1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides loop vectorization legality analysis. Original code
11 // resided in LoopVectorize.cpp for a long time.
12 //
13 // At this point, it is implemented as a utility class, not as an analysis
14 // pass. It should be easy to create an analysis pass around it if there
15 // is a need (but D45420 needs to happen first).
16 //
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 
21 using namespace llvm;
22 
23 #define LV_NAME "loop-vectorize"
24 #define DEBUG_TYPE LV_NAME
25 
26 static cl::opt<bool>
27     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
28                        cl::desc("Enable if-conversion during vectorization."));
29 
30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
31     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
32     cl::desc("The maximum allowed number of runtime memory checks with a "
33              "vectorize(enable) pragma."));
34 
35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
36     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
37     cl::desc("The maximum number of SCEV checks allowed."));
38 
39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
40     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
41     cl::desc("The maximum number of SCEV checks allowed with a "
42              "vectorize(enable) pragma"));
43 
44 /// Maximum vectorization interleave count.
45 static const unsigned MaxInterleaveFactor = 16;
46 
47 namespace llvm {
48 
49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
50                                                   StringRef RemarkName,
51                                                   Loop *TheLoop,
52                                                   Instruction *I) {
53   Value *CodeRegion = TheLoop->getHeader();
54   DebugLoc DL = TheLoop->getStartLoc();
55 
56   if (I) {
57     CodeRegion = I->getParent();
58     // If there is no debug location attached to the instruction, revert back to
59     // using the loop's.
60     if (I->getDebugLoc())
61       DL = I->getDebugLoc();
62   }
63 
64   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
65   R << "loop not vectorized: ";
66   return R;
67 }
68 
69 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
70   switch (Kind) {
71   case HK_WIDTH:
72     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
73   case HK_UNROLL:
74     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
75   case HK_FORCE:
76     return (Val <= 1);
77   case HK_ISVECTORIZED:
78     return (Val == 0 || Val == 1);
79   }
80   return false;
81 }
82 
83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
84                                        OptimizationRemarkEmitter &ORE)
85     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
86       Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
87       Force("vectorize.enable", FK_Undefined, HK_FORCE),
88       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
89   // Populate values with existing loop metadata.
90   getHintsFromMetadata();
91 
92   // force-vector-interleave overrides DisableInterleaving.
93   if (VectorizerParams::isInterleaveForced())
94     Interleave.Value = VectorizerParams::VectorizationInterleave;
95 
96   if (IsVectorized.Value != 1)
97     // If the vectorization width and interleaving count are both 1 then
98     // consider the loop to have been already vectorized because there's
99     // nothing more that we can do.
100     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
101   LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
102              << "LV: Interleaving disabled by the pass manager\n");
103 }
104 
105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
106                                             bool AlwaysVectorize) const {
107   if (getForce() == LoopVectorizeHints::FK_Disabled) {
108     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
109     emitRemarkWithHints();
110     return false;
111   }
112 
113   if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
114     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
115     emitRemarkWithHints();
116     return false;
117   }
118 
119   if (getIsVectorized() == 1) {
120     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
121     // FIXME: Add interleave.disable metadata. This will allow
122     // vectorize.disable to be used without disabling the pass and errors
123     // to differentiate between disabled vectorization and a width of 1.
