1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/SizeOpts.h" 26 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define LV_NAME "loop-vectorize" 32 #define DEBUG_TYPE LV_NAME 33 34 extern cl::opt<bool> EnableVPlanPredication; 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 41 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 42 cl::desc("The maximum allowed number of runtime memory checks with a " 43 "vectorize(enable) pragma.")); 44 45 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 46 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed.")); 48 49 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 50 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 51 cl::desc("The maximum number of SCEV checks allowed with a " 52 "vectorize(enable) pragma")); 53 54 /// Maximum vectorization interleave count. 55 static const unsigned MaxInterleaveFactor = 16; 56 57 namespace llvm { 58 59 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 60 switch (Kind) { 61 case HK_WIDTH: 62 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 63 case HK_UNROLL: 64 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 65 case HK_FORCE: 66 return (Val <= 1); 67 case HK_ISVECTORIZED: 68 case HK_PREDICATE: 69 case HK_SCALABLE: 70 return (Val == 0 || Val == 1); 71 } 72 return false; 73 } 74 75 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 76 bool InterleaveOnlyWhenForced, 77 OptimizationRemarkEmitter &ORE) 78 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 79 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 80 Force("vectorize.enable", FK_Undefined, HK_FORCE), 81 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 82 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 83 Scalable("vectorize.scalable.enable", false, HK_SCALABLE), TheLoop(L), 84 ORE(ORE) { 85 // Populate values with existing loop metadata. 86 getHintsFromMetadata(); 87 88 // force-vector-interleave overrides DisableInterleaving. 89 if (VectorizerParams::isInterleaveForced()) 90 Interleave.Value = VectorizerParams::VectorizationInterleave; 91 92 if (IsVectorized.Value != 1) 93 // If the vectorization width and interleaving count are both 1 then 94 // consider the loop to have been already vectorized because there's 95 // nothing more that we can do. 96 IsVectorized.Value = 97 getWidth() == ElementCount::getFixed(1) && Interleave.Value == 1; 98 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 99 << "LV: Interleaving disabled by the pass manager\n"); 100 } 101 102 void LoopVectorizeHints::setAlreadyVectorized() { 103 LLVMContext &Context = TheLoop->getHeader()->getContext(); 104 105 MDNode *IsVectorizedMD = MDNode::get( 106 Context, 107 {MDString::get(Context, "llvm.loop.isvectorized"), 108 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 109 MDNode *LoopID = TheLoop->getLoopID(); 110 MDNode *NewLoopID = 111 makePostTransformationMetadata(Context, LoopID, 112 {Twine(Prefix(), "vectorize.").str(), 113 Twine(Prefix(), "interleave.").str()}, 114 {IsVectorizedMD}); 115 TheLoop->setLoopID(NewLoopID); 116 117 // Update internal cache. 118 IsVectorized.Value = 1; 119 } 120 121 bool LoopVectorizeHints::allowVectorization( 122 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 123 if (getForce() == LoopVectorizeHints::FK_Disabled) { 124 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 125 emitRemarkWithHints(); 126 return false; 127 } 128 129 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 130 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 131 emitRemarkWithHints(); 132 return false; 133 } 134 135 if (getIsVectorized() == 1) { 136 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 137 // FIXME: Add interleave.disable metadata. This will allow 138 // vectorize.disable to be used without disabling the pass and errors 139 // to differentiate between disabled vectorization and a width of 1. 140 ORE.emit([&]() { 141 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 142 "AllDisabled", L->getStartLoc(), 143 L->getHeader()) 144 << "loop not vectorized: vectorization and interleaving are " 145 "explicitly disabled, or the loop has already been " 146 "vectorized"; 147 }); 148 return false; 149 } 150 151 return true; 152 } 153 154 void LoopVectorizeHints::emitRemarkWithHints() const { 155 using namespace ore; 156 157 ORE.emit([&]() { 158 if (Force.Value == LoopVectorizeHints::FK_Disabled) 159 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 160 TheLoop->getStartLoc(), 161 TheLoop->getHeader()) 162 << "loop not vectorized: vectorization is explicitly disabled"; 163 else { 164 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 165 TheLoop->getStartLoc(), TheLoop->getHeader()); 166 R << "loop not vectorized"; 167 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 168 R << " (Force=" << NV("Force", true); 169 if (Width.Value != 0) 170 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 171 if (Interleave.Value != 0) 172 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 173 R << ")"; 174 } 175 return R; 176 } 177 }); 178 } 179 180 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 181 if (getWidth() == ElementCount::getFixed(1)) 182 return LV_NAME; 183 if (getForce() == LoopVectorizeHints::FK_Disabled) 184 return LV_NAME; 185 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 186 return LV_NAME; 187 return OptimizationRemarkAnalysis::AlwaysPrint; 188 } 189 190 void LoopVectorizeHints::getHintsFromMetadata() { 191 MDNode *LoopID = TheLoop->getLoopID(); 192 if (!LoopID) 193 return; 194 195 // First operand should refer to the loop id itself. 