1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/VectorUtils.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 
20 using namespace llvm;
21 
22 #define LV_NAME "loop-vectorize"
23 #define DEBUG_TYPE LV_NAME
24 
25 extern cl::opt<bool> EnableVPlanPredication;
26 
27 static cl::opt<bool>
28     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
29                        cl::desc("Enable if-conversion during vectorization."));
30 
31 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
32     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
33     cl::desc("The maximum allowed number of runtime memory checks with a "
34              "vectorize(enable) pragma."));
35 
36 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
37     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
38     cl::desc("The maximum number of SCEV checks allowed."));
39 
40 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
41     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
42     cl::desc("The maximum number of SCEV checks allowed with a "
43              "vectorize(enable) pragma"));
44 
45 /// Maximum vectorization interleave count.
46 static const unsigned MaxInterleaveFactor = 16;
47 
48 namespace llvm {
49 
50 #ifndef NDEBUG
51 static void debugVectorizationFailure(const StringRef DebugMsg,
52     Instruction *I) {
53   dbgs() << "LV: Not vectorizing: " << DebugMsg;
54   if (I != nullptr)
55     dbgs() << " " << *I;
56   else
57     dbgs() << '.';
58   dbgs() << '\n';
59 }
60 #endif
61 
62 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
63                                                   StringRef RemarkName,
64                                                   Loop *TheLoop,
65                                                   Instruction *I) {
66   Value *CodeRegion = TheLoop->getHeader();
67   DebugLoc DL = TheLoop->getStartLoc();
68 
69   if (I) {
70     CodeRegion = I->getParent();
71     // If there is no debug location attached to the instruction, revert back to
72     // using the loop's.
73     if (I->getDebugLoc())
74       DL = I->getDebugLoc();
75   }
76 
77   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
78   R << "loop not vectorized: ";
79   return R;
80 }
81 
82 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
83   switch (Kind) {
84   case HK_WIDTH:
85     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
86   case HK_UNROLL:
87     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
88   case HK_FORCE:
89     return (Val <= 1);
90   case HK_ISVECTORIZED:
91     return (Val == 0 || Val == 1);
92   }
93   return false;
94 }
95 
96 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
97                                        bool InterleaveOnlyWhenForced,
98                                        OptimizationRemarkEmitter &ORE)
99     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
100       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
101       Force("vectorize.enable", FK_Undefined, HK_FORCE),
102       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
103   // Populate values with existing loop metadata.
104   getHintsFromMetadata();
105 
106   // force-vector-interleave overrides DisableInterleaving.
107   if (VectorizerParams::isInterleaveForced())
108     Interleave.Value = VectorizerParams::VectorizationInterleave;
109 
110   if (IsVectorized.Value != 1)
111     // If the vectorization width and interleaving count are both 1 then
112     // consider the loop to have been already vectorized because there's
113     // nothing more that we can do.
114     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
115   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
116              << "LV: Interleaving disabled by the pass manager\n");
117 }
118 
119 void LoopVectorizeHints::setAlreadyVectorized() {
120   LLVMContext &Context = TheLoop->getHeader()->getContext();
121 
122   MDNode *IsVectorizedMD = MDNode::get(
123       Context,
124       {MDString::get(Context, "llvm.loop.isvectorized"),
125        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
126   MDNode *LoopID = TheLoop->getLoopID();
127   MDNode *NewLoopID =
128       makePostTransformationMetadata(Context, LoopID,
129                                      {Twine(Prefix(), "vectorize.").str(),
130                                       Twine(Prefix(), "interleave.").str()},
131                                      {IsVectorizedMD});
132   TheLoop->setLoopID(NewLoopID);
133 
134   // Update internal cache.
135   IsVectorized.Value = 1;
136 }
137 
138 bool LoopVectorizeHints::allowVectorization(
139     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
140   if (getForce() == LoopVectorizeHints::FK_Disabled) {
141     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
142     emitRemarkWithHints();
143     return false;
144   }
145 
146   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
147     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
148     emitRemarkWithHints();
149     return false;
150   }
151 
152   if (getIsVectorized() == 1) {
153     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
154     // FIXME: Add interleave.disable metadata. This will allow
155     // vectorize.disable to be used without disabling the pass and errors
156     // to differentiate between disabled vectorization and a width of 1.
