintsFromMetadata() {
184   MDNode *LoopID = TheLoop->getLoopID();
185   if (!LoopID)
186     return;
187 
188   // First operand should refer to the loop id itself.
189   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
190   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
191 
192   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
193     const MDString *S = nullptr;
194     SmallVector<Metadata *, 4> Args;
195 
196     // The expected hint is either a MDString or a MDNode with the first
197     // operand a MDString.
198     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
199       if (!MD || MD->getNumOperands() == 0)
200         continue;
201       S = dyn_cast<MDString>(MD->getOperand(0));
202       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
203         Args.push_back(MD->getOperand(i));
204     } else {
205       S = dyn_cast<MDString>(LoopID->getOperand(i));
206       assert(Args.size() == 0 && "too many arguments for MDString");
207     }
208 
209     if (!S)
210       continue;
211 
212     // Check if the hint starts with the loop metadata prefix.
213     StringRef Name = S->getString();
214     if (Args.size() == 1)
215       setHint(Name, Args[0]);
216   }
217 }
218 
219 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
220   if (!Name.startswith(Prefix()))
221     return;
222   Name = Name.substr(Prefix().size(), StringRef::npos);
223 
224   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
225   if (!C)
226     return;
227   unsigned Val = C->getZExtValue();
228 
229   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
230   for (auto H : Hints) {
231     if (Name == H->Name) {
232       if (H->validate(Val))
233         H->Value = Val;
234       else
235         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
236       break;
237     }
238   }
239 }
240 
241 bool LoopVectorizationRequirements::doesNotMeet(
242     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
243   const char *PassName = Hints.vectorizeAnalysisPassName();
244   bool Failed = false;
245   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
246     ORE.emit([&]() {
247       return OptimizationRemarkAnalysisFPCommute(
248                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
249                  UnsafeAlgebraInst->getParent())
250              << "loop not vectorized: cannot prove it is safe to reorder "
251                 "floating-point operations";
252     });
253     Failed = true;
254   }
255 
256   // Test if runtime memcheck thresholds are exceeded.
257   bool PragmaThresholdReached =
258       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
259   bool ThresholdReached =
260       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
261   if ((ThresholdReached && !Hints.allowReordering()) ||
262       PragmaThresholdReached) {
263     ORE.emit([&]() {
264       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
265                                                 L->getStartLoc(),
266                                                 L->getHeader())
267              << "loop not vectorized: cannot prove it is safe to reorder "
268                 "memory operations";
269     });
270     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
271     Failed = true;
272   }
273 
274   return Failed;
275 }
276 
277 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
278 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
279 // executing the inner loop will execute the same iterations). This check is
280 // very constrained for now but it will be relaxed in the future. \p Lp is
281 // considered uniform if it meets all the following conditions:
282 //   1) it has a canonical IV (starting from 0 and with stride 1),
283 //   2) its latch terminator is a conditional branch and,
284 //   3) its latch condition is a compare instruction whose operands are the
285 //      canonical IV and an OuterLp invariant.
286 // This check doesn't take into account the uniformity of other conditions not
287 // related to the loop latch because they don't affect the loop uniformity.
288 //
289 // NOTE: We decided to keep all these checks and its associated documentation
290 // together so that we can easily have a picture of the current supported loop
291 // nests. However, some of the current checks don't depend on \p OuterLp and
292 // would be redundantly executed for each \p Lp if we invoked this function for
293 // different candidate outer loops. This is not the case for now because we
294 // don't currently have the infrastructure to evaluate multiple candidate outer
295 // loops and \p OuterLp will be a fixed parameter while we only support explicit
296 // outer loop vectorization. It's also very likely that these checks go away
297 // before introducing the aforementioned infrastructure. However, if this is not
298 // the case, we should move the \p OuterLp independent checks to a separate
299 // function that is only executed once for each \p Lp.
300 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
301   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
302 
303   // If Lp is the outer loop, it's uniform by definition.
304   if (Lp == OuterLp)
305     return true;
306   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
307 
308   // 1.
309   PHINode *IV = Lp->getCanonicalInductionVariable();
310   if (!IV) {
311     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
312     return false;
313   }
314 
315   // 2.
316   BasicBlock *Latch = Lp->getLoopLatch();
317   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
318   if (!LatchBr || LatchBr->isUnconditional()) {
319     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
320     return false;
321   }
322 
323   // 3.
