1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetLibraryInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/Analysis/VectorUtils.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Transforms/Utils/SizeOpts.h"
26 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
27 
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define LV_NAME "loop-vectorize"
32 #define DEBUG_TYPE LV_NAME
33 
34 extern cl::opt<bool> EnableVPlanPredication;
35 
36 static cl::opt<bool>
37     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38                        cl::desc("Enable if-conversion during vectorization."));
39 
40 // TODO: Move size-based thresholds out of legality checking, make cost based
41 // decisions instead of hard thresholds.
42 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
43     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
44     cl::desc("The maximum number of SCEV checks allowed."));
45 
46 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
47     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
48     cl::desc("The maximum number of SCEV checks allowed with a "
49              "vectorize(enable) pragma"));
50 
51 /// Maximum vectorization interleave count.
52 static const unsigned MaxInterleaveFactor = 16;
53 
54 namespace llvm {
55 
56 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
57   switch (Kind) {
58   case HK_WIDTH:
59     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
60   case HK_INTERLEAVE:
61     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
62   case HK_FORCE:
63     return (Val <= 1);
64   case HK_ISVECTORIZED:
65   case HK_PREDICATE:
66   case HK_SCALABLE:
67     return (Val == 0 || Val == 1);
68   }
69   return false;
70 }
71 
72 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
73                                        bool InterleaveOnlyWhenForced,
74                                        OptimizationRemarkEmitter &ORE)
75     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
76       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
77       Force("vectorize.enable", FK_Undefined, HK_FORCE),
78       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
79       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
80       Scalable("vectorize.scalable.enable", false, HK_SCALABLE), TheLoop(L),
81       ORE(ORE) {
82   // Populate values with existing loop metadata.
83   getHintsFromMetadata();
84 
85   // force-vector-interleave overrides DisableInterleaving.
86   if (VectorizerParams::isInterleaveForced())
87     Interleave.Value = VectorizerParams::VectorizationInterleave;
88 
89   if (IsVectorized.Value != 1)
90     // If the vectorization width and interleaving count are both 1 then
91     // consider the loop to have been already vectorized because there's
92     // nothing more that we can do.
93     IsVectorized.Value =
94         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
95   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
96              << "LV: Interleaving disabled by the pass manager\n");
97 }
98 
99 void LoopVectorizeHints::setAlreadyVectorized() {
100   LLVMContext &Context = TheLoop->getHeader()->getContext();
101 
102   MDNode *IsVectorizedMD = MDNode::get(
103       Context,
104       {MDString::get(Context, "llvm.loop.isvectorized"),
105        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
106   MDNode *LoopID = TheLoop->getLoopID();
107   MDNode *NewLoopID =
108       makePostTransformationMetadata(Context, LoopID,
109                                      {Twine(Prefix(), "vectorize.").str(),
110                                       Twine(Prefix(), "interleave.").str()},
111                                      {IsVectorizedMD});
112   TheLoop->setLoopID(NewLoopID);
113 
114   // Update internal cache.
115   IsVectorized.Value = 1;
116 }
117 
118 bool LoopVectorizeHints::allowVectorization(
119     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
120   if (getForce() == LoopVectorizeHints::FK_Disabled) {
121     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
122     emitRemarkWithHints();
123     return false;
124   }
125 
126   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
127     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
128     emitRemarkWithHints();
129     return false;
130   }
131 
132   if (getIsVectorized() == 1) {
133     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
134     // FIXME: Add interleave.disable metadata. This will allow
135     // vectorize.disable to be used without disabling the pass and errors
136     // to differentiate between disabled vectorization and a width of 1.
137     ORE.emit([&]() {
138       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
139                                         "AllDisabled", L->getStartLoc(),
140                                         L->getHeader())
141              << "loop not vectorized: vectorization and interleaving are "
142                 "explicitly disabled, or the loop has already been "
143                 "vectorized";
144     });
145     return false;
146   }
147 
148   return true;
149 }
150 
151 void LoopVectorizeHints::emitRemarkWithHints() const {
152   using namespace ore;
153 
154   ORE.emit([&]() {
155     if (Force.Value == LoopVectorizeHints::FK_Disabled)
156       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
157                                       TheLoop->getStartLoc(),
158                                       TheLoop->getHeader())
159              << "loop not vectorized: vectorization is explicitly disabled";
160     else {
161       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
162                                  TheLoop->getStartLoc(), TheLoop->getHeader());
163       R << "loop not vectorized";
164       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
165         R << " (Force=" << NV("Force", true);
166         if (Width.Value != 0)
167           R << ", Vector Width=" << NV("VectorWidth", getWidth());
168         if (getInterleave() != 0)
169           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
170         R << ")";
171       }
172       return R;
173     }
174   });
175 }
176 
177 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
178   if (getWidth() == ElementCount::getFixed(1))
179     return LV_NAME;
180   if (getForce() == LoopVectorizeHints::FK_Disabled)
181     return LV_NAME;
182   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
183     return LV_NAME;
184   return OptimizationRemarkAnalysis::AlwaysPrint;
185 }
186 
187 void LoopVectorizeHints::getHintsFromMetadata() {
188   MDNode *LoopID = TheLoop->getLoopID();
189   if (!LoopID)
190     return;
191 
192   // First operand should refer to the loop id itself.