157     ORE.emit([&]() {
158       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
159                                         "AllDisabled", L->getStartLoc(),
160                                         L->getHeader())
161              << "loop not vectorized: vectorization and interleaving are "
162                 "explicitly disabled, or the loop has already been "
163                 "vectorized";
164     });
165     return false;
166   }
167 
168   return true;
169 }
170 
171 void LoopVectorizeHints::emitRemarkWithHints() const {
172   using namespace ore;
173 
174   ORE.emit([&]() {
175     if (Force.Value == LoopVectorizeHints::FK_Disabled)
176       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
177                                       TheLoop->getStartLoc(),
178                                       TheLoop->getHeader())
179              << "loop not vectorized: vectorization is explicitly disabled";
180     else {
181       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
182                                  TheLoop->getStartLoc(), TheLoop->getHeader());
183       R << "loop not vectorized";
184       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
185         R << " (Force=" << NV("Force", true);
186         if (Width.Value != 0)
187           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
188         if (Interleave.Value != 0)
189           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
190         R << ")";
191       }
192       return R;
193     }
194   });
195 }
196 
197 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
198   if (getWidth() == 1)
199     return LV_NAME;
200   if (getForce() == LoopVectorizeHints::FK_Disabled)
201     return LV_NAME;
202   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
203     return LV_NAME;
204   return OptimizationRemarkAnalysis::AlwaysPrint;
205 }
206 
207 void LoopVectorizeHints::getHintsFromMetadata() {
208   MDNode *LoopID = TheLoop->getLoopID();
209   if (!LoopID)
210     return;
211 
212   // First operand should refer to the loop id itself.
213   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
214   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
215 
216   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
217     const MDString *S = nullptr;
218     SmallVector<Metadata *, 4> Args;
219 
220     // The expected hint is either a MDString or a MDNode with the first
221     // operand a MDString.
222     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
223       if (!MD || MD->getNumOperands() == 0)
224         continue;
225       S = dyn_cast<MDString>(MD->getOperand(0));
226       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
227         Args.push_back(MD->getOperand(i));
228     } else {
229       S = dyn_cast<MDString>(LoopID->getOperand(i));
230       assert(Args.size() == 0 && "too many arguments for MDString");
231     }
232 
233     if (!S)
234       continue;
235 
236     // Check if the hint starts with the loop metadata prefix.
237     StringRef Name = S->getString();
238     if (Args.size() == 1)
239       setHint(Name, Args[0]);
240   }
241 }
242 
243 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
244   if (!Name.startswith(Prefix()))
245     return;
246   Name = Name.substr(Prefix().size(), StringRef::npos);
247 
248   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
249   if (!C)
250     return;
251   unsigned Val = C->getZExtValue();
252 
253   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
254   for (auto H : Hints) {
255     if (Name == H->Name) {
256       if (H->validate(Val))
257         H->Value = Val;
258       else
259         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
260       break;
261     }
262   }
263 }
264 
265 bool LoopVectorizationRequirements::doesNotMeet(
266     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
267   const char *PassName = Hints.vectorizeAnalysisPassName();
268   bool Failed = false;
269   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
270     ORE.emit([&]() {
271       return OptimizationRemarkAnalysisFPCommute(
272                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
273                  UnsafeAlgebraInst->getParent())
274              << "loop not vectorized: cannot prove it is safe to reorder "
275                 "floating-point operations";
276     });
277     Failed = true;
278   }
279 
280   // Test if runtime memcheck thresholds are exceeded.
281   bool PragmaThresholdReached =
282       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
283   bool ThresholdReached =
284       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
285   if ((ThresholdReached && !Hints.allowReordering()) ||
286       PragmaThresholdReached) {
287     ORE.emit([&]() {
288       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
289                                                 L->getStartLoc(),
290                                                 L->getHeader())
291              << "loop not vectorized: cannot prove it is safe to reorder "
292                 "memory operations";
293     });
294     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
295     Failed = true;
296   }
297 
298   return Failed;
299 }
300 
301 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
302 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
303 // executing the inner loop will execute the same iterations). This check is
304 // very constrained for now but it will be relaxed in the future. \p Lp is
305 // considered uniform if it meets all the following conditions:
306 //   1) it has a canonical IV (starting from 0 and with stride 1),
307 //   2) its latch terminator is a conditional branch and,
308 //   3) its latch condition is a compare instruction whose operands are the
309 //      canonical IV and an OuterLp invariant.
310 // This check doesn't take into account the uniformity of other conditions not
311 // related to the loop latch because they don't affect the loop uniformity.
312 //
313 // NOTE: We decided to keep all these checks and its associated documentation
314 // together so that we can easily have a picture of the current supported loop
315 // nests. However, some of the current checks don't depend on \p OuterLp and
316 // would be redundantly executed for each \p Lp if we invoked this function for
317 // different candidate outer loops. This is not the case for now because we
318 // don't currently have the infrastructure to evaluate multiple candidate outer
319 // loops and \p OuterLp will be a fixed parameter while we only support explicit
320 // outer loop vectorization. It's also very likely that these checks go away
321 // before introducing the aforementioned infrastructure. However, if this is not
322 // the case, we should move the \p OuterLp independent checks to a separate
323 // function that is only executed once for each \p Lp.
324 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
325   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
326 
327   // If Lp is the outer loop, it's uniform by definition.
328   if (Lp == OuterLp)
329     return true;
330   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
331 
332   // 1.
333   PHINode *IV = Lp->getCanonicalInductionVariable();
334   if (!IV) {
335     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
336     return false;
337   }
338 
339   // 2.