324   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
325   if (!LatchCmp) {
326     LLVM_DEBUG(
327         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
328     return false;
329   }
330 
331   Value *CondOp0 = LatchCmp->getOperand(0);
332   Value *CondOp1 = LatchCmp->getOperand(1);
333   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
334   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
335       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
336     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
337     return false;
338   }
339 
340   return true;
341 }
342 
343 // Return true if \p Lp and all its nested loops are uniform with regard to \p
344 // OuterLp.
345 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
346   if (!isUniformLoop(Lp, OuterLp))
347     return false;
348 
349   // Check if nested loops are uniform.
350   for (Loop *SubLp : *Lp)
351     if (!isUniformLoopNest(SubLp, OuterLp))
352       return false;
353 
354   return true;
355 }
356 
357 /// Check whether it is safe to if-convert this phi node.
358 ///
359 /// Phi nodes with constant expressions that can trap are not safe to if
360 /// convert.
361 static bool canIfConvertPHINodes(BasicBlock *BB) {
362   for (PHINode &Phi : BB->phis()) {
363     for (Value *V : Phi.incoming_values())
364       if (auto *C = dyn_cast<Constant>(V))
365         if (C->canTrap())
366           return false;
367   }
368   return true;
369 }
370 
371 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
372   if (Ty->isPointerTy())
373     return DL.getIntPtrType(Ty);
374 
375   // It is possible that char's or short's overflow when we ask for the loop's
376   // trip count, work around this by changing the type size.
377   if (Ty->getScalarSizeInBits() < 32)
378     return Type::getInt32Ty(Ty->getContext());
379 
380   return Ty;
381 }
382 
383 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
384   Ty0 = convertPointerToIntegerType(DL, Ty0);
385   Ty1 = convertPointerToIntegerType(DL, Ty1);
386   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
387     return Ty0;
388   return Ty1;
389 }
390 
391 /// Check that the instruction has outside loop users and is not an
392 /// identified reduction variable.
393 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
394                                SmallPtrSetImpl<Value *> &AllowedExit) {
395   // Reductions, Inductions and non-header phis are allowed to have exit users. All
396   // other instructions must not have external users.
397   if (!AllowedExit.count(Inst))
398     // Check that all of the users of the loop are inside the BB.
399     for (User *U : Inst->users()) {
400       Instruction *UI = cast<Instruction>(U);
401       // This user may be a reduction exit value.
402       if (!TheLoop->contains(UI)) {
403         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
404         return true;
405       }
406     }
407   return false;
408 }
409 
410 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
411   const ValueToValueMap &Strides =
412       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
413 
414   bool CanAddPredicate = !TheLoop->getHeader()->getParent()->hasOptSize();
415   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
416   if (Stride == 1 || Stride == -1)
417     return Stride;
418   return 0;
419 }
420 
421 bool LoopVectorizationLegality::isUniform(Value *V) {
422   return LAI->isUniform(V);
423 }
424 
425 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
426   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
427   // Store the result and return it at the end instead of exiting early, in case
428   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
429   bool Result = true;
430   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
431 
432   for (BasicBlock *BB : TheLoop->blocks()) {
433     // Check whether the BB terminator is a BranchInst. Any other terminator is
434     // not supported yet.
435     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
436     if (!Br) {
437       reportVectorizationFailure("Unsupported basic block terminator",
438           "loop control flow is not understood by vectorizer",
439           "CFGNotUnderstood", ORE, TheLoop);
440       if (DoExtraAnalysis)
441         Result = false;
442       else
443         return false;
444     }
445 
446     // Check whether the BranchInst is a supported one. Only unconditional
447     // branches, conditional branches with an outer loop invariant condition or
448     // backedges are supported.
449     // FIXME: We skip these checks when VPlan predication is enabled as we
450     // want to allow divergent branches. This whole check will be removed
451     // once VPlan predication is on by default.
452     if (!EnableVPlanPredication && Br && Br->isConditional() &&
453         !TheLoop->isLoopInvariant(Br->getCondition()) &&
454         !LI->isLoopHeader(Br->getSuccessor(0)) &&
455         !LI->isLoopHeader(Br->getSuccessor(1))) {
456       reportVectorizationFailure("Unsupported conditional branch",
457           "loop control flow is not understood by vectorizer",
458           "CFGNotUnderstood", ORE, TheLoop);
459       if (DoExtraAnalysis)
460         Result = false;
461       else
462         return false;
463     }
464   }
465 
466   // Check whether inner loops are uniform. At this point, we only support
467   // simple outer loops scenarios with uniform nested loops.