124     ORE.emit([&]() {
125       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
126                                         "AllDisabled", L->getStartLoc(),
127                                         L->getHeader())
128              << "loop not vectorized: vectorization and interleaving are "
129                 "explicitly disabled, or the loop has already been "
130                 "vectorized";
131     });
132     return false;
133   }
134 
135   return true;
136 }
137 
138 void LoopVectorizeHints::emitRemarkWithHints() const {
139   using namespace ore;
140 
141   ORE.emit([&]() {
142     if (Force.Value == LoopVectorizeHints::FK_Disabled)
143       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
144                                       TheLoop->getStartLoc(),
145                                       TheLoop->getHeader())
146              << "loop not vectorized: vectorization is explicitly disabled";
147     else {
148       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
149                                  TheLoop->getStartLoc(), TheLoop->getHeader());
150       R << "loop not vectorized";
151       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
152         R << " (Force=" << NV("Force", true);
153         if (Width.Value != 0)
154           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
155         if (Interleave.Value != 0)
156           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
157         R << ")";
158       }
159       return R;
160     }
161   });
162 }
163 
164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
165   if (getWidth() == 1)
166     return LV_NAME;
167   if (getForce() == LoopVectorizeHints::FK_Disabled)
168     return LV_NAME;
169   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
170     return LV_NAME;
171   return OptimizationRemarkAnalysis::AlwaysPrint;
172 }
173 
174 void LoopVectorizeHints::getHintsFromMetadata() {
175   MDNode *LoopID = TheLoop->getLoopID();
176   if (!LoopID)
177     return;
178 
179   // First operand should refer to the loop id itself.
180   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
181   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
182 
183   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
184     const MDString *S = nullptr;
185     SmallVector<Metadata *, 4> Args;
186 
187     // The expected hint is either a MDString or a MDNode with the first
188     // operand a MDString.
189     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
190       if (!MD || MD->getNumOperands() == 0)
191         continue;
192       S = dyn_cast<MDString>(MD->getOperand(0));
193       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
194         Args.push_back(MD->getOperand(i));
195     } else {
196       S = dyn_cast<MDString>(LoopID->getOperand(i));
197       assert(Args.size() == 0 && "too many arguments for MDString");
198     }
199 
200     if (!S)
201       continue;
202 
203     // Check if the hint starts with the loop metadata prefix.
204     StringRef Name = S->getString();
205     if (Args.size() == 1)
206       setHint(Name, Args[0]);
207   }
208 }
209 
210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
211   if (!Name.startswith(Prefix()))
212     return;
213   Name = Name.substr(Prefix().size(), StringRef::npos);
214 
215   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
216   if (!C)
217     return;
218   unsigned Val = C->getZExtValue();
219 
220   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
221   for (auto H : Hints) {
222     if (Name == H->Name) {
223       if (H->validate(Val))
224         H->Value = Val;
225       else
226         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
227       break;
228     }
229   }
230 }
231 
232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
233                                                unsigned V) const {
234   LLVMContext &Context = TheLoop->getHeader()->getContext();
235   Metadata *MDs[] = {
236       MDString::get(Context, Name),
237       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
238   return MDNode::get(Context, MDs);
239 }
240 
241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
242                                                  ArrayRef<Hint> HintTypes) {
243   MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
244   if (!Name)
245     return false;
246 
247   for (auto H : HintTypes)
248     if (Name->getString().endswith(H.Name))
249       return true;
250   return false;
251 }
252 
253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
254   if (HintTypes.empty())
255     return;
256 
257   // Reserve the first element to LoopID (see below).
258   SmallVector<Metadata *, 4> MDs(1);
259   // If the loop already has metadata, then ignore the existing operands.
260   MDNode *LoopID = TheLoop->getLoopID();
261   if (LoopID) {
262     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
263       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
264       // If node in update list, ignore old value.
265       if (!matchesHintMetadataName(Node, HintTypes))
266         MDs.push_back(Node);
267     }
268   }
269 
270   // Now, add the missing hints.
271   for (auto H : HintTypes)
272     MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
273 
274   // Replace current metadata node with new one.
275   LLVMContext &Context = TheLoop->getHeader()->getContext();
276   MDNode *NewLoopID = MDNode::get(Context, MDs);
277   // Set operand 0 to refer to the loop id itself.