340   BasicBlock *Latch = Lp->getLoopLatch();
341   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
342   if (!LatchBr || LatchBr->isUnconditional()) {
343     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
344     return false;
345   }
346 
347   // 3.
348   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
349   if (!LatchCmp) {
350     LLVM_DEBUG(
351         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
352     return false;
353   }
354 
355   Value *CondOp0 = LatchCmp->getOperand(0);
356   Value *CondOp1 = LatchCmp->getOperand(1);
357   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
358   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
359       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
360     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
361     return false;
362   }
363 
364   return true;
365 }
366 
367 // Return true if \p Lp and all its nested loops are uniform with regard to \p
368 // OuterLp.
369 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
370   if (!isUniformLoop(Lp, OuterLp))
371     return false;
372 
373   // Check if nested loops are uniform.
374   for (Loop *SubLp : *Lp)
375     if (!isUniformLoopNest(SubLp, OuterLp))
376       return false;
377 
378   return true;
379 }
380 
381 /// Check whether it is safe to if-convert this phi node.
382 ///
383 /// Phi nodes with constant expressions that can trap are not safe to if
384 /// convert.
385 static bool canIfConvertPHINodes(BasicBlock *BB) {
386   for (PHINode &Phi : BB->phis()) {
387     for (Value *V : Phi.incoming_values())
388       if (auto *C = dyn_cast<Constant>(V))
389         if (C->canTrap())
390           return false;
391   }
392   return true;
393 }
394 
395 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
396   if (Ty->isPointerTy())
397     return DL.getIntPtrType(Ty);
398 
399   // It is possible that char's or short's overflow when we ask for the loop's
400   // trip count, work around this by changing the type size.
401   if (Ty->getScalarSizeInBits() < 32)
402     return Type::getInt32Ty(Ty->getContext());
403 
404   return Ty;
405 }
406 
407 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
408   Ty0 = convertPointerToIntegerType(DL, Ty0);
409   Ty1 = convertPointerToIntegerType(DL, Ty1);
410   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
411     return Ty0;
412   return Ty1;
413 }
414 
415 /// Check that the instruction has outside loop users and is not an
416 /// identified reduction variable.
417 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
418                                SmallPtrSetImpl<Value *> &AllowedExit) {
419   // Reductions, Inductions and non-header phis are allowed to have exit users. All
420   // other instructions must not have external users.
421   if (!AllowedExit.count(Inst))
422     // Check that all of the users of the loop are inside the BB.
423     for (User *U : Inst->users()) {
424       Instruction *UI = cast<Instruction>(U);
425       // This user may be a reduction exit value.
426       if (!TheLoop->contains(UI)) {
427         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
428         return true;
429       }
430     }
431   return false;
432 }
433 
434 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
435   const ValueToValueMap &Strides =
436       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
437 
438   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
439   if (Stride == 1 || Stride == -1)
440     return Stride;
441   return 0;
442 }
443 
444 bool LoopVectorizationLegality::isUniform(Value *V) {
445   return LAI->isUniform(V);
446 }
447 
448 void LoopVectorizationLegality::reportVectorizationFailure(
449     const StringRef DebugMsg, const StringRef OREMsg,
450     const StringRef ORETag, Instruction *I) const {
451   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
452   ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
453       ORETag, TheLoop, I) << OREMsg);
454 }
455 
456 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
457   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
458   // Store the result and return it at the end instead of exiting early, in case
459   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
460   bool Result = true;
461   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
462 
463   for (BasicBlock *BB : TheLoop->blocks()) {
464     // Check whether the BB terminator is a BranchInst. Any other terminator is
465     // not supported yet.
466     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
467     if (!Br) {
468       reportVectorizationFailure("Unsupported basic block terminator",
469           "loop control flow is not understood by vectorizer",
470           "CFGNotUnderstood");
471       if (DoExtraAnalysis)
472         Result = false;
473       else
474         return false;
475     }
476 
477     // Check whether the BranchInst is a supported one. Only unconditional
478     // branches, conditional branches with an outer loop invariant condition or
479     // backedges are supported.
480     // FIXME: We skip these checks when VPlan predication is enabled as we
481     // want to allow divergent branches. This whole check will be removed
482     // once VPlan predication is on by default.
483     if (!EnableVPlanPredication && Br && Br->isConditional() &&
484         !TheLoop->isLoopInvariant(Br->getCondition()) &&
485         !LI->isLoopHeader(Br->getSuccessor(0)) &&
486         !LI->isLoopHeader(Br->getSuccessor(1))) {
487       reportVectorizationFailure("Unsupported conditional branch",
488           "loop control flow is not understood by vectorizer",
489           "CFGNotUnderstood");
490       if (DoExtraAnalysis)
491         Result = false;
492       else
493         return false;
494     }
495   }
496 
497   // Check whether inner loops are uniform. At this point, we only support
498   // simple outer loops scenarios with uniform nested loops.
