1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/SizeOpts.h" 26 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define LV_NAME "loop-vectorize" 32 #define DEBUG_TYPE LV_NAME 33 34 extern cl::opt<bool> EnableVPlanPredication; 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 namespace llvm { 41 cl::opt<bool> 42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 43 cl::desc("Allow enabling loop hints to reorder " 44 "FP operations during vectorization.")); 45 } 46 47 // TODO: Move size-based thresholds out of legality checking, make cost based 48 // decisions instead of hard thresholds. 49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 51 cl::desc("The maximum number of SCEV checks allowed.")); 52 53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 55 cl::desc("The maximum number of SCEV checks allowed with a " 56 "vectorize(enable) pragma")); 57 58 static cl::opt<LoopVectorizeHints::ScalableForceKind> 59 ForceScalableVectorization( 60 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 61 cl::Hidden, 62 cl::desc("Control whether the compiler can use scalable vectors to " 63 "vectorize a loop"), 64 cl::values( 65 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 66 "Scalable vectorization is disabled."), 67 clEnumValN( 68 LoopVectorizeHints::SK_PreferScalable, "on", 69 "Scalable vectorization is available and favored when the " 70 "cost is inconclusive."))); 71 72 /// Maximum vectorization interleave count. 73 static const unsigned MaxInterleaveFactor = 16; 74 75 namespace llvm { 76 77 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 78 switch (Kind) { 79 case HK_WIDTH: 80 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 81 case HK_INTERLEAVE: 82 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 83 case HK_FORCE: 84 return (Val <= 1); 85 case HK_ISVECTORIZED: 86 case HK_PREDICATE: 87 case HK_SCALABLE: 88 return (Val == 0 || Val == 1); 89 } 90 return false; 91 } 92 93 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 94 bool InterleaveOnlyWhenForced, 95 OptimizationRemarkEmitter &ORE, 96 const TargetTransformInfo *TTI) 97 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 98 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 99 Force("vectorize.enable", FK_Undefined, HK_FORCE), 100 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 101 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 102 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 103 TheLoop(L), ORE(ORE) { 104 // Populate values with existing loop metadata. 105 getHintsFromMetadata(); 106 107 // force-vector-interleave overrides DisableInterleaving. 108 if (VectorizerParams::isInterleaveForced()) 109 Interleave.Value = VectorizerParams::VectorizationInterleave; 110 111 // If the metadata doesn't explicitly specify whether to enable scalable 112 // vectorization, then decide based on the following criteria (increasing 113 // level of priority): 114 // - Target default 115 // - Metadata width 116 // - Force option (always overrides) 117 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 118 if (TTI) 119 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 120 : SK_FixedWidthOnly; 121 122 if (Width.Value) 123 // If the width is set, but the metadata says nothing about the scalable 124 // property, then assume it concerns only a fixed-width UserVF. 125 // If width is not set, the flag takes precedence. 126 Scalable.Value = SK_FixedWidthOnly; 127 } 128 129 // If the flag is set to force any use of scalable vectors, override the loop 130 // hints. 131 if (ForceScalableVectorization.getValue() != 132 LoopVectorizeHints::SK_Unspecified) 133 Scalable.Value = ForceScalableVectorization.getValue(); 134 135 // Scalable vectorization is disabled if no preference is specified. 136 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 137 Scalable.Value = SK_FixedWidthOnly; 138 139 if (IsVectorized.Value != 1) 140 // If the vectorization width and interleaving count are both 1 then 141 // consider the loop to have been already vectorized because there's 142 // nothing more that we can do. 143 IsVectorized.Value = 144 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 145 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 146 << "LV: Interleaving disabled by the pass manager\n"); 147 } 148 149 void LoopVectorizeHints::setAlreadyVectorized() { 150 LLVMContext &Context = TheLoop->getHeader()->getContext(); 151 152 MDNode *IsVectorizedMD = MDNode::get( 153 Context, 154 {MDString::get(Context, "llvm.loop.isvectorized"), 155 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 156 MDNode *LoopID = TheLoop->getLoopID(); 157 MDNode *NewLoopID = 158 makePostTransformationMetadata(Context, LoopID, 159 {Twine(Prefix(), "vectorize.").str(), 160 Twine(Prefix(), "interleave.").str()}, 161 {IsVectorizedMD}); 162 TheLoop->setLoopID(NewLoopID); 163 164 // Update internal cache. 165 IsVectorized.Value = 1; 166 } 167 168 bool LoopVectorizeHints::allowVectorization( 169 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 170 if (getForce() == LoopVectorizeHints::FK_Disabled) { 171 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 172 emitRemarkWithHints(); 173 return false; 174 } 175 176 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 177 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 178 emitRemarkWithHints(); 179 return false; 180 } 181 182 if (getIsVectorized() == 1) { 183 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 184 // FIXME: Add interleave.disable metadata. This will allow 185 // vectorize.disable to be used without disabling the pass and errors 186 // to differentiate between disabled vectorization and a width of 1. 