193   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
194   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
195 
196   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
197     const MDString *S = nullptr;
198     SmallVector<Metadata *, 4> Args;
199 
200     // The expected hint is either a MDString or a MDNode with the first
201     // operand a MDString.
202     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
203       if (!MD || MD->getNumOperands() == 0)
204         continue;
205       S = dyn_cast<MDString>(MD->getOperand(0));
206       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
207         Args.push_back(MD->getOperand(i));
208     } else {
209       S = dyn_cast<MDString>(LoopID->getOperand(i));
210       assert(Args.size() == 0 && "too many arguments for MDString");
211     }
212 
213     if (!S)
214       continue;
215 
216     // Check if the hint starts with the loop metadata prefix.
217     StringRef Name = S->getString();
218     if (Args.size() == 1)
219       setHint(Name, Args[0]);
220   }
221 }
222 
223 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
224   if (!Name.startswith(Prefix()))
225     return;
226   Name = Name.substr(Prefix().size(), StringRef::npos);
227 
228   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
229   if (!C)
230     return;
231   unsigned Val = C->getZExtValue();
232 
233   Hint *Hints[] = {&Width,        &Interleave, &Force,
234                    &IsVectorized, &Predicate,  &Scalable};
235   for (auto H : Hints) {
236     if (Name == H->Name) {
237       if (H->validate(Val))
238         H->Value = Val;
239       else
240         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
241       break;
242     }
243   }
244 }
245 
246 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
247 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
248 // executing the inner loop will execute the same iterations). This check is
249 // very constrained for now but it will be relaxed in the future. \p Lp is
250 // considered uniform if it meets all the following conditions:
251 //   1) it has a canonical IV (starting from 0 and with stride 1),
252 //   2) its latch terminator is a conditional branch and,
253 //   3) its latch condition is a compare instruction whose operands are the
254 //      canonical IV and an OuterLp invariant.
255 // This check doesn't take into account the uniformity of other conditions not
256 // related to the loop latch because they don't affect the loop uniformity.
257 //
258 // NOTE: We decided to keep all these checks and its associated documentation
259 // together so that we can easily have a picture of the current supported loop
260 // nests. However, some of the current checks don't depend on \p OuterLp and
261 // would be redundantly executed for each \p Lp if we invoked this function for
262 // different candidate outer loops. This is not the case for now because we
263 // don't currently have the infrastructure to evaluate multiple candidate outer
264 // loops and \p OuterLp will be a fixed parameter while we only support explicit
265 // outer loop vectorization. It's also very likely that these checks go away
266 // before introducing the aforementioned infrastructure. However, if this is not
267 // the case, we should move the \p OuterLp independent checks to a separate
268 // function that is only executed once for each \p Lp.
269 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
270   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
271 
272   // If Lp is the outer loop, it's uniform by definition.
273   if (Lp == OuterLp)
274     return true;
275   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
276 
277   // 1.
278   PHINode *IV = Lp->getCanonicalInductionVariable();
279   if (!IV) {
280     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
281     return false;
282   }
283 
284   // 2.
285   BasicBlock *Latch = Lp->getLoopLatch();
286   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
287   if (!LatchBr || LatchBr->isUnconditional()) {
288     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
289     return false;
290   }
291 
292   // 3.
293   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
294   if (!LatchCmp) {
295     LLVM_DEBUG(
296         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
297     return false;
298   }
299 
300   Value *CondOp0 = LatchCmp->getOperand(0);
301   Value *CondOp1 = LatchCmp->getOperand(1);
302   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
303   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
304       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
305     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
306     return false;
307   }
308 
309   return true;
310 }
311 
312 // Return true if \p Lp and all its nested loops are uniform with regard to \p
313 // OuterLp.
314 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
315   if (!isUniformLoop(Lp, OuterLp))
316     return false;
317 
318   // Check if nested loops are uniform.
319   for (Loop *SubLp : *Lp)
320     if (!isUniformLoopNest(SubLp, OuterLp))
321       return false;
322 
323   return true;
324 }
325 
326 /// Check whether it is safe to if-convert this phi node.
327 ///
328 /// Phi nodes with constant expressions that can trap are not safe to if
329 /// convert.
330 static bool canIfConvertPHINodes(BasicBlock *BB) {
331   for (PHINode &Phi : BB->phis()) {
332     for (Value *V : Phi.incoming_values())
333       if (auto *C = dyn_cast<Constant>(V))
334         if (C->canTrap())
335           return false;
336   }
337   return true;
338 }
339 
340 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
341   if (Ty->isPointerTy())
342     return DL.getIntPtrType(Ty);
343 
344   // It is possible that char's or short's overflow when we ask for the loop's
345   // trip count, work around this by changing the type size.