278   NewLoopID->replaceOperandWith(0, NewLoopID);
279 
280   TheLoop->setLoopID(NewLoopID);
281 }
282 
283 bool LoopVectorizationRequirements::doesNotMeet(
284     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
285   const char *PassName = Hints.vectorizeAnalysisPassName();
286   bool Failed = false;
287   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
288     ORE.emit([&]() {
289       return OptimizationRemarkAnalysisFPCommute(
290                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
291                  UnsafeAlgebraInst->getParent())
292              << "loop not vectorized: cannot prove it is safe to reorder "
293                 "floating-point operations";
294     });
295     Failed = true;
296   }
297 
298   // Test if runtime memcheck thresholds are exceeded.
299   bool PragmaThresholdReached =
300       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
301   bool ThresholdReached =
302       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
303   if ((ThresholdReached && !Hints.allowReordering()) ||
304       PragmaThresholdReached) {
305     ORE.emit([&]() {
306       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
307                                                 L->getStartLoc(),
308                                                 L->getHeader())
309              << "loop not vectorized: cannot prove it is safe to reorder "
310                 "memory operations";
311     });
312     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
313     Failed = true;
314   }
315 
316   return Failed;
317 }
318 
319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
321 // executing the inner loop will execute the same iterations). This check is
322 // very constrained for now but it will be relaxed in the future. \p Lp is
323 // considered uniform if it meets all the following conditions:
324 //   1) it has a canonical IV (starting from 0 and with stride 1),
325 //   2) its latch terminator is a conditional branch and,
326 //   3) its latch condition is a compare instruction whose operands are the
327 //      canonical IV and an OuterLp invariant.
328 // This check doesn't take into account the uniformity of other conditions not
329 // related to the loop latch because they don't affect the loop uniformity.
330 //
331 // NOTE: We decided to keep all these checks and its associated documentation
332 // together so that we can easily have a picture of the current supported loop
333 // nests. However, some of the current checks don't depend on \p OuterLp and
334 // would be redundantly executed for each \p Lp if we invoked this function for
335 // different candidate outer loops. This is not the case for now because we
336 // don't currently have the infrastructure to evaluate multiple candidate outer
337 // loops and \p OuterLp will be a fixed parameter while we only support explicit
338 // outer loop vectorization. It's also very likely that these checks go away
339 // before introducing the aforementioned infrastructure. However, if this is not
340 // the case, we should move the \p OuterLp independent checks to a separate
341 // function that is only executed once for each \p Lp.
342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
343   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
344 
345   // If Lp is the outer loop, it's uniform by definition.
346   if (Lp == OuterLp)
347     return true;
348   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
349 
350   // 1.
351   PHINode *IV = Lp->getCanonicalInductionVariable();
352   if (!IV) {
353     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
354     return false;
355   }
356 
357   // 2.
358   BasicBlock *Latch = Lp->getLoopLatch();
359   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
360   if (!LatchBr || LatchBr->isUnconditional()) {
361     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
362     return false;
363   }
364 
365   // 3.
366   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
367   if (!LatchCmp) {
368     LLVM_DEBUG(
369         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
370     return false;
371   }
372 
373   Value *CondOp0 = LatchCmp->getOperand(0);
374   Value *CondOp1 = LatchCmp->getOperand(1);
375   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
376   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
377       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
378     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
379     return false;
380   }
381 
382   return true;
383 }
384 
385 // Return true if \p Lp and all its nested loops are uniform with regard to \p
386 // OuterLp.
387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
388   if (!isUniformLoop(Lp, OuterLp))
389     return false;
390 
391   // Check if nested loops are uniform.
392   for (Loop *SubLp : *Lp)
393     if (!isUniformLoopNest(SubLp, OuterLp))
394       return false;
395 
396   return true;
397 }
398 
399 /// Check whether it is safe to if-convert this phi node.
400 ///
401 /// Phi nodes with constant expressions that can trap are not safe to if
402 /// convert.