196 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 197 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 198 199 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 200 const MDString *S = nullptr; 201 SmallVector<Metadata *, 4> Args; 202 203 // The expected hint is either a MDString or a MDNode with the first 204 // operand a MDString. 205 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 206 if (!MD || MD->getNumOperands() == 0) 207 continue; 208 S = dyn_cast<MDString>(MD->getOperand(0)); 209 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 210 Args.push_back(MD->getOperand(i)); 211 } else { 212 S = dyn_cast<MDString>(LoopID->getOperand(i)); 213 assert(Args.size() == 0 && "too many arguments for MDString"); 214 } 215 216 if (!S) 217 continue; 218 219 // Check if the hint starts with the loop metadata prefix. 220 StringRef Name = S->getString(); 221 if (Args.size() == 1) 222 setHint(Name, Args[0]); 223 } 224 } 225 226 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 227 if (!Name.startswith(Prefix())) 228 return; 229 Name = Name.substr(Prefix().size(), StringRef::npos); 230 231 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 232 if (!C) 233 return; 234 unsigned Val = C->getZExtValue(); 235 236 Hint *Hints[] = {&Width, &Interleave, &Force, 237 &IsVectorized, &Predicate, &Scalable}; 238 for (auto H : Hints) { 239 if (Name == H->Name) { 240 if (H->validate(Val)) 241 H->Value = Val; 242 else 243 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 244 break; 245 } 246 } 247 } 248 249 bool LoopVectorizationRequirements::doesNotMeet( 250 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 251 const char *PassName = Hints.vectorizeAnalysisPassName(); 252 bool Failed = false; 253 254 // Test if runtime memcheck thresholds are exceeded. 255 bool PragmaThresholdReached = 256 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 257 bool ThresholdReached = 258 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 259 if ((ThresholdReached && !Hints.allowReordering()) || 260 PragmaThresholdReached) { 261 ORE.emit([&]() { 262 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 263 L->getStartLoc(), 264 L->getHeader()) 265 << "loop not vectorized: cannot prove it is safe to reorder " 266 "memory operations"; 267 }); 268 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 269 Failed = true; 270 } 271 272 return Failed; 273 } 274 275 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 276 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 277 // executing the inner loop will execute the same iterations). This check is 278 // very constrained for now but it will be relaxed in the future. \p Lp is 279 // considered uniform if it meets all the following conditions: 280 // 1) it has a canonical IV (starting from 0 and with stride 1), 281 // 2) its latch terminator is a conditional branch and, 282 // 3) its latch condition is a compare instruction whose operands are the 283 // canonical IV and an OuterLp invariant. 284 // This check doesn't take into account the uniformity of other conditions not 285 // related to the loop latch because they don't affect the loop uniformity. 286 // 287 // NOTE: We decided to keep all these checks and its associated documentation 288 // together so that we can easily have a picture of the current supported loop 289 // nests. However, some of the current checks don't depend on \p OuterLp and 290 // would be redundantly executed for each \p Lp if we invoked this function for 291 // different candidate outer loops. This is not the case for now because we 292 // don't currently have the infrastructure to evaluate multiple candidate outer 293 // loops and \p OuterLp will be a fixed parameter while we only support explicit 294 // outer loop vectorization. It's also very likely that these checks go away 295 // before introducing the aforementioned infrastructure. However, if this is not 296 // the case, we should move the \p OuterLp independent checks to a separate 297 // function that is only executed once for each \p Lp. 298 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 299 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 300 301 // If Lp is the outer loop, it's uniform by definition. 302 if (Lp == OuterLp) 303 return true; 304 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 305 306 // 1. 307 PHINode *IV = Lp->getCanonicalInductionVariable(); 308 if (!IV) { 309 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 310 return false; 311 } 312 313 // 2. 314 BasicBlock *Latch = Lp->getLoopLatch(); 315 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 316 if (!LatchBr || LatchBr->isUnconditional()) { 317 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 318 return false; 319 } 320 321 // 3. 322 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 323 if (!LatchCmp) { 324 LLVM_DEBUG( 325 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 326 return false; 327 } 328 329 Value *CondOp0 = LatchCmp->getOperand(0); 330 Value *CondOp1 = LatchCmp->getOperand(1); 331 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 332 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 333 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 334 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 335 return false; 336 } 337 338 return true; 339 } 340 341 // Return true if \p Lp and all its nested loops are uniform with regard to \p 342 // OuterLp. 343 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 344 if (!isUniformLoop(Lp, OuterLp)) 345 return false; 346 347 // Check if nested loops are uniform. 348 for (Loop *SubLp : *Lp) 349 if (!isUniformLoopNest(SubLp, OuterLp)) 350 return false; 351 352 return true; 353 } 354 355 /// Check whether it is safe to if-convert this phi node. 356 /// 357 /// Phi nodes with constant expressions that can trap are not safe to if 358 /// convert. 