499   if (!isUniformLoopNest(TheLoop /*loop nest*/,
500                          TheLoop /*context outer loop*/)) {
501     reportVectorizationFailure("Outer loop contains divergent loops",
502         "loop control flow is not understood by vectorizer",
503         "CFGNotUnderstood");
504     if (DoExtraAnalysis)
505       Result = false;
506     else
507       return false;
508   }
509 
510   // Check whether we are able to set up outer loop induction.
511   if (!setupOuterLoopInductions()) {
512     reportVectorizationFailure("Unsupported outer loop Phi(s)",
513                                "Unsupported outer loop Phi(s)",
514                                "UnsupportedPhi");
515     if (DoExtraAnalysis)
516       Result = false;
517     else
518       return false;
519   }
520 
521   return Result;
522 }
523 
524 void LoopVectorizationLegality::addInductionPhi(
525     PHINode *Phi, const InductionDescriptor &ID,
526     SmallPtrSetImpl<Value *> &AllowedExit) {
527   Inductions[Phi] = ID;
528 
529   // In case this induction also comes with casts that we know we can ignore
530   // in the vectorized loop body, record them here. All casts could be recorded
531   // here for ignoring, but suffices to record only the first (as it is the
532   // only one that may bw used outside the cast sequence).
533   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
534   if (!Casts.empty())
535     InductionCastsToIgnore.insert(*Casts.begin());
536 
537   Type *PhiTy = Phi->getType();
538   const DataLayout &DL = Phi->getModule()->getDataLayout();
539 
540   // Get the widest type.
541   if (!PhiTy->isFloatingPointTy()) {
542     if (!WidestIndTy)
543       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
544     else
545       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
546   }
547 
548   // Int inductions are special because we only allow one IV.
549   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
550       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
551       isa<Constant>(ID.getStartValue()) &&
552       cast<Constant>(ID.getStartValue())->isNullValue()) {
553 
554     // Use the phi node with the widest type as induction. Use the last
555     // one if there are multiple (no good reason for doing this other
556     // than it is expedient). We've checked that it begins at zero and
557     // steps by one, so this is a canonical induction variable.
558     if (!PrimaryInduction || PhiTy == WidestIndTy)
559       PrimaryInduction = Phi;
560   }
561 
562   // Both the PHI node itself, and the "post-increment" value feeding
563   // back into the PHI node may have external users.
564   // We can allow those uses, except if the SCEVs we have for them rely
565   // on predicates that only hold within the loop, since allowing the exit
566   // currently means re-using this SCEV outside the loop (see PR33706 for more
567   // details).
568   if (PSE.getUnionPredicate().isAlwaysTrue()) {
569     AllowedExit.insert(Phi);
570     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
571   }
572 
573   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
574 }
575 
576 bool LoopVectorizationLegality::setupOuterLoopInductions() {
577   BasicBlock *Header = TheLoop->getHeader();
578 
579   // Returns true if a given Phi is a supported induction.
580   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
581     InductionDescriptor ID;
582     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
583         ID.getKind() == InductionDescriptor::IK_IntInduction) {
584       addInductionPhi(&Phi, ID, AllowedExit);
585       return true;
586     } else {
587       // Bail out for any Phi in the outer loop header that is not a supported
588       // induction.
589       LLVM_DEBUG(
590           dbgs()
591           << "LV: Found unsupported PHI for outer loop vectorization.\n");
592       return false;
593     }
594   };
595 
596   if (llvm::all_of(Header->phis(), isSupportedPhi))
597     return true;
598   else
599     return false;
600 }
601 
602 bool LoopVectorizationLegality::canVectorizeInstrs() {
603   BasicBlock *Header = TheLoop->getHeader();
604 
605   // Look for the attribute signaling the absence of NaNs.
606   Function &F = *Header->getParent();
607   HasFunNoNaNAttr =
608       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
609 
610   // For each block in the loop.
611   for (BasicBlock *BB : TheLoop->blocks()) {
612     // Scan the instructions in the block and look for hazards.
613     for (Instruction &I : *BB) {
614       if (auto *Phi = dyn_cast<PHINode>(&I)) {
615         Type *PhiTy = Phi->getType();
616         // Check that this PHI type is allowed.
617         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
618             !PhiTy->isPointerTy()) {
619           reportVectorizationFailure("Found a non-int non-pointer PHI",
620                                      "loop control flow is not understood by vectorizer",
621                                      "CFGNotUnderstood");
622           return false;
623         }
624 
625         // If this PHINode is not in the header block, then we know that we
626         // can convert it to select during if-conversion. No need to check if
627         // the PHIs in this block are induction or reduction variables.
628         if (BB != Header) {
629           // Non-header phi nodes that have outside uses can be vectorized. Add
630           // them to the list of allowed exits.
631           // Unsafe cyclic dependencies with header phis are identified during
632           // legalization for reduction, induction and first order
633           // recurrences.
634           continue;
635         }
636 
637         // We only allow if-converted PHIs with exactly two incoming values.