346   if (Ty->getScalarSizeInBits() < 32)
347     return Type::getInt32Ty(Ty->getContext());
348 
349   return Ty;
350 }
351 
352 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
353   Ty0 = convertPointerToIntegerType(DL, Ty0);
354   Ty1 = convertPointerToIntegerType(DL, Ty1);
355   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
356     return Ty0;
357   return Ty1;
358 }
359 
360 /// Check that the instruction has outside loop users and is not an
361 /// identified reduction variable.
362 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
363                                SmallPtrSetImpl<Value *> &AllowedExit) {
364   // Reductions, Inductions and non-header phis are allowed to have exit users. All
365   // other instructions must not have external users.
366   if (!AllowedExit.count(Inst))
367     // Check that all of the users of the loop are inside the BB.
368     for (User *U : Inst->users()) {
369       Instruction *UI = cast<Instruction>(U);
370       // This user may be a reduction exit value.
371       if (!TheLoop->contains(UI)) {
372         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
373         return true;
374       }
375     }
376   return false;
377 }
378 
379 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
380   const ValueToValueMap &Strides =
381       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
382 
383   Function *F = TheLoop->getHeader()->getParent();
384   bool OptForSize = F->hasOptSize() ||
385                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
386                                                 PGSOQueryType::IRPass);
387   bool CanAddPredicate = !OptForSize;
388   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
389   if (Stride == 1 || Stride == -1)
390     return Stride;
391   return 0;
392 }
393 
394 bool LoopVectorizationLegality::isUniform(Value *V) {
395   return LAI->isUniform(V);
396 }
397 
398 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
399   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
400   // Store the result and return it at the end instead of exiting early, in case
401   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
402   bool Result = true;
403   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
404 
405   for (BasicBlock *BB : TheLoop->blocks()) {
406     // Check whether the BB terminator is a BranchInst. Any other terminator is
407     // not supported yet.
408     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
409     if (!Br) {
410       reportVectorizationFailure("Unsupported basic block terminator",
411           "loop control flow is not understood by vectorizer",
412           "CFGNotUnderstood", ORE, TheLoop);
413       if (DoExtraAnalysis)
414         Result = false;
415       else
416         return false;
417     }
418 
419     // Check whether the BranchInst is a supported one. Only unconditional
420     // branches, conditional branches with an outer loop invariant condition or
421     // backedges are supported.
422     // FIXME: We skip these checks when VPlan predication is enabled as we
423     // want to allow divergent branches. This whole check will be removed
424     // once VPlan predication is on by default.
425     if (!EnableVPlanPredication && Br && Br->isConditional() &&
426         !TheLoop->isLoopInvariant(Br->getCondition()) &&
427         !LI->isLoopHeader(Br->getSuccessor(0)) &&
428         !LI->isLoopHeader(Br->getSuccessor(1))) {
429       reportVectorizationFailure("Unsupported conditional branch",
430           "loop control flow is not understood by vectorizer",
431           "CFGNotUnderstood", ORE, TheLoop);
432       if (DoExtraAnalysis)
433         Result = false;
434       else
435         return false;
436     }
437   }
438 
439   // Check whether inner loops are uniform. At this point, we only support
440   // simple outer loops scenarios with uniform nested loops.
441   if (!isUniformLoopNest(TheLoop /*loop nest*/,
442                          TheLoop /*context outer loop*/)) {
443     reportVectorizationFailure("Outer loop contains divergent loops",
444         "loop control flow is not understood by vectorizer",
445         "CFGNotUnderstood", ORE, TheLoop);
446     if (DoExtraAnalysis)
447       Result = false;
448     else
449       return false;
450   }
451 
452   // Check whether we are able to set up outer loop induction.
453   if (!setupOuterLoopInductions()) {
454     reportVectorizationFailure("Unsupported outer loop Phi(s)",
455                                "Unsupported outer loop Phi(s)",
456                                "UnsupportedPhi", ORE, TheLoop);
457     if (DoExtraAnalysis)
458       Result = false;
459     else
460       return false;
461   }
462 
463   return Result;
464 }
465 
466 void LoopVectorizationLegality::addInductionPhi(
467     PHINode *Phi, const InductionDescriptor &ID,
468     SmallPtrSetImpl<Value *> &AllowedExit) {
469   Inductions[Phi] = ID;
470 
471   // In case this induction also comes with casts that we know we can ignore
472   // in the vectorized loop body, record them here. All casts could be recorded
473   // here for ignoring, but suffices to record only the first (as it is the
474   // only one that may bw used outside the cast sequence).
475   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
476   if (!Casts.empty())
477     InductionCastsToIgnore.insert(*Casts.begin());
478 
479   Type *PhiTy = Phi->getType();
480   const DataLayout &DL = Phi->getModule()->getDataLayout();
481 
482   // Get the widest type.
483   if (!PhiTy->isFloatingPointTy()) {
484     if (!WidestIndTy)
485       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
486     else
487       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
488   }
489 
490   // Int inductions are special because we only allow one IV.