187 ORE.emit([&]() { 188 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 189 "AllDisabled", L->getStartLoc(), 190 L->getHeader()) 191 << "loop not vectorized: vectorization and interleaving are " 192 "explicitly disabled, or the loop has already been " 193 "vectorized"; 194 }); 195 return false; 196 } 197 198 return true; 199 } 200 201 void LoopVectorizeHints::emitRemarkWithHints() const { 202 using namespace ore; 203 204 ORE.emit([&]() { 205 if (Force.Value == LoopVectorizeHints::FK_Disabled) 206 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 207 TheLoop->getStartLoc(), 208 TheLoop->getHeader()) 209 << "loop not vectorized: vectorization is explicitly disabled"; 210 else { 211 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 212 TheLoop->getStartLoc(), TheLoop->getHeader()); 213 R << "loop not vectorized"; 214 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 215 R << " (Force=" << NV("Force", true); 216 if (Width.Value != 0) 217 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 218 if (getInterleave() != 0) 219 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 220 R << ")"; 221 } 222 return R; 223 } 224 }); 225 } 226 227 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 228 if (getWidth() == ElementCount::getFixed(1)) 229 return LV_NAME; 230 if (getForce() == LoopVectorizeHints::FK_Disabled) 231 return LV_NAME; 232 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 233 return LV_NAME; 234 return OptimizationRemarkAnalysis::AlwaysPrint; 235 } 236 237 bool LoopVectorizeHints::allowReordering() const { 238 // Allow the vectorizer to change the order of operations if enabling 239 // loop hints are provided 240 ElementCount EC = getWidth(); 241 return HintsAllowReordering && 242 (getForce() == LoopVectorizeHints::FK_Enabled || 243 EC.getKnownMinValue() > 1); 244 } 245 246 void LoopVectorizeHints::getHintsFromMetadata() { 247 MDNode *LoopID = TheLoop->getLoopID(); 248 if (!LoopID) 249 return; 250 251 // First operand should refer to the loop id itself. 252 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 253 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 254 255 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 256 const MDString *S = nullptr; 257 SmallVector<Metadata *, 4> Args; 258 259 // The expected hint is either a MDString or a MDNode with the first 260 // operand a MDString. 261 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 262 if (!MD || MD->getNumOperands() == 0) 263 continue; 264 S = dyn_cast<MDString>(MD->getOperand(0)); 265 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 266 Args.push_back(MD->getOperand(i)); 267 } else { 268 S = dyn_cast<MDString>(LoopID->getOperand(i)); 269 assert(Args.size() == 0 && "too many arguments for MDString"); 270 } 271 272 if (!S) 273 continue; 274 275 // Check if the hint starts with the loop metadata prefix. 276 StringRef Name = S->getString(); 277 if (Args.size() == 1) 278 setHint(Name, Args[0]); 279 } 280 } 281 282 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 283 if (!Name.startswith(Prefix())) 284 return; 285 Name = Name.substr(Prefix().size(), StringRef::npos); 286 287 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 288 if (!C) 289 return; 290 unsigned Val = C->getZExtValue(); 291 292 Hint *Hints[] = {&Width, &Interleave, &Force, 293 &IsVectorized, &Predicate, &Scalable}; 294 for (auto H : Hints) { 295 if (Name == H->Name) { 296 if (H->validate(Val)) 297 H->Value = Val; 298 else 299 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 300 break; 301 } 302 } 303 } 304 305 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 306 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 307 // executing the inner loop will execute the same iterations). This check is 308 // very constrained for now but it will be relaxed in the future. \p Lp is 309 // considered uniform if it meets all the following conditions: 310 // 1) it has a canonical IV (starting from 0 and with stride 1), 311 // 2) its latch terminator is a conditional branch and, 312 // 3) its latch condition is a compare instruction whose operands are the 313 // canonical IV and an OuterLp invariant. 314 // This check doesn't take into account the uniformity of other conditions not 315 // related to the loop latch because they don't affect the loop uniformity. 316 // 317 // NOTE: We decided to keep all these checks and its associated documentation 318 // together so that we can easily have a picture of the current supported loop 319 // nests. However, some of the current checks don't depend on \p OuterLp and 320 // would be redundantly executed for each \p Lp if we invoked this function for 321 // different candidate outer loops. This is not the case for now because we 322 // don't currently have the infrastructure to evaluate multiple candidate outer 323 // loops and \p OuterLp will be a fixed parameter while we only support explicit 324 // outer loop vectorization. It's also very likely that these checks go away 325 // before introducing the aforementioned infrastructure. However, if this is not 326 // the case, we should move the \p OuterLp independent checks to a separate 327 // function that is only executed once for each \p Lp. 328 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 329 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 330 331 // If Lp is the outer loop, it's uniform by definition. 332 if (Lp == OuterLp) 333 return true; 334 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 335 336 // 1. 337 PHINode *IV = Lp->getCanonicalInductionVariable(); 338 if (!IV) { 339 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 340 return false; 341 } 342 343 // 2. 344 BasicBlock *Latch = Lp->getLoopLatch(); 345 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 346 if (!LatchBr || LatchBr->isUnconditional()) { 347 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 348 return false; 349 } 350 351 // 3. 