638         if (Phi->getNumIncomingValues() != 2) {
639           reportVectorizationFailure("Found an invalid PHI",
640               "loop control flow is not understood by vectorizer",
641               "CFGNotUnderstood", Phi);
642           return false;
643         }
644 
645         RecurrenceDescriptor RedDes;
646         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
647                                                  DT)) {
648           if (RedDes.hasUnsafeAlgebra())
649             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
650           AllowedExit.insert(RedDes.getLoopExitInstr());
651           Reductions[Phi] = RedDes;
652           continue;
653         }
654 
655         // TODO: Instead of recording the AllowedExit, it would be good to record the
656         // complementary set: NotAllowedExit. These include (but may not be
657         // limited to):
658         // 1. Reduction phis as they represent the one-before-last value, which
659         // is not available when vectorized
660         // 2. Induction phis and increment when SCEV predicates cannot be used
661         // outside the loop - see addInductionPhi
662         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
663         // outside the loop - see call to hasOutsideLoopUser in the non-phi
664         // handling below
665         // 4. FirstOrderRecurrence phis that can possibly be handled by
666         // extraction.
667         // By recording these, we can then reason about ways to vectorize each
668         // of these NotAllowedExit.
669         InductionDescriptor ID;
670         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
671           addInductionPhi(Phi, ID, AllowedExit);
672           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
673             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
674           continue;
675         }
676 
677         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
678                                                          SinkAfter, DT)) {
679           FirstOrderRecurrences.insert(Phi);
680           continue;
681         }
682 
683         // As a last resort, coerce the PHI to a AddRec expression
684         // and re-try classifying it a an induction PHI.
685         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
686           addInductionPhi(Phi, ID, AllowedExit);
687           continue;
688         }
689 
690         reportVectorizationFailure("Found an unidentified PHI",
691             "value that could not be identified as "
692             "reduction is used outside the loop",
693             "NonReductionValueUsedOutsideLoop", Phi);
694         return false;
695       } // end of PHI handling
696 
697       // We handle calls that:
698       //   * Are debug info intrinsics.
699       //   * Have a mapping to an IR intrinsic.
700       //   * Have a vector version available.
701       auto *CI = dyn_cast<CallInst>(&I);
702       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
703           !isa<DbgInfoIntrinsic>(CI) &&
704           !(CI->getCalledFunction() && TLI &&
705             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
706         // If the call is a recognized math libary call, it is likely that
707         // we can vectorize it given loosened floating-point constraints.
708         LibFunc Func;
709         bool IsMathLibCall =
710             TLI && CI->getCalledFunction() &&
711             CI->getType()->isFloatingPointTy() &&
712             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
713             TLI->hasOptimizedCodeGen(Func);
714 
715         if (IsMathLibCall) {
716           // TODO: Ideally, we should not use clang-specific language here,
717           // but it's hard to provide meaningful yet generic advice.
718           // Also, should this be guarded by allowExtraAnalysis() and/or be part
719           // of the returned info from isFunctionVectorizable()?
720           reportVectorizationFailure("Found a non-intrinsic callsite",
721               "library call cannot be vectorized. "
722               "Try compiling with -fno-math-errno, -ffast-math, "
723               "or similar flags",
724               "CantVectorizeLibcall", CI);
725         } else {
726           reportVectorizationFailure("Found a non-intrinsic callsite",
727                                      "call instruction cannot be vectorized",
728                                      "CantVectorizeLibcall", CI);
729         }
730         return false;
731       }
732 
733       // Some intrinsics have scalar arguments and should be same in order for
734       // them to be vectorized (i.e. loop invariant).
735       if (CI) {
736         auto *SE = PSE.getSE();
737         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
738         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
739           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
740             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
741               reportVectorizationFailure("Found unvectorizable intrinsic",
742                   "intrinsic instruction cannot be vectorized",
743                   "CantVectorizeIntrinsic", CI);
744               return false;
745             }
746           }
747       }
748 
749       // Check that the instruction return type is vectorizable.
750       // Also, we can't vectorize extractelement instructions.
751       if ((!VectorType::isValidElementType(I.getType()) &&
752            !I.getType()->isVoidTy()) ||
753           isa<ExtractElementInst>(I)) {
754         reportVectorizationFailure("Found unvectorizable type",
755             "instruction return type cannot be vectorized",
756             "CantVectorizeInstructionReturnType", &I);
757         return false;
758       }
759 
760       // Check that the stored type is vectorizable.
761       if (auto *ST = dyn_cast<StoreInst>(&I)) {
762         Type *T = ST->getValueOperand()->getType();
763         if (!VectorType::isValidElementType(T)) {
764           reportVectorizationFailure("Store instruction cannot be vectorized",
765                                      "store instruction cannot be vectorized",
766                                      "CantVectorizeStore", ST);
767           return false;
768         }
769 
770         // For nontemporal stores, check that a nontemporal vector version is
771         // supported on the target.
772         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
773           // Arbitrarily try a vector of 2 elements.