468   if (!isUniformLoopNest(TheLoop /*loop nest*/,
469                          TheLoop /*context outer loop*/)) {
470     reportVectorizationFailure("Outer loop contains divergent loops",
471         "loop control flow is not understood by vectorizer",
472         "CFGNotUnderstood", ORE, TheLoop);
473     if (DoExtraAnalysis)
474       Result = false;
475     else
476       return false;
477   }
478 
479   // Check whether we are able to set up outer loop induction.
480   if (!setupOuterLoopInductions()) {
481     reportVectorizationFailure("Unsupported outer loop Phi(s)",
482                                "Unsupported outer loop Phi(s)",
483                                "UnsupportedPhi", ORE, TheLoop);
484     if (DoExtraAnalysis)
485       Result = false;
486     else
487       return false;
488   }
489 
490   return Result;
491 }
492 
493 void LoopVectorizationLegality::addInductionPhi(
494     PHINode *Phi, const InductionDescriptor &ID,
495     SmallPtrSetImpl<Value *> &AllowedExit) {
496   Inductions[Phi] = ID;
497 
498   // In case this induction also comes with casts that we know we can ignore
499   // in the vectorized loop body, record them here. All casts could be recorded
500   // here for ignoring, but suffices to record only the first (as it is the
501   // only one that may bw used outside the cast sequence).
502   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
503   if (!Casts.empty())
504     InductionCastsToIgnore.insert(*Casts.begin());
505 
506   Type *PhiTy = Phi->getType();
507   const DataLayout &DL = Phi->getModule()->getDataLayout();
508 
509   // Get the widest type.
510   if (!PhiTy->isFloatingPointTy()) {
511     if (!WidestIndTy)
512       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
513     else
514       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
515   }
516 
517   // Int inductions are special because we only allow one IV.
518   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
519       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
520       isa<Constant>(ID.getStartValue()) &&
521       cast<Constant>(ID.getStartValue())->isNullValue()) {
522 
523     // Use the phi node with the widest type as induction. Use the last
524     // one if there are multiple (no good reason for doing this other
525     // than it is expedient). We've checked that it begins at zero and
526     // steps by one, so this is a canonical induction variable.
527     if (!PrimaryInduction || PhiTy == WidestIndTy)
528       PrimaryInduction = Phi;
529   }
530 
531   // Both the PHI node itself, and the "post-increment" value feeding
532   // back into the PHI node may have external users.
533   // We can allow those uses, except if the SCEVs we have for them rely
534   // on predicates that only hold within the loop, since allowing the exit
535   // currently means re-using this SCEV outside the loop (see PR33706 for more
536   // details).
537   if (PSE.getUnionPredicate().isAlwaysTrue()) {
538     AllowedExit.insert(Phi);
539     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
540   }
541 
542   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
543 }
544 
545 bool LoopVectorizationLegality::setupOuterLoopInductions() {
546   BasicBlock *Header = TheLoop->getHeader();
547 
548   // Returns true if a given Phi is a supported induction.
549   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
550     InductionDescriptor ID;
551     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
552         ID.getKind() == InductionDescriptor::IK_IntInduction) {
553       addInductionPhi(&Phi, ID, AllowedExit);
554       return true;
555     } else {
556       // Bail out for any Phi in the outer loop header that is not a supported
557       // induction.
558       LLVM_DEBUG(
559           dbgs()
560           << "LV: Found unsupported PHI for outer loop vectorization.\n");
561       return false;
562     }
563   };
564 
565   if (llvm::all_of(Header->phis(), isSupportedPhi))
566     return true;
567   else
568     return false;
569 }
570 
571 /// Checks if a function is scalarizable according to the TLI, in
572 /// the sense that it should be vectorized and then expanded in
573 /// multiple scalarcalls. This is represented in the
574 /// TLI via mappings that do not specify a vector name, as in the
575 /// following example:
576 ///
577 ///    const VecDesc VecIntrinsics[] = {
578 ///      {"llvm.phx.abs.i32", "", 4}
579 ///    };
580 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
581   const StringRef ScalarName = CI.getCalledFunction()->getName();
582   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
583   // Check that all known VFs are not associated to a vector
584   // function, i.e. the vector name is emty.
585   if (Scalarize)
586     for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName);
587          VF <= WidestVF; VF *= 2) {
588       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
589     }
590   return Scalarize;
591 }
592 
593 bool LoopVectorizationLegality::canVectorizeInstrs() {
594   BasicBlock *Header = TheLoop->getHeader();
595 
596   // Look for the attribute signaling the absence of NaNs.
