1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Analysis/ValueTracking.h"
19 #include "llvm/Analysis/VectorUtils.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/PatternMatch.h"
22 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
23 
24 using namespace llvm;
25 using namespace PatternMatch;
26 
27 #define LV_NAME "loop-vectorize"
28 #define DEBUG_TYPE LV_NAME
29 
30 extern cl::opt<bool> EnableVPlanPredication;
31 
32 static cl::opt<bool>
33     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
34                        cl::desc("Enable if-conversion during vectorization."));
35 
36 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
37     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
38     cl::desc("The maximum allowed number of runtime memory checks with a "
39              "vectorize(enable) pragma."));
40 
41 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
42     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
43     cl::desc("The maximum number of SCEV checks allowed."));
44 
45 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
46     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
47     cl::desc("The maximum number of SCEV checks allowed with a "
48              "vectorize(enable) pragma"));
49 
50 /// Maximum vectorization interleave count.
51 static const unsigned MaxInterleaveFactor = 16;
52 
53 namespace llvm {
54 
55 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
56   switch (Kind) {
57   case HK_WIDTH:
58     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
59   case HK_UNROLL:
60     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
61   case HK_FORCE:
62     return (Val <= 1);
63   case HK_ISVECTORIZED:
64   case HK_PREDICATE:
65     return (Val == 0 || Val == 1);
66   }
67   return false;
68 }
69 
70 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
71                                        bool InterleaveOnlyWhenForced,
72                                        OptimizationRemarkEmitter &ORE)
73     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
74       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
75       Force("vectorize.enable", FK_Undefined, HK_FORCE),
76       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
77       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), TheLoop(L),
78       ORE(ORE) {
79   // Populate values with existing loop metadata.
80   getHintsFromMetadata();
81 
82   // force-vector-interleave overrides DisableInterleaving.
83   if (VectorizerParams::isInterleaveForced())
84     Interleave.Value = VectorizerParams::VectorizationInterleave;
85 
86   if (IsVectorized.Value != 1)
87     // If the vectorization width and interleaving count are both 1 then
88     // consider the loop to have been already vectorized because there's
89     // nothing more that we can do.
90     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
91   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
92              << "LV: Interleaving disabled by the pass manager\n");
93 }
94 
95 void LoopVectorizeHints::setAlreadyVectorized() {
96   LLVMContext &Context = TheLoop->getHeader()->getContext();
97 
98   MDNode *IsVectorizedMD = MDNode::get(
99       Context,
100       {MDString::get(Context, "llvm.loop.isvectorized"),
101        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
102   MDNode *LoopID = TheLoop->getLoopID();
103   MDNode *NewLoopID =
104       makePostTransformationMetadata(Context, LoopID,
105                                      {Twine(Prefix(), "vectorize.").str(),
106                                       Twine(Prefix(), "interleave.").str()},
107                                      {IsVectorizedMD});
108   TheLoop->setLoopID(NewLoopID);
109 
110   // Update internal cache.
111   IsVectorized.Value = 1;
112 }
113 
114 bool LoopVectorizeHints::allowVectorization(
115     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
116   if (getForce() == LoopVectorizeHints::FK_Disabled) {
117     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
118     emitRemarkWithHints();
119     return false;
120   }
121 
122   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
123     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
124     emitRemarkWithHints();
125     return false;
126   }
127 
128   if (getIsVectorized() == 1) {
129     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
130     // FIXME: Add interleave.disable metadata. This will allow
131     // vectorize.disable to be used without disabling the pass and errors
132     // to differentiate between disabled vectorization and a width of 1.
133     ORE.emit([&]() {
134       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
135                                         "AllDisabled", L->getStartLoc(),
136                                         L->getHeader())
137              << "loop not vectorized: vectorization and interleaving are "
138                 "explicitly disabled, or the loop has already been "
139                 "vectorized";
140     });
141     return false;
142   }
143 
144   return true;
145 }
146 
147 void LoopVectorizeHints::emitRemarkWithHints() const {
148   using namespace ore;
149 
150   ORE.emit([&]() {
151     if (Force.Value == LoopVectorizeHints::FK_Disabled)
152       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
153                                       TheLoop->getStartLoc(),
154                                       TheLoop->getHeader())
155              << "loop not vectorized: vectorization is explicitly disabled";
156     else {
157       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
158                                  TheLoop->getStartLoc(), TheLoop->getHeader());
159       R << "loop not vectorized";
160       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
161         R << " (Force=" << NV("Force", true);
162         if (Width.Value != 0)
163           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
164         if (Interleave.Value != 0)
165           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
166         R << ")";
167       }
168       return R;
169     }
170   });
171 }
172 
173 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
174   if (getWidth() == 1)
175     return LV_NAME;
176   if (getForce() == LoopVectorizeHints::FK_Disabled)
177     return LV_NAME;
178   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
179     return LV_NAME;
180   return OptimizationRemarkAnalysis::AlwaysPrint;
181 }
182 
183 void LoopVectorizeHints::getHintsFromMetadata() {
184   MDNode *LoopID = TheLoop->getLoopID();
185   if (!LoopID)
186     return;
187 
188   // First operand should refer to the loop id itself.