403 static bool canIfConvertPHINodes(BasicBlock *BB) {
404   for (PHINode &Phi : BB->phis()) {
405     for (Value *V : Phi.incoming_values())
406       if (auto *C = dyn_cast<Constant>(V))
407         if (C->canTrap())
408           return false;
409   }
410   return true;
411 }
412 
413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
414   if (Ty->isPointerTy())
415     return DL.getIntPtrType(Ty);
416 
417   // It is possible that char's or short's overflow when we ask for the loop's
418   // trip count, work around this by changing the type size.
419   if (Ty->getScalarSizeInBits() < 32)
420     return Type::getInt32Ty(Ty->getContext());
421 
422   return Ty;
423 }
424 
425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
426   Ty0 = convertPointerToIntegerType(DL, Ty0);
427   Ty1 = convertPointerToIntegerType(DL, Ty1);
428   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
429     return Ty0;
430   return Ty1;
431 }
432 
433 /// Check that the instruction has outside loop users and is not an
434 /// identified reduction variable.
435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
436                                SmallPtrSetImpl<Value *> &AllowedExit) {
437   // Reductions, Inductions and non-header phis are allowed to have exit users. All
438   // other instructions must not have external users.
439   // TODO: Non-phi instructions can also be taught to have exit users, now that
440   // we know how to extract the last scalar element from the loop.
441   if (!AllowedExit.count(Inst))
442     // Check that all of the users of the loop are inside the BB.
443     for (User *U : Inst->users()) {
444       Instruction *UI = cast<Instruction>(U);
445       // This user may be a reduction exit value.
446       if (!TheLoop->contains(UI)) {
447         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
448         return true;
449       }
450     }
451   return false;
452 }
453 
454 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
455   const ValueToValueMap &Strides =
456       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
457 
458   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
459   if (Stride == 1 || Stride == -1)
460     return Stride;
461   return 0;
462 }
463 
464 bool LoopVectorizationLegality::isUniform(Value *V) {
465   return LAI->isUniform(V);
466 }
467 
468 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
469   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
470   // Store the result and return it at the end instead of exiting early, in case
471   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
472   bool Result = true;
473   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
474 
475   for (BasicBlock *BB : TheLoop->blocks()) {
476     // Check whether the BB terminator is a BranchInst. Any other terminator is
477     // not supported yet.
478     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
479     if (!Br) {
480       LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
481       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
482                 << "loop control flow is not understood by vectorizer");
483       if (DoExtraAnalysis)
484         Result = false;
485       else
486         return false;
487     }
488 
489     // Check whether the BranchInst is a supported one. Only unconditional
490     // branches, conditional branches with an outer loop invariant condition or
491     // backedges are supported.
492     if (Br && Br->isConditional() &&
493         !TheLoop->isLoopInvariant(Br->getCondition()) &&
494         !LI->isLoopHeader(Br->getSuccessor(0)) &&
495         !LI->isLoopHeader(Br->getSuccessor(1))) {
496       LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
497       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
498                 << "loop control flow is not understood by vectorizer");
499       if (DoExtraAnalysis)
500         Result = false;
501       else
502         return false;
503     }
504   }
505 
506   // Check whether inner loops are uniform. At this point, we only support
507   // simple outer loops scenarios with uniform nested loops.
508   if (!isUniformLoopNest(TheLoop /*loop nest*/,
509                          TheLoop /*context outer loop*/)) {
510     LLVM_DEBUG(
511         dbgs()
512         << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
513     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
514               << "loop control flow is not understood by vectorizer");
515     if (DoExtraAnalysis)
516       Result = false;
517     else
518       return false;
519   }
520 
521   return Result;
522 }
523 
524 void LoopVectorizationLegality::addInductionPhi(
525     PHINode *Phi, const InductionDescriptor &ID,
526     SmallPtrSetImpl<Value *> &AllowedExit) {
527   Inductions[Phi] = ID;
528 
529   // In case this induction also comes with casts that we know we can ignore
530   // in the vectorized loop body, record them here. All casts could be recorded
531   // here for ignoring, but suffices to record only the first (as it is the
532   // only one that may bw used outside the cast sequence).