774           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
775           assert(VecTy && "did not find vectorized version of stored type");
776           unsigned Alignment = getLoadStoreAlignment(ST);
777           if (!TTI->isLegalNTStore(VecTy, Alignment)) {
778             reportVectorizationFailure(
779                 "nontemporal store instruction cannot be vectorized",
780                 "nontemporal store instruction cannot be vectorized",
781                 "CantVectorizeNontemporalStore", ST);
782             return false;
783           }
784         }
785 
786       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
787         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
788           // For nontemporal loads, check that a nontemporal vector version is
789           // supported on the target (arbitrarily try a vector of 2 elements).
790           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
791           assert(VecTy && "did not find vectorized version of load type");
792           unsigned Alignment = getLoadStoreAlignment(LD);
793           if (!TTI->isLegalNTLoad(VecTy, Alignment)) {
794             reportVectorizationFailure(
795                 "nontemporal load instruction cannot be vectorized",
796                 "nontemporal load instruction cannot be vectorized",
797                 "CantVectorizeNontemporalLoad", LD);
798             return false;
799           }
800         }
801 
802         // FP instructions can allow unsafe algebra, thus vectorizable by
803         // non-IEEE-754 compliant SIMD units.
804         // This applies to floating-point math operations and calls, not memory
805         // operations, shuffles, or casts, as they don't change precision or
806         // semantics.
807       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
808                  !I.isFast()) {
809         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
810         Hints->setPotentiallyUnsafe();
811       }
812 
813       // Reduction instructions are allowed to have exit users.
814       // All other instructions must not have external users.
815       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
816         // We can safely vectorize loops where instructions within the loop are
817         // used outside the loop only if the SCEV predicates within the loop is
818         // same as outside the loop. Allowing the exit means reusing the SCEV
819         // outside the loop.
820         if (PSE.getUnionPredicate().isAlwaysTrue()) {
821           AllowedExit.insert(&I);
822           continue;
823         }
824         reportVectorizationFailure("Value cannot be used outside the loop",
825                                    "value cannot be used outside the loop",
826                                    "ValueUsedOutsideLoop", &I);
827         return false;
828       }
829     } // next instr.
830   }
831 
832   if (!PrimaryInduction) {
833     if (Inductions.empty()) {
834       reportVectorizationFailure("Did not find one integer induction var",
835           "loop induction variable could not be identified",
836           "NoInductionVariable");
837       return false;
838     } else if (!WidestIndTy) {
839       reportVectorizationFailure("Did not find one integer induction var",
840           "integer loop induction variable could not be identified",
841           "NoIntegerInductionVariable");
842       return false;
843     } else {
844       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
845     }
846   }
847 
848   // Now we know the widest induction type, check if our found induction
849   // is the same size. If it's not, unset it here and InnerLoopVectorizer
850   // will create another.
851   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
852     PrimaryInduction = nullptr;
853 
854   return true;
855 }
856 
857 bool LoopVectorizationLegality::canVectorizeMemory() {
858   LAI = &(*GetLAA)(*TheLoop);
859   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
860   if (LAR) {
861     ORE->emit([&]() {
862       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
863                                         "loop not vectorized: ", *LAR);
864     });
865   }
866   if (!LAI->canVectorizeMemory())
867     return false;
868 
869   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
870     reportVectorizationFailure("Stores to a uniform address",
871         "write to a loop invariant address could not be vectorized",
872         "CantVectorizeStoreToLoopInvariantAddress");
873     return false;
874   }
875   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
876   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
877 
878   return true;
879 }
880 
881 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
882   Value *In0 = const_cast<Value *>(V);
883   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
884   if (!PN)
885     return false;
886 
887   return Inductions.count(PN);
888 }
889 
890 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
891   auto *Inst = dyn_cast<Instruction>(V);
892   return (Inst && InductionCastsToIgnore.count(Inst));
893 }
894 
895 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
896   return isInductionPhi(V) || isCastedInductionVariable(V);
897 }
898 
899 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
900   return FirstOrderRecurrences.count(Phi);
901 }
902 
903 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
904   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
905 }
906 
907 bool LoopVectorizationLegality::blockCanBePredicated(
908     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
909   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
910 
911   for (Instruction &I : *BB) {
912     // Check that we don't have a constant expression that can trap as operand.
913     for (Value *Operand : I.operands()) {
914       if (auto *C = dyn_cast<Constant>(Operand))
915         if (C->canTrap())
916           return false;
917     }
918     // We might be able to hoist the load.
919     if (I.mayReadFromMemory()) {
920       auto *LI = dyn_cast<LoadInst>(&I);
921       if (!LI)
922         return false;
923       if (!SafePtrs.count(LI->getPointerOperand())) {
924         // !llvm.mem.parallel_loop_access implies if-conversion safety.
925         // Otherwise, record that the load needs (real or emulated) masking
926         // and let the cost model decide.