359 static bool canIfConvertPHINodes(BasicBlock *BB) { 360 for (PHINode &Phi : BB->phis()) { 361 for (Value *V : Phi.incoming_values()) 362 if (auto *C = dyn_cast<Constant>(V)) 363 if (C->canTrap()) 364 return false; 365 } 366 return true; 367 } 368 369 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 370 if (Ty->isPointerTy()) 371 return DL.getIntPtrType(Ty); 372 373 // It is possible that char's or short's overflow when we ask for the loop's 374 // trip count, work around this by changing the type size. 375 if (Ty->getScalarSizeInBits() < 32) 376 return Type::getInt32Ty(Ty->getContext()); 377 378 return Ty; 379 } 380 381 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 382 Ty0 = convertPointerToIntegerType(DL, Ty0); 383 Ty1 = convertPointerToIntegerType(DL, Ty1); 384 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 385 return Ty0; 386 return Ty1; 387 } 388 389 /// Check that the instruction has outside loop users and is not an 390 /// identified reduction variable. 391 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 392 SmallPtrSetImpl<Value *> &AllowedExit) { 393 // Reductions, Inductions and non-header phis are allowed to have exit users. All 394 // other instructions must not have external users. 395 if (!AllowedExit.count(Inst)) 396 // Check that all of the users of the loop are inside the BB. 397 for (User *U : Inst->users()) { 398 Instruction *UI = cast<Instruction>(U); 399 // This user may be a reduction exit value. 400 if (!TheLoop->contains(UI)) { 401 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 402 return true; 403 } 404 } 405 return false; 406 } 407 408 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 409 const ValueToValueMap &Strides = 410 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 411 412 Function *F = TheLoop->getHeader()->getParent(); 413 bool OptForSize = F->hasOptSize() || 414 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 415 PGSOQueryType::IRPass); 416 bool CanAddPredicate = !OptForSize; 417 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false); 418 if (Stride == 1 || Stride == -1) 419 return Stride; 420 return 0; 421 } 422 423 bool LoopVectorizationLegality::isUniform(Value *V) { 424 return LAI->isUniform(V); 425 } 426 427 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 428 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 429 // Store the result and return it at the end instead of exiting early, in case 430 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 431 bool Result = true; 432 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 433 434 for (BasicBlock *BB : TheLoop->blocks()) { 435 // Check whether the BB terminator is a BranchInst. Any other terminator is 436 // not supported yet. 437 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 438 if (!Br) { 439 reportVectorizationFailure("Unsupported basic block terminator", 440 "loop control flow is not understood by vectorizer", 441 "CFGNotUnderstood", ORE, TheLoop); 442 if (DoExtraAnalysis) 443 Result = false; 444 else 445 return false; 446 } 447 448 // Check whether the BranchInst is a supported one. Only unconditional 449 // branches, conditional branches with an outer loop invariant condition or 450 // backedges are supported. 451 // FIXME: We skip these checks when VPlan predication is enabled as we 452 // want to allow divergent branches. This whole check will be removed 453 // once VPlan predication is on by default. 454 if (!EnableVPlanPredication && Br && Br->isConditional() && 455 !TheLoop->isLoopInvariant(Br->getCondition()) && 456 !LI->isLoopHeader(Br->getSuccessor(0)) && 457 !LI->isLoopHeader(Br->getSuccessor(1))) { 458 reportVectorizationFailure("Unsupported conditional branch", 459 "loop control flow is not understood by vectorizer", 460 "CFGNotUnderstood", ORE, TheLoop); 461 if (DoExtraAnalysis) 462 Result = false; 463 else 464 return false; 465 } 466 } 467 468 // Check whether inner loops are uniform. At this point, we only support 469 // simple outer loops scenarios with uniform nested loops. 470 if (!isUniformLoopNest(TheLoop /*loop nest*/, 471 TheLoop /*context outer loop*/)) { 472 reportVectorizationFailure("Outer loop contains divergent loops", 473 "loop control flow is not understood by vectorizer", 474 "CFGNotUnderstood", ORE, TheLoop); 475 if (DoExtraAnalysis) 476 Result = false; 477 else 478 return false; 479 } 480 481 // Check whether we are able to set up outer loop induction. 482 if (!setupOuterLoopInductions()) { 483 reportVectorizationFailure("Unsupported outer loop Phi(s)", 484 "Unsupported outer loop Phi(s)", 485 "UnsupportedPhi", ORE, TheLoop); 486 if (DoExtraAnalysis) 487 Result = false; 488 else 489 return false; 490 } 491 492 return Result; 493 } 494 495 void LoopVectorizationLegality::addInductionPhi( 496 PHINode *Phi, const InductionDescriptor &ID, 497 SmallPtrSetImpl<Value *> &AllowedExit) { 498 Inductions[Phi] = ID; 499 500 // In case this induction also comes with casts that we know we can ignore 501 // in the vectorized loop body, record them here. All casts could be recorded 502 // here for ignoring, but suffices to record only the first (as it is the 503 // only one that may bw used outside the cast sequence). 