1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
35 
36 extern cl::opt<bool> EnableVPlanPredication;
37 
38 static cl::opt<bool>
39     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
40                        cl::desc("Enable if-conversion during vectorization."));
41 
42 namespace llvm {
43 cl::opt<bool>
44     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
45                          cl::desc("Allow enabling loop hints to reorder "
46                                   "FP operations during vectorization."));
47 }
48 
49 // TODO: Move size-based thresholds out of legality checking, make cost based
50 // decisions instead of hard thresholds.
51 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
52     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
53     cl::desc("The maximum number of SCEV checks allowed."));
54 
55 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
56     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
57     cl::desc("The maximum number of SCEV checks allowed with a "
58              "vectorize(enable) pragma"));
59 
60 static cl::opt<LoopVectorizeHints::ScalableForceKind>
61     ForceScalableVectorization(
62         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
63         cl::Hidden,
64         cl::desc("Control whether the compiler can use scalable vectors to "
65                  "vectorize a loop"),
66         cl::values(
67             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
68                        "Scalable vectorization is disabled."),
69             clEnumValN(
70                 LoopVectorizeHints::SK_PreferScalable, "preferred",
71                 "Scalable vectorization is available and favored when the "
72                 "cost is inconclusive."),
73             clEnumValN(
74                 LoopVectorizeHints::SK_PreferScalable, "on",
75                 "Scalable vectorization is available and favored when the "
76                 "cost is inconclusive.")));
77 
78 /// Maximum vectorization interleave count.
79 static const unsigned MaxInterleaveFactor = 16;
80 
81 namespace llvm {
82 
83 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
84   switch (Kind) {
85   case HK_WIDTH:
86     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
87   case HK_INTERLEAVE:
88     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
89   case HK_FORCE:
90     return (Val <= 1);
91   case HK_ISVECTORIZED:
92   case HK_PREDICATE:
93   case HK_SCALABLE:
94     return (Val == 0 || Val == 1);
95   }
96   return false;
97 }
98 
99 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
100                                        bool InterleaveOnlyWhenForced,
101                                        OptimizationRemarkEmitter &ORE,
102                                        const TargetTransformInfo *TTI)
103     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
104       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
105       Force("vectorize.enable", FK_Undefined, HK_FORCE),
106       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
107       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
108       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
109       TheLoop(L), ORE(ORE) {
110   // Populate values with existing loop metadata.
111   getHintsFromMetadata();
112 
113   // force-vector-interleave overrides DisableInterleaving.
114   if (VectorizerParams::isInterleaveForced())
115     Interleave.Value = VectorizerParams::VectorizationInterleave;
116 
117   // If the metadata doesn't explicitly specify whether to enable scalable
118   // vectorization, then decide based on the following criteria (increasing
119   // level of priority):
120   //  - Target default
121   //  - Metadata width
122   //  - Force option (always overrides)
123   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
124     if (TTI)
125       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
126                                                           : SK_FixedWidthOnly;
127 
128     if (Width.Value)
129       // If the width is set, but the metadata says nothing about the scalable
130       // property, then assume it concerns only a fixed-width UserVF.
131       // If width is not set, the flag takes precedence.
132       Scalable.Value = SK_FixedWidthOnly;
133   }
134 
135   // If the flag is set to force any use of scalable vectors, override the loop
136   // hints.
137   if (ForceScalableVectorization.getValue() !=
138       LoopVectorizeHints::SK_Unspecified)
139     Scalable.Value = ForceScalableVectorization.getValue();
140 
141   // Scalable vectorization is disabled if no preference is specified.
142   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
143     Scalable.Value = SK_FixedWidthOnly;
144 
145   if (IsVectorized.Value != 1)
146     // If the vectorization width and interleaving count are both 1 then
147     // consider the loop to have been already vectorized because there's
148     // nothing more that we can do.
149     IsVectorized.Value =
150         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
151   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
152              << "LV: Interleaving disabled by the pass manager\n");
153 }
154 
155 void LoopVectorizeHints::setAlreadyVectorized() {
156   LLVMContext &Context = TheLoop->getHeader()->getContext();
157 
158   MDNode *IsVectorizedMD = MDNode::get(
159       Context,
160       {MDString::get(Context, "llvm.loop.isvectorized"),
161        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
162   MDNode *LoopID = TheLoop->getLoopID();
163   MDNode *NewLoopID =
164       makePostTransformationMetadata(Context, LoopID,
165                                      {Twine(Prefix(), "vectorize.").str(),
166                                       Twine(Prefix(), "interleave.").str()},
167                                      {IsVectorizedMD});
168   TheLoop->setLoopID(NewLoopID);
169 
170   // Update internal cache.
171   IsVectorized.Value = 1;
172 }
173 
174 bool LoopVectorizeHints::allowVectorization(
175     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
176   if (getForce() == LoopVectorizeHints::FK_Disabled) {
177     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
178     emitRemarkWithHints();
179     return false;
180   }
181 
182   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
183     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
184     emitRemarkWithHints();
185     return false;
186   }
187 
188   if (getIsVectorized() == 1) {
189     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
190     // FIXME: Add interleave.disable metadata. This will allow
191     // vectorize.disable to be used without disabling the pass and errors
192     // to differentiate between disabled vectorization and a width of 1.
