1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/TargetLibraryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/Analysis/VectorUtils.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/SizeOpts.h"
28 #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29 
30 using namespace llvm;
31 using namespace PatternMatch;
32 
33 #define LV_NAME "loop-vectorize"
34 #define DEBUG_TYPE LV_NAME
35 
36 static cl::opt<bool>
37     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38                        cl::desc("Enable if-conversion during vectorization."));
39 
40 namespace llvm {
41 cl::opt<bool>
42     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
43                          cl::desc("Allow enabling loop hints to reorder "
44                                   "FP operations during vectorization."));
45 }
46 
47 // TODO: Move size-based thresholds out of legality checking, make cost based
48 // decisions instead of hard thresholds.
49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
50     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
51     cl::desc("The maximum number of SCEV checks allowed."));
52 
53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
54     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
55     cl::desc("The maximum number of SCEV checks allowed with a "
56              "vectorize(enable) pragma"));
57 
58 static cl::opt<LoopVectorizeHints::ScalableForceKind>
59     ForceScalableVectorization(
60         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
61         cl::Hidden,
62         cl::desc("Control whether the compiler can use scalable vectors to "
63                  "vectorize a loop"),
64         cl::values(
65             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
66                        "Scalable vectorization is disabled."),
67             clEnumValN(
68                 LoopVectorizeHints::SK_PreferScalable, "preferred",
69                 "Scalable vectorization is available and favored when the "
70                 "cost is inconclusive."),
71             clEnumValN(
72                 LoopVectorizeHints::SK_PreferScalable, "on",
73                 "Scalable vectorization is available and favored when the "
74                 "cost is inconclusive.")));
75 
76 /// Maximum vectorization interleave count.
77 static const unsigned MaxInterleaveFactor = 16;
78 
79 namespace llvm {
80 
81 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
82   switch (Kind) {
83   case HK_WIDTH:
84     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
85   case HK_INTERLEAVE:
86     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
87   case HK_FORCE:
88     return (Val <= 1);
89   case HK_ISVECTORIZED:
90   case HK_PREDICATE:
91   case HK_SCALABLE:
92     return (Val == 0 || Val == 1);
93   }
94   return false;
95 }
96 
97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
98                                        bool InterleaveOnlyWhenForced,
99                                        OptimizationRemarkEmitter &ORE,
100                                        const TargetTransformInfo *TTI)
101     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
102       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
103       Force("vectorize.enable", FK_Undefined, HK_FORCE),
104       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
105       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
106       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
107       TheLoop(L), ORE(ORE) {
108   // Populate values with existing loop metadata.
109   getHintsFromMetadata();
110 
111   // force-vector-interleave overrides DisableInterleaving.
112   if (VectorizerParams::isInterleaveForced())
113     Interleave.Value = VectorizerParams::VectorizationInterleave;
114 
115   // If the metadata doesn't explicitly specify whether to enable scalable
116   // vectorization, then decide based on the following criteria (increasing
117   // level of priority):
118   //  - Target default
119   //  - Metadata width
120   //  - Force option (always overrides)
121   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
122     if (TTI)
123       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
124                                                           : SK_FixedWidthOnly;
125 
126     if (Width.Value)
127       // If the width is set, but the metadata says nothing about the scalable
128       // property, then assume it concerns only a fixed-width UserVF.
129       // If width is not set, the flag takes precedence.
130       Scalable.Value = SK_FixedWidthOnly;
131   }
132 
133   // If the flag is set to force any use of scalable vectors, override the loop
134   // hints.
135   if (ForceScalableVectorization.getValue() !=
136       LoopVectorizeHints::SK_Unspecified)
137     Scalable.Value = ForceScalableVectorization.getValue();
138 
139   // Scalable vectorization is disabled if no preference is specified.
140   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
141     Scalable.Value = SK_FixedWidthOnly;
142 
143   if (IsVectorized.Value != 1)
144     // If the vectorization width and interleaving count are both 1 then
145     // consider the loop to have been already vectorized because there's
146     // nothing more that we can do.