504 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 505 if (!Casts.empty()) 506 InductionCastsToIgnore.insert(*Casts.begin()); 507 508 Type *PhiTy = Phi->getType(); 509 const DataLayout &DL = Phi->getModule()->getDataLayout(); 510 511 // Get the widest type. 512 if (!PhiTy->isFloatingPointTy()) { 513 if (!WidestIndTy) 514 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 515 else 516 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 517 } 518 519 // Int inductions are special because we only allow one IV. 520 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 521 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 522 isa<Constant>(ID.getStartValue()) && 523 cast<Constant>(ID.getStartValue())->isNullValue()) { 524 525 // Use the phi node with the widest type as induction. Use the last 526 // one if there are multiple (no good reason for doing this other 527 // than it is expedient). We've checked that it begins at zero and 528 // steps by one, so this is a canonical induction variable. 529 if (!PrimaryInduction || PhiTy == WidestIndTy) 530 PrimaryInduction = Phi; 531 } 532 533 // Both the PHI node itself, and the "post-increment" value feeding 534 // back into the PHI node may have external users. 535 // We can allow those uses, except if the SCEVs we have for them rely 536 // on predicates that only hold within the loop, since allowing the exit 537 // currently means re-using this SCEV outside the loop (see PR33706 for more 538 // details). 539 if (PSE.getUnionPredicate().isAlwaysTrue()) { 540 AllowedExit.insert(Phi); 541 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 542 } 543 544 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 545 } 546 547 bool LoopVectorizationLegality::setupOuterLoopInductions() { 548 BasicBlock *Header = TheLoop->getHeader(); 549 550 // Returns true if a given Phi is a supported induction. 551 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 552 InductionDescriptor ID; 553 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 554 ID.getKind() == InductionDescriptor::IK_IntInduction) { 555 addInductionPhi(&Phi, ID, AllowedExit); 556 return true; 557 } else { 558 // Bail out for any Phi in the outer loop header that is not a supported 559 // induction. 560 LLVM_DEBUG( 561 dbgs() 562 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 563 return false; 564 } 565 }; 566 567 if (llvm::all_of(Header->phis(), isSupportedPhi)) 568 return true; 569 else 570 return false; 571 } 572 573 /// Checks if a function is scalarizable according to the TLI, in 574 /// the sense that it should be vectorized and then expanded in 575 /// multiple scalarcalls. This is represented in the 576 /// TLI via mappings that do not specify a vector name, as in the 577 /// following example: 578 /// 579 /// const VecDesc VecIntrinsics[] = { 580 /// {"llvm.phx.abs.i32", "", 4} 581 /// }; 582 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 583 const StringRef ScalarName = CI.getCalledFunction()->getName(); 584 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 585 // Check that all known VFs are not associated to a vector 586 // function, i.e. the vector name is emty. 587 if (Scalarize) { 588 ElementCount WidestFixedVF, WidestScalableVF; 589 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 590 for (ElementCount VF = ElementCount::getFixed(2); 591 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 592 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 593 for (ElementCount VF = ElementCount::getScalable(1); 594 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 595 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 596 assert((WidestScalableVF.isZero() || !Scalarize) && 597 "Caller may decide to scalarize a variant using a scalable VF"); 598 } 599 return Scalarize; 600 } 601 602 bool LoopVectorizationLegality::canVectorizeInstrs() { 603 BasicBlock *Header = TheLoop->getHeader(); 604 605 // For each block in the loop. 606 for (BasicBlock *BB : TheLoop->blocks()) { 607 // Scan the instructions in the block and look for hazards. 608 for (Instruction &I : *BB) { 609 if (auto *Phi = dyn_cast<PHINode>(&I)) { 610 Type *PhiTy = Phi->getType(); 611 // Check that this PHI type is allowed. 612 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 613 !PhiTy->isPointerTy()) { 614 reportVectorizationFailure("Found a non-int non-pointer PHI", 615 "loop control flow is not understood by vectorizer", 616 "CFGNotUnderstood", ORE, TheLoop); 617 return false; 618 } 619 620 // If this PHINode is not in the header block, then we know that we 621 // can convert it to select during if-conversion. No need to check if 622 // the PHIs in this block are induction or reduction variables. 623 if (BB != Header) { 624 // Non-header phi nodes that have outside uses can be vectorized. Add 625 // them to the list of allowed exits. 626 // Unsafe cyclic dependencies with header phis are identified during 627 // legalization for reduction, induction and first order 628 // recurrences. 629 AllowedExit.insert(&I); 630 continue; 631 } 632 633 // We only allow if-converted PHIs with exactly two incoming values. 634 if (Phi->getNumIncomingValues() != 2) { 635 reportVectorizationFailure("Found an invalid PHI", 636 "loop control flow is not understood by vectorizer", 637 "CFGNotUnderstood", ORE, TheLoop, Phi); 638 return false; 639 } 640 641 RecurrenceDescriptor RedDes; 642 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 643 DT)) { 644 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 645 AllowedExit.insert(RedDes.getLoopExitInstr()); 646 Reductions[Phi] = RedDes; 647 continue; 648 } 649 650 // TODO: Instead of recording the AllowedExit, it would be good to record the 651 // complementary set: NotAllowedExit. These include (but may not be 652 // limited to): 653 // 1. Reduction phis as they represent the one-before-last value, which 654 // is not available when vectorized 655 // 2. Induction phis and increment when SCEV predicates cannot be used 656 // outside the loop - see addInductionPhi 657 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 658 // outside the loop - see call to hasOutsideLoopUser in the non-phi 659 // handling below 660 // 4. FirstOrderRecurrence phis that can possibly be handled by 661 // extraction. 