193     ORE.emit([&]() {
194       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
195                                         "AllDisabled", L->getStartLoc(),
196                                         L->getHeader())
197              << "loop not vectorized: vectorization and interleaving are "
198                 "explicitly disabled, or the loop has already been "
199                 "vectorized";
200     });
201     return false;
202   }
203 
204   return true;
205 }
206 
207 void LoopVectorizeHints::emitRemarkWithHints() const {
208   using namespace ore;
209 
210   ORE.emit([&]() {
211     if (Force.Value == LoopVectorizeHints::FK_Disabled)
212       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
213                                       TheLoop->getStartLoc(),
214                                       TheLoop->getHeader())
215              << "loop not vectorized: vectorization is explicitly disabled";
216     else {
217       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
218                                  TheLoop->getStartLoc(), TheLoop->getHeader());
219       R << "loop not vectorized";
220       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
221         R << " (Force=" << NV("Force", true);
222         if (Width.Value != 0)
223           R << ", Vector Width=" << NV("VectorWidth", getWidth());
224         if (getInterleave() != 0)
225           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
226         R << ")";
227       }
228       return R;
229     }
230   });
231 }
232 
233 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
234   if (getWidth() == ElementCount::getFixed(1))
235     return LV_NAME;
236   if (getForce() == LoopVectorizeHints::FK_Disabled)
237     return LV_NAME;
238   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
239     return LV_NAME;
240   return OptimizationRemarkAnalysis::AlwaysPrint;
241 }
242 
243 bool LoopVectorizeHints::allowReordering() const {
244   // Allow the vectorizer to change the order of operations if enabling
245   // loop hints are provided
246   ElementCount EC = getWidth();
247   return HintsAllowReordering &&
248          (getForce() == LoopVectorizeHints::FK_Enabled ||
249           EC.getKnownMinValue() > 1);
250 }
251 
252 void LoopVectorizeHints::getHintsFromMetadata() {
253   MDNode *LoopID = TheLoop->getLoopID();
254   if (!LoopID)
255     return;
256 
257   // First operand should refer to the loop id itself.
258   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
259   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
260 
261   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
262     const MDString *S = nullptr;
263     SmallVector<Metadata *, 4> Args;
264 
265     // The expected hint is either a MDString or a MDNode with the first
266     // operand a MDString.
267     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
268       if (!MD || MD->getNumOperands() == 0)
269         continue;
270       S = dyn_cast<MDString>(MD->getOperand(0));
271       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
272         Args.push_back(MD->getOperand(i));
273     } else {
274       S = dyn_cast<MDString>(LoopID->getOperand(i));
275       assert(Args.size() == 0 && "too many arguments for MDString");
276     }
277 
278     if (!S)
279       continue;
280 
281     // Check if the hint starts with the loop metadata prefix.
282     StringRef Name = S->getString();
283     if (Args.size() == 1)
284       setHint(Name, Args[0]);
285   }
286 }
287 
288 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
289   if (!Name.startswith(Prefix()))
290     return;
291   Name = Name.substr(Prefix().size(), StringRef::npos);
292 
293   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
294   if (!C)
295     return;
296   unsigned Val = C->getZExtValue();
297 
298   Hint *Hints[] = {&Width,        &Interleave, &Force,
299                    &IsVectorized, &Predicate,  &Scalable};
300   for (auto H : Hints) {
301     if (Name == H->Name) {
302       if (H->validate(Val))
303         H->Value = Val;
304       else
305         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
306       break;
307     }
308   }
309 }
310 
311 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
312 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
313 // executing the inner loop will execute the same iterations). This check is
314 // very constrained for now but it will be relaxed in the future. \p Lp is
315 // considered uniform if it meets all the following conditions:
316 //   1) it has a canonical IV (starting from 0 and with stride 1),
317 //   2) its latch terminator is a conditional branch and,
318 //   3) its latch condition is a compare instruction whose operands are the
319 //      canonical IV and an OuterLp invariant.
320 // This check doesn't take into account the uniformity of other conditions not
321 // related to the loop latch because they don't affect the loop uniformity.
322 //
323 // NOTE: We decided to keep all these checks and its associated documentation
324 // together so that we can easily have a picture of the current supported loop
325 // nests. However, some of the current checks don't depend on \p OuterLp and
326 // would be redundantly executed for each \p Lp if we invoked this function for
327 // different candidate outer loops. This is not the case for now because we
328 // don't currently have the infrastructure to evaluate multiple candidate outer
329 // loops and \p OuterLp will be a fixed parameter while we only support explicit
330 // outer loop vectorization. It's also very likely that these checks go away
331 // before introducing the aforementioned infrastructure. However, if this is not
332 // the case, we should move the \p OuterLp independent checks to a separate
333 // function that is only executed once for each \p Lp.
334 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
335   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
336 
337   // If Lp is the outer loop, it's uniform by definition.
338   if (Lp == OuterLp)
339     return true;
340   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
341 
342   // 1.
343   PHINode *IV = Lp->getCanonicalInductionVariable();
344   if (!IV) {
345     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
346     return false;
347   }
348 
349   // 2.
350   BasicBlock *Latch = Lp->getLoopLatch();
351   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
352   if (!LatchBr || LatchBr->isUnconditional()) {
353     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
354     return false;
355   }
356 
357   // 3.