189   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
190   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
191 
192   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
193     const MDString *S = nullptr;
194     SmallVector<Metadata *, 4> Args;
195 
196     // The expected hint is either a MDString or a MDNode with the first
197     // operand a MDString.
198     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
199       if (!MD || MD->getNumOperands() == 0)
200         continue;
201       S = dyn_cast<MDString>(MD->getOperand(0));
202       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
203         Args.push_back(MD->getOperand(i));
204     } else {
205       S = dyn_cast<MDString>(LoopID->getOperand(i));
206       assert(Args.size() == 0 && "too many arguments for MDString");
207     }
208 
209     if (!S)
210       continue;
211 
212     // Check if the hint starts with the loop metadata prefix.
213     StringRef Name = S->getString();
214     if (Args.size() == 1)
215       setHint(Name, Args[0]);
216   }
217 }
218 
219 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
220   if (!Name.startswith(Prefix()))
221     return;
222   Name = Name.substr(Prefix().size(), StringRef::npos);
223 
224   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
225   if (!C)
226     return;
227   unsigned Val = C->getZExtValue();
228 
229   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
230   for (auto H : Hints) {
231     if (Name == H->Name) {
232       if (H->validate(Val))
233         H->Value = Val;
234       else
235         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
236       break;
237     }
238   }
239 }
240 
241 bool LoopVectorizationRequirements::doesNotMeet(
242     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
243   const char *PassName = Hints.vectorizeAnalysisPassName();
244   bool Failed = false;
245   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
246     ORE.emit([&]() {
247       return OptimizationRemarkAnalysisFPCommute(
248                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
249                  UnsafeAlgebraInst->getParent())
250              << "loop not vectorized: cannot prove it is safe to reorder "
251                 "floating-point operations";
252     });
253     Failed = true;
254   }
255 
256   // Test if runtime memcheck thresholds are exceeded.
257   bool PragmaThresholdReached =
258       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
259   bool ThresholdReached =
260       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
261   if ((ThresholdReached && !Hints.allowReordering()) ||
262       PragmaThresholdReached) {
263     ORE.emit([&]() {
264       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
265                                                 L->getStartLoc(),
266                                                 L->getHeader())
267              << "loop not vectorized: cannot prove it is safe to reorder "
268                 "memory operations";
269     });
270     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
271     Failed = true;
272   }
273 
274   return Failed;
275 }
276 
277 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
278 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
279 // executing the inner loop will execute the same iterations). This check is
280 // very constrained for now but it will be relaxed in the future. \p Lp is
281 // considered uniform if it meets all the following conditions:
282 //   1) it has a canonical IV (starting from 0 and with stride 1),
283 //   2) its latch terminator is a conditional branch and,
284 //   3) its latch condition is a compare instruction whose operands are the
285 //      canonical IV and an OuterLp invariant.
286 // This check doesn't take into account the uniformity of other conditions not
287 // related to the loop latch because they don't affect the loop uniformity.
288 //
289 // NOTE: We decided to keep all these checks and its associated documentation
290 // together so that we can easily have a picture of the current supported loop
291 // nests. However, some of the current checks don't depend on \p OuterLp and
292 // would be redundantly executed for each \p Lp if we invoked this function for
293 // different candidate outer loops. This is not the case for now because we
294 // don't currently have the infrastructure to evaluate multiple candidate outer
295 // loops and \p OuterLp will be a fixed parameter while we only support explicit
296 // outer loop vectorization. It's also very likely that these checks go away
297 // before introducing the aforementioned infrastructure. However, if this is not
298 // the case, we should move the \p OuterLp independent checks to a separate
299 // function that is only executed once for each \p Lp.
300 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
301   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
302 
303   // If Lp is the outer loop, it's uniform by definition.
304   if (Lp == OuterLp)
305     return true;
306   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
307 
308   // 1.
309   PHINode *IV = Lp->getCanonicalInductionVariable();
310   if (!IV) {
311     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
312     return false;
313   }
314 
315   // 2.
316   BasicBlock *Latch = Lp->getLoopLatch();
317   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
318   if (!LatchBr || LatchBr->isUnconditional()) {
319     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
320     return false;
321   }
322 
323   // 3.
324   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
325   if (!LatchCmp) {
326     LLVM_DEBUG(
327         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
328     return false;
329   }
330 
331   Value *CondOp0 = LatchCmp->getOperand(0);
332   Value *CondOp1 = LatchCmp->getOperand(1);
333   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
334   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
335       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
336     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
337     return false;
338   }
339 
340   return true;
341 }
342 
343 // Return true if \p Lp and all its nested loops are uniform with regard to \p
344 // OuterLp.
345 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
346   if (!isUniformLoop(Lp, OuterLp))
347     return false;
348 
349   // Check if nested loops are uniform.
350   for (Loop *SubLp : *Lp)
351     if (!isUniformLoopNest(SubLp, OuterLp))
352       return false;
353 
354   return true;
355 }
356 
357 /// Check whether it is safe to if-convert this phi node.
358 ///
359 /// Phi nodes with constant expressions that can trap are not safe to if
360 /// convert.