662 // By recording these, we can then reason about ways to vectorize each 663 // of these NotAllowedExit. 664 InductionDescriptor ID; 665 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 666 addInductionPhi(Phi, ID, AllowedExit); 667 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 668 continue; 669 } 670 671 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 672 SinkAfter, DT)) { 673 AllowedExit.insert(Phi); 674 FirstOrderRecurrences.insert(Phi); 675 continue; 676 } 677 678 // As a last resort, coerce the PHI to a AddRec expression 679 // and re-try classifying it a an induction PHI. 680 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 681 addInductionPhi(Phi, ID, AllowedExit); 682 continue; 683 } 684 685 reportVectorizationFailure("Found an unidentified PHI", 686 "value that could not be identified as " 687 "reduction is used outside the loop", 688 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 689 return false; 690 } // end of PHI handling 691 692 // We handle calls that: 693 // * Are debug info intrinsics. 694 // * Have a mapping to an IR intrinsic. 695 // * Have a vector version available. 696 auto *CI = dyn_cast<CallInst>(&I); 697 698 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 699 !isa<DbgInfoIntrinsic>(CI) && 700 !(CI->getCalledFunction() && TLI && 701 (!VFDatabase::getMappings(*CI).empty() || 702 isTLIScalarize(*TLI, *CI)))) { 703 // If the call is a recognized math libary call, it is likely that 704 // we can vectorize it given loosened floating-point constraints. 705 LibFunc Func; 706 bool IsMathLibCall = 707 TLI && CI->getCalledFunction() && 708 CI->getType()->isFloatingPointTy() && 709 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 710 TLI->hasOptimizedCodeGen(Func); 711 712 if (IsMathLibCall) { 713 // TODO: Ideally, we should not use clang-specific language here, 714 // but it's hard to provide meaningful yet generic advice. 715 // Also, should this be guarded by allowExtraAnalysis() and/or be part 716 // of the returned info from isFunctionVectorizable()? 717 reportVectorizationFailure( 718 "Found a non-intrinsic callsite", 719 "library call cannot be vectorized. " 720 "Try compiling with -fno-math-errno, -ffast-math, " 721 "or similar flags", 722 "CantVectorizeLibcall", ORE, TheLoop, CI); 723 } else { 724 reportVectorizationFailure("Found a non-intrinsic callsite", 725 "call instruction cannot be vectorized", 726 "CantVectorizeLibcall", ORE, TheLoop, CI); 727 } 728 return false; 729 } 730 731 // Some intrinsics have scalar arguments and should be same in order for 732 // them to be vectorized (i.e. loop invariant). 733 if (CI) { 734 auto *SE = PSE.getSE(); 735 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 736 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 737 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 738 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 739 reportVectorizationFailure("Found unvectorizable intrinsic", 740 "intrinsic instruction cannot be vectorized", 741 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 742 return false; 743 } 744 } 745 } 746 747 // Check that the instruction return type is vectorizable. 748 // Also, we can't vectorize extractelement instructions. 749 if ((!VectorType::isValidElementType(I.getType()) && 750 !I.getType()->isVoidTy()) || 751 isa<ExtractElementInst>(I)) { 752 reportVectorizationFailure("Found unvectorizable type", 753 "instruction return type cannot be vectorized", 754 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 755 return false; 756 } 757 758 // Check that the stored type is vectorizable. 759 if (auto *ST = dyn_cast<StoreInst>(&I)) { 760 Type *T = ST->getValueOperand()->getType(); 761 if (!VectorType::isValidElementType(T)) { 762 reportVectorizationFailure("Store instruction cannot be vectorized", 763 "store instruction cannot be vectorized", 764 "CantVectorizeStore", ORE, TheLoop, ST); 765 return false; 766 } 767 768 // For nontemporal stores, check that a nontemporal vector version is 769 // supported on the target. 770 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 771 // Arbitrarily try a vector of 2 elements. 772 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 773 assert(VecTy && "did not find vectorized version of stored type"); 774 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 775 reportVectorizationFailure( 776 "nontemporal store instruction cannot be vectorized", 777 "nontemporal store instruction cannot be vectorized", 778 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 779 return false; 780 } 781 } 782 783 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 784 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 785 // For nontemporal loads, check that a nontemporal vector version is 786 // supported on the target (arbitrarily try a vector of 2 elements). 787 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 788 assert(VecTy && "did not find vectorized version of load type"); 789 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 790 reportVectorizationFailure( 791 "nontemporal load instruction cannot be vectorized", 792 "nontemporal load instruction cannot be vectorized", 793 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 794 return false; 795 } 796 } 797 798 // FP instructions can allow unsafe algebra, thus vectorizable by 799 // non-IEEE-754 compliant SIMD units. 