597   Function &F = *Header->getParent();
598   HasFunNoNaNAttr =
599       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
600 
601   // For each block in the loop.
602   for (BasicBlock *BB : TheLoop->blocks()) {
603     // Scan the instructions in the block and look for hazards.
604     for (Instruction &I : *BB) {
605       if (auto *Phi = dyn_cast<PHINode>(&I)) {
606         Type *PhiTy = Phi->getType();
607         // Check that this PHI type is allowed.
608         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
609             !PhiTy->isPointerTy()) {
610           reportVectorizationFailure("Found a non-int non-pointer PHI",
611                                      "loop control flow is not understood by vectorizer",
612                                      "CFGNotUnderstood", ORE, TheLoop);
613           return false;
614         }
615 
616         // If this PHINode is not in the header block, then we know that we
617         // can convert it to select during if-conversion. No need to check if
618         // the PHIs in this block are induction or reduction variables.
619         if (BB != Header) {
620           // Non-header phi nodes that have outside uses can be vectorized. Add
621           // them to the list of allowed exits.
622           // Unsafe cyclic dependencies with header phis are identified during
623           // legalization for reduction, induction and first order
624           // recurrences.
625           AllowedExit.insert(&I);
626           continue;
627         }
628 
629         // We only allow if-converted PHIs with exactly two incoming values.
630         if (Phi->getNumIncomingValues() != 2) {
631           reportVectorizationFailure("Found an invalid PHI",
632               "loop control flow is not understood by vectorizer",
633               "CFGNotUnderstood", ORE, TheLoop, Phi);
634           return false;
635         }
636 
637         RecurrenceDescriptor RedDes;
638         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
639                                                  DT)) {
640           if (RedDes.hasUnsafeAlgebra())
641             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
642           AllowedExit.insert(RedDes.getLoopExitInstr());
643           Reductions[Phi] = RedDes;
644           continue;
645         }
646 
647         // TODO: Instead of recording the AllowedExit, it would be good to record the
648         // complementary set: NotAllowedExit. These include (but may not be
649         // limited to):
650         // 1. Reduction phis as they represent the one-before-last value, which
651         // is not available when vectorized
652         // 2. Induction phis and increment when SCEV predicates cannot be used
653         // outside the loop - see addInductionPhi
654         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
655         // outside the loop - see call to hasOutsideLoopUser in the non-phi
656         // handling below
657         // 4. FirstOrderRecurrence phis that can possibly be handled by
658         // extraction.
659         // By recording these, we can then reason about ways to vectorize each
660         // of these NotAllowedExit.
661         InductionDescriptor ID;
662         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
663           addInductionPhi(Phi, ID, AllowedExit);
664           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
665             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
666           continue;
667         }
668 
669         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
670                                                          SinkAfter, DT)) {
671           AllowedExit.insert(Phi);
672           FirstOrderRecurrences.insert(Phi);
673           continue;
674         }
675 
676         // As a last resort, coerce the PHI to a AddRec expression
677         // and re-try classifying it a an induction PHI.
678         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
679           addInductionPhi(Phi, ID, AllowedExit);
680           continue;
681         }
682 
683         reportVectorizationFailure("Found an unidentified PHI",
684             "value that could not be identified as "
685             "reduction is used outside the loop",
686             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
687         return false;
688       } // end of PHI handling
689 
690       // We handle calls that:
691       //   * Are debug info intrinsics.
692       //   * Have a mapping to an IR intrinsic.
693       //   * Have a vector version available.
694       auto *CI = dyn_cast<CallInst>(&I);
695 
696       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
697           !isa<DbgInfoIntrinsic>(CI) &&
698           !(CI->getCalledFunction() && TLI &&
699             (!VFDatabase::getMappings(*CI).empty() ||
700              isTLIScalarize(*TLI, *CI)))) {
701         // If the call is a recognized math libary call, it is likely that
702         // we can vectorize it given loosened floating-point constraints.
703         LibFunc Func;
704         bool IsMathLibCall =
705             TLI && CI->getCalledFunction() &&
706             CI->getType()->isFloatingPointTy() &&
707             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
708             TLI->hasOptimizedCodeGen(Func);
709 
710         if (IsMathLibCall) {
711           // TODO: Ideally, we should not use clang-specific language here,
712           // but it's hard to provide meaningful yet generic advice.
713           // Also, should this be guarded by allowExtraAnalysis() and/or be part
714           // of the returned info from isFunctionVectorizable()?