491   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
492       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
493       isa<Constant>(ID.getStartValue()) &&
494       cast<Constant>(ID.getStartValue())->isNullValue()) {
495 
496     // Use the phi node with the widest type as induction. Use the last
497     // one if there are multiple (no good reason for doing this other
498     // than it is expedient). We've checked that it begins at zero and
499     // steps by one, so this is a canonical induction variable.
500     if (!PrimaryInduction || PhiTy == WidestIndTy)
501       PrimaryInduction = Phi;
502   }
503 
504   // Both the PHI node itself, and the "post-increment" value feeding
505   // back into the PHI node may have external users.
506   // We can allow those uses, except if the SCEVs we have for them rely
507   // on predicates that only hold within the loop, since allowing the exit
508   // currently means re-using this SCEV outside the loop (see PR33706 for more
509   // details).
510   if (PSE.getUnionPredicate().isAlwaysTrue()) {
511     AllowedExit.insert(Phi);
512     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
513   }
514 
515   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
516 }
517 
518 bool LoopVectorizationLegality::setupOuterLoopInductions() {
519   BasicBlock *Header = TheLoop->getHeader();
520 
521   // Returns true if a given Phi is a supported induction.
522   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
523     InductionDescriptor ID;
524     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
525         ID.getKind() == InductionDescriptor::IK_IntInduction) {
526       addInductionPhi(&Phi, ID, AllowedExit);
527       return true;
528     } else {
529       // Bail out for any Phi in the outer loop header that is not a supported
530       // induction.
531       LLVM_DEBUG(
532           dbgs()
533           << "LV: Found unsupported PHI for outer loop vectorization.\n");
534       return false;
535     }
536   };
537 
538   if (llvm::all_of(Header->phis(), isSupportedPhi))
539     return true;
540   else
541     return false;
542 }
543 
544 /// Checks if a function is scalarizable according to the TLI, in
545 /// the sense that it should be vectorized and then expanded in
546 /// multiple scalarcalls. This is represented in the
547 /// TLI via mappings that do not specify a vector name, as in the
548 /// following example:
549 ///
550 ///    const VecDesc VecIntrinsics[] = {
551 ///      {"llvm.phx.abs.i32", "", 4}
552 ///    };
553 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
554   const StringRef ScalarName = CI.getCalledFunction()->getName();
555   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
556   // Check that all known VFs are not associated to a vector
557   // function, i.e. the vector name is emty.
558   if (Scalarize) {
559     ElementCount WidestFixedVF, WidestScalableVF;
560     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
561     for (ElementCount VF = ElementCount::getFixed(2);
562          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
563       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
564     for (ElementCount VF = ElementCount::getScalable(1);
565          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
566       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
567     assert((WidestScalableVF.isZero() || !Scalarize) &&
568            "Caller may decide to scalarize a variant using a scalable VF");
569   }
570   return Scalarize;
571 }
572 
573 bool LoopVectorizationLegality::canVectorizeInstrs() {
574   BasicBlock *Header = TheLoop->getHeader();
575 
576   // For each block in the loop.
577   for (BasicBlock *BB : TheLoop->blocks()) {
578     // Scan the instructions in the block and look for hazards.
579     for (Instruction &I : *BB) {
580       if (auto *Phi = dyn_cast<PHINode>(&I)) {
581         Type *PhiTy = Phi->getType();
582         // Check that this PHI type is allowed.
583         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
584             !PhiTy->isPointerTy()) {
585           reportVectorizationFailure("Found a non-int non-pointer PHI",
586                                      "loop control flow is not understood by vectorizer",
587                                      "CFGNotUnderstood", ORE, TheLoop);
588           return false;
589         }
590 
591         // If this PHINode is not in the header block, then we know that we
592         // can convert it to select during if-conversion. No need to check if
593         // the PHIs in this block are induction or reduction variables.
594         if (BB != Header) {
595           // Non-header phi nodes that have outside uses can be vectorized. Add
596           // them to the list of allowed exits.
597           // Unsafe cyclic dependencies with header phis are identified during
598           // legalization for reduction, induction and first order
599           // recurrences.
600           AllowedExit.insert(&I);
601           continue;
602         }
603 
604         // We only allow if-converted PHIs with exactly two incoming values.
605         if (Phi->getNumIncomingValues() != 2) {
606           reportVectorizationFailure("Found an invalid PHI",
607               "loop control flow is not understood by vectorizer",
608               "CFGNotUnderstood", ORE, TheLoop, Phi);
609           return false;
610         }
611 
612         RecurrenceDescriptor RedDes;
613         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
614                                                  DT)) {
615           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
616           AllowedExit.insert(RedDes.getLoopExitInstr());
617           Reductions[Phi] = RedDes;
618           continue;
619         }
620 
621         // TODO: Instead of recording the AllowedExit, it would be good to record the
622         // complementary set: NotAllowedExit. These include (but may not be
623         // limited to):
624         // 1. Reduction phis as they represent the one-before-last value, which
625         // is not available when vectorized
626         // 2. Induction phis and increment when SCEV predicates cannot be used
627         // outside the loop - see addInductionPhi
628         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
629         // outside the loop - see call to hasOutsideLoopUser in the non-phi
630         // handling below
631         // 4. FirstOrderRecurrence phis that can possibly be handled by
632         // extraction.