361 static bool canIfConvertPHINodes(BasicBlock *BB) {
362   for (PHINode &Phi : BB->phis()) {
363     for (Value *V : Phi.incoming_values())
364       if (auto *C = dyn_cast<Constant>(V))
365         if (C->canTrap())
366           return false;
367   }
368   return true;
369 }
370 
371 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
372   if (Ty->isPointerTy())
373     return DL.getIntPtrType(Ty);
374 
375   // It is possible that char's or short's overflow when we ask for the loop's
376   // trip count, work around this by changing the type size.
377   if (Ty->getScalarSizeInBits() < 32)
378     return Type::getInt32Ty(Ty->getContext());
379 
380   return Ty;
381 }
382 
383 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
384   Ty0 = convertPointerToIntegerType(DL, Ty0);
385   Ty1 = convertPointerToIntegerType(DL, Ty1);
386   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
387     return Ty0;
388   return Ty1;
389 }
390 
391 /// Check that the instruction has outside loop users and is not an
392 /// identified reduction variable.
393 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
394                                SmallPtrSetImpl<Value *> &AllowedExit) {
395   // Reductions, Inductions and non-header phis are allowed to have exit users. All
396   // other instructions must not have external users.
397   if (!AllowedExit.count(Inst))
398     // Check that all of the users of the loop are inside the BB.
399     for (User *U : Inst->users()) {
400       Instruction *UI = cast<Instruction>(U);
401       // This user may be a reduction exit value.
402       if (!TheLoop->contains(UI)) {
403         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
404         return true;
405       }
406     }
407   return false;
408 }
409 
410 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
411   const ValueToValueMap &Strides =
412       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
413 
414   bool CanAddPredicate = !TheLoop->getHeader()->getParent()->hasOptSize();
415   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
416   if (Stride == 1 || Stride == -1)
417     return Stride;
418   return 0;
419 }
420 
421 bool LoopVectorizationLegality::isUniform(Value *V) {
422   return LAI->isUniform(V);
423 }
424 
425 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
426   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
427   // Store the result and return it at the end instead of exiting early, in case
428   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
429   bool Result = true;
430   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
431 
432   for (BasicBlock *BB : TheLoop->blocks()) {
433     // Check whether the BB terminator is a BranchInst. Any other terminator is
434     // not supported yet.
435     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
436     if (!Br) {
437       reportVectorizationFailure("Unsupported basic block terminator",
438           "loop control flow is not understood by vectorizer",
439           "CFGNotUnderstood", ORE, TheLoop);
440       if (DoExtraAnalysis)
441         Result = false;
442       else
443         return false;
444     }
445 
446     // Check whether the BranchInst is a supported one. Only unconditional
447     // branches, conditional branches with an outer loop invariant condition or
448     // backedges are supported.
449     // FIXME: We skip these checks when VPlan predication is enabled as we
450     // want to allow divergent branches. This whole check will be removed
451     // once VPlan predication is on by default.
452     if (!EnableVPlanPredication && Br && Br->isConditional() &&
453         !TheLoop->isLoopInvariant(Br->getCondition()) &&
454         !LI->isLoopHeader(Br->getSuccessor(0)) &&
455         !LI->isLoopHeader(Br->getSuccessor(1))) {
456       reportVectorizationFailure("Unsupported conditional branch",
457           "loop control flow is not understood by vectorizer",
458           "CFGNotUnderstood", ORE, TheLoop);
459       if (DoExtraAnalysis)
460         Result = false;
461       else
462         return false;
463     }
464   }
465 
466   // Check whether inner loops are uniform. At this point, we only support
467   // simple outer loops scenarios with uniform nested loops.
468   if (!isUniformLoopNest(TheLoop /*loop nest*/,
469                          TheLoop /*context outer loop*/)) {
470     reportVectorizationFailure("Outer loop contains divergent loops",
471         "loop control flow is not understood by vectorizer",
472         "CFGNotUnderstood", ORE, TheLoop);
473     if (DoExtraAnalysis)
474       Result = false;
475     else
476       return false;
477   }
478 
479   // Check whether we are able to set up outer loop induction.
480   if (!setupOuterLoopInductions()) {
481     reportVectorizationFailure("Unsupported outer loop Phi(s)",
482                                "Unsupported outer loop Phi(s)",
483                                "UnsupportedPhi", ORE, TheLoop);
484     if (DoExtraAnalysis)
485       Result = false;
486     else
487       return false;
488   }
489 
490   return Result;
491 }
492 
493 void LoopVectorizationLegality::addInductionPhi(
494     PHINode *Phi, const InductionDescriptor &ID,
495     SmallPtrSetImpl<Value *> &AllowedExit) {
496   Inductions[Phi] = ID;
497 
498   // In case this induction also comes with casts that we know we can ignore
499   // in the vectorized loop body, record them here. All casts could be recorded
500   // here for ignoring, but suffices to record only the first (as it is the
501   // only one that may bw used outside the cast sequence).
502   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
503   if (!Casts.empty())
504     InductionCastsToIgnore.insert(*Casts.begin());
505 
506   Type *PhiTy = Phi->getType();
507   const DataLayout &DL = Phi->getModule()->getDataLayout();
508 
509   // Get the widest type.