147     IsVectorized.Value =
148         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
149   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
150              << "LV: Interleaving disabled by the pass manager\n");
151 }
152 
153 void LoopVectorizeHints::setAlreadyVectorized() {
154   LLVMContext &Context = TheLoop->getHeader()->getContext();
155 
156   MDNode *IsVectorizedMD = MDNode::get(
157       Context,
158       {MDString::get(Context, "llvm.loop.isvectorized"),
159        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
160   MDNode *LoopID = TheLoop->getLoopID();
161   MDNode *NewLoopID =
162       makePostTransformationMetadata(Context, LoopID,
163                                      {Twine(Prefix(), "vectorize.").str(),
164                                       Twine(Prefix(), "interleave.").str()},
165                                      {IsVectorizedMD});
166   TheLoop->setLoopID(NewLoopID);
167 
168   // Update internal cache.
169   IsVectorized.Value = 1;
170 }
171 
172 bool LoopVectorizeHints::allowVectorization(
173     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
174   if (getForce() == LoopVectorizeHints::FK_Disabled) {
175     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
176     emitRemarkWithHints();
177     return false;
178   }
179 
180   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
181     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
182     emitRemarkWithHints();
183     return false;
184   }
185 
186   if (getIsVectorized() == 1) {
187     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
188     // FIXME: Add interleave.disable metadata. This will allow
189     // vectorize.disable to be used without disabling the pass and errors
190     // to differentiate between disabled vectorization and a width of 1.
191     ORE.emit([&]() {
192       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
193                                         "AllDisabled", L->getStartLoc(),
194                                         L->getHeader())
195              << "loop not vectorized: vectorization and interleaving are "
196                 "explicitly disabled, or the loop has already been "
197                 "vectorized";
198     });
199     return false;
200   }
201 
202   return true;
203 }
204 
205 void LoopVectorizeHints::emitRemarkWithHints() const {
206   using namespace ore;
207 
208   ORE.emit([&]() {
209     if (Force.Value == LoopVectorizeHints::FK_Disabled)
210       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
211                                       TheLoop->getStartLoc(),
212                                       TheLoop->getHeader())
213              << "loop not vectorized: vectorization is explicitly disabled";
214     else {
215       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
216                                  TheLoop->getStartLoc(), TheLoop->getHeader());
217       R << "loop not vectorized";
218       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
219         R << " (Force=" << NV("Force", true);
220         if (Width.Value != 0)
221           R << ", Vector Width=" << NV("VectorWidth", getWidth());
222         if (getInterleave() != 0)
223           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
224         R << ")";
225       }
226       return R;
227     }
228   });
229 }
230 
231 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
232   if (getWidth() == ElementCount::getFixed(1))
233     return LV_NAME;
234   if (getForce() == LoopVectorizeHints::FK_Disabled)
235     return LV_NAME;
236   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
237     return LV_NAME;
238   return OptimizationRemarkAnalysis::AlwaysPrint;
239 }
240 
241 bool LoopVectorizeHints::allowReordering() const {
242   // Allow the vectorizer to change the order of operations if enabling
243   // loop hints are provided
244   ElementCount EC = getWidth();
245   return HintsAllowReordering &&
246          (getForce() == LoopVectorizeHints::FK_Enabled ||
247           EC.getKnownMinValue() > 1);
248 }
249 
250 void LoopVectorizeHints::getHintsFromMetadata() {
251   MDNode *LoopID = TheLoop->getLoopID();
252   if (!LoopID)
253     return;
254 
255   // First operand should refer to the loop id itself.
256   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
257   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
258 
259   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
260     const MDString *S = nullptr;
261     SmallVector<Metadata *, 4> Args;
262 
263     // The expected hint is either a MDString or a MDNode with the first
264     // operand a MDString.
265     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
266       if (!MD || MD->getNumOperands() == 0)
267         continue;
268       S = dyn_cast<MDString>(MD->getOperand(0));
269       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
270         Args.push_back(MD->getOperand(i));
271     } else {
272       S = dyn_cast<MDString>(LoopID->getOperand(i));
273       assert(Args.size() == 0 && "too many arguments for MDString");
274     }
275 
276     if (!S)
277       continue;
278 
279     // Check if the hint starts with the loop metadata prefix.