715           reportVectorizationFailure(
716               "Found a non-intrinsic callsite",
717               "library call cannot be vectorized. "
718               "Try compiling with -fno-math-errno, -ffast-math, "
719               "or similar flags",
720               "CantVectorizeLibcall", ORE, TheLoop, CI);
721         } else {
722           reportVectorizationFailure("Found a non-intrinsic callsite",
723                                      "call instruction cannot be vectorized",
724                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
725         }
726         return false;
727       }
728 
729       // Some intrinsics have scalar arguments and should be same in order for
730       // them to be vectorized (i.e. loop invariant).
731       if (CI) {
732         auto *SE = PSE.getSE();
733         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
734         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
735           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
736             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
737               reportVectorizationFailure("Found unvectorizable intrinsic",
738                   "intrinsic instruction cannot be vectorized",
739                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
740               return false;
741             }
742           }
743       }
744 
745       // Check that the instruction return type is vectorizable.
746       // Also, we can't vectorize extractelement instructions.
747       if ((!VectorType::isValidElementType(I.getType()) &&
748            !I.getType()->isVoidTy()) ||
749           isa<ExtractElementInst>(I)) {
750         reportVectorizationFailure("Found unvectorizable type",
751             "instruction return type cannot be vectorized",
752             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
753         return false;
754       }
755 
756       // Check that the stored type is vectorizable.
757       if (auto *ST = dyn_cast<StoreInst>(&I)) {
758         Type *T = ST->getValueOperand()->getType();
759         if (!VectorType::isValidElementType(T)) {
760           reportVectorizationFailure("Store instruction cannot be vectorized",
761                                      "store instruction cannot be vectorized",
762                                      "CantVectorizeStore", ORE, TheLoop, ST);
763           return false;
764         }
765 
766         // For nontemporal stores, check that a nontemporal vector version is
767         // supported on the target.
768         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
769           // Arbitrarily try a vector of 2 elements.
770           auto *VecTy = FixedVectorType::get(T, /*NumElements=*/2);
771           assert(VecTy && "did not find vectorized version of stored type");
772           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
773             reportVectorizationFailure(
774                 "nontemporal store instruction cannot be vectorized",
775                 "nontemporal store instruction cannot be vectorized",
776                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
777             return false;
778           }
779         }
780 
781       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
782         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
783           // For nontemporal loads, check that a nontemporal vector version is
784           // supported on the target (arbitrarily try a vector of 2 elements).
785           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElements=*/2);
786           assert(VecTy && "did not find vectorized version of load type");
787           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
788             reportVectorizationFailure(
789                 "nontemporal load instruction cannot be vectorized",
790                 "nontemporal load instruction cannot be vectorized",
791                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
792             return false;
793           }
794         }
795 
796         // FP instructions can allow unsafe algebra, thus vectorizable by
797         // non-IEEE-754 compliant SIMD units.
798         // This applies to floating-point math operations and calls, not memory
799         // operations, shuffles, or casts, as they don't change precision or
800         // semantics.
801       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
802                  !I.isFast()) {
803         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
804         Hints->setPotentiallyUnsafe();
805       }
806 
807       // Reduction instructions are allowed to have exit users.
808       // All other instructions must not have external users.
809       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
810         // We can safely vectorize loops where instructions within the loop are
811         // used outside the loop only if the SCEV predicates within the loop is
812         // same as outside the loop. Allowing the exit means reusing the SCEV
813         // outside the loop.
814         if (PSE.getUnionPredicate().isAlwaysTrue()) {
815           AllowedExit.insert(&I);
816           continue;
817         }
818         reportVectorizationFailure("Value cannot be used outside the loop",
819                                    "value cannot be used outside the loop",
820                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
821         return false;
822       }
823     } // next instr.
824   }
825 
826   if (!PrimaryInduction) {
827     if (Inductions.empty()) {
828       reportVectorizationFailure("Did not find one integer induction var",
829           "loop induction variable could not be identified",
830           "NoInductionVariable", ORE, TheLoop);
831       return false;
832     } else if (!WidestIndTy) {
833       reportVectorizationFailure("Did not find one integer induction var",
834           "integer loop induction variable could not be identified",
835           "NoIntegerInductionVariable", ORE, TheLoop);
836       return false;
837     } else {
838       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
839     }
840   }
841 
842   // For first order recurrences, we use the previous value (incoming value from
843   // the latch) to check if it dominates all users of the recurrence. Bail out
844   // if we have to sink such an instruction for another recurrence, as the
845   // dominance requirement may not hold after sinking.