800 // This applies to floating-point math operations and calls, not memory 801 // operations, shuffles, or casts, as they don't change precision or 802 // semantics. 803 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 804 !I.isFast()) { 805 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 806 Hints->setPotentiallyUnsafe(); 807 } 808 809 // Reduction instructions are allowed to have exit users. 810 // All other instructions must not have external users. 811 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 812 // We can safely vectorize loops where instructions within the loop are 813 // used outside the loop only if the SCEV predicates within the loop is 814 // same as outside the loop. Allowing the exit means reusing the SCEV 815 // outside the loop. 816 if (PSE.getUnionPredicate().isAlwaysTrue()) { 817 AllowedExit.insert(&I); 818 continue; 819 } 820 reportVectorizationFailure("Value cannot be used outside the loop", 821 "value cannot be used outside the loop", 822 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 823 return false; 824 } 825 } // next instr. 826 } 827 828 if (!PrimaryInduction) { 829 if (Inductions.empty()) { 830 reportVectorizationFailure("Did not find one integer induction var", 831 "loop induction variable could not be identified", 832 "NoInductionVariable", ORE, TheLoop); 833 return false; 834 } else if (!WidestIndTy) { 835 reportVectorizationFailure("Did not find one integer induction var", 836 "integer loop induction variable could not be identified", 837 "NoIntegerInductionVariable", ORE, TheLoop); 838 return false; 839 } else { 840 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 841 } 842 } 843 844 // For first order recurrences, we use the previous value (incoming value from 845 // the latch) to check if it dominates all users of the recurrence. Bail out 846 // if we have to sink such an instruction for another recurrence, as the 847 // dominance requirement may not hold after sinking. 848 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 849 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 850 Instruction *V = 851 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 852 return SinkAfter.find(V) != SinkAfter.end(); 853 })) 854 return false; 855 856 // Now we know the widest induction type, check if our found induction 857 // is the same size. If it's not, unset it here and InnerLoopVectorizer 858 // will create another. 859 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 860 PrimaryInduction = nullptr; 861 862 return true; 863 } 864 865 bool LoopVectorizationLegality::canVectorizeMemory() { 866 LAI = &(*GetLAA)(*TheLoop); 867 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 868 if (LAR) { 869 ORE->emit([&]() { 870 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 871 "loop not vectorized: ", *LAR); 872 }); 873 } 874 if (!LAI->canVectorizeMemory()) 875 return false; 876 877 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 878 reportVectorizationFailure("Stores to a uniform address", 879 "write to a loop invariant address could not be vectorized", 880 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 881 return false; 882 } 883 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 884 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 885 886 return true; 887 } 888 889 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 890 Value *In0 = const_cast<Value *>(V); 891 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 892 if (!PN) 893 return false; 894 895 return Inductions.count(PN); 896 } 897 898 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 899 auto *Inst = dyn_cast<Instruction>(V); 900 return (Inst && InductionCastsToIgnore.count(Inst)); 901 } 902 903 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 904 return isInductionPhi(V) || isCastedInductionVariable(V); 905 } 906 907 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 908 return FirstOrderRecurrences.count(Phi); 909 } 910 911 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 912 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 913 } 914 915 bool LoopVectorizationLegality::blockCanBePredicated( 916 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 917 SmallPtrSetImpl<const Instruction *> &MaskedOp, 918 SmallPtrSetImpl<Instruction *> &ConditionalAssumes, 919 bool PreserveGuards) const { 920 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 921 922 for (Instruction &I : *BB) { 923 // Check that we don't have a constant expression that can trap as operand. 924 for (Value *Operand : I.operands()) { 925 if (auto *C = dyn_cast<Constant>(Operand)) 926 if (C->canTrap()) 927 return false; 928 } 929 930 // We can predicate blocks with calls to assume, as long as we drop them in 931 // case we flatten the CFG via predication. 932 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 933 ConditionalAssumes.insert(&I); 934 continue; 935 } 936 937 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 938 // TODO: there might be cases that it should block the vectorization. Let's 939 // ignore those for now. 940 if (isa<NoAliasScopeDeclInst>(&I)) 941 continue; 942 943 // We might be able to hoist the load. 944 if (I.mayReadFromMemory()) { 945 auto *LI = dyn_cast<LoadInst>(&I); 946 if (!LI) 947 return false; 948 if (!SafePtrs.count(LI->getPointerOperand())) { 949 // !llvm.mem.parallel_loop_access implies if-conversion safety. 950 // Otherwise, record that the load needs (real or emulated) masking 951 // and let the cost model decide. 