280     StringRef Name = S->getString();
281     if (Args.size() == 1)
282       setHint(Name, Args[0]);
283   }
284 }
285 
286 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
287   if (!Name.startswith(Prefix()))
288     return;
289   Name = Name.substr(Prefix().size(), StringRef::npos);
290 
291   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
292   if (!C)
293     return;
294   unsigned Val = C->getZExtValue();
295 
296   Hint *Hints[] = {&Width,        &Interleave, &Force,
297                    &IsVectorized, &Predicate,  &Scalable};
298   for (auto H : Hints) {
299     if (Name == H->Name) {
300       if (H->validate(Val))
301         H->Value = Val;
302       else
303         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
304       break;
305     }
306   }
307 }
308 
309 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
310 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
311 // executing the inner loop will execute the same iterations). This check is
312 // very constrained for now but it will be relaxed in the future. \p Lp is
313 // considered uniform if it meets all the following conditions:
314 //   1) it has a canonical IV (starting from 0 and with stride 1),
315 //   2) its latch terminator is a conditional branch and,
316 //   3) its latch condition is a compare instruction whose operands are the
317 //      canonical IV and an OuterLp invariant.
318 // This check doesn't take into account the uniformity of other conditions not
319 // related to the loop latch because they don't affect the loop uniformity.
320 //
321 // NOTE: We decided to keep all these checks and its associated documentation
322 // together so that we can easily have a picture of the current supported loop
323 // nests. However, some of the current checks don't depend on \p OuterLp and
324 // would be redundantly executed for each \p Lp if we invoked this function for
325 // different candidate outer loops. This is not the case for now because we
326 // don't currently have the infrastructure to evaluate multiple candidate outer
327 // loops and \p OuterLp will be a fixed parameter while we only support explicit
328 // outer loop vectorization. It's also very likely that these checks go away
329 // before introducing the aforementioned infrastructure. However, if this is not
330 // the case, we should move the \p OuterLp independent checks to a separate
331 // function that is only executed once for each \p Lp.
332 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
333   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
334 
335   // If Lp is the outer loop, it's uniform by definition.
336   if (Lp == OuterLp)
337     return true;
338   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
339 
340   // 1.
341   PHINode *IV = Lp->getCanonicalInductionVariable();
342   if (!IV) {
343     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
344     return false;
345   }
346 
347   // 2.
348   BasicBlock *Latch = Lp->getLoopLatch();
349   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
350   if (!LatchBr || LatchBr->isUnconditional()) {
351     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
352     return false;
353   }
354 
355   // 3.
356   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
357   if (!LatchCmp) {
358     LLVM_DEBUG(
359         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
360     return false;
361   }
362 
363   Value *CondOp0 = LatchCmp->getOperand(0);
364   Value *CondOp1 = LatchCmp->getOperand(1);
365   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
366   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
367       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
368     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
369     return false;
370   }
371 
372   return true;
373 }
374 
375 // Return true if \p Lp and all its nested loops are uniform with regard to \p
376 // OuterLp.
377 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
378   if (!isUniformLoop(Lp, OuterLp))
379     return false;
380 
381   // Check if nested loops are uniform.
382   for (Loop *SubLp : *Lp)
383     if (!isUniformLoopNest(SubLp, OuterLp))
384       return false;
385 
386   return true;
387 }
388 
389 /// Check whether it is safe to if-convert this phi node.
390 ///
391 /// Phi nodes with constant expressions that can trap are not safe to if
392 /// convert.
393 static bool canIfConvertPHINodes(BasicBlock *BB) {
394   for (PHINode &Phi : BB->phis()) {
395     for (Value *V : Phi.incoming_values())
396       if (auto *C = dyn_cast<Constant>(V))
397         if (C->canTrap())
398           return false;
399   }
400   return true;
401 }
402 
403 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
404   if (Ty->isPointerTy())
405     return DL.getIntPtrType(Ty);
406 
407   // It is possible that char's or short's overflow when we ask for the loop's
408   // trip count, work around this by changing the type size.
409   if (Ty->getScalarSizeInBits() < 32)
410     return Type::getInt32Ty(Ty->getContext());
411 
412   return Ty;
413 }
414 
415 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
416   Ty0 = convertPointerToIntegerType(DL, Ty0);
417   Ty1 = convertPointerToIntegerType(DL, Ty1);
418   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
419     return Ty0;
420   return Ty1;
421 }
422 
423 /// Check that the instruction has outside loop users and is not an
424 /// identified reduction variable.