510   if (!PhiTy->isFloatingPointTy()) {
511     if (!WidestIndTy)
512       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
513     else
514       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
515   }
516 
517   // Int inductions are special because we only allow one IV.
518   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
519       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
520       isa<Constant>(ID.getStartValue()) &&
521       cast<Constant>(ID.getStartValue())->isNullValue()) {
522 
523     // Use the phi node with the widest type as induction. Use the last
524     // one if there are multiple (no good reason for doing this other
525     // than it is expedient). We've checked that it begins at zero and
526     // steps by one, so this is a canonical induction variable.
527     if (!PrimaryInduction || PhiTy == WidestIndTy)
528       PrimaryInduction = Phi;
529   }
530 
531   // Both the PHI node itself, and the "post-increment" value feeding
532   // back into the PHI node may have external users.
533   // We can allow those uses, except if the SCEVs we have for them rely
534   // on predicates that only hold within the loop, since allowing the exit
535   // currently means re-using this SCEV outside the loop (see PR33706 for more
536   // details).
537   if (PSE.getUnionPredicate().isAlwaysTrue()) {
538     AllowedExit.insert(Phi);
539     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
540   }
541 
542   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
543 }
544 
545 bool LoopVectorizationLegality::setupOuterLoopInductions() {
546   BasicBlock *Header = TheLoop->getHeader();
547 
548   // Returns true if a given Phi is a supported induction.
549   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
550     InductionDescriptor ID;
551     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
552         ID.getKind() == InductionDescriptor::IK_IntInduction) {
553       addInductionPhi(&Phi, ID, AllowedExit);
554       return true;
555     } else {
556       // Bail out for any Phi in the outer loop header that is not a supported
557       // induction.
558       LLVM_DEBUG(
559           dbgs()
560           << "LV: Found unsupported PHI for outer loop vectorization.\n");
561       return false;
562     }
563   };
564 
565   if (llvm::all_of(Header->phis(), isSupportedPhi))
566     return true;
567   else
568     return false;
569 }
570 
571 /// Checks if a function is scalarizable according to the TLI, in
572 /// the sense that it should be vectorized and then expanded in
573 /// multiple scalarcalls. This is represented in the
574 /// TLI via mappings that do not specify a vector name, as in the
575 /// following example:
576 ///
577 ///    const VecDesc VecIntrinsics[] = {
578 ///      {"llvm.phx.abs.i32", "", 4}
579 ///    };
580 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
581   const StringRef ScalarName = CI.getCalledFunction()->getName();
582   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
583   // Check that all known VFs are not associated to a vector
584   // function, i.e. the vector name is emty.
585   if (Scalarize)
586     for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName);
587          VF <= WidestVF; VF *= 2) {
588       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
589     }
590   return Scalarize;
591 }
592 
593 bool LoopVectorizationLegality::canVectorizeInstrs() {
594   BasicBlock *Header = TheLoop->getHeader();
595 
596   // Look for the attribute signaling the absence of NaNs.
597   Function &F = *Header->getParent();
598   HasFunNoNaNAttr =
599       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
600 
601   // For each block in the loop.
602   for (BasicBlock *BB : TheLoop->blocks()) {
603     // Scan the instructions in the block and look for hazards.
604     for (Instruction &I : *BB) {
605       if (auto *Phi = dyn_cast<PHINode>(&I)) {
606         Type *PhiTy = Phi->getType();
607         // Check that this PHI type is allowed.
608         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
609             !PhiTy->isPointerTy()) {
610           reportVectorizationFailure("Found a non-int non-pointer PHI",
611                                      "loop control flow is not understood by vectorizer",
612                                      "CFGNotUnderstood", ORE, TheLoop);
613           return false;
614         }
615 
616         // If this PHINode is not in the header block, then we know that we
617         // can convert it to select during if-conversion. No need to check if
618         // the PHIs in this block are induction or reduction variables.
619         if (BB != Header) {
620           // Non-header phi nodes that have outside uses can be vectorized. Add
621           // them to the list of allowed exits.
622           // Unsafe cyclic dependencies with header phis are identified during
623           // legalization for reduction, induction and first order
624           // recurrences.
625           AllowedExit.insert(&I);
626           continue;
627         }
628 
629         // We only allow if-converted PHIs with exactly two incoming values.
630         if (Phi->getNumIncomingValues() != 2) {
631           reportVectorizationFailure("Found an invalid PHI",
632               "loop control flow is not understood by vectorizer",
633               "CFGNotUnderstood", ORE, TheLoop, Phi);
634           return false;
635         }
636 
637         RecurrenceDescriptor RedDes;
638         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
639                                                  DT)) {
640           if (RedDes.hasUnsafeAlgebra())
641             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
642           AllowedExit.insert(RedDes.getLoopExitInstr());
643           Reductions[Phi] = RedDes;
644           continue;
645         }
646 
647         // TODO: Instead of recording the AllowedExit, it would be good to record the
648         // complementary set: NotAllowedExit. These include (but may not be
649         // limited to):
650         // 1. Reduction phis as they represent the one-before-last value, which
651         // is not available when vectorized
652         // 2. Induction phis and increment when SCEV predicates cannot be used
653         // outside the loop - see addInductionPhi
654         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
655         // outside the loop - see call to hasOutsideLoopUser in the non-phi
656         // handling below
657         // 4. FirstOrderRecurrence phis that can possibly be handled by
658         // extraction.