846   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
847   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
848         Instruction *V =
849             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
850         return SinkAfter.find(V) != SinkAfter.end();
851       }))
852     return false;
853 
854   // Now we know the widest induction type, check if our found induction
855   // is the same size. If it's not, unset it here and InnerLoopVectorizer
856   // will create another.
857   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
858     PrimaryInduction = nullptr;
859 
860   return true;
861 }
862 
863 bool LoopVectorizationLegality::canVectorizeMemory() {
864   LAI = &(*GetLAA)(*TheLoop);
865   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
866   if (LAR) {
867     ORE->emit([&]() {
868       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
869                                         "loop not vectorized: ", *LAR);
870     });
871   }
872   if (!LAI->canVectorizeMemory())
873     return false;
874 
875   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
876     reportVectorizationFailure("Stores to a uniform address",
877         "write to a loop invariant address could not be vectorized",
878         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
879     return false;
880   }
881   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
882   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
883 
884   return true;
885 }
886 
887 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
888   Value *In0 = const_cast<Value *>(V);
889   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
890   if (!PN)
891     return false;
892 
893   return Inductions.count(PN);
894 }
895 
896 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
897   auto *Inst = dyn_cast<Instruction>(V);
898   return (Inst && InductionCastsToIgnore.count(Inst));
899 }
900 
901 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
902   return isInductionPhi(V) || isCastedInductionVariable(V);
903 }
904 
905 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
906   return FirstOrderRecurrences.count(Phi);
907 }
908 
909 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
910   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
911 }
912 
913 bool LoopVectorizationLegality::blockCanBePredicated(
914     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, bool PreserveGuards) {
915   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
916 
917   for (Instruction &I : *BB) {
918     // Check that we don't have a constant expression that can trap as operand.
919     for (Value *Operand : I.operands()) {
920       if (auto *C = dyn_cast<Constant>(Operand))
921         if (C->canTrap())
922           return false;
923     }
924 
925     // We can predicate blocks with calls to assume, as long as we drop them in
926     // case we flatten the CFG via predication.
927     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
928       ConditionalAssumes.insert(&I);
929       continue;
930     }
931 
932     // We might be able to hoist the load.
933     if (I.mayReadFromMemory()) {
934       auto *LI = dyn_cast<LoadInst>(&I);
935       if (!LI)
936         return false;
937       if (!SafePtrs.count(LI->getPointerOperand())) {
938         // !llvm.mem.parallel_loop_access implies if-conversion safety.
939         // Otherwise, record that the load needs (real or emulated) masking
940         // and let the cost model decide.
941         if (!IsAnnotatedParallel || PreserveGuards)
942           MaskedOp.insert(LI);
943         continue;
944       }
945     }
946 
947     if (I.mayWriteToMemory()) {
948       auto *SI = dyn_cast<StoreInst>(&I);
949       if (!SI)
950         return false;
951       // Predicated store requires some form of masking:
952       // 1) masked store HW instruction,
953       // 2) emulation via load-blend-store (only if safe and legal to do so,
954       //    be aware on the race conditions), or
955       // 3) element-by-element predicate check and scalar store.
956       MaskedOp.insert(SI);
957       continue;
958     }
959     if (I.mayThrow())
960       return false;
961   }
962 
963   return true;
964 }
965 
966 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
967   if (!EnableIfConversion) {
968     reportVectorizationFailure("If-conversion is disabled",
969                                "if-conversion is disabled",
970                                "IfConversionDisabled",
971                                ORE, TheLoop);
972     return false;
973   }
974 
975   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
976 
977   // A list of pointers which are known to be dereferenceable within scope of
978   // the loop body for each iteration of the loop which executes.  That is,
979   // the memory pointed to can be dereferenced (with the access size implied by
980   // the value's type) unconditionally within the loop header without
981   // introducing a new fault.
982   SmallPtrSet<Value *, 8> SafePointers;
983 
984   // Collect safe addresses.
985   for (BasicBlock *BB : TheLoop->blocks()) {
986     if (!blockNeedsPredication(BB)) {
987       for (Instruction &I : *BB)
988         if (auto *Ptr = getLoadStorePointerOperand(&I))
989           SafePointers.insert(Ptr);
990       continue;
991     }
992 
993     // For a block which requires predication, a address may be safe to access
994     // in the loop w/o predication if we can prove dereferenceability facts
995     // sufficient to ensure it'll never fault within the loop. For the moment,
996     // we restrict this to loads; stores are more complicated due to
997     // concurrency restrictions.