358   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
359   if (!LatchCmp) {
360     LLVM_DEBUG(
361         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
362     return false;
363   }
364 
365   Value *CondOp0 = LatchCmp->getOperand(0);
366   Value *CondOp1 = LatchCmp->getOperand(1);
367   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
368   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
369       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
370     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
371     return false;
372   }
373 
374   return true;
375 }
376 
377 // Return true if \p Lp and all its nested loops are uniform with regard to \p
378 // OuterLp.
379 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
380   if (!isUniformLoop(Lp, OuterLp))
381     return false;
382 
383   // Check if nested loops are uniform.
384   for (Loop *SubLp : *Lp)
385     if (!isUniformLoopNest(SubLp, OuterLp))
386       return false;
387 
388   return true;
389 }
390 
391 /// Check whether it is safe to if-convert this phi node.
392 ///
393 /// Phi nodes with constant expressions that can trap are not safe to if
394 /// convert.
395 static bool canIfConvertPHINodes(BasicBlock *BB) {
396   for (PHINode &Phi : BB->phis()) {
397     for (Value *V : Phi.incoming_values())
398       if (auto *C = dyn_cast<Constant>(V))
399         if (C->canTrap())
400           return false;
401   }
402   return true;
403 }
404 
405 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
406   if (Ty->isPointerTy())
407     return DL.getIntPtrType(Ty);
408 
409   // It is possible that char's or short's overflow when we ask for the loop's
410   // trip count, work around this by changing the type size.
411   if (Ty->getScalarSizeInBits() < 32)
412     return Type::getInt32Ty(Ty->getContext());
413 
414   return Ty;
415 }
416 
417 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
418   Ty0 = convertPointerToIntegerType(DL, Ty0);
419   Ty1 = convertPointerToIntegerType(DL, Ty1);
420   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
421     return Ty0;
422   return Ty1;
423 }
424 
425 /// Check that the instruction has outside loop users and is not an
426 /// identified reduction variable.
427 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
428                                SmallPtrSetImpl<Value *> &AllowedExit) {
429   // Reductions, Inductions and non-header phis are allowed to have exit users. All
430   // other instructions must not have external users.
431   if (!AllowedExit.count(Inst))
432     // Check that all of the users of the loop are inside the BB.
433     for (User *U : Inst->users()) {
434       Instruction *UI = cast<Instruction>(U);
435       // This user may be a reduction exit value.
436       if (!TheLoop->contains(UI)) {
437         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
438         return true;
439       }
440     }
441   return false;
442 }
443 
444 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
445                                                 Value *Ptr) const {
446   const ValueToValueMap &Strides =
447       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
448 
449   Function *F = TheLoop->getHeader()->getParent();
450   bool OptForSize = F->hasOptSize() ||
451                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
452                                                 PGSOQueryType::IRPass);
453   bool CanAddPredicate = !OptForSize;
454   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
455                             CanAddPredicate, false);
456   if (Stride == 1 || Stride == -1)
457     return Stride;
458   return 0;
459 }
460 
461 bool LoopVectorizationLegality::isUniform(Value *V) {
462   return LAI->isUniform(V);
463 }
464 
465 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
466   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
467   // Store the result and return it at the end instead of exiting early, in case
468   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
469   bool Result = true;
470   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
471 
472   for (BasicBlock *BB : TheLoop->blocks()) {
473     // Check whether the BB terminator is a BranchInst. Any other terminator is
474     // not supported yet.
475     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
476     if (!Br) {
477       reportVectorizationFailure("Unsupported basic block terminator",
478           "loop control flow is not understood by vectorizer",
479           "CFGNotUnderstood", ORE, TheLoop);
480       if (DoExtraAnalysis)
481         Result = false;
482       else
483         return false;
484     }
485 
486     // Check whether the BranchInst is a supported one. Only unconditional
487     // branches, conditional branches with an outer loop invariant condition or
488     // backedges are supported.
489     // FIXME: We skip these checks when VPlan predication is enabled as we
490     // want to allow divergent branches. This whole check will be removed
491     // once VPlan predication is on by default.
492     if (!EnableVPlanPredication && Br && Br->isConditional() &&
493         !TheLoop->isLoopInvariant(Br->getCondition()) &&
494         !LI->isLoopHeader(Br->getSuccessor(0)) &&
495         !LI->isLoopHeader(Br->getSuccessor(1))) {
496       reportVectorizationFailure("Unsupported conditional branch",
497           "loop control flow is not understood by vectorizer",
498           "CFGNotUnderstood", ORE, TheLoop);
499       if (DoExtraAnalysis)
500         Result = false;
501       else
502         return false;
503     }
504   }
505 
506   // Check whether inner loops are uniform. At this point, we only support
507   // simple outer loops scenarios with uniform nested loops.
508   if (!isUniformLoopNest(TheLoop /*loop nest*/,
509                          TheLoop /*context outer loop*/)) {
510     reportVectorizationFailure("Outer loop contains divergent loops",
511         "loop control flow is not understood by vectorizer",
512         "CFGNotUnderstood", ORE, TheLoop);
513     if (DoExtraAnalysis)
514       Result = false;
515     else
516       return false;
517   }
518 
519   // Check whether we are able to set up outer loop induction.