533   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
534   if (!Casts.empty())
535     InductionCastsToIgnore.insert(*Casts.begin());
536 
537   Type *PhiTy = Phi->getType();
538   const DataLayout &DL = Phi->getModule()->getDataLayout();
539 
540   // Get the widest type.
541   if (!PhiTy->isFloatingPointTy()) {
542     if (!WidestIndTy)
543       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
544     else
545       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
546   }
547 
548   // Int inductions are special because we only allow one IV.
549   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
550       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
551       isa<Constant>(ID.getStartValue()) &&
552       cast<Constant>(ID.getStartValue())->isNullValue()) {
553 
554     // Use the phi node with the widest type as induction. Use the last
555     // one if there are multiple (no good reason for doing this other
556     // than it is expedient). We've checked that it begins at zero and
557     // steps by one, so this is a canonical induction variable.
558     if (!PrimaryInduction || PhiTy == WidestIndTy)
559       PrimaryInduction = Phi;
560   }
561 
562   // Both the PHI node itself, and the "post-increment" value feeding
563   // back into the PHI node may have external users.
564   // We can allow those uses, except if the SCEVs we have for them rely
565   // on predicates that only hold within the loop, since allowing the exit
566   // currently means re-using this SCEV outside the loop (see PR33706 for more
567   // details).
568   if (PSE.getUnionPredicate().isAlwaysTrue()) {
569     AllowedExit.insert(Phi);
570     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
571   }
572 
573   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
574 }
575 
576 bool LoopVectorizationLegality::canVectorizeInstrs() {
577   BasicBlock *Header = TheLoop->getHeader();
578 
579   // Look for the attribute signaling the absence of NaNs.
580   Function &F = *Header->getParent();
581   HasFunNoNaNAttr =
582       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
583 
584   // For each block in the loop.
585   for (BasicBlock *BB : TheLoop->blocks()) {
586     // Scan the instructions in the block and look for hazards.
587     for (Instruction &I : *BB) {
588       if (auto *Phi = dyn_cast<PHINode>(&I)) {
589         Type *PhiTy = Phi->getType();
590         // Check that this PHI type is allowed.
591         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
592             !PhiTy->isPointerTy()) {
593           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
594                     << "loop control flow is not understood by vectorizer");
595           LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
596           return false;
597         }
598 
599         // If this PHINode is not in the header block, then we know that we
600         // can convert it to select during if-conversion. No need to check if
601         // the PHIs in this block are induction or reduction variables.
602         if (BB != Header) {
603           // Non-header phi nodes that have outside uses can be vectorized. Add
604           // them to the list of allowed exits.
605           // Unsafe cyclic dependencies with header phis are identified during
606           // legalization for reduction, induction and first order
607           // recurrences.
608           continue;
609         }
610 
611         // We only allow if-converted PHIs with exactly two incoming values.
612         if (Phi->getNumIncomingValues() != 2) {
613           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
614                     << "control flow not understood by vectorizer");
615           LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
616           return false;
617         }
618 
619         RecurrenceDescriptor RedDes;
620         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
621                                                  DT)) {
622           if (RedDes.hasUnsafeAlgebra())
623             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
624           AllowedExit.insert(RedDes.getLoopExitInstr());
625           Reductions[Phi] = RedDes;
626           continue;
627         }
628 
629         InductionDescriptor ID;
630         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
631           addInductionPhi(Phi, ID, AllowedExit);
632           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
633             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
634           continue;
635         }
636 
637         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
638                                                          SinkAfter, DT)) {
639           FirstOrderRecurrences.insert(Phi);
640           continue;
641         }
642 
643         // As a last resort, coerce the PHI to a AddRec expression
644         // and re-try classifying it a an induction PHI.