927         if (!IsAnnotatedParallel)
928           MaskedOp.insert(LI);
929         continue;
930       }
931     }
932 
933     if (I.mayWriteToMemory()) {
934       auto *SI = dyn_cast<StoreInst>(&I);
935       if (!SI)
936         return false;
937       // Predicated store requires some form of masking:
938       // 1) masked store HW instruction,
939       // 2) emulation via load-blend-store (only if safe and legal to do so,
940       //    be aware on the race conditions), or
941       // 3) element-by-element predicate check and scalar store.
942       MaskedOp.insert(SI);
943       continue;
944     }
945     if (I.mayThrow())
946       return false;
947   }
948 
949   return true;
950 }
951 
952 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
953   if (!EnableIfConversion) {
954     reportVectorizationFailure("If-conversion is disabled",
955                                "if-conversion is disabled",
956                                "IfConversionDisabled");
957     return false;
958   }
959 
960   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
961 
962   // A list of pointers that we can safely read and write to.
963   SmallPtrSet<Value *, 8> SafePointes;
964 
965   // Collect safe addresses.
966   for (BasicBlock *BB : TheLoop->blocks()) {
967     if (blockNeedsPredication(BB))
968       continue;
969 
970     for (Instruction &I : *BB)
971       if (auto *Ptr = getLoadStorePointerOperand(&I))
972         SafePointes.insert(Ptr);
973   }
974 
975   // Collect the blocks that need predication.
976   BasicBlock *Header = TheLoop->getHeader();
977   for (BasicBlock *BB : TheLoop->blocks()) {
978     // We don't support switch statements inside loops.
979     if (!isa<BranchInst>(BB->getTerminator())) {
980       reportVectorizationFailure("Loop contains a switch statement",
981                                  "loop contains a switch statement",
982                                  "LoopContainsSwitch", BB->getTerminator());
983       return false;
984     }
985 
986     // We must be able to predicate all blocks that need to be predicated.
987     if (blockNeedsPredication(BB)) {
988       if (!blockCanBePredicated(BB, SafePointes)) {
989         reportVectorizationFailure(
990             "Control flow cannot be substituted for a select",
991             "control flow cannot be substituted for a select",
992             "NoCFGForSelect", BB->getTerminator());
993         return false;
994       }
995     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
996       reportVectorizationFailure(
997           "Control flow cannot be substituted for a select",
998           "control flow cannot be substituted for a select",
999           "NoCFGForSelect", BB->getTerminator());
1000       return false;
1001     }
1002   }
1003 
1004   // We can if-convert this loop.
1005   return true;
1006 }
1007 
1008 // Helper function to canVectorizeLoopNestCFG.
1009 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1010                                                     bool UseVPlanNativePath) {
1011   assert((UseVPlanNativePath || Lp->empty()) &&
1012          "VPlan-native path is not enabled.");
1013 
1014   // TODO: ORE should be improved to show more accurate information when an
1015   // outer loop can't be vectorized because a nested loop is not understood or
1016   // legal. Something like: "outer_loop_location: loop not vectorized:
1017   // (inner_loop_location) loop control flow is not understood by vectorizer".
1018 
1019   // Store the result and return it at the end instead of exiting early, in case
1020   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1021   bool Result = true;
1022   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1023 
1024   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1025   // be canonicalized.
1026   if (!Lp->getLoopPreheader()) {
1027     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1028         "loop control flow is not understood by vectorizer",
1029         "CFGNotUnderstood");
1030     if (DoExtraAnalysis)
1031       Result = false;
1032     else
1033       return false;
1034   }
1035 
1036   // We must have a single backedge.
1037   if (Lp->getNumBackEdges() != 1) {
1038     reportVectorizationFailure("The loop must have a single backedge",
1039         "loop control flow is not understood by vectorizer",
1040         "CFGNotUnderstood");
1041     if (DoExtraAnalysis)
1042       Result = false;
1043     else
1044       return false;
1045   }
1046 
1047   // We must have a single exiting block.
1048   if (!Lp->getExitingBlock()) {
1049     reportVectorizationFailure("The loop must have an exiting block",
1050         "loop control flow is not understood by vectorizer",
1051         "CFGNotUnderstood");
1052     if (DoExtraAnalysis)
1053       Result = false;
1054     else
1055       return false;
1056   }
1057 
1058   // We only handle bottom-tested loops, i.e. loop in which the condition is
1059   // checked at the end of each iteration. With that we can assume that all
1060   // instructions in the loop are executed the same number of times.
1061   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1062     reportVectorizationFailure("The exiting block is not the loop latch",
1063         "loop control flow is not understood by vectorizer",
1064         "CFGNotUnderstood");
1065     if (DoExtraAnalysis)
1066       Result = false;
1067     else
1068       return false;
1069   }
1070 
1071   return Result;
1072 }
1073 
1074 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1075     Loop *Lp, bool UseVPlanNativePath) {
1076   // Store the result and return it at the end instead of exiting early, in case
1077   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1078   bool Result = true;
1079   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1080   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1081     if (DoExtraAnalysis)
1082       Result = false;
1083     else
1084       return false;
1085   }
1086 
1087   // Recursively check whether the loop control flow of nested loops is
1088   // understood.