633         // By recording these, we can then reason about ways to vectorize each
634         // of these NotAllowedExit.
635         InductionDescriptor ID;
636         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
637           addInductionPhi(Phi, ID, AllowedExit);
638           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
639           continue;
640         }
641 
642         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
643                                                          SinkAfter, DT)) {
644           AllowedExit.insert(Phi);
645           FirstOrderRecurrences.insert(Phi);
646           continue;
647         }
648 
649         // As a last resort, coerce the PHI to a AddRec expression
650         // and re-try classifying it a an induction PHI.
651         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
652           addInductionPhi(Phi, ID, AllowedExit);
653           continue;
654         }
655 
656         reportVectorizationFailure("Found an unidentified PHI",
657             "value that could not be identified as "
658             "reduction is used outside the loop",
659             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
660         return false;
661       } // end of PHI handling
662 
663       // We handle calls that:
664       //   * Are debug info intrinsics.
665       //   * Have a mapping to an IR intrinsic.
666       //   * Have a vector version available.
667       auto *CI = dyn_cast<CallInst>(&I);
668 
669       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
670           !isa<DbgInfoIntrinsic>(CI) &&
671           !(CI->getCalledFunction() && TLI &&
672             (!VFDatabase::getMappings(*CI).empty() ||
673              isTLIScalarize(*TLI, *CI)))) {
674         // If the call is a recognized math libary call, it is likely that
675         // we can vectorize it given loosened floating-point constraints.
676         LibFunc Func;
677         bool IsMathLibCall =
678             TLI && CI->getCalledFunction() &&
679             CI->getType()->isFloatingPointTy() &&
680             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
681             TLI->hasOptimizedCodeGen(Func);
682 
683         if (IsMathLibCall) {
684           // TODO: Ideally, we should not use clang-specific language here,
685           // but it's hard to provide meaningful yet generic advice.
686           // Also, should this be guarded by allowExtraAnalysis() and/or be part
687           // of the returned info from isFunctionVectorizable()?
688           reportVectorizationFailure(
689               "Found a non-intrinsic callsite",
690               "library call cannot be vectorized. "
691               "Try compiling with -fno-math-errno, -ffast-math, "
692               "or similar flags",
693               "CantVectorizeLibcall", ORE, TheLoop, CI);
694         } else {
695           reportVectorizationFailure("Found a non-intrinsic callsite",
696                                      "call instruction cannot be vectorized",
697                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
698         }
699         return false;
700       }
701 
702       // Some intrinsics have scalar arguments and should be same in order for
703       // them to be vectorized (i.e. loop invariant).
704       if (CI) {
705         auto *SE = PSE.getSE();
706         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
707         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
708           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
709             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
710               reportVectorizationFailure("Found unvectorizable intrinsic",
711                   "intrinsic instruction cannot be vectorized",
712                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
713               return false;
714             }
715           }
716       }
717 
718       // Check that the instruction return type is vectorizable.
719       // Also, we can't vectorize extractelement instructions.
720       if ((!VectorType::isValidElementType(I.getType()) &&
721            !I.getType()->isVoidTy()) ||
722           isa<ExtractElementInst>(I)) {
723         reportVectorizationFailure("Found unvectorizable type",
724             "instruction return type cannot be vectorized",
725             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
726         return false;
727       }
728 
729       // Check that the stored type is vectorizable.
730       if (auto *ST = dyn_cast<StoreInst>(&I)) {
731         Type *T = ST->getValueOperand()->getType();
732         if (!VectorType::isValidElementType(T)) {
733           reportVectorizationFailure("Store instruction cannot be vectorized",
734                                      "store instruction cannot be vectorized",
735                                      "CantVectorizeStore", ORE, TheLoop, ST);
736           return false;
737         }
738 
739         // For nontemporal stores, check that a nontemporal vector version is
740         // supported on the target.
741         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
742           // Arbitrarily try a vector of 2 elements.
743           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
744           assert(VecTy && "did not find vectorized version of stored type");
745           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
746             reportVectorizationFailure(
747                 "nontemporal store instruction cannot be vectorized",
748                 "nontemporal store instruction cannot be vectorized",
749                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
750             return false;
751           }
752         }
753 
754       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
755         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
756           // For nontemporal loads, check that a nontemporal vector version is
757           // supported on the target (arbitrarily try a vector of 2 elements).
758           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
759           assert(VecTy && "did not find vectorized version of load type");
760           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
761             reportVectorizationFailure(
762                 "nontemporal load instruction cannot be vectorized",
763                 "nontemporal load instruction cannot be vectorized",
764                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
765             return false;
766           }
767         }
768 
769         // FP instructions can allow unsafe algebra, thus vectorizable by
770         // non-IEEE-754 compliant SIMD units.