659         // By recording these, we can then reason about ways to vectorize each
660         // of these NotAllowedExit.
661         InductionDescriptor ID;
662         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
663           addInductionPhi(Phi, ID, AllowedExit);
664           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
665             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
666           continue;
667         }
668 
669         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
670                                                          SinkAfter, DT)) {
671           FirstOrderRecurrences.insert(Phi);
672           continue;
673         }
674 
675         // As a last resort, coerce the PHI to a AddRec expression
676         // and re-try classifying it a an induction PHI.
677         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
678           addInductionPhi(Phi, ID, AllowedExit);
679           continue;
680         }
681 
682         reportVectorizationFailure("Found an unidentified PHI",
683             "value that could not be identified as "
684             "reduction is used outside the loop",
685             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
686         return false;
687       } // end of PHI handling
688 
689       // We handle calls that:
690       //   * Are debug info intrinsics.
691       //   * Have a mapping to an IR intrinsic.
692       //   * Have a vector version available.
693       auto *CI = dyn_cast<CallInst>(&I);
694 
695       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
696           !isa<DbgInfoIntrinsic>(CI) &&
697           !(CI->getCalledFunction() && TLI &&
698             (!VFDatabase::getMappings(*CI).empty() ||
699              isTLIScalarize(*TLI, *CI)))) {
700         // If the call is a recognized math libary call, it is likely that
701         // we can vectorize it given loosened floating-point constraints.
702         LibFunc Func;
703         bool IsMathLibCall =
704             TLI && CI->getCalledFunction() &&
705             CI->getType()->isFloatingPointTy() &&
706             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
707             TLI->hasOptimizedCodeGen(Func);
708 
709         if (IsMathLibCall) {
710           // TODO: Ideally, we should not use clang-specific language here,
711           // but it's hard to provide meaningful yet generic advice.
712           // Also, should this be guarded by allowExtraAnalysis() and/or be part
713           // of the returned info from isFunctionVectorizable()?
714           reportVectorizationFailure(
715               "Found a non-intrinsic callsite",
716               "library call cannot be vectorized. "
717               "Try compiling with -fno-math-errno, -ffast-math, "
718               "or similar flags",
719               "CantVectorizeLibcall", ORE, TheLoop, CI);
720         } else {
721           reportVectorizationFailure("Found a non-intrinsic callsite",
722                                      "call instruction cannot be vectorized",
723                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
724         }
725         return false;
726       }
727 
728       // Some intrinsics have scalar arguments and should be same in order for
729       // them to be vectorized (i.e. loop invariant).
730       if (CI) {
731         auto *SE = PSE.getSE();
732         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
733         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
734           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
735             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
736               reportVectorizationFailure("Found unvectorizable intrinsic",
737                   "intrinsic instruction cannot be vectorized",
738                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
739               return false;
740             }
741           }
742       }
743 
744       // Check that the instruction return type is vectorizable.
745       // Also, we can't vectorize extractelement instructions.
746       if ((!VectorType::isValidElementType(I.getType()) &&
747            !I.getType()->isVoidTy()) ||
748           isa<ExtractElementInst>(I)) {
749         reportVectorizationFailure("Found unvectorizable type",
750             "instruction return type cannot be vectorized",
751             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
752         return false;
753       }
754 
755       // Check that the stored type is vectorizable.
756       if (auto *ST = dyn_cast<StoreInst>(&I)) {
757         Type *T = ST->getValueOperand()->getType();
758         if (!VectorType::isValidElementType(T)) {
759           reportVectorizationFailure("Store instruction cannot be vectorized",
760                                      "store instruction cannot be vectorized",
761                                      "CantVectorizeStore", ORE, TheLoop, ST);
762           return false;
763         }
764 
765         // For nontemporal stores, check that a nontemporal vector version is
766         // supported on the target.
767         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
768           // Arbitrarily try a vector of 2 elements.
769           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
770           assert(VecTy && "did not find vectorized version of stored type");
771           const MaybeAlign Alignment = getLoadStoreAlignment(ST);
772           assert(Alignment && "Alignment should be set");
773           if (!TTI->isLegalNTStore(VecTy, *Alignment)) {
774             reportVectorizationFailure(
775                 "nontemporal store instruction cannot be vectorized",
776                 "nontemporal store instruction cannot be vectorized",
777                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
778             return false;
779           }
780         }
781 
782       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
783         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
784           // For nontemporal loads, check that a nontemporal vector version is
785           // supported on the target (arbitrarily try a vector of 2 elements).