520   if (!setupOuterLoopInductions()) {
521     reportVectorizationFailure("Unsupported outer loop Phi(s)",
522                                "Unsupported outer loop Phi(s)",
523                                "UnsupportedPhi", ORE, TheLoop);
524     if (DoExtraAnalysis)
525       Result = false;
526     else
527       return false;
528   }
529 
530   return Result;
531 }
532 
533 void LoopVectorizationLegality::addInductionPhi(
534     PHINode *Phi, const InductionDescriptor &ID,
535     SmallPtrSetImpl<Value *> &AllowedExit) {
536   Inductions[Phi] = ID;
537 
538   // In case this induction also comes with casts that we know we can ignore
539   // in the vectorized loop body, record them here. All casts could be recorded
540   // here for ignoring, but suffices to record only the first (as it is the
541   // only one that may bw used outside the cast sequence).
542   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
543   if (!Casts.empty())
544     InductionCastsToIgnore.insert(*Casts.begin());
545 
546   Type *PhiTy = Phi->getType();
547   const DataLayout &DL = Phi->getModule()->getDataLayout();
548 
549   // Get the widest type.
550   if (!PhiTy->isFloatingPointTy()) {
551     if (!WidestIndTy)
552       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
553     else
554       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
555   }
556 
557   // Int inductions are special because we only allow one IV.
558   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
559       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
560       isa<Constant>(ID.getStartValue()) &&
561       cast<Constant>(ID.getStartValue())->isNullValue()) {
562 
563     // Use the phi node with the widest type as induction. Use the last
564     // one if there are multiple (no good reason for doing this other
565     // than it is expedient). We've checked that it begins at zero and
566     // steps by one, so this is a canonical induction variable.
567     if (!PrimaryInduction || PhiTy == WidestIndTy)
568       PrimaryInduction = Phi;
569   }
570 
571   // Both the PHI node itself, and the "post-increment" value feeding
572   // back into the PHI node may have external users.
573   // We can allow those uses, except if the SCEVs we have for them rely
574   // on predicates that only hold within the loop, since allowing the exit
575   // currently means re-using this SCEV outside the loop (see PR33706 for more
576   // details).
577   if (PSE.getPredicate().isAlwaysTrue()) {
578     AllowedExit.insert(Phi);
579     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
580   }
581 
582   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
583 }
584 
585 bool LoopVectorizationLegality::setupOuterLoopInductions() {
586   BasicBlock *Header = TheLoop->getHeader();
587 
588   // Returns true if a given Phi is a supported induction.
589   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
590     InductionDescriptor ID;
591     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
592         ID.getKind() == InductionDescriptor::IK_IntInduction) {
593       addInductionPhi(&Phi, ID, AllowedExit);
594       return true;
595     } else {
596       // Bail out for any Phi in the outer loop header that is not a supported
597       // induction.
598       LLVM_DEBUG(
599           dbgs()
600           << "LV: Found unsupported PHI for outer loop vectorization.\n");
601       return false;
602     }
603   };
604 
605   if (llvm::all_of(Header->phis(), isSupportedPhi))
606     return true;
607   else
608     return false;
609 }
610 
611 /// Checks if a function is scalarizable according to the TLI, in
612 /// the sense that it should be vectorized and then expanded in
613 /// multiple scalar calls. This is represented in the
614 /// TLI via mappings that do not specify a vector name, as in the
615 /// following example:
616 ///
617 ///    const VecDesc VecIntrinsics[] = {
618 ///      {"llvm.phx.abs.i32", "", 4}
619 ///    };
620 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
621   const StringRef ScalarName = CI.getCalledFunction()->getName();
622   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
623   // Check that all known VFs are not associated to a vector
624   // function, i.e. the vector name is emty.
625   if (Scalarize) {
626     ElementCount WidestFixedVF, WidestScalableVF;
627     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
628     for (ElementCount VF = ElementCount::getFixed(2);
629          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
630       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
631     for (ElementCount VF = ElementCount::getScalable(1);
632          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
633       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
634     assert((WidestScalableVF.isZero() || !Scalarize) &&
635            "Caller may decide to scalarize a variant using a scalable VF");
636   }
637   return Scalarize;
638 }
639 
640 bool LoopVectorizationLegality::canVectorizeInstrs() {
641   BasicBlock *Header = TheLoop->getHeader();
642 
643   // For each block in the loop.
644   for (BasicBlock *BB : TheLoop->blocks()) {
645     // Scan the instructions in the block and look for hazards.
646     for (Instruction &I : *BB) {
647       if (auto *Phi = dyn_cast<PHINode>(&I)) {
648         Type *PhiTy = Phi->getType();
649         // Check that this PHI type is allowed.
650         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
651             !PhiTy->isPointerTy()) {
652           reportVectorizationFailure("Found a non-int non-pointer PHI",
653                                      "loop control flow is not understood by vectorizer",
654                                      "CFGNotUnderstood", ORE, TheLoop);
655           return false;
656         }
657 
658         // If this PHINode is not in the header block, then we know that we
659         // can convert it to select during if-conversion. No need to check if
660         // the PHIs in this block are induction or reduction variables.
661         if (BB != Header) {
662           // Non-header phi nodes that have outside uses can be vectorized. Add
663           // them to the list of allowed exits.
664           // Unsafe cyclic dependencies with header phis are identified during
665           // legalization for reduction, induction and first order
666           // recurrences.
667           AllowedExit.insert(&I);
668           continue;
669         }
670 
671         // We only allow if-converted PHIs with exactly two incoming values.