998     ScalarEvolution &SE = *PSE.getSE();
999     for (Instruction &I : *BB) {
1000       LoadInst *LI = dyn_cast<LoadInst>(&I);
1001       if (LI && !mustSuppressSpeculation(*LI) &&
1002           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1003         SafePointers.insert(LI->getPointerOperand());
1004     }
1005   }
1006 
1007   // Collect the blocks that need predication.
1008   BasicBlock *Header = TheLoop->getHeader();
1009   for (BasicBlock *BB : TheLoop->blocks()) {
1010     // We don't support switch statements inside loops.
1011     if (!isa<BranchInst>(BB->getTerminator())) {
1012       reportVectorizationFailure("Loop contains a switch statement",
1013                                  "loop contains a switch statement",
1014                                  "LoopContainsSwitch", ORE, TheLoop,
1015                                  BB->getTerminator());
1016       return false;
1017     }
1018 
1019     // We must be able to predicate all blocks that need to be predicated.
1020     if (blockNeedsPredication(BB)) {
1021       if (!blockCanBePredicated(BB, SafePointers)) {
1022         reportVectorizationFailure(
1023             "Control flow cannot be substituted for a select",
1024             "control flow cannot be substituted for a select",
1025             "NoCFGForSelect", ORE, TheLoop,
1026             BB->getTerminator());
1027         return false;
1028       }
1029     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1030       reportVectorizationFailure(
1031           "Control flow cannot be substituted for a select",
1032           "control flow cannot be substituted for a select",
1033           "NoCFGForSelect", ORE, TheLoop,
1034           BB->getTerminator());
1035       return false;
1036     }
1037   }
1038 
1039   // We can if-convert this loop.
1040   return true;
1041 }
1042 
1043 // Helper function to canVectorizeLoopNestCFG.
1044 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1045                                                     bool UseVPlanNativePath) {
1046   assert((UseVPlanNativePath || Lp->empty()) &&
1047          "VPlan-native path is not enabled.");
1048 
1049   // TODO: ORE should be improved to show more accurate information when an
1050   // outer loop can't be vectorized because a nested loop is not understood or
1051   // legal. Something like: "outer_loop_location: loop not vectorized:
1052   // (inner_loop_location) loop control flow is not understood by vectorizer".
1053 
1054   // Store the result and return it at the end instead of exiting early, in case
1055   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1056   bool Result = true;
1057   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1058 
1059   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1060   // be canonicalized.
1061   if (!Lp->getLoopPreheader()) {
1062     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1063         "loop control flow is not understood by vectorizer",
1064         "CFGNotUnderstood", ORE, TheLoop);
1065     if (DoExtraAnalysis)
1066       Result = false;
1067     else
1068       return false;
1069   }
1070 
1071   // We must have a single backedge.
1072   if (Lp->getNumBackEdges() != 1) {
1073     reportVectorizationFailure("The loop must have a single backedge",
1074         "loop control flow is not understood by vectorizer",
1075         "CFGNotUnderstood", ORE, TheLoop);
1076     if (DoExtraAnalysis)
1077       Result = false;
1078     else
1079       return false;
1080   }
1081 
1082   // We must have a single exiting block.
1083   if (!Lp->getExitingBlock()) {
1084     reportVectorizationFailure("The loop must have an exiting block",
1085         "loop control flow is not understood by vectorizer",
1086         "CFGNotUnderstood", ORE, TheLoop);
1087     if (DoExtraAnalysis)
1088       Result = false;
1089     else
1090       return false;
1091   }
1092 
1093   // We only handle bottom-tested loops, i.e. loop in which the condition is
1094   // checked at the end of each iteration. With that we can assume that all
1095   // instructions in the loop are executed the same number of times.
1096   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1097     reportVectorizationFailure("The exiting block is not the loop latch",
1098         "loop control flow is not understood by vectorizer",
1099         "CFGNotUnderstood", ORE, TheLoop);
1100     if (DoExtraAnalysis)
1101       Result = false;
1102     else
1103       return false;
1104   }
1105 
1106   return Result;
1107 }
1108 
1109 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1110     Loop *Lp, bool UseVPlanNativePath) {
1111   // Store the result and return it at the end instead of exiting early, in case
1112   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1113   bool Result = true;
1114   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1115   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1116     if (DoExtraAnalysis)
1117       Result = false;
1118     else
1119       return false;
1120   }
1121 
1122   // Recursively check whether the loop control flow of nested loops is
1123   // understood.