786           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
787           assert(VecTy && "did not find vectorized version of load type");
788           const MaybeAlign Alignment = getLoadStoreAlignment(LD);
789           assert(Alignment && "Alignment should be set");
790           if (!TTI->isLegalNTLoad(VecTy, *Alignment)) {
791             reportVectorizationFailure(
792                 "nontemporal load instruction cannot be vectorized",
793                 "nontemporal load instruction cannot be vectorized",
794                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
795             return false;
796           }
797         }
798 
799         // FP instructions can allow unsafe algebra, thus vectorizable by
800         // non-IEEE-754 compliant SIMD units.
801         // This applies to floating-point math operations and calls, not memory
802         // operations, shuffles, or casts, as they don't change precision or
803         // semantics.
804       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
805                  !I.isFast()) {
806         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
807         Hints->setPotentiallyUnsafe();
808       }
809 
810       // Reduction instructions are allowed to have exit users.
811       // All other instructions must not have external users.
812       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
813         // We can safely vectorize loops where instructions within the loop are
814         // used outside the loop only if the SCEV predicates within the loop is
815         // same as outside the loop. Allowing the exit means reusing the SCEV
816         // outside the loop.
817         if (PSE.getUnionPredicate().isAlwaysTrue()) {
818           AllowedExit.insert(&I);
819           continue;
820         }
821         reportVectorizationFailure("Value cannot be used outside the loop",
822                                    "value cannot be used outside the loop",
823                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
824         return false;
825       }
826     } // next instr.
827   }
828 
829   if (!PrimaryInduction) {
830     if (Inductions.empty()) {
831       reportVectorizationFailure("Did not find one integer induction var",
832           "loop induction variable could not be identified",
833           "NoInductionVariable", ORE, TheLoop);
834       return false;
835     } else if (!WidestIndTy) {
836       reportVectorizationFailure("Did not find one integer induction var",
837           "integer loop induction variable could not be identified",
838           "NoIntegerInductionVariable", ORE, TheLoop);
839       return false;
840     } else {
841       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
842     }
843   }
844 
845   // For first order recurrences, we use the previous value (incoming value from
846   // the latch) to check if it dominates all users of the recurrence. Bail out
847   // if we have to sink such an instruction for another recurrence, as the
848   // dominance requirement may not hold after sinking.
849   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
850   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
851         Instruction *V =
852             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
853         return SinkAfter.find(V) != SinkAfter.end();
854       }))
855     return false;
856 
857   // Now we know the widest induction type, check if our found induction
858   // is the same size. If it's not, unset it here and InnerLoopVectorizer
859   // will create another.
860   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
861     PrimaryInduction = nullptr;
862 
863   return true;
864 }
865 
866 bool LoopVectorizationLegality::canVectorizeMemory() {
867   LAI = &(*GetLAA)(*TheLoop);
868   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
869   if (LAR) {
870     ORE->emit([&]() {
871       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
872                                         "loop not vectorized: ", *LAR);
873     });
874   }
875   if (!LAI->canVectorizeMemory())
876     return false;
877 
878   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
879     reportVectorizationFailure("Stores to a uniform address",
880         "write to a loop invariant address could not be vectorized",
881         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
882     return false;
883   }
884   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
885   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
886 
887   return true;
888 }
889 
890 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
891   Value *In0 = const_cast<Value *>(V);
892   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
893   if (!PN)
894     return false;
895 
896   return Inductions.count(PN);
897 }
898 
899 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
900   auto *Inst = dyn_cast<Instruction>(V);
901   return (Inst && InductionCastsToIgnore.count(Inst));
902 }
903 
904 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
905   return isInductionPhi(V) || isCastedInductionVariable(V);
906 }
907 
908 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
909   return FirstOrderRecurrences.count(Phi);
910 }
911 
912 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
913   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
914 }
915 
916 bool LoopVectorizationLegality::blockCanBePredicated(
917     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, bool PreserveGuards) {
918   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
919 
920   for (Instruction &I : *BB) {
921     // Check that we don't have a constant expression that can trap as operand.
922     for (Value *Operand : I.operands()) {
923       if (auto *C = dyn_cast<Constant>(Operand))
924         if (C->canTrap())
925           return false;
926     }
927 
928     // We can predicate blocks with calls to assume, as long as we drop them in
929     // case we flatten the CFG via predication.
930     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
931       ConditionalAssumes.insert(&I);
932       continue;
933     }
934 
935     // We might be able to hoist the load.
936     if (I.mayReadFromMemory()) {
937       auto *LI = dyn_cast<LoadInst>(&I);
938       if (!LI)
939         return false;
940       if (!SafePtrs.count(LI->getPointerOperand())) {
941         // !llvm.mem.parallel_loop_access implies if-conversion safety.
942         // Otherwise, record that the load needs (real or emulated) masking
943         // and let the cost model decide.
944         if (!IsAnnotatedParallel || PreserveGuards)
945           MaskedOp.insert(LI);
946         continue;
947       }
948     }
949 
950     if (I.mayWriteToMemory()) {
951       auto *SI = dyn_cast<StoreInst>(&I);
952       if (!SI)
953         return false;
954       // Predicated store requires some form of masking:
955       // 1) masked store HW instruction,
956       // 2) emulation via load-blend-store (only if safe and legal to do so,
957       //    be aware on the race conditions), or
958       // 3) element-by-element predicate check and scalar store.