672         if (Phi->getNumIncomingValues() != 2) {
673           reportVectorizationFailure("Found an invalid PHI",
674               "loop control flow is not understood by vectorizer",
675               "CFGNotUnderstood", ORE, TheLoop, Phi);
676           return false;
677         }
678 
679         RecurrenceDescriptor RedDes;
680         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
681                                                  DT)) {
682           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
683           AllowedExit.insert(RedDes.getLoopExitInstr());
684           Reductions[Phi] = RedDes;
685           continue;
686         }
687 
688         // TODO: Instead of recording the AllowedExit, it would be good to record the
689         // complementary set: NotAllowedExit. These include (but may not be
690         // limited to):
691         // 1. Reduction phis as they represent the one-before-last value, which
692         // is not available when vectorized
693         // 2. Induction phis and increment when SCEV predicates cannot be used
694         // outside the loop - see addInductionPhi
695         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
696         // outside the loop - see call to hasOutsideLoopUser in the non-phi
697         // handling below
698         // 4. FirstOrderRecurrence phis that can possibly be handled by
699         // extraction.
700         // By recording these, we can then reason about ways to vectorize each
701         // of these NotAllowedExit.
702         InductionDescriptor ID;
703         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
704           addInductionPhi(Phi, ID, AllowedExit);
705           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
706           continue;
707         }
708 
709         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
710                                                          SinkAfter, DT)) {
711           AllowedExit.insert(Phi);
712           FirstOrderRecurrences.insert(Phi);
713           continue;
714         }
715 
716         // As a last resort, coerce the PHI to a AddRec expression
717         // and re-try classifying it a an induction PHI.
718         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
719           addInductionPhi(Phi, ID, AllowedExit);
720           continue;
721         }
722 
723         reportVectorizationFailure("Found an unidentified PHI",
724             "value that could not be identified as "
725             "reduction is used outside the loop",
726             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
727         return false;
728       } // end of PHI handling
729 
730       // We handle calls that:
731       //   * Are debug info intrinsics.
732       //   * Have a mapping to an IR intrinsic.
733       //   * Have a vector version available.
734       auto *CI = dyn_cast<CallInst>(&I);
735 
736       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
737           !isa<DbgInfoIntrinsic>(CI) &&
738           !(CI->getCalledFunction() && TLI &&
739             (!VFDatabase::getMappings(*CI).empty() ||
740              isTLIScalarize(*TLI, *CI)))) {
741         // If the call is a recognized math libary call, it is likely that
742         // we can vectorize it given loosened floating-point constraints.
743         LibFunc Func;
744         bool IsMathLibCall =
745             TLI && CI->getCalledFunction() &&
746             CI->getType()->isFloatingPointTy() &&
747             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
748             TLI->hasOptimizedCodeGen(Func);
749 
750         if (IsMathLibCall) {
751           // TODO: Ideally, we should not use clang-specific language here,
752           // but it's hard to provide meaningful yet generic advice.
753           // Also, should this be guarded by allowExtraAnalysis() and/or be part
754           // of the returned info from isFunctionVectorizable()?
755           reportVectorizationFailure(
756               "Found a non-intrinsic callsite",
757               "library call cannot be vectorized. "
758               "Try compiling with -fno-math-errno, -ffast-math, "
759               "or similar flags",
760               "CantVectorizeLibcall", ORE, TheLoop, CI);
761         } else {
762           reportVectorizationFailure("Found a non-intrinsic callsite",
763                                      "call instruction cannot be vectorized",
764                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
765         }
766         return false;
767       }
768 
769       // Some intrinsics have scalar arguments and should be same in order for
770       // them to be vectorized (i.e. loop invariant).
771       if (CI) {
772         auto *SE = PSE.getSE();
773         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
774         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
775           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
776             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
777               reportVectorizationFailure("Found unvectorizable intrinsic",
778                   "intrinsic instruction cannot be vectorized",
779                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
780               return false;
781             }
782           }
783       }
784 
785       // Check that the instruction return type is vectorizable.
786       // Also, we can't vectorize extractelement instructions.
787       if ((!VectorType::isValidElementType(I.getType()) &&
788            !I.getType()->isVoidTy()) ||
789           isa<ExtractElementInst>(I)) {
790         reportVectorizationFailure("Found unvectorizable type",
791             "instruction return type cannot be vectorized",
792             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
793         return false;
794       }
795 
796       // Check that the stored type is vectorizable.
797       if (auto *ST = dyn_cast<StoreInst>(&I)) {
798         Type *T = ST->getValueOperand()->getType();
799         if (!VectorType::isValidElementType(T)) {
800           reportVectorizationFailure("Store instruction cannot be vectorized",
801                                      "store instruction cannot be vectorized",
802                                      "CantVectorizeStore", ORE, TheLoop, ST);
803           return false;
804         }
805 
806         // For nontemporal stores, check that a nontemporal vector version is
807         // supported on the target.
808         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
809           // Arbitrarily try a vector of 2 elements.
810           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
811           assert(VecTy && "did not find vectorized version of stored type");
812           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
813             reportVectorizationFailure(
814                 "nontemporal store instruction cannot be vectorized",
815                 "nontemporal store instruction cannot be vectorized",
816                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
817             return false;
818           }
819         }
820 
821       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
822         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
823           // For nontemporal loads, check that a nontemporal vector version is
824           // supported on the target (arbitrarily try a vector of 2 elements).