352 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 353 if (!LatchCmp) { 354 LLVM_DEBUG( 355 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 356 return false; 357 } 358 359 Value *CondOp0 = LatchCmp->getOperand(0); 360 Value *CondOp1 = LatchCmp->getOperand(1); 361 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 362 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 363 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 364 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 365 return false; 366 } 367 368 return true; 369 } 370 371 // Return true if \p Lp and all its nested loops are uniform with regard to \p 372 // OuterLp. 373 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 374 if (!isUniformLoop(Lp, OuterLp)) 375 return false; 376 377 // Check if nested loops are uniform. 378 for (Loop *SubLp : *Lp) 379 if (!isUniformLoopNest(SubLp, OuterLp)) 380 return false; 381 382 return true; 383 } 384 385 /// Check whether it is safe to if-convert this phi node. 386 /// 387 /// Phi nodes with constant expressions that can trap are not safe to if 388 /// convert. 389 static bool canIfConvertPHINodes(BasicBlock *BB) { 390 for (PHINode &Phi : BB->phis()) { 391 for (Value *V : Phi.incoming_values()) 392 if (auto *C = dyn_cast<Constant>(V)) 393 if (C->canTrap()) 394 return false; 395 } 396 return true; 397 } 398 399 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 400 if (Ty->isPointerTy()) 401 return DL.getIntPtrType(Ty); 402 403 // It is possible that char's or short's overflow when we ask for the loop's 404 // trip count, work around this by changing the type size. 405 if (Ty->getScalarSizeInBits() < 32) 406 return Type::getInt32Ty(Ty->getContext()); 407 408 return Ty; 409 } 410 411 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 412 Ty0 = convertPointerToIntegerType(DL, Ty0); 413 Ty1 = convertPointerToIntegerType(DL, Ty1); 414 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 415 return Ty0; 416 return Ty1; 417 } 418 419 /// Check that the instruction has outside loop users and is not an 420 /// identified reduction variable. 421 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 422 SmallPtrSetImpl<Value *> &AllowedExit) { 423 // Reductions, Inductions and non-header phis are allowed to have exit users. All 424 // other instructions must not have external users. 425 if (!AllowedExit.count(Inst)) 426 // Check that all of the users of the loop are inside the BB. 427 for (User *U : Inst->users()) { 428 Instruction *UI = cast<Instruction>(U); 429 // This user may be a reduction exit value. 430 if (!TheLoop->contains(UI)) { 431 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 432 return true; 433 } 434 } 435 return false; 436 } 437 438 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 439 Value *Ptr) const { 440 const ValueToValueMap &Strides = 441 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 442 443 Function *F = TheLoop->getHeader()->getParent(); 444 bool OptForSize = F->hasOptSize() || 445 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 446 PGSOQueryType::IRPass); 447 bool CanAddPredicate = !OptForSize; 448 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 449 CanAddPredicate, false); 450 if (Stride == 1 || Stride == -1) 451 return Stride; 452 return 0; 453 } 454 455 bool LoopVectorizationLegality::isUniform(Value *V) { 456 return LAI->isUniform(V); 457 } 458 459 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 460 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 461 // Store the result and return it at the end instead of exiting early, in case 462 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 463 bool Result = true; 464 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 465 466 for (BasicBlock *BB : TheLoop->blocks()) { 467 // Check whether the BB terminator is a BranchInst. Any other terminator is 468 // not supported yet. 469 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 470 if (!Br) { 471 reportVectorizationFailure("Unsupported basic block terminator", 472 "loop control flow is not understood by vectorizer", 473 "CFGNotUnderstood", ORE, TheLoop); 474 if (DoExtraAnalysis) 475 Result = false; 476 else 477 return false; 478 } 479 480 // Check whether the BranchInst is a supported one. Only unconditional 481 // branches, conditional branches with an outer loop invariant condition or 482 // backedges are supported. 483 // FIXME: We skip these checks when VPlan predication is enabled as we 484 // want to allow divergent branches. This whole check will be removed 485 // once VPlan predication is on by default. 486 if (!EnableVPlanPredication && Br && Br->isConditional() && 487 !TheLoop->isLoopInvariant(Br->getCondition()) && 488 !LI->isLoopHeader(Br->getSuccessor(0)) && 489 !LI->isLoopHeader(Br->getSuccessor(1))) { 490 reportVectorizationFailure("Unsupported conditional branch", 491 "loop control flow is not understood by vectorizer", 492 "CFGNotUnderstood", ORE, TheLoop); 493 if (DoExtraAnalysis) 494 Result = false; 495 else 496 return false; 497 } 498 } 499 500 // Check whether inner loops are uniform. At this point, we only support 501 // simple outer loops scenarios with uniform nested loops. 502 if (!isUniformLoopNest(TheLoop /*loop nest*/, 503 TheLoop /*context outer loop*/)) { 504 reportVectorizationFailure("Outer loop contains divergent loops", 505 "loop control flow is not understood by vectorizer", 506 "CFGNotUnderstood", ORE, TheLoop); 507 if (DoExtraAnalysis) 508 Result = false; 509 else 510 return false; 511 } 512 513 // Check whether we are able to set up outer loop induction. 514 if (!setupOuterLoopInductions()) { 515 reportVectorizationFailure("Unsupported outer loop Phi(s)", 516 "Unsupported outer loop Phi(s)", 517 "UnsupportedPhi", ORE, TheLoop); 518 if (DoExtraAnalysis) 519 Result = false; 520 else 521 return false; 522 } 523 524 return Result; 525 } 526 527 void LoopVectorizationLegality::addInductionPhi( 528 PHINode *Phi, const InductionDescriptor &ID, 529 SmallPtrSetImpl<Value *> &AllowedExit) { 530 Inductions[Phi] = ID; 531 532 // In case this induction also comes with casts that we know we can ignore 533 // in the vectorized loop body, record them here. All casts could be recorded 534 // here for ignoring, but suffices to record only the first (as it is the 535 // only one that may bw used outside the cast sequence). 