645         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
646           addInductionPhi(Phi, ID, AllowedExit);
647           continue;
648         }
649 
650         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
651                   << "value that could not be identified as "
652                      "reduction is used outside the loop");
653         LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
654         return false;
655       } // end of PHI handling
656 
657       // We handle calls that:
658       //   * Are debug info intrinsics.
659       //   * Have a mapping to an IR intrinsic.
660       //   * Have a vector version available.
661       auto *CI = dyn_cast<CallInst>(&I);
662       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
663           !isa<DbgInfoIntrinsic>(CI) &&
664           !(CI->getCalledFunction() && TLI &&
665             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
666         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
667                   << "call instruction cannot be vectorized");
668         LLVM_DEBUG(
669             dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
670         return false;
671       }
672 
673       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
674       // second argument is the same (i.e. loop invariant)
675       if (CI && hasVectorInstrinsicScalarOpd(
676                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
677         auto *SE = PSE.getSE();
678         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
679           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
680                     << "intrinsic instruction cannot be vectorized");
681           LLVM_DEBUG(dbgs()
682                      << "LV: Found unvectorizable intrinsic " << *CI << "\n");
683           return false;
684         }
685       }
686 
687       // Check that the instruction return type is vectorizable.
688       // Also, we can't vectorize extractelement instructions.
689       if ((!VectorType::isValidElementType(I.getType()) &&
690            !I.getType()->isVoidTy()) ||
691           isa<ExtractElementInst>(I)) {
692         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
693                   << "instruction return type cannot be vectorized");
694         LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
695         return false;
696       }
697 
698       // Check that the stored type is vectorizable.
699       if (auto *ST = dyn_cast<StoreInst>(&I)) {
700         Type *T = ST->getValueOperand()->getType();
701         if (!VectorType::isValidElementType(T)) {
702           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
703                     << "store instruction cannot be vectorized");
704           return false;
705         }
706 
707         // FP instructions can allow unsafe algebra, thus vectorizable by
708         // non-IEEE-754 compliant SIMD units.
709         // This applies to floating-point math operations and calls, not memory
710         // operations, shuffles, or casts, as they don't change precision or
711         // semantics.
712       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
713                  !I.isFast()) {
714         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
715         Hints->setPotentiallyUnsafe();
716       }
717 
718       // Reduction instructions are allowed to have exit users.
719       // All other instructions must not have external users.
720       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
721         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
722                   << "value cannot be used outside the loop");
723         return false;
724       }
725     } // next instr.
726   }
727 
728   if (!PrimaryInduction) {
729     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
730     if (Inductions.empty()) {
731       ORE->emit(createMissedAnalysis("NoInductionVariable")
732                 << "loop induction variable could not be identified");
733       return false;
734     }
735   }
736 
737   // Now we know the widest induction type, check if our found induction
738   // is the same size. If it's not, unset it here and InnerLoopVectorizer
739   // will create another.
740   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
741     PrimaryInduction = nullptr;
742 
743   return true;
744 }
745 
746 bool LoopVectorizationLegality::canVectorizeMemory() {
747   LAI = &(*GetLAA)(*TheLoop);
748   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
749   if (LAR) {
750     ORE->emit([&]() {
751       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
752                                         "loop not vectorized: ", *LAR);
753     });
754   }
755   if (!LAI->canVectorizeMemory())
756     return false;
757 
758   if (LAI->hasStoreToLoopInvariantAddress()) {
759     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
760               << "write to a loop invariant address could not be vectorized");
761     LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
762     return false;
763   }
764 
765   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
766   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
767 
768   return true;
769 }
770 
771 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
772   Value *In0 = const_cast<Value *>(V);
773   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
774   if (!PN)
775     return false;
776 
777   return Inductions.count(PN);
778 }
779 
780 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
781   auto *Inst = dyn_cast<Instruction>(V);
782   return (Inst && InductionCastsToIgnore.count(Inst));
783 }
784 
785 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
786   return isInductionPhi(V) || isCastedInductionVariable(V);
787 }
788 
789 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
790   return FirstOrderRecurrences.count(Phi);
791 }
792 
793 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
794   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
795 }
796 
797 bool LoopVectorizationLegality::blockCanBePredicated(
798     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
799   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
800 
801   for (Instruction &I : *BB) {
802     // Check that we don't have a constant expression that can trap as operand.