825           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
826           assert(VecTy && "did not find vectorized version of load type");
827           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
828             reportVectorizationFailure(
829                 "nontemporal load instruction cannot be vectorized",
830                 "nontemporal load instruction cannot be vectorized",
831                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
832             return false;
833           }
834         }
835 
836         // FP instructions can allow unsafe algebra, thus vectorizable by
837         // non-IEEE-754 compliant SIMD units.
838         // This applies to floating-point math operations and calls, not memory
839         // operations, shuffles, or casts, as they don't change precision or
840         // semantics.
841       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
842                  !I.isFast()) {
843         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
844         Hints->setPotentiallyUnsafe();
845       }
846 
847       // Reduction instructions are allowed to have exit users.
848       // All other instructions must not have external users.
849       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
850         // We can safely vectorize loops where instructions within the loop are
851         // used outside the loop only if the SCEV predicates within the loop is
852         // same as outside the loop. Allowing the exit means reusing the SCEV
853         // outside the loop.
854         if (PSE.getPredicate().isAlwaysTrue()) {
855           AllowedExit.insert(&I);
856           continue;
857         }
858         reportVectorizationFailure("Value cannot be used outside the loop",
859                                    "value cannot be used outside the loop",
860                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
861         return false;
862       }
863     } // next instr.
864   }
865 
866   if (!PrimaryInduction) {
867     if (Inductions.empty()) {
868       reportVectorizationFailure("Did not find one integer induction var",
869           "loop induction variable could not be identified",
870           "NoInductionVariable", ORE, TheLoop);
871       return false;
872     } else if (!WidestIndTy) {
873       reportVectorizationFailure("Did not find one integer induction var",
874           "integer loop induction variable could not be identified",
875           "NoIntegerInductionVariable", ORE, TheLoop);
876       return false;
877     } else {
878       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
879     }
880   }
881 
882   // For first order recurrences, we use the previous value (incoming value from
883   // the latch) to check if it dominates all users of the recurrence. Bail out
884   // if we have to sink such an instruction for another recurrence, as the
885   // dominance requirement may not hold after sinking.
886   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
887   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
888         Instruction *V =
889             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
890         return SinkAfter.find(V) != SinkAfter.end();
891       }))
892     return false;
893 
894   // Now we know the widest induction type, check if our found induction
895   // is the same size. If it's not, unset it here and InnerLoopVectorizer
896   // will create another.
897   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
898     PrimaryInduction = nullptr;
899 
900   return true;
901 }
902 
903 bool LoopVectorizationLegality::canVectorizeMemory() {
904   LAI = &(*GetLAA)(*TheLoop);
905   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
906   if (LAR) {
907     ORE->emit([&]() {
908       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
909                                         "loop not vectorized: ", *LAR);
910     });
911   }
912 
913   if (!LAI->canVectorizeMemory())
914     return false;
915 
916   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
917     reportVectorizationFailure("Stores to a uniform address",
918         "write to a loop invariant address could not be vectorized",
919         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
920     return false;
921   }
922 
923   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
924   PSE.addPredicate(LAI->getPSE().getPredicate());
925   return true;
926 }
927 
928 bool LoopVectorizationLegality::canVectorizeFPMath(
929     bool EnableStrictReductions) {
930 
931   // First check if there is any ExactFP math or if we allow reassociations
932   if (!Requirements->getExactFPInst() || Hints->allowReordering())
933     return true;
934 
935   // If the above is false, we have ExactFPMath & do not allow reordering.
936   // If the EnableStrictReductions flag is set, first check if we have any
937   // Exact FP induction vars, which we cannot vectorize.
938   if (!EnableStrictReductions ||
939       any_of(getInductionVars(), [&](auto &Induction) -> bool {
940         InductionDescriptor IndDesc = Induction.second;
941         return IndDesc.getExactFPMathInst();
942       }))
943     return false;
944 
945   // We can now only vectorize if all reductions with Exact FP math also
946   // have the isOrdered flag set, which indicates that we can move the
947   // reduction operations in-loop.
948   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
949     const RecurrenceDescriptor &RdxDesc = Reduction.second;
950     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
951   }));
952 }
953 
954 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
955   Value *In0 = const_cast<Value *>(V);
956   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
957   if (!PN)
958     return false;
959 
960   return Inductions.count(PN);
961 }
962 
963 const InductionDescriptor *
964 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
965   if (!isInductionPhi(Phi))
966     return nullptr;
967   auto &ID = getInductionVars().find(Phi)->second;
968   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
969       ID.getKind() == InductionDescriptor::IK_FpInduction)
970     return &ID;
971   return nullptr;
972 }
973 
974 const InductionDescriptor *
975 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
976   if (!isInductionPhi(Phi))
977     return nullptr;
978   auto &ID = getInductionVars().find(Phi)->second;
979   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
980     return &ID;
981   return nullptr;
982 }
983 
984 bool LoopVectorizationLegality::isCastedInductionVariable(
985     const Value *V) const {
986   auto *Inst = dyn_cast<Instruction>(V);
987   return (Inst && InductionCastsToIgnore.count(Inst));
988 }
989 
990 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
991   return isInductionPhi(V) || isCastedInductionVariable(V);
992 }
993 
994 bool LoopVectorizationLegality::isFirstOrderRecurrence(
995     const PHINode *Phi) const {
996   return FirstOrderRecurrences.count(Phi);
997 }
998 
999 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1000   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1001 }
1002 
1003 bool LoopVectorizationLegality::blockCanBePredicated(
1004     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1005     SmallPtrSetImpl<const Instruction *> &MaskedOp,
1006     SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1007   for (Instruction &I : *BB) {
1008     // Check that we don't have a constant expression that can trap as operand.