536 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 537 if (!Casts.empty()) 538 InductionCastsToIgnore.insert(*Casts.begin()); 539 540 Type *PhiTy = Phi->getType(); 541 const DataLayout &DL = Phi->getModule()->getDataLayout(); 542 543 // Get the widest type. 544 if (!PhiTy->isFloatingPointTy()) { 545 if (!WidestIndTy) 546 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 547 else 548 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 549 } 550 551 // Int inductions are special because we only allow one IV. 552 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 553 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 554 isa<Constant>(ID.getStartValue()) && 555 cast<Constant>(ID.getStartValue())->isNullValue()) { 556 557 // Use the phi node with the widest type as induction. Use the last 558 // one if there are multiple (no good reason for doing this other 559 // than it is expedient). We've checked that it begins at zero and 560 // steps by one, so this is a canonical induction variable. 561 if (!PrimaryInduction || PhiTy == WidestIndTy) 562 PrimaryInduction = Phi; 563 } 564 565 // Both the PHI node itself, and the "post-increment" value feeding 566 // back into the PHI node may have external users. 567 // We can allow those uses, except if the SCEVs we have for them rely 568 // on predicates that only hold within the loop, since allowing the exit 569 // currently means re-using this SCEV outside the loop (see PR33706 for more 570 // details). 571 if (PSE.getUnionPredicate().isAlwaysTrue()) { 572 AllowedExit.insert(Phi); 573 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 574 } 575 576 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 577 } 578 579 bool LoopVectorizationLegality::setupOuterLoopInductions() { 580 BasicBlock *Header = TheLoop->getHeader(); 581 582 // Returns true if a given Phi is a supported induction. 583 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 584 InductionDescriptor ID; 585 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 586 ID.getKind() == InductionDescriptor::IK_IntInduction) { 587 addInductionPhi(&Phi, ID, AllowedExit); 588 return true; 589 } else { 590 // Bail out for any Phi in the outer loop header that is not a supported 591 // induction. 592 LLVM_DEBUG( 593 dbgs() 594 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 595 return false; 596 } 597 }; 598 599 if (llvm::all_of(Header->phis(), isSupportedPhi)) 600 return true; 601 else 602 return false; 603 } 604 605 /// Checks if a function is scalarizable according to the TLI, in 606 /// the sense that it should be vectorized and then expanded in 607 /// multiple scalar calls. This is represented in the 608 /// TLI via mappings that do not specify a vector name, as in the 609 /// following example: 610 /// 611 /// const VecDesc VecIntrinsics[] = { 612 /// {"llvm.phx.abs.i32", "", 4} 613 /// }; 614 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 615 const StringRef ScalarName = CI.getCalledFunction()->getName(); 616 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 617 // Check that all known VFs are not associated to a vector 618 // function, i.e. the vector name is emty. 619 if (Scalarize) { 620 ElementCount WidestFixedVF, WidestScalableVF; 621 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 622 for (ElementCount VF = ElementCount::getFixed(2); 623 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 624 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 625 for (ElementCount VF = ElementCount::getScalable(1); 626 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 627 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 628 assert((WidestScalableVF.isZero() || !Scalarize) && 629 "Caller may decide to scalarize a variant using a scalable VF"); 630 } 631 return Scalarize; 632 } 633 634 bool LoopVectorizationLegality::canVectorizeInstrs() { 635 BasicBlock *Header = TheLoop->getHeader(); 636 637 // For each block in the loop. 638 for (BasicBlock *BB : TheLoop->blocks()) { 639 // Scan the instructions in the block and look for hazards. 640 for (Instruction &I : *BB) { 641 if (auto *Phi = dyn_cast<PHINode>(&I)) { 642 Type *PhiTy = Phi->getType(); 643 // Check that this PHI type is allowed. 644 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 645 !PhiTy->isPointerTy()) { 646 reportVectorizationFailure("Found a non-int non-pointer PHI", 647 "loop control flow is not understood by vectorizer", 648 "CFGNotUnderstood", ORE, TheLoop); 649 return false; 650 } 651 652 // If this PHINode is not in the header block, then we know that we 653 // can convert it to select during if-conversion. No need to check if 654 // the PHIs in this block are induction or reduction variables. 655 if (BB != Header) { 656 // Non-header phi nodes that have outside uses can be vectorized. Add 657 // them to the list of allowed exits. 658 // Unsafe cyclic dependencies with header phis are identified during 659 // legalization for reduction, induction and first order 660 // recurrences. 661 AllowedExit.insert(&I); 662 continue; 663 } 664 665 // We only allow if-converted PHIs with exactly two incoming values. 