959       MaskedOp.insert(SI);
960       continue;
961     }
962     if (I.mayThrow())
963       return false;
964   }
965 
966   return true;
967 }
968 
969 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
970   if (!EnableIfConversion) {
971     reportVectorizationFailure("If-conversion is disabled",
972                                "if-conversion is disabled",
973                                "IfConversionDisabled",
974                                ORE, TheLoop);
975     return false;
976   }
977 
978   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
979 
980   // A list of pointers which are known to be dereferenceable within scope of
981   // the loop body for each iteration of the loop which executes.  That is,
982   // the memory pointed to can be dereferenced (with the access size implied by
983   // the value's type) unconditionally within the loop header without
984   // introducing a new fault.
985   SmallPtrSet<Value *, 8> SafePointes;
986 
987   // Collect safe addresses.
988   for (BasicBlock *BB : TheLoop->blocks()) {
989     if (!blockNeedsPredication(BB)) {
990       for (Instruction &I : *BB)
991         if (auto *Ptr = getLoadStorePointerOperand(&I))
992           SafePointes.insert(Ptr);
993       continue;
994     }
995 
996     // For a block which requires predication, a address may be safe to access
997     // in the loop w/o predication if we can prove dereferenceability facts
998     // sufficient to ensure it'll never fault within the loop. For the moment,
999     // we restrict this to loads; stores are more complicated due to
1000     // concurrency restrictions.
1001     ScalarEvolution &SE = *PSE.getSE();
1002     for (Instruction &I : *BB) {
1003       LoadInst *LI = dyn_cast<LoadInst>(&I);
1004       if (LI && !mustSuppressSpeculation(*LI) &&
1005           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1006         SafePointes.insert(LI->getPointerOperand());
1007     }
1008   }
1009 
1010   // Collect the blocks that need predication.
1011   BasicBlock *Header = TheLoop->getHeader();
1012   for (BasicBlock *BB : TheLoop->blocks()) {
1013     // We don't support switch statements inside loops.
1014     if (!isa<BranchInst>(BB->getTerminator())) {
1015       reportVectorizationFailure("Loop contains a switch statement",
1016                                  "loop contains a switch statement",
1017                                  "LoopContainsSwitch", ORE, TheLoop,
1018                                  BB->getTerminator());
1019       return false;
1020     }
1021 
1022     // We must be able to predicate all blocks that need to be predicated.
1023     if (blockNeedsPredication(BB)) {
1024       if (!blockCanBePredicated(BB, SafePointes)) {
1025         reportVectorizationFailure(
1026             "Control flow cannot be substituted for a select",
1027             "control flow cannot be substituted for a select",
1028             "NoCFGForSelect", ORE, TheLoop,
1029             BB->getTerminator());
1030         return false;
1031       }
1032     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1033       reportVectorizationFailure(
1034           "Control flow cannot be substituted for a select",
1035           "control flow cannot be substituted for a select",
1036           "NoCFGForSelect", ORE, TheLoop,
1037           BB->getTerminator());
1038       return false;
1039     }
1040   }
1041 
1042   // We can if-convert this loop.
1043   return true;
1044 }
1045 
1046 // Helper function to canVectorizeLoopNestCFG.
1047 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1048                                                     bool UseVPlanNativePath) {
1049   assert((UseVPlanNativePath || Lp->empty()) &&
1050          "VPlan-native path is not enabled.");
1051 
1052   // TODO: ORE should be improved to show more accurate information when an
1053   // outer loop can't be vectorized because a nested loop is not understood or
1054   // legal. Something like: "outer_loop_location: loop not vectorized:
1055   // (inner_loop_location) loop control flow is not understood by vectorizer".
1056 
1057   // Store the result and return it at the end instead of exiting early, in case
1058   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1059   bool Result = true;
1060   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1061 
1062   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1063   // be canonicalized.
1064   if (!Lp->getLoopPreheader()) {
1065     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1066         "loop control flow is not understood by vectorizer",
1067         "CFGNotUnderstood", ORE, TheLoop);
1068     if (DoExtraAnalysis)
1069       Result = false;
1070     else
1071       return false;
1072   }
1073 
1074   // We must have a single backedge.
1075   if (Lp->getNumBackEdges() != 1) {
1076     reportVectorizationFailure("The loop must have a single backedge",
1077         "loop control flow is not understood by vectorizer",
1078         "CFGNotUnderstood", ORE, TheLoop);
1079     if (DoExtraAnalysis)
1080       Result = false;
1081     else
1082       return false;
1083   }
1084 
1085   // We must have a single exiting block.
1086   if (!Lp->getExitingBlock()) {
1087     reportVectorizationFailure("The loop must have an exiting block",
1088         "loop control flow is not understood by vectorizer",
1089         "CFGNotUnderstood", ORE, TheLoop);
1090     if (DoExtraAnalysis)
1091       Result = false;
1092     else
1093       return false;
1094   }
1095 
1096   // We only handle bottom-tested loops, i.e. loop in which the condition is
1097   // checked at the end of each iteration. With that we can assume that all
1098   // instructions in the loop are executed the same number of times.