1124   for (Loop *SubLp : *Lp)
1125     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1126       if (DoExtraAnalysis)
1127         Result = false;
1128       else
1129         return false;
1130     }
1131 
1132   return Result;
1133 }
1134 
1135 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1136   // Store the result and return it at the end instead of exiting early, in case
1137   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1138   bool Result = true;
1139 
1140   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1141   // Check whether the loop-related control flow in the loop nest is expected by
1142   // vectorizer.
1143   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1144     if (DoExtraAnalysis)
1145       Result = false;
1146     else
1147       return false;
1148   }
1149 
1150   // We need to have a loop header.
1151   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1152                     << '\n');
1153 
1154   // Specific checks for outer loops. We skip the remaining legal checks at this
1155   // point because they don't support outer loops.
1156   if (!TheLoop->empty()) {
1157     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1158 
1159     if (!canVectorizeOuterLoop()) {
1160       reportVectorizationFailure("Unsupported outer loop",
1161                                  "unsupported outer loop",
1162                                  "UnsupportedOuterLoop",
1163                                  ORE, TheLoop);
1164       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1165       // outer loops.
1166       return false;
1167     }
1168 
1169     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1170     return Result;
1171   }
1172 
1173   assert(TheLoop->empty() && "Inner loop expected.");
1174   // Check if we can if-convert non-single-bb loops.
1175   unsigned NumBlocks = TheLoop->getNumBlocks();
1176   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1177     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1178     if (DoExtraAnalysis)
1179       Result = false;
1180     else
1181       return false;
1182   }
1183 
1184   // Check if we can vectorize the instructions and CFG in this loop.
1185   if (!canVectorizeInstrs()) {
1186     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1187     if (DoExtraAnalysis)
1188       Result = false;
1189     else
1190       return false;
1191   }
1192 
1193   // Go over each instruction and look at memory deps.
1194   if (!canVectorizeMemory()) {
1195     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1196     if (DoExtraAnalysis)
1197       Result = false;
1198     else
1199       return false;
1200   }
1201 
1202   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1203                     << (LAI->getRuntimePointerChecking()->Need
1204                             ? " (with a runtime bound check)"
1205                             : "")
1206                     << "!\n");
1207 
1208   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1209   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1210     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1211 
1212   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1213     reportVectorizationFailure("Too many SCEV checks needed",
1214         "Too many SCEV assumptions need to be made and checked at runtime",
1215         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1216     if (DoExtraAnalysis)
1217       Result = false;
1218     else
1219       return false;
1220   }
1221 
1222   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1223   // we can vectorize, and at this point we don't have any other mem analysis
1224   // which may limit our maximum vectorization factor, so just return true with
1225   // no restrictions.
1226   return Result;
1227 }
1228 
1229 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1230 
1231   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1232 
1233   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1234 
1235   for (auto &Reduction : getReductionVars())
1236     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1237 
1238   // TODO: handle non-reduction outside users when tail is folded by masking.
1239   for (auto *AE : AllowedExit) {
1240     // Check that all users of allowed exit values are inside the loop or
1241     // are the live-out of a reduction.
1242     if (ReductionLiveOuts.count(AE))
1243       continue;
1244     for (User *U : AE->users()) {
1245       Instruction *UI = cast<Instruction>(U);
1246       if (TheLoop->contains(UI))
1247         continue;
1248       reportVectorizationFailure(
1249           "Cannot fold tail by masking, loop has an outside user for",
1250           "Cannot fold tail by masking in the presence of live outs.",
1251           "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
1252       return false;
1253     }
1254   }
1255 
1256   // The list of pointers that we can safely read and write to remains empty.
1257   SmallPtrSet<Value *, 8> SafePointers;
1258 
1259   // Check and mark all blocks for predication, including those that ordinarily
1260   // do not need predication such as the header block.
1261   for (BasicBlock *BB : TheLoop->blocks()) {
1262     if (!blockCanBePredicated(BB, SafePointers, /* MaskAllLoads= */ true)) {
1263       reportVectorizationFailure(
1264           "Cannot fold tail by masking as required",
1265           "control flow cannot be substituted for a select",
1266           "NoCFGForSelect", ORE, TheLoop,
1267           BB->getTerminator());
1268       return false;
1269     }
1270   }
1271 
1272   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1273   return true;
1274 }
1275 
1276 } // namespace llvm
1277