666 if (Phi->getNumIncomingValues() != 2) { 667 reportVectorizationFailure("Found an invalid PHI", 668 "loop control flow is not understood by vectorizer", 669 "CFGNotUnderstood", ORE, TheLoop, Phi); 670 return false; 671 } 672 673 RecurrenceDescriptor RedDes; 674 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 675 DT)) { 676 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 677 AllowedExit.insert(RedDes.getLoopExitInstr()); 678 Reductions[Phi] = RedDes; 679 continue; 680 } 681 682 // TODO: Instead of recording the AllowedExit, it would be good to record the 683 // complementary set: NotAllowedExit. These include (but may not be 684 // limited to): 685 // 1. Reduction phis as they represent the one-before-last value, which 686 // is not available when vectorized 687 // 2. Induction phis and increment when SCEV predicates cannot be used 688 // outside the loop - see addInductionPhi 689 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 690 // outside the loop - see call to hasOutsideLoopUser in the non-phi 691 // handling below 692 // 4. FirstOrderRecurrence phis that can possibly be handled by 693 // extraction. 694 // By recording these, we can then reason about ways to vectorize each 695 // of these NotAllowedExit. 696 InductionDescriptor ID; 697 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 698 addInductionPhi(Phi, ID, AllowedExit); 699 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 700 continue; 701 } 702 703 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 704 SinkAfter, DT)) { 705 AllowedExit.insert(Phi); 706 FirstOrderRecurrences.insert(Phi); 707 continue; 708 } 709 710 // As a last resort, coerce the PHI to a AddRec expression 711 // and re-try classifying it a an induction PHI. 712 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 713 addInductionPhi(Phi, ID, AllowedExit); 714 continue; 715 } 716 717 reportVectorizationFailure("Found an unidentified PHI", 718 "value that could not be identified as " 719 "reduction is used outside the loop", 720 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 721 return false; 722 } // end of PHI handling 723 724 // We handle calls that: 725 // * Are debug info intrinsics. 726 // * Have a mapping to an IR intrinsic. 727 // * Have a vector version available. 728 auto *CI = dyn_cast<CallInst>(&I); 729 730 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 731 !isa<DbgInfoIntrinsic>(CI) && 732 !(CI->getCalledFunction() && TLI && 733 (!VFDatabase::getMappings(*CI).empty() || 734 isTLIScalarize(*TLI, *CI)))) { 735 // If the call is a recognized math libary call, it is likely that 736 // we can vectorize it given loosened floating-point constraints. 737 LibFunc Func; 738 bool IsMathLibCall = 739 TLI && CI->getCalledFunction() && 740 CI->getType()->isFloatingPointTy() && 741 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 742 TLI->hasOptimizedCodeGen(Func); 743 744 if (IsMathLibCall) { 745 // TODO: Ideally, we should not use clang-specific language here, 746 // but it's hard to provide meaningful yet generic advice. 747 // Also, should this be guarded by allowExtraAnalysis() and/or be part 748 // of the returned info from isFunctionVectorizable()? 749 reportVectorizationFailure( 750 "Found a non-intrinsic callsite", 751 "library call cannot be vectorized. " 752 "Try compiling with -fno-math-errno, -ffast-math, " 753 "or similar flags", 754 "CantVectorizeLibcall", ORE, TheLoop, CI); 755 } else { 756 reportVectorizationFailure("Found a non-intrinsic callsite", 757 "call instruction cannot be vectorized", 758 "CantVectorizeLibcall", ORE, TheLoop, CI); 759 } 760 return false; 761 } 762 763 // Some intrinsics have scalar arguments and should be same in order for 764 // them to be vectorized (i.e. loop invariant). 765 if (CI) { 766 auto *SE = PSE.getSE(); 767 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 768 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 769 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 770 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 771 reportVectorizationFailure("Found unvectorizable intrinsic", 772 "intrinsic instruction cannot be vectorized", 773 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 774 return false; 775 } 776 } 777 } 778 779 // Check that the instruction return type is vectorizable. 780 // Also, we can't vectorize extractelement instructions. 781 if ((!VectorType::isValidElementType(I.getType()) && 782 !I.getType()->isVoidTy()) || 783 isa<ExtractElementInst>(I)) { 784 reportVectorizationFailure("Found unvectorizable type", 785 "instruction return type cannot be vectorized", 786 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 787 return false; 788 } 789 790 // Check that the stored type is vectorizable. 791 if (auto *ST = dyn_cast<StoreInst>(&I)) { 792 Type *T = ST->getValueOperand()->getType(); 793 if (!VectorType::isValidElementType(T)) { 794 reportVectorizationFailure("Store instruction cannot be vectorized", 795 "store instruction cannot be vectorized", 796 "CantVectorizeStore", ORE, TheLoop, ST); 797 return false; 798 } 799 800 // For nontemporal stores, check that a nontemporal vector version is 801 // supported on the target. 802 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 803 // Arbitrarily try a vector of 2 elements. 804 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 805 assert(VecTy && "did not find vectorized version of stored type"); 806 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 807 reportVectorizationFailure( 808 "nontemporal store instruction cannot be vectorized", 809 "nontemporal store instruction cannot be vectorized", 810 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 811 return false; 812 } 813 } 814 815 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 816 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 817 // For nontemporal loads, check that a nontemporal vector version is 818 // supported on the target (arbitrarily try a vector of 2 elements). 819 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 820 assert(VecTy && "did not find vectorized version of load type"); 821 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 822 reportVectorizationFailure( 823 "nontemporal load instruction cannot be vectorized", 824 "nontemporal load instruction cannot be vectorized", 825 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 826 return false; 827 } 828 } 829 830 // FP instructions can allow unsafe algebra, thus vectorizable by 831 // non-IEEE-754 compliant SIMD units. 