771         // This applies to floating-point math operations and calls, not memory
772         // operations, shuffles, or casts, as they don't change precision or
773         // semantics.
774       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
775                  !I.isFast()) {
776         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
777         Hints->setPotentiallyUnsafe();
778       }
779 
780       // Reduction instructions are allowed to have exit users.
781       // All other instructions must not have external users.
782       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
783         // We can safely vectorize loops where instructions within the loop are
784         // used outside the loop only if the SCEV predicates within the loop is
785         // same as outside the loop. Allowing the exit means reusing the SCEV
786         // outside the loop.
787         if (PSE.getUnionPredicate().isAlwaysTrue()) {
788           AllowedExit.insert(&I);
789           continue;
790         }
791         reportVectorizationFailure("Value cannot be used outside the loop",
792                                    "value cannot be used outside the loop",
793                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
794         return false;
795       }
796     } // next instr.
797   }
798 
799   if (!PrimaryInduction) {
800     if (Inductions.empty()) {
801       reportVectorizationFailure("Did not find one integer induction var",
802           "loop induction variable could not be identified",
803           "NoInductionVariable", ORE, TheLoop);
804       return false;
805     } else if (!WidestIndTy) {
806       reportVectorizationFailure("Did not find one integer induction var",
807           "integer loop induction variable could not be identified",
808           "NoIntegerInductionVariable", ORE, TheLoop);
809       return false;
810     } else {
811       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
812     }
813   }
814 
815   // For first order recurrences, we use the previous value (incoming value from
816   // the latch) to check if it dominates all users of the recurrence. Bail out
817   // if we have to sink such an instruction for another recurrence, as the
818   // dominance requirement may not hold after sinking.
819   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
820   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
821         Instruction *V =
822             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
823         return SinkAfter.find(V) != SinkAfter.end();
824       }))
825     return false;
826 
827   // Now we know the widest induction type, check if our found induction
828   // is the same size. If it's not, unset it here and InnerLoopVectorizer
829   // will create another.
830   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
831     PrimaryInduction = nullptr;
832 
833   return true;
834 }
835 
836 bool LoopVectorizationLegality::canVectorizeMemory() {
837   LAI = &(*GetLAA)(*TheLoop);
838   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
839   if (LAR) {
840     ORE->emit([&]() {
841       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
842                                         "loop not vectorized: ", *LAR);
843     });
844   }
845   if (!LAI->canVectorizeMemory())
846     return false;
847 
848   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
849     reportVectorizationFailure("Stores to a uniform address",
850         "write to a loop invariant address could not be vectorized",
851         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
852     return false;
853   }
854   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
855   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
856 
857   return true;
858 }
859 
860 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
861   Value *In0 = const_cast<Value *>(V);
862   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
863   if (!PN)
864     return false;
865 
866   return Inductions.count(PN);
867 }
868 
869 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
870   auto *Inst = dyn_cast<Instruction>(V);
871   return (Inst && InductionCastsToIgnore.count(Inst));
872 }
873 
874 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
875   return isInductionPhi(V) || isCastedInductionVariable(V);
876 }
877 
878 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
879   return FirstOrderRecurrences.count(Phi);
880 }
881 
882 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
883   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
884 }
885 
886 bool LoopVectorizationLegality::blockCanBePredicated(
887     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
888     SmallPtrSetImpl<const Instruction *> &MaskedOp,
889     SmallPtrSetImpl<Instruction *> &ConditionalAssumes,
890     bool PreserveGuards) const {
891   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
892 
893   for (Instruction &I : *BB) {
894     // Check that we don't have a constant expression that can trap as operand.
895     for (Value *Operand : I.operands()) {
896       if (auto *C = dyn_cast<Constant>(Operand))
897         if (C->canTrap())
898           return false;
899     }
900 
901     // We can predicate blocks with calls to assume, as long as we drop them in
902     // case we flatten the CFG via predication.
903     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
904       ConditionalAssumes.insert(&I);
905       continue;
906     }
907 
908     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
909     // TODO: there might be cases that it should block the vectorization. Let's
910     // ignore those for now.
911     if (isa<NoAliasScopeDeclInst>(&I))
912       continue;
913 
914     // We might be able to hoist the load.
915     if (I.mayReadFromMemory()) {
916       auto *LI = dyn_cast<LoadInst>(&I);
917       if (!LI)
918         return false;
919       if (!SafePtrs.count(LI->getPointerOperand())) {
920         // !llvm.mem.parallel_loop_access implies if-conversion safety.
921         // Otherwise, record that the load needs (real or emulated) masking
922         // and let the cost model decide.
923         if (!IsAnnotatedParallel || PreserveGuards)
924           MaskedOp.insert(LI);
925         continue;
926       }
927     }
928 
929     if (I.mayWriteToMemory()) {
930       auto *SI = dyn_cast<StoreInst>(&I);
931       if (!SI)
932         return false;
933       // Predicated store requires some form of masking:
934       // 1) masked store HW instruction,
935       // 2) emulation via load-blend-store (only if safe and legal to do so,
936       //    be aware on the race conditions), or
937       // 3) element-by-element predicate check and scalar store.