952 if (!IsAnnotatedParallel || PreserveGuards) 953 MaskedOp.insert(LI); 954 continue; 955 } 956 } 957 958 if (I.mayWriteToMemory()) { 959 auto *SI = dyn_cast<StoreInst>(&I); 960 if (!SI) 961 return false; 962 // Predicated store requires some form of masking: 963 // 1) masked store HW instruction, 964 // 2) emulation via load-blend-store (only if safe and legal to do so, 965 // be aware on the race conditions), or 966 // 3) element-by-element predicate check and scalar store. 967 MaskedOp.insert(SI); 968 continue; 969 } 970 if (I.mayThrow()) 971 return false; 972 } 973 974 return true; 975 } 976 977 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 978 if (!EnableIfConversion) { 979 reportVectorizationFailure("If-conversion is disabled", 980 "if-conversion is disabled", 981 "IfConversionDisabled", 982 ORE, TheLoop); 983 return false; 984 } 985 986 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 987 988 // A list of pointers which are known to be dereferenceable within scope of 989 // the loop body for each iteration of the loop which executes. That is, 990 // the memory pointed to can be dereferenced (with the access size implied by 991 // the value's type) unconditionally within the loop header without 992 // introducing a new fault. 993 SmallPtrSet<Value *, 8> SafePointers; 994 995 // Collect safe addresses. 996 for (BasicBlock *BB : TheLoop->blocks()) { 997 if (!blockNeedsPredication(BB)) { 998 for (Instruction &I : *BB) 999 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1000 SafePointers.insert(Ptr); 1001 continue; 1002 } 1003 1004 // For a block which requires predication, a address may be safe to access 1005 // in the loop w/o predication if we can prove dereferenceability facts 1006 // sufficient to ensure it'll never fault within the loop. For the moment, 1007 // we restrict this to loads; stores are more complicated due to 1008 // concurrency restrictions. 1009 ScalarEvolution &SE = *PSE.getSE(); 1010 for (Instruction &I : *BB) { 1011 LoadInst *LI = dyn_cast<LoadInst>(&I); 1012 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1013 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1014 SafePointers.insert(LI->getPointerOperand()); 1015 } 1016 } 1017 1018 // Collect the blocks that need predication. 1019 BasicBlock *Header = TheLoop->getHeader(); 1020 for (BasicBlock *BB : TheLoop->blocks()) { 1021 // We don't support switch statements inside loops. 1022 if (!isa<BranchInst>(BB->getTerminator())) { 1023 reportVectorizationFailure("Loop contains a switch statement", 1024 "loop contains a switch statement", 1025 "LoopContainsSwitch", ORE, TheLoop, 1026 BB->getTerminator()); 1027 return false; 1028 } 1029 1030 // We must be able to predicate all blocks that need to be predicated. 1031 if (blockNeedsPredication(BB)) { 1032 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1033 ConditionalAssumes)) { 1034 reportVectorizationFailure( 1035 "Control flow cannot be substituted for a select", 1036 "control flow cannot be substituted for a select", 1037 "NoCFGForSelect", ORE, TheLoop, 1038 BB->getTerminator()); 1039 return false; 1040 } 1041 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1042 reportVectorizationFailure( 1043 "Control flow cannot be substituted for a select", 1044 "control flow cannot be substituted for a select", 1045 "NoCFGForSelect", ORE, TheLoop, 1046 BB->getTerminator()); 1047 return false; 1048 } 1049 } 1050 1051 // We can if-convert this loop. 1052 return true; 1053 } 1054 1055 // Helper function to canVectorizeLoopNestCFG. 1056 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1057 bool UseVPlanNativePath) { 1058 assert((UseVPlanNativePath || Lp->isInnermost()) && 1059 "VPlan-native path is not enabled."); 1060 1061 // TODO: ORE should be improved to show more accurate information when an 1062 // outer loop can't be vectorized because a nested loop is not understood or 1063 // legal. Something like: "outer_loop_location: loop not vectorized: 1064 // (inner_loop_location) loop control flow is not understood by vectorizer". 1065 1066 // Store the result and return it at the end instead of exiting early, in case 1067 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1068 bool Result = true; 1069 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1070 1071 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1072 // be canonicalized. 1073 if (!Lp->getLoopPreheader()) { 1074 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1075 "loop control flow is not understood by vectorizer", 1076 "CFGNotUnderstood", ORE, TheLoop); 1077 if (DoExtraAnalysis) 1078 Result = false; 1079 else 1080 return false; 1081 } 1082 1083 // We must have a single backedge. 1084 if (Lp->getNumBackEdges() != 1) { 1085 reportVectorizationFailure("The loop must have a single backedge", 1086 "loop control flow is not understood by vectorizer", 1087 "CFGNotUnderstood", ORE, TheLoop); 1088 if (DoExtraAnalysis) 1089 Result = false; 1090 else 1091 return false; 1092 } 1093 1094 // We currently must have a single "exit block" after the loop. Note that 1095 // multiple "exiting blocks" inside the loop are allowed, provided they all 1096 // reach the single exit block. 1097 // TODO: This restriction can be relaxed in the near future, it's here solely 1098 // to allow separation of changes for review. We need to generalize the phi 1099 // update logic in a number of places. 