832 // This applies to floating-point math operations and calls, not memory 833 // operations, shuffles, or casts, as they don't change precision or 834 // semantics. 835 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 836 !I.isFast()) { 837 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 838 Hints->setPotentiallyUnsafe(); 839 } 840 841 // Reduction instructions are allowed to have exit users. 842 // All other instructions must not have external users. 843 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 844 // We can safely vectorize loops where instructions within the loop are 845 // used outside the loop only if the SCEV predicates within the loop is 846 // same as outside the loop. Allowing the exit means reusing the SCEV 847 // outside the loop. 848 if (PSE.getUnionPredicate().isAlwaysTrue()) { 849 AllowedExit.insert(&I); 850 continue; 851 } 852 reportVectorizationFailure("Value cannot be used outside the loop", 853 "value cannot be used outside the loop", 854 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 855 return false; 856 } 857 } // next instr. 858 } 859 860 if (!PrimaryInduction) { 861 if (Inductions.empty()) { 862 reportVectorizationFailure("Did not find one integer induction var", 863 "loop induction variable could not be identified", 864 "NoInductionVariable", ORE, TheLoop); 865 return false; 866 } else if (!WidestIndTy) { 867 reportVectorizationFailure("Did not find one integer induction var", 868 "integer loop induction variable could not be identified", 869 "NoIntegerInductionVariable", ORE, TheLoop); 870 return false; 871 } else { 872 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 873 } 874 } 875 876 // For first order recurrences, we use the previous value (incoming value from 877 // the latch) to check if it dominates all users of the recurrence. Bail out 878 // if we have to sink such an instruction for another recurrence, as the 879 // dominance requirement may not hold after sinking. 880 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 881 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 882 Instruction *V = 883 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 884 return SinkAfter.find(V) != SinkAfter.end(); 885 })) 886 return false; 887 888 // Now we know the widest induction type, check if our found induction 889 // is the same size. If it's not, unset it here and InnerLoopVectorizer 890 // will create another. 891 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 892 PrimaryInduction = nullptr; 893 894 return true; 895 } 896 897 bool LoopVectorizationLegality::canVectorizeMemory() { 898 LAI = &(*GetLAA)(*TheLoop); 899 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 900 if (LAR) { 901 ORE->emit([&]() { 902 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 903 "loop not vectorized: ", *LAR); 904 }); 905 } 906 907 if (!LAI->canVectorizeMemory()) 908 return false; 909 910 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 911 reportVectorizationFailure("Stores to a uniform address", 912 "write to a loop invariant address could not be vectorized", 913 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 914 return false; 915 } 916 917 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 918 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 919 return true; 920 } 921 922 bool LoopVectorizationLegality::canVectorizeFPMath( 923 bool EnableStrictReductions) { 924 925 // First check if there is any ExactFP math or if we allow reassociations 926 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 927 return true; 928 929 // If the above is false, we have ExactFPMath & do not allow reordering. 930 // If the EnableStrictReductions flag is set, first check if we have any 931 // Exact FP induction vars, which we cannot vectorize. 932 if (!EnableStrictReductions || 933 any_of(getInductionVars(), [&](auto &Induction) -> bool { 934 InductionDescriptor IndDesc = Induction.second; 935 return IndDesc.getExactFPMathInst(); 936 })) 937 return false; 938 939 // We can now only vectorize if all reductions with Exact FP math also 940 // have the isOrdered flag set, which indicates that we can move the 941 // reduction operations in-loop. 942 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 943 const RecurrenceDescriptor &RdxDesc = Reduction.second; 944 return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 945 })); 946 } 947 948 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 949 Value *In0 = const_cast<Value *>(V); 950 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 951 if (!PN) 952 return false; 953 954 return Inductions.count(PN); 955 } 956 957 const InductionDescriptor * 958 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 959 if (!isInductionPhi(Phi)) 960 return nullptr; 961 auto &ID = getInductionVars().find(Phi)->second; 962 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 963 ID.getKind() == InductionDescriptor::IK_FpInduction) 964 return &ID; 965 return nullptr; 966 } 967 968 bool LoopVectorizationLegality::isCastedInductionVariable( 969 const Value *V) const { 970 auto *Inst = dyn_cast<Instruction>(V); 971 return (Inst && InductionCastsToIgnore.count(Inst)); 972 } 973 974 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 975 return isInductionPhi(V) || isCastedInductionVariable(V); 976 } 977 978 bool LoopVectorizationLegality::isFirstOrderRecurrence( 979 const PHINode *Phi) const { 980 return FirstOrderRecurrences.count(Phi); 981 } 982 983 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 984 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 985 } 986 987 bool LoopVectorizationLegality::blockCanBePredicated( 988 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 989 SmallPtrSetImpl<const Instruction *> &MaskedOp, 990 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 991 for (Instruction &I : *BB) { 992 // Check that we don't have a constant expression that can trap as operand. 