938       MaskedOp.insert(SI);
939       continue;
940     }
941     if (I.mayThrow())
942       return false;
943   }
944 
945   return true;
946 }
947 
948 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
949   if (!EnableIfConversion) {
950     reportVectorizationFailure("If-conversion is disabled",
951                                "if-conversion is disabled",
952                                "IfConversionDisabled",
953                                ORE, TheLoop);
954     return false;
955   }
956 
957   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
958 
959   // A list of pointers which are known to be dereferenceable within scope of
960   // the loop body for each iteration of the loop which executes.  That is,
961   // the memory pointed to can be dereferenced (with the access size implied by
962   // the value's type) unconditionally within the loop header without
963   // introducing a new fault.
964   SmallPtrSet<Value *, 8> SafePointers;
965 
966   // Collect safe addresses.
967   for (BasicBlock *BB : TheLoop->blocks()) {
968     if (!blockNeedsPredication(BB)) {
969       for (Instruction &I : *BB)
970         if (auto *Ptr = getLoadStorePointerOperand(&I))
971           SafePointers.insert(Ptr);
972       continue;
973     }
974 
975     // For a block which requires predication, a address may be safe to access
976     // in the loop w/o predication if we can prove dereferenceability facts
977     // sufficient to ensure it'll never fault within the loop. For the moment,
978     // we restrict this to loads; stores are more complicated due to
979     // concurrency restrictions.
980     ScalarEvolution &SE = *PSE.getSE();
981     for (Instruction &I : *BB) {
982       LoadInst *LI = dyn_cast<LoadInst>(&I);
983       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
984           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
985         SafePointers.insert(LI->getPointerOperand());
986     }
987   }
988 
989   // Collect the blocks that need predication.
990   BasicBlock *Header = TheLoop->getHeader();
991   for (BasicBlock *BB : TheLoop->blocks()) {
992     // We don't support switch statements inside loops.
993     if (!isa<BranchInst>(BB->getTerminator())) {
994       reportVectorizationFailure("Loop contains a switch statement",
995                                  "loop contains a switch statement",
996                                  "LoopContainsSwitch", ORE, TheLoop,
997                                  BB->getTerminator());
998       return false;
999     }
1000 
1001     // We must be able to predicate all blocks that need to be predicated.
1002     if (blockNeedsPredication(BB)) {
1003       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1004                                 ConditionalAssumes)) {
1005         reportVectorizationFailure(
1006             "Control flow cannot be substituted for a select",
1007             "control flow cannot be substituted for a select",
1008             "NoCFGForSelect", ORE, TheLoop,
1009             BB->getTerminator());
1010         return false;
1011       }
1012     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1013       reportVectorizationFailure(
1014           "Control flow cannot be substituted for a select",
1015           "control flow cannot be substituted for a select",
1016           "NoCFGForSelect", ORE, TheLoop,
1017           BB->getTerminator());
1018       return false;
1019     }
1020   }
1021 
1022   // We can if-convert this loop.
1023   return true;
1024 }
1025 
1026 // Helper function to canVectorizeLoopNestCFG.
1027 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1028                                                     bool UseVPlanNativePath) {
1029   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1030          "VPlan-native path is not enabled.");
1031 
1032   // TODO: ORE should be improved to show more accurate information when an
1033   // outer loop can't be vectorized because a nested loop is not understood or
1034   // legal. Something like: "outer_loop_location: loop not vectorized:
1035   // (inner_loop_location) loop control flow is not understood by vectorizer".
1036 
1037   // Store the result and return it at the end instead of exiting early, in case
1038   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1039   bool Result = true;
1040   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1041 
1042   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1043   // be canonicalized.
1044   if (!Lp->getLoopPreheader()) {
1045     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1046         "loop control flow is not understood by vectorizer",
1047         "CFGNotUnderstood", ORE, TheLoop);
1048     if (DoExtraAnalysis)
1049       Result = false;
1050     else
1051       return false;
1052   }
1053 
1054   // We must have a single backedge.
1055   if (Lp->getNumBackEdges() != 1) {
1056     reportVectorizationFailure("The loop must have a single backedge",
1057         "loop control flow is not understood by vectorizer",
1058         "CFGNotUnderstood", ORE, TheLoop);
1059     if (DoExtraAnalysis)
1060       Result = false;
1061     else
1062       return false;
1063   }
1064 
1065   // We currently must have a single "exit block" after the loop. Note that
1066   // multiple "exiting blocks" inside the loop are allowed, provided they all
1067   // reach the single exit block.
1068   // TODO: This restriction can be relaxed in the near future, it's here solely
1069   // to allow separation of changes for review. We need to generalize the phi
1070   // update logic in a number of places.