1009     for (Value *Operand : I.operands()) {
1010       if (auto *C = dyn_cast<Constant>(Operand))
1011         if (C->canTrap())
1012           return false;
1013     }
1014 
1015     // We can predicate blocks with calls to assume, as long as we drop them in
1016     // case we flatten the CFG via predication.
1017     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1018       ConditionalAssumes.insert(&I);
1019       continue;
1020     }
1021 
1022     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1023     // TODO: there might be cases that it should block the vectorization. Let's
1024     // ignore those for now.
1025     if (isa<NoAliasScopeDeclInst>(&I))
1026       continue;
1027 
1028     // We might be able to hoist the load.
1029     if (I.mayReadFromMemory()) {
1030       auto *LI = dyn_cast<LoadInst>(&I);
1031       if (!LI)
1032         return false;
1033       if (!SafePtrs.count(LI->getPointerOperand())) {
1034         MaskedOp.insert(LI);
1035         continue;
1036       }
1037     }
1038 
1039     if (I.mayWriteToMemory()) {
1040       auto *SI = dyn_cast<StoreInst>(&I);
1041       if (!SI)
1042         return false;
1043       // Predicated store requires some form of masking:
1044       // 1) masked store HW instruction,
1045       // 2) emulation via load-blend-store (only if safe and legal to do so,
1046       //    be aware on the race conditions), or
1047       // 3) element-by-element predicate check and scalar store.
1048       MaskedOp.insert(SI);
1049       continue;
1050     }
1051     if (I.mayThrow())
1052       return false;
1053   }
1054 
1055   return true;
1056 }
1057 
1058 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1059   if (!EnableIfConversion) {
1060     reportVectorizationFailure("If-conversion is disabled",
1061                                "if-conversion is disabled",
1062                                "IfConversionDisabled",
1063                                ORE, TheLoop);
1064     return false;
1065   }
1066 
1067   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1068 
1069   // A list of pointers which are known to be dereferenceable within scope of
1070   // the loop body for each iteration of the loop which executes.  That is,
1071   // the memory pointed to can be dereferenced (with the access size implied by
1072   // the value's type) unconditionally within the loop header without
1073   // introducing a new fault.
1074   SmallPtrSet<Value *, 8> SafePointers;
1075 
1076   // Collect safe addresses.
1077   for (BasicBlock *BB : TheLoop->blocks()) {
1078     if (!blockNeedsPredication(BB)) {
1079       for (Instruction &I : *BB)
1080         if (auto *Ptr = getLoadStorePointerOperand(&I))
1081           SafePointers.insert(Ptr);
1082       continue;
1083     }
1084 
1085     // For a block which requires predication, a address may be safe to access
1086     // in the loop w/o predication if we can prove dereferenceability facts
1087     // sufficient to ensure it'll never fault within the loop. For the moment,
1088     // we restrict this to loads; stores are more complicated due to
1089     // concurrency restrictions.
1090     ScalarEvolution &SE = *PSE.getSE();
1091     for (Instruction &I : *BB) {
1092       LoadInst *LI = dyn_cast<LoadInst>(&I);
1093       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1094           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1095         SafePointers.insert(LI->getPointerOperand());
1096     }
1097   }
1098 
1099   // Collect the blocks that need predication.
1100   BasicBlock *Header = TheLoop->getHeader();
1101   for (BasicBlock *BB : TheLoop->blocks()) {
1102     // We don't support switch statements inside loops.
1103     if (!isa<BranchInst>(BB->getTerminator())) {
1104       reportVectorizationFailure("Loop contains a switch statement",
1105                                  "loop contains a switch statement",
1106                                  "LoopContainsSwitch", ORE, TheLoop,
1107                                  BB->getTerminator());
1108       return false;
1109     }
1110 
1111     // We must be able to predicate all blocks that need to be predicated.
1112     if (blockNeedsPredication(BB)) {
1113       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1114                                 ConditionalAssumes)) {
1115         reportVectorizationFailure(
1116             "Control flow cannot be substituted for a select",
1117             "control flow cannot be substituted for a select",
1118             "NoCFGForSelect", ORE, TheLoop,
1119             BB->getTerminator());
1120         return false;
1121       }
1122     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1123       reportVectorizationFailure(
1124           "Control flow cannot be substituted for a select",
1125           "control flow cannot be substituted for a select",
1126           "NoCFGForSelect", ORE, TheLoop,
1127           BB->getTerminator());
1128       return false;
1129     }
1130   }
1131 
1132   // We can if-convert this loop.
1133   return true;
1134 }
1135 
1136 // Helper function to canVectorizeLoopNestCFG.
1137 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1138                                                     bool UseVPlanNativePath) {
1139   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1140          "VPlan-native path is not enabled.");
1141 
1142   // TODO: ORE should be improved to show more accurate information when an
1143   // outer loop can't be vectorized because a nested loop is not understood or
1144   // legal. Something like: "outer_loop_location: loop not vectorized:
1145   // (inner_loop_location) loop control flow is not understood by vectorizer".
1146 
1147   // Store the result and return it at the end instead of exiting early, in case
1148   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1149   bool Result = true;
1150   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1151 
1152   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1153   // be canonicalized.