993 for (Value *Operand : I.operands()) { 994 if (auto *C = dyn_cast<Constant>(Operand)) 995 if (C->canTrap()) 996 return false; 997 } 998 999 // We can predicate blocks with calls to assume, as long as we drop them in 1000 // case we flatten the CFG via predication. 1001 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1002 ConditionalAssumes.insert(&I); 1003 continue; 1004 } 1005 1006 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1007 // TODO: there might be cases that it should block the vectorization. Let's 1008 // ignore those for now. 1009 if (isa<NoAliasScopeDeclInst>(&I)) 1010 continue; 1011 1012 // We might be able to hoist the load. 1013 if (I.mayReadFromMemory()) { 1014 auto *LI = dyn_cast<LoadInst>(&I); 1015 if (!LI) 1016 return false; 1017 if (!SafePtrs.count(LI->getPointerOperand())) { 1018 MaskedOp.insert(LI); 1019 continue; 1020 } 1021 } 1022 1023 if (I.mayWriteToMemory()) { 1024 auto *SI = dyn_cast<StoreInst>(&I); 1025 if (!SI) 1026 return false; 1027 // Predicated store requires some form of masking: 1028 // 1) masked store HW instruction, 1029 // 2) emulation via load-blend-store (only if safe and legal to do so, 1030 // be aware on the race conditions), or 1031 // 3) element-by-element predicate check and scalar store. 1032 MaskedOp.insert(SI); 1033 continue; 1034 } 1035 if (I.mayThrow()) 1036 return false; 1037 } 1038 1039 return true; 1040 } 1041 1042 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1043 if (!EnableIfConversion) { 1044 reportVectorizationFailure("If-conversion is disabled", 1045 "if-conversion is disabled", 1046 "IfConversionDisabled", 1047 ORE, TheLoop); 1048 return false; 1049 } 1050 1051 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1052 1053 // A list of pointers which are known to be dereferenceable within scope of 1054 // the loop body for each iteration of the loop which executes. That is, 1055 // the memory pointed to can be dereferenced (with the access size implied by 1056 // the value's type) unconditionally within the loop header without 1057 // introducing a new fault. 1058 SmallPtrSet<Value *, 8> SafePointers; 1059 1060 // Collect safe addresses. 1061 for (BasicBlock *BB : TheLoop->blocks()) { 1062 if (!blockNeedsPredication(BB)) { 1063 for (Instruction &I : *BB) 1064 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1065 SafePointers.insert(Ptr); 1066 continue; 1067 } 1068 1069 // For a block which requires predication, a address may be safe to access 1070 // in the loop w/o predication if we can prove dereferenceability facts 1071 // sufficient to ensure it'll never fault within the loop. For the moment, 1072 // we restrict this to loads; stores are more complicated due to 1073 // concurrency restrictions. 1074 ScalarEvolution &SE = *PSE.getSE(); 1075 for (Instruction &I : *BB) { 1076 LoadInst *LI = dyn_cast<LoadInst>(&I); 1077 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1078 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1079 SafePointers.insert(LI->getPointerOperand()); 1080 } 1081 } 1082 1083 // Collect the blocks that need predication. 1084 BasicBlock *Header = TheLoop->getHeader(); 1085 for (BasicBlock *BB : TheLoop->blocks()) { 1086 // We don't support switch statements inside loops. 1087 if (!isa<BranchInst>(BB->getTerminator())) { 1088 reportVectorizationFailure("Loop contains a switch statement", 1089 "loop contains a switch statement", 1090 "LoopContainsSwitch", ORE, TheLoop, 1091 BB->getTerminator()); 1092 return false; 1093 } 1094 1095 // We must be able to predicate all blocks that need to be predicated. 1096 if (blockNeedsPredication(BB)) { 1097 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1098 ConditionalAssumes)) { 1099 reportVectorizationFailure( 1100 "Control flow cannot be substituted for a select", 1101 "control flow cannot be substituted for a select", 1102 "NoCFGForSelect", ORE, TheLoop, 1103 BB->getTerminator()); 1104 return false; 1105 } 1106 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1107 reportVectorizationFailure( 1108 "Control flow cannot be substituted for a select", 1109 "control flow cannot be substituted for a select", 1110 "NoCFGForSelect", ORE, TheLoop, 1111 BB->getTerminator()); 1112 return false; 1113 } 1114 } 1115 1116 // We can if-convert this loop. 1117 return true; 1118 } 1119 1120 // Helper function to canVectorizeLoopNestCFG. 1121 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1122 bool UseVPlanNativePath) { 1123 assert((UseVPlanNativePath || Lp->isInnermost()) && 1124 "VPlan-native path is not enabled."); 1125 1126 // TODO: ORE should be improved to show more accurate information when an 1127 // outer loop can't be vectorized because a nested loop is not understood or 1128 // legal. Something like: "outer_loop_location: loop not vectorized: 1129 // (inner_loop_location) loop control flow is not understood by vectorizer". 1130 1131 // Store the result and return it at the end instead of exiting early, in case 1132 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1133 bool Result = true; 1134 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1135 1136 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1137 // be canonicalized. 1138 if (!Lp->getLoopPreheader()) { 1139 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1140 "loop control flow is not understood by vectorizer", 1141 "CFGNotUnderstood", ORE, TheLoop); 1142 if (DoExtraAnalysis) 1143 Result = false; 1144 else 1145 return false; 1146 } 1147 1148 // We must have a single backedge. 