1100 if (!Lp->getUniqueExitBlock()) { 1101 reportVectorizationFailure("The loop must have a unique exit block", 1102 "loop control flow is not understood by vectorizer", 1103 "CFGNotUnderstood", ORE, TheLoop); 1104 if (DoExtraAnalysis) 1105 Result = false; 1106 else 1107 return false; 1108 } 1109 return Result; 1110 } 1111 1112 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1113 Loop *Lp, bool UseVPlanNativePath) { 1114 // Store the result and return it at the end instead of exiting early, in case 1115 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1116 bool Result = true; 1117 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1118 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1119 if (DoExtraAnalysis) 1120 Result = false; 1121 else 1122 return false; 1123 } 1124 1125 // Recursively check whether the loop control flow of nested loops is 1126 // understood. 1127 for (Loop *SubLp : *Lp) 1128 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1129 if (DoExtraAnalysis) 1130 Result = false; 1131 else 1132 return false; 1133 } 1134 1135 return Result; 1136 } 1137 1138 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1139 // Store the result and return it at the end instead of exiting early, in case 1140 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1141 bool Result = true; 1142 1143 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1144 // Check whether the loop-related control flow in the loop nest is expected by 1145 // vectorizer. 1146 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1147 if (DoExtraAnalysis) 1148 Result = false; 1149 else 1150 return false; 1151 } 1152 1153 // We need to have a loop header. 1154 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1155 << '\n'); 1156 1157 // Specific checks for outer loops. We skip the remaining legal checks at this 1158 // point because they don't support outer loops. 1159 if (!TheLoop->isInnermost()) { 1160 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1161 1162 if (!canVectorizeOuterLoop()) { 1163 reportVectorizationFailure("Unsupported outer loop", 1164 "unsupported outer loop", 1165 "UnsupportedOuterLoop", 1166 ORE, TheLoop); 1167 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1168 // outer loops. 1169 return false; 1170 } 1171 1172 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1173 return Result; 1174 } 1175 1176 assert(TheLoop->isInnermost() && "Inner loop expected."); 1177 // Check if we can if-convert non-single-bb loops. 1178 unsigned NumBlocks = TheLoop->getNumBlocks(); 1179 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1180 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1181 if (DoExtraAnalysis) 1182 Result = false; 1183 else 1184 return false; 1185 } 1186 1187 // Check if we can vectorize the instructions and CFG in this loop. 1188 if (!canVectorizeInstrs()) { 1189 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1190 if (DoExtraAnalysis) 1191 Result = false; 1192 else 1193 return false; 1194 } 1195 1196 // Go over each instruction and look at memory deps. 1197 if (!canVectorizeMemory()) { 1198 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1199 if (DoExtraAnalysis) 1200 Result = false; 1201 else 1202 return false; 1203 } 1204 1205 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1206 << (LAI->getRuntimePointerChecking()->Need 1207 ? " (with a runtime bound check)" 1208 : "") 1209 << "!\n"); 1210 1211 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1212 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1213 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1214 1215 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1216 reportVectorizationFailure("Too many SCEV checks needed", 1217 "Too many SCEV assumptions need to be made and checked at runtime", 1218 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1219 if (DoExtraAnalysis) 1220 Result = false; 1221 else 1222 return false; 1223 } 1224 1225 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1226 // we can vectorize, and at this point we don't have any other mem analysis 1227 // which may limit our maximum vectorization factor, so just return true with 1228 // no restrictions. 1229 return Result; 1230 } 1231 1232 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1233 1234 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1235 1236 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1237 1238 for (auto &Reduction : getReductionVars()) 1239 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1240 1241 // TODO: handle non-reduction outside users when tail is folded by masking. 1242 for (auto *AE : AllowedExit) { 1243 // Check that all users of allowed exit values are inside the loop or 1244 // are the live-out of a reduction. 1245 if (ReductionLiveOuts.count(AE)) 1246 continue; 1247 for (User *U : AE->users()) { 1248 Instruction *UI = cast<Instruction>(U); 1249 if (TheLoop->contains(UI)) 1250 continue; 1251 LLVM_DEBUG( 1252 dbgs() 1253 << "LV: Cannot fold tail by masking, loop has an outside user for " 1254 << *UI << "\n"); 1255 return false; 1256 } 1257 } 1258 1259 // The list of pointers that we can safely read and write to remains empty. 1260 SmallPtrSet<Value *, 8> SafePointers; 1261 1262 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1263 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1264 1265 // Check and mark all blocks for predication, including those that ordinarily 1266 // do not need predication such as the header block. 1267 for (BasicBlock *BB : TheLoop->blocks()) { 1268 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1269 TmpConditionalAssumes, 1270 /* MaskAllLoads= */ true)) { 1271 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1272 return false; 1273 } 1274 } 1275 1276 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1277 1278 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1279 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1280 TmpConditionalAssumes.end()); 1281 1282 return true; 1283 } 1284 1285 } // namespace llvm 1286