1071   if (!Lp->getUniqueExitBlock()) {
1072     reportVectorizationFailure("The loop must have a unique exit block",
1073         "loop control flow is not understood by vectorizer",
1074         "CFGNotUnderstood", ORE, TheLoop);
1075     if (DoExtraAnalysis)
1076       Result = false;
1077     else
1078       return false;
1079   }
1080   return Result;
1081 }
1082 
1083 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1084     Loop *Lp, bool UseVPlanNativePath) {
1085   // Store the result and return it at the end instead of exiting early, in case
1086   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1087   bool Result = true;
1088   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1089   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1090     if (DoExtraAnalysis)
1091       Result = false;
1092     else
1093       return false;
1094   }
1095 
1096   // Recursively check whether the loop control flow of nested loops is
1097   // understood.
1098   for (Loop *SubLp : *Lp)
1099     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1100       if (DoExtraAnalysis)
1101         Result = false;
1102       else
1103         return false;
1104     }
1105 
1106   return Result;
1107 }
1108 
1109 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1110   // Store the result and return it at the end instead of exiting early, in case
1111   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1112   bool Result = true;
1113 
1114   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1115   // Check whether the loop-related control flow in the loop nest is expected by
1116   // vectorizer.
1117   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1118     if (DoExtraAnalysis)
1119       Result = false;
1120     else
1121       return false;
1122   }
1123 
1124   // We need to have a loop header.
1125   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1126                     << '\n');
1127 
1128   // Specific checks for outer loops. We skip the remaining legal checks at this
1129   // point because they don't support outer loops.
1130   if (!TheLoop->isInnermost()) {
1131     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1132 
1133     if (!canVectorizeOuterLoop()) {
1134       reportVectorizationFailure("Unsupported outer loop",
1135                                  "unsupported outer loop",
1136                                  "UnsupportedOuterLoop",
1137                                  ORE, TheLoop);
1138       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1139       // outer loops.
1140       return false;
1141     }
1142 
1143     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1144     return Result;
1145   }
1146 
1147   assert(TheLoop->isInnermost() && "Inner loop expected.");
1148   // Check if we can if-convert non-single-bb loops.
1149   unsigned NumBlocks = TheLoop->getNumBlocks();
1150   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1151     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1152     if (DoExtraAnalysis)
1153       Result = false;
1154     else
1155       return false;
1156   }
1157 
1158   // Check if we can vectorize the instructions and CFG in this loop.
1159   if (!canVectorizeInstrs()) {
1160     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1161     if (DoExtraAnalysis)
1162       Result = false;
1163     else
1164       return false;
1165   }
1166 
1167   // Go over each instruction and look at memory deps.
1168   if (!canVectorizeMemory()) {
1169     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1170     if (DoExtraAnalysis)
1171       Result = false;
1172     else
1173       return false;
1174   }
1175 
1176   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1177                     << (LAI->getRuntimePointerChecking()->Need
1178                             ? " (with a runtime bound check)"
1179                             : "")
1180                     << "!\n");
1181 
1182   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1183   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1184     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1185 
1186   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1187     reportVectorizationFailure("Too many SCEV checks needed",
1188         "Too many SCEV assumptions need to be made and checked at runtime",
1189         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1190     if (DoExtraAnalysis)
1191       Result = false;
1192     else
1193       return false;
1194   }
1195 
1196   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1197   // we can vectorize, and at this point we don't have any other mem analysis
1198   // which may limit our maximum vectorization factor, so just return true with
1199   // no restrictions.
1200   return Result;
1201 }
1202 
1203 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1204 
1205   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1206 
1207   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1208 
1209   for (auto &Reduction : getReductionVars())
1210     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1211 
1212   // TODO: handle non-reduction outside users when tail is folded by masking.
1213   for (auto *AE : AllowedExit) {
1214     // Check that all users of allowed exit values are inside the loop or
1215     // are the live-out of a reduction.
1216     if (ReductionLiveOuts.count(AE))
1217       continue;
1218     for (User *U : AE->users()) {
1219       Instruction *UI = cast<Instruction>(U);
1220       if (TheLoop->contains(UI))
1221         continue;
1222       LLVM_DEBUG(
1223           dbgs()
1224           << "LV: Cannot fold tail by masking, loop has an outside user for "
1225           << *UI << "\n");
1226       return false;
1227     }
1228   }
1229 
1230   // The list of pointers that we can safely read and write to remains empty.
1231   SmallPtrSet<Value *, 8> SafePointers;
1232 
1233   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1234   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1235 
1236   // Check and mark all blocks for predication, including those that ordinarily
1237   // do not need predication such as the header block.
1238   for (BasicBlock *BB : TheLoop->blocks()) {
1239     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1240                               TmpConditionalAssumes,
1241                               /* MaskAllLoads= */ true)) {
1242       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1243       return false;
1244     }
1245   }
1246 
1247   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1248 
1249   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1250   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1251                             TmpConditionalAssumes.end());
1252 
1253   return true;
1254 }
1255 
1256 } // namespace llvm
1257