1149 if (Lp->getNumBackEdges() != 1) { 1150 reportVectorizationFailure("The loop must have a single backedge", 1151 "loop control flow is not understood by vectorizer", 1152 "CFGNotUnderstood", ORE, TheLoop); 1153 if (DoExtraAnalysis) 1154 Result = false; 1155 else 1156 return false; 1157 } 1158 1159 return Result; 1160 } 1161 1162 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1163 Loop *Lp, bool UseVPlanNativePath) { 1164 // Store the result and return it at the end instead of exiting early, in case 1165 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1166 bool Result = true; 1167 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1168 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1169 if (DoExtraAnalysis) 1170 Result = false; 1171 else 1172 return false; 1173 } 1174 1175 // Recursively check whether the loop control flow of nested loops is 1176 // understood. 1177 for (Loop *SubLp : *Lp) 1178 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1179 if (DoExtraAnalysis) 1180 Result = false; 1181 else 1182 return false; 1183 } 1184 1185 return Result; 1186 } 1187 1188 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1189 // Store the result and return it at the end instead of exiting early, in case 1190 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1191 bool Result = true; 1192 1193 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1194 // Check whether the loop-related control flow in the loop nest is expected by 1195 // vectorizer. 1196 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1197 if (DoExtraAnalysis) 1198 Result = false; 1199 else 1200 return false; 1201 } 1202 1203 // We need to have a loop header. 1204 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1205 << '\n'); 1206 1207 // Specific checks for outer loops. We skip the remaining legal checks at this 1208 // point because they don't support outer loops. 1209 if (!TheLoop->isInnermost()) { 1210 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1211 1212 if (!canVectorizeOuterLoop()) { 1213 reportVectorizationFailure("Unsupported outer loop", 1214 "unsupported outer loop", 1215 "UnsupportedOuterLoop", 1216 ORE, TheLoop); 1217 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1218 // outer loops. 1219 return false; 1220 } 1221 1222 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1223 return Result; 1224 } 1225 1226 assert(TheLoop->isInnermost() && "Inner loop expected."); 1227 // Check if we can if-convert non-single-bb loops. 1228 unsigned NumBlocks = TheLoop->getNumBlocks(); 1229 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1230 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1231 if (DoExtraAnalysis) 1232 Result = false; 1233 else 1234 return false; 1235 } 1236 1237 // Check if we can vectorize the instructions and CFG in this loop. 1238 if (!canVectorizeInstrs()) { 1239 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1240 if (DoExtraAnalysis) 1241 Result = false; 1242 else 1243 return false; 1244 } 1245 1246 // Go over each instruction and look at memory deps. 1247 if (!canVectorizeMemory()) { 1248 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1249 if (DoExtraAnalysis) 1250 Result = false; 1251 else 1252 return false; 1253 } 1254 1255 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1256 << (LAI->getRuntimePointerChecking()->Need 1257 ? " (with a runtime bound check)" 1258 : "") 1259 << "!\n"); 1260 1261 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1262 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1263 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1264 1265 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1266 reportVectorizationFailure("Too many SCEV checks needed", 1267 "Too many SCEV assumptions need to be made and checked at runtime", 1268 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1269 if (DoExtraAnalysis) 1270 Result = false; 1271 else 1272 return false; 1273 } 1274 1275 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1276 // we can vectorize, and at this point we don't have any other mem analysis 1277 // which may limit our maximum vectorization factor, so just return true with 1278 // no restrictions. 1279 return Result; 1280 } 1281 1282 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1283 1284 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1285 1286 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1287 1288 for (auto &Reduction : getReductionVars()) 1289 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1290 1291 // TODO: handle non-reduction outside users when tail is folded by masking. 1292 for (auto *AE : AllowedExit) { 1293 // Check that all users of allowed exit values are inside the loop or 1294 // are the live-out of a reduction. 1295 if (ReductionLiveOuts.count(AE)) 1296 continue; 1297 for (User *U : AE->users()) { 1298 Instruction *UI = cast<Instruction>(U); 1299 if (TheLoop->contains(UI)) 1300 continue; 1301 LLVM_DEBUG( 1302 dbgs() 1303 << "LV: Cannot fold tail by masking, loop has an outside user for " 1304 << *UI << "\n"); 1305 return false; 1306 } 1307 } 1308 1309 // The list of pointers that we can safely read and write to remains empty. 1310 SmallPtrSet<Value *, 8> SafePointers; 1311 1312 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1313 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1314 1315 // Check and mark all blocks for predication, including those that ordinarily 1316 // do not need predication such as the header block. 1317 for (BasicBlock *BB : TheLoop->blocks()) { 1318 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1319 TmpConditionalAssumes)) { 1320 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1321 return false; 1322 } 1323 } 1324 1325 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1326 1327 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1328 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1329 TmpConditionalAssumes.end()); 1330 1331 return true; 1332 } 1333 1334 } // namespace llvm 1335