1099   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1100     reportVectorizationFailure("The exiting block is not the loop latch",
1101         "loop control flow is not understood by vectorizer",
1102         "CFGNotUnderstood", ORE, TheLoop);
1103     if (DoExtraAnalysis)
1104       Result = false;
1105     else
1106       return false;
1107   }
1108 
1109   return Result;
1110 }
1111 
1112 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1113     Loop *Lp, bool UseVPlanNativePath) {
1114   // Store the result and return it at the end instead of exiting early, in case
1115   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1116   bool Result = true;
1117   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1118   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1119     if (DoExtraAnalysis)
1120       Result = false;
1121     else
1122       return false;
1123   }
1124 
1125   // Recursively check whether the loop control flow of nested loops is
1126   // understood.
1127   for (Loop *SubLp : *Lp)
1128     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1129       if (DoExtraAnalysis)
1130         Result = false;
1131       else
1132         return false;
1133     }
1134 
1135   return Result;
1136 }
1137 
1138 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1139   // Store the result and return it at the end instead of exiting early, in case
1140   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1141   bool Result = true;
1142 
1143   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1144   // Check whether the loop-related control flow in the loop nest is expected by
1145   // vectorizer.
1146   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1147     if (DoExtraAnalysis)
1148       Result = false;
1149     else
1150       return false;
1151   }
1152 
1153   // We need to have a loop header.
1154   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1155                     << '\n');
1156 
1157   // Specific checks for outer loops. We skip the remaining legal checks at this
1158   // point because they don't support outer loops.
1159   if (!TheLoop->empty()) {
1160     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1161 
1162     if (!canVectorizeOuterLoop()) {
1163       reportVectorizationFailure("Unsupported outer loop",
1164                                  "unsupported outer loop",
1165                                  "UnsupportedOuterLoop",
1166                                  ORE, TheLoop);
1167       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1168       // outer loops.
1169       return false;
1170     }
1171 
1172     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1173     return Result;
1174   }
1175 
1176   assert(TheLoop->empty() && "Inner loop expected.");
1177   // Check if we can if-convert non-single-bb loops.
1178   unsigned NumBlocks = TheLoop->getNumBlocks();
1179   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1180     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1181     if (DoExtraAnalysis)
1182       Result = false;
1183     else
1184       return false;
1185   }
1186 
1187   // Check if we can vectorize the instructions and CFG in this loop.
1188   if (!canVectorizeInstrs()) {
1189     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1190     if (DoExtraAnalysis)
1191       Result = false;
1192     else
1193       return false;
1194   }
1195 
1196   // Go over each instruction and look at memory deps.
1197   if (!canVectorizeMemory()) {
1198     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1199     if (DoExtraAnalysis)
1200       Result = false;
1201     else
1202       return false;
1203   }
1204 
1205   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1206                     << (LAI->getRuntimePointerChecking()->Need
1207                             ? " (with a runtime bound check)"
1208                             : "")
1209                     << "!\n");
1210 
1211   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1212   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1213     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1214 
1215   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1216     reportVectorizationFailure("Too many SCEV checks needed",
1217         "Too many SCEV assumptions need to be made and checked at runtime",
1218         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1219     if (DoExtraAnalysis)
1220       Result = false;
1221     else
1222       return false;
1223   }
1224 
1225   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1226   // we can vectorize, and at this point we don't have any other mem analysis
1227   // which may limit our maximum vectorization factor, so just return true with
1228   // no restrictions.
1229   return Result;
1230 }
1231 
1232 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1233 
1234   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1235 
1236   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1237 
1238   for (auto &Reduction : getReductionVars())
1239     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1240 
1241   // TODO: handle non-reduction outside users when tail is folded by masking.
1242   for (auto *AE : AllowedExit) {
1243     // Check that all users of allowed exit values are inside the loop or
1244     // are the live-out of a reduction.
1245     if (ReductionLiveOuts.count(AE))
1246       continue;
1247     for (User *U : AE->users()) {
1248       Instruction *UI = cast<Instruction>(U);
1249       if (TheLoop->contains(UI))
1250         continue;
1251       reportVectorizationFailure(
1252           "Cannot fold tail by masking, loop has an outside user for",
1253           "Cannot fold tail by masking in the presence of live outs.",
1254           "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
1255       return false;
1256     }
1257   }
1258 
1259   // The list of pointers that we can safely read and write to remains empty.
1260   SmallPtrSet<Value *, 8> SafePointers;
1261 
1262   // Check and mark all blocks for predication, including those that ordinarily
1263   // do not need predication such as the header block.
1264   for (BasicBlock *BB : TheLoop->blocks()) {
1265     if (!blockCanBePredicated(BB, SafePointers, /* MaskAllLoads= */ true)) {
1266       reportVectorizationFailure(
1267           "Cannot fold tail by masking as required",
1268           "control flow cannot be substituted for a select",
1269           "NoCFGForSelect", ORE, TheLoop,
1270           BB->getTerminator());
1271       return false;
1272     }
1273   }
1274 
1275   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1276   return true;
1277 }
1278 
1279 } // namespace llvm
1280