803     for (Value *Operand : I.operands()) {
804       if (auto *C = dyn_cast<Constant>(Operand))
805         if (C->canTrap())
806           return false;
807     }
808     // We might be able to hoist the load.
809     if (I.mayReadFromMemory()) {
810       auto *LI = dyn_cast<LoadInst>(&I);
811       if (!LI)
812         return false;
813       if (!SafePtrs.count(LI->getPointerOperand())) {
814         // !llvm.mem.parallel_loop_access implies if-conversion safety.
815         // Otherwise, record that the load needs (real or emulated) masking
816         // and let the cost model decide.
817         if (!IsAnnotatedParallel)
818           MaskedOp.insert(LI);
819         continue;
820       }
821     }
822 
823     if (I.mayWriteToMemory()) {
824       auto *SI = dyn_cast<StoreInst>(&I);
825       if (!SI)
826         return false;
827       // Predicated store requires some form of masking:
828       // 1) masked store HW instruction,
829       // 2) emulation via load-blend-store (only if safe and legal to do so,
830       //    be aware on the race conditions), or
831       // 3) element-by-element predicate check and scalar store.
832       MaskedOp.insert(SI);
833       continue;
834     }
835     if (I.mayThrow())
836       return false;
837   }
838 
839   return true;
840 }
841 
842 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
843   if (!EnableIfConversion) {
844     ORE->emit(createMissedAnalysis("IfConversionDisabled")
845               << "if-conversion is disabled");
846     return false;
847   }
848 
849   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
850 
851   // A list of pointers that we can safely read and write to.
852   SmallPtrSet<Value *, 8> SafePointes;
853 
854   // Collect safe addresses.
855   for (BasicBlock *BB : TheLoop->blocks()) {
856     if (blockNeedsPredication(BB))
857       continue;
858 
859     for (Instruction &I : *BB)
860       if (auto *Ptr = getLoadStorePointerOperand(&I))
861         SafePointes.insert(Ptr);
862   }
863 
864   // Collect the blocks that need predication.
865   BasicBlock *Header = TheLoop->getHeader();
866   for (BasicBlock *BB : TheLoop->blocks()) {
867     // We don't support switch statements inside loops.
868     if (!isa<BranchInst>(BB->getTerminator())) {
869       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
870                 << "loop contains a switch statement");
871       return false;
872     }
873 
874     // We must be able to predicate all blocks that need to be predicated.
875     if (blockNeedsPredication(BB)) {
876       if (!blockCanBePredicated(BB, SafePointes)) {
877         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
878                   << "control flow cannot be substituted for a select");
879         return false;
880       }
881     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
882       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
883                 << "control flow cannot be substituted for a select");
884       return false;
885     }
886   }
887 
888   // We can if-convert this loop.
889   return true;
890 }
891 
892 // Helper function to canVectorizeLoopNestCFG.
893 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
894                                                     bool UseVPlanNativePath) {
895   assert((UseVPlanNativePath || Lp->empty()) &&
896          "VPlan-native path is not enabled.");
897 
898   // TODO: ORE should be improved to show more accurate information when an
899   // outer loop can't be vectorized because a nested loop is not understood or
900   // legal. Something like: "outer_loop_location: loop not vectorized:
901   // (inner_loop_location) loop control flow is not understood by vectorizer".
902 
903   // Store the result and return it at the end instead of exiting early, in case
904   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
905   bool Result = true;
906   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
907 
908   // We must have a loop in canonical form. Loops with indirectbr in them cannot
909   // be canonicalized.