1154   if (!Lp->getLoopPreheader()) {
1155     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1156         "loop control flow is not understood by vectorizer",
1157         "CFGNotUnderstood", ORE, TheLoop);
1158     if (DoExtraAnalysis)
1159       Result = false;
1160     else
1161       return false;
1162   }
1163 
1164   // We must have a single backedge.
1165   if (Lp->getNumBackEdges() != 1) {
1166     reportVectorizationFailure("The loop must have a single backedge",
1167         "loop control flow is not understood by vectorizer",
1168         "CFGNotUnderstood", ORE, TheLoop);
1169     if (DoExtraAnalysis)
1170       Result = false;
1171     else
1172       return false;
1173   }
1174 
1175   return Result;
1176 }
1177 
1178 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1179     Loop *Lp, bool UseVPlanNativePath) {
1180   // Store the result and return it at the end instead of exiting early, in case
1181   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1182   bool Result = true;
1183   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1184   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1185     if (DoExtraAnalysis)
1186       Result = false;
1187     else
1188       return false;
1189   }
1190 
1191   // Recursively check whether the loop control flow of nested loops is
1192   // understood.
1193   for (Loop *SubLp : *Lp)
1194     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1195       if (DoExtraAnalysis)
1196         Result = false;
1197       else
1198         return false;
1199     }
1200 
1201   return Result;
1202 }
1203 
1204 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1205   // Store the result and return it at the end instead of exiting early, in case
1206   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1207   bool Result = true;
1208 
1209   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1210   // Check whether the loop-related control flow in the loop nest is expected by
1211   // vectorizer.
1212   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1213     if (DoExtraAnalysis)
1214       Result = false;
1215     else
1216       return false;
1217   }
1218 
1219   // We need to have a loop header.
1220   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1221                     << '\n');
1222 
1223   // Specific checks for outer loops. We skip the remaining legal checks at this
1224   // point because they don't support outer loops.
1225   if (!TheLoop->isInnermost()) {
1226     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1227 
1228     if (!canVectorizeOuterLoop()) {
1229       reportVectorizationFailure("Unsupported outer loop",
1230                                  "unsupported outer loop",
1231                                  "UnsupportedOuterLoop",
1232                                  ORE, TheLoop);
1233       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1234       // outer loops.
1235       return false;
1236     }
1237 
1238     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1239     return Result;
1240   }
1241 
1242   assert(TheLoop->isInnermost() && "Inner loop expected.");
1243   // Check if we can if-convert non-single-bb loops.
1244   unsigned NumBlocks = TheLoop->getNumBlocks();
1245   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1246     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1247     if (DoExtraAnalysis)
1248       Result = false;
1249     else
1250       return false;
1251   }
1252 
1253   // Check if we can vectorize the instructions and CFG in this loop.
1254   if (!canVectorizeInstrs()) {
1255     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1256     if (DoExtraAnalysis)
1257       Result = false;
1258     else
1259       return false;
1260   }
1261 
1262   // Go over each instruction and look at memory deps.
1263   if (!canVectorizeMemory()) {
1264     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1265     if (DoExtraAnalysis)
1266       Result = false;
1267     else
1268       return false;
1269   }
1270 
1271   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1272                     << (LAI->getRuntimePointerChecking()->Need
1273                             ? " (with a runtime bound check)"
1274                             : "")
1275                     << "!\n");
1276 
1277   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1278   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1279     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1280 
1281   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1282     reportVectorizationFailure("Too many SCEV checks needed",
1283         "Too many SCEV assumptions need to be made and checked at runtime",
1284         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1285     if (DoExtraAnalysis)
1286       Result = false;
1287     else
1288       return false;
1289   }
1290 
1291   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1292   // we can vectorize, and at this point we don't have any other mem analysis
1293   // which may limit our maximum vectorization factor, so just return true with
1294   // no restrictions.
1295   return Result;
1296 }
1297 
1298 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1299 
1300   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1301 
1302   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1303 
1304   for (auto &Reduction : getReductionVars())
1305     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1306 
1307   // TODO: handle non-reduction outside users when tail is folded by masking.
1308   for (auto *AE : AllowedExit) {
1309     // Check that all users of allowed exit values are inside the loop or
1310     // are the live-out of a reduction.
1311     if (ReductionLiveOuts.count(AE))
1312       continue;
1313     for (User *U : AE->users()) {
1314       Instruction *UI = cast<Instruction>(U);
1315       if (TheLoop->contains(UI))
1316         continue;
1317       LLVM_DEBUG(
1318           dbgs()
1319           << "LV: Cannot fold tail by masking, loop has an outside user for "
1320           << *UI << "\n");
1321       return false;
1322     }
1323   }
1324 
1325   // The list of pointers that we can safely read and write to remains empty.
1326   SmallPtrSet<Value *, 8> SafePointers;
1327 
1328   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1329   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1330 
1331   // Check and mark all blocks for predication, including those that ordinarily
1332   // do not need predication such as the header block.
1333   for (BasicBlock *BB : TheLoop->blocks()) {
1334     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1335                               TmpConditionalAssumes)) {
1336       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1337       return false;
1338     }
1339   }
1340 
1341   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1342 
1343   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1344   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1345                             TmpConditionalAssumes.end());
1346 
1347   return true;
1348 }
1349 
1350 } // namespace llvm
1351