1089   for (Loop *SubLp : *Lp)
1090     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1091       if (DoExtraAnalysis)
1092         Result = false;
1093       else
1094         return false;
1095     }
1096 
1097   return Result;
1098 }
1099 
1100 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1101   // Store the result and return it at the end instead of exiting early, in case
1102   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1103   bool Result = true;
1104 
1105   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1106   // Check whether the loop-related control flow in the loop nest is expected by
1107   // vectorizer.
1108   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1109     if (DoExtraAnalysis)
1110       Result = false;
1111     else
1112       return false;
1113   }
1114 
1115   // We need to have a loop header.
1116   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1117                     << '\n');
1118 
1119   // Specific checks for outer loops. We skip the remaining legal checks at this
1120   // point because they don't support outer loops.
1121   if (!TheLoop->empty()) {
1122     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1123 
1124     if (!canVectorizeOuterLoop()) {
1125       reportVectorizationFailure("Unsupported outer loop",
1126                                  "unsupported outer loop",
1127                                  "UnsupportedOuterLoop");
1128       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1129       // outer loops.
1130       return false;
1131     }
1132 
1133     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1134     return Result;
1135   }
1136 
1137   assert(TheLoop->empty() && "Inner loop expected.");
1138   // Check if we can if-convert non-single-bb loops.
1139   unsigned NumBlocks = TheLoop->getNumBlocks();
1140   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1141     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1142     if (DoExtraAnalysis)
1143       Result = false;
1144     else
1145       return false;
1146   }
1147 
1148   // Check if we can vectorize the instructions and CFG in this loop.
1149   if (!canVectorizeInstrs()) {
1150     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1151     if (DoExtraAnalysis)
1152       Result = false;
1153     else
1154       return false;
1155   }
1156 
1157   // Go over each instruction and look at memory deps.
1158   if (!canVectorizeMemory()) {
1159     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1160     if (DoExtraAnalysis)
1161       Result = false;
1162     else
1163       return false;
1164   }
1165 
1166   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1167                     << (LAI->getRuntimePointerChecking()->Need
1168                             ? " (with a runtime bound check)"
1169                             : "")
1170                     << "!\n");
1171 
1172   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1173   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1174     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1175 
1176   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1177     reportVectorizationFailure("Too many SCEV checks needed",
1178         "Too many SCEV assumptions need to be made and checked at runtime",
1179         "TooManySCEVRunTimeChecks");
1180     if (DoExtraAnalysis)
1181       Result = false;
1182     else
1183       return false;
1184   }
1185 
1186   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1187   // we can vectorize, and at this point we don't have any other mem analysis
1188   // which may limit our maximum vectorization factor, so just return true with
1189   // no restrictions.
1190   return Result;
1191 }
1192 
1193 bool LoopVectorizationLegality::canFoldTailByMasking() {
1194 
1195   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1196 
1197   if (!PrimaryInduction) {
1198     reportVectorizationFailure(
1199         "No primary induction, cannot fold tail by masking",
1200         "Missing a primary induction variable in the loop, which is "
1201         "needed in order to fold tail by masking as required.",
1202         "NoPrimaryInduction");
1203     return false;
1204   }
1205 
1206   // TODO: handle reductions when tail is folded by masking.
1207   if (!Reductions.empty()) {
1208     reportVectorizationFailure(
1209         "Loop has reductions, cannot fold tail by masking",
1210         "Cannot fold tail by masking in the presence of reductions.",
1211         "ReductionFoldingTailByMasking");
1212     return false;
1213   }
1214 
1215   // TODO: handle outside users when tail is folded by masking.
1216   for (auto *AE : AllowedExit) {
1217     // Check that all users of allowed exit values are inside the loop.
1218     for (User *U : AE->users()) {
1219       Instruction *UI = cast<Instruction>(U);
1220       if (TheLoop->contains(UI))
1221         continue;
1222       reportVectorizationFailure(
1223           "Cannot fold tail by masking, loop has an outside user for",
1224           "Cannot fold tail by masking in the presence of live outs.",
1225           "LiveOutFoldingTailByMasking", UI);
1226       return false;
1227     }
1228   }
1229 
1230   // The list of pointers that we can safely read and write to remains empty.
1231   SmallPtrSet<Value *, 8> SafePointers;
1232 
1233   // Check and mark all blocks for predication, including those that ordinarily
1234   // do not need predication such as the header block.
1235   for (BasicBlock *BB : TheLoop->blocks()) {
1236     if (!blockCanBePredicated(BB, SafePointers)) {
1237       reportVectorizationFailure(
1238           "Cannot fold tail by masking as required",
1239           "control flow cannot be substituted for a select",
1240           "NoCFGForSelect", BB->getTerminator());
1241       return false;
1242     }
1243   }
1244 
1245   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1246   return true;
1247 }
1248 
1249 } // namespace llvm
1250