910   if (!Lp->getLoopPreheader()) {
911     LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
912     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
913               << "loop control flow is not understood by vectorizer");
914     if (DoExtraAnalysis)
915       Result = false;
916     else
917       return false;
918   }
919 
920   // We must have a single backedge.
921   if (Lp->getNumBackEdges() != 1) {
922     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
923               << "loop control flow is not understood by vectorizer");
924     if (DoExtraAnalysis)
925       Result = false;
926     else
927       return false;
928   }
929 
930   // We must have a single exiting block.
931   if (!Lp->getExitingBlock()) {
932     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
933               << "loop control flow is not understood by vectorizer");
934     if (DoExtraAnalysis)
935       Result = false;
936     else
937       return false;
938   }
939 
940   // We only handle bottom-tested loops, i.e. loop in which the condition is
941   // checked at the end of each iteration. With that we can assume that all
942   // instructions in the loop are executed the same number of times.
943   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
944     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
945               << "loop control flow is not understood by vectorizer");
946     if (DoExtraAnalysis)
947       Result = false;
948     else
949       return false;
950   }
951 
952   return Result;
953 }
954 
955 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
956     Loop *Lp, bool UseVPlanNativePath) {
957   // Store the result and return it at the end instead of exiting early, in case
958   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
959   bool Result = true;
960   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
961   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
962     if (DoExtraAnalysis)
963       Result = false;
964     else
965       return false;
966   }
967 
968   // Recursively check whether the loop control flow of nested loops is
969   // understood.
970   for (Loop *SubLp : *Lp)
971     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
972       if (DoExtraAnalysis)
973         Result = false;
974       else
975         return false;
976     }
977 
978   return Result;
979 }
980 
981 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
982   // Store the result and return it at the end instead of exiting early, in case
983   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
984   bool Result = true;
985 
986   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
987   // Check whether the loop-related control flow in the loop nest is expected by
988   // vectorizer.
989   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
990     if (DoExtraAnalysis)
991       Result = false;
992     else
993       return false;
994   }
995 
996   // We need to have a loop header.
997   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
998                     << '\n');
999 
1000   // Specific checks for outer loops. We skip the remaining legal checks at this
1001   // point because they don't support outer loops.
1002   if (!TheLoop->empty()) {
1003     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1004 
1005     if (!canVectorizeOuterLoop()) {
1006       LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1007       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1008       // outer loops.
1009       return false;
1010     }
1011 
1012     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1013     return Result;
1014   }
1015 
1016   assert(TheLoop->empty() && "Inner loop expected.");
1017   // Check if we can if-convert non-single-bb loops.
1018   unsigned NumBlocks = TheLoop->getNumBlocks();
1019   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1020     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1021     if (DoExtraAnalysis)
1022       Result = false;
1023     else
1024       return false;
1025   }
1026 
1027   // Check if we can vectorize the instructions and CFG in this loop.
1028   if (!canVectorizeInstrs()) {
1029     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1030     if (DoExtraAnalysis)
1031       Result = false;
1032     else
1033       return false;
1034   }
1035 
1036   // Go over each instruction and look at memory deps.
1037   if (!canVectorizeMemory()) {
1038     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1039     if (DoExtraAnalysis)
1040       Result = false;
1041     else
1042       return false;
1043   }
1044 
1045   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1046                     << (LAI->getRuntimePointerChecking()->Need
1047                             ? " (with a runtime bound check)"
1048                             : "")
1049                     << "!\n");
1050 
1051   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1052   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1053     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1054 
1055   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1056     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1057               << "Too many SCEV assumptions need to be made and checked "
1058               << "at runtime");
1059     LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1060     if (DoExtraAnalysis)
1061       Result = false;
1062     else
1063       return false;
1064   }
1065 
1066   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1067   // we can vectorize, and at this point we don't have any other mem analysis
1068   // which may limit our maximum vectorization factor, so just return true with
1069   // no restrictions.
1070   return Result;
1071 }
1072 
1073 } // namespace llvm
1074