425 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
426                                SmallPtrSetImpl<Value *> &AllowedExit) {
427   // Reductions, Inductions and non-header phis are allowed to have exit users. All
428   // other instructions must not have external users.
429   if (!AllowedExit.count(Inst))
430     // Check that all of the users of the loop are inside the BB.
431     for (User *U : Inst->users()) {
432       Instruction *UI = cast<Instruction>(U);
433       // This user may be a reduction exit value.
434       if (!TheLoop->contains(UI)) {
435         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
436         return true;
437       }
438     }
439   return false;
440 }
441 
442 /// Returns true if A and B have same pointer operands or same SCEVs addresses
443 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
444                                StoreInst *B) {
445   // Compare store
446   if (A == B)
447     return true;
448 
449   // Otherwise Compare pointers
450   Value *APtr = A->getPointerOperand();
451   Value *BPtr = B->getPointerOperand();
452   if (APtr == BPtr)
453     return true;
454 
455   // Otherwise compare address SCEVs
456   if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
457     return true;
458 
459   return false;
460 }
461 
462 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
463                                                 Value *Ptr) const {
464   const ValueToValueMap &Strides =
465       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
466 
467   Function *F = TheLoop->getHeader()->getParent();
468   bool OptForSize = F->hasOptSize() ||
469                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
470                                                 PGSOQueryType::IRPass);
471   bool CanAddPredicate = !OptForSize;
472   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
473                             CanAddPredicate, false);
474   if (Stride == 1 || Stride == -1)
475     return Stride;
476   return 0;
477 }
478 
479 bool LoopVectorizationLegality::isUniform(Value *V) {
480   return LAI->isUniform(V);
481 }
482 
483 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
484   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
485   // Store the result and return it at the end instead of exiting early, in case
486   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
487   bool Result = true;
488   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
489 
490   for (BasicBlock *BB : TheLoop->blocks()) {
491     // Check whether the BB terminator is a BranchInst. Any other terminator is
492     // not supported yet.
493     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
494     if (!Br) {
495       reportVectorizationFailure("Unsupported basic block terminator",
496           "loop control flow is not understood by vectorizer",
497           "CFGNotUnderstood", ORE, TheLoop);
498       if (DoExtraAnalysis)
499         Result = false;
500       else
501         return false;
502     }
503 
504     // Check whether the BranchInst is a supported one. Only unconditional
505     // branches, conditional branches with an outer loop invariant condition or
506     // backedges are supported.
507     // FIXME: We skip these checks when VPlan predication is enabled as we
508     // want to allow divergent branches. This whole check will be removed
509     // once VPlan predication is on by default.
510     if (Br && Br->isConditional() &&
511         !TheLoop->isLoopInvariant(Br->getCondition()) &&
512         !LI->isLoopHeader(Br->getSuccessor(0)) &&
513         !LI->isLoopHeader(Br->getSuccessor(1))) {
514       reportVectorizationFailure("Unsupported conditional branch",
515           "loop control flow is not understood by vectorizer",
516           "CFGNotUnderstood", ORE, TheLoop);
517       if (DoExtraAnalysis)
518         Result = false;
519       else
520         return false;
521     }
522   }
523 
524   // Check whether inner loops are uniform. At this point, we only support
525   // simple outer loops scenarios with uniform nested loops.
526   if (!isUniformLoopNest(TheLoop /*loop nest*/,
527                          TheLoop /*context outer loop*/)) {
528     reportVectorizationFailure("Outer loop contains divergent loops",
529         "loop control flow is not understood by vectorizer",
530         "CFGNotUnderstood", ORE, TheLoop);
531     if (DoExtraAnalysis)
532       Result = false;
533     else
534       return false;
535   }
536 
537   // Check whether we are able to set up outer loop induction.
538   if (!setupOuterLoopInductions()) {
539     reportVectorizationFailure("Unsupported outer loop Phi(s)",
540                                "Unsupported outer loop Phi(s)",
541                                "UnsupportedPhi", ORE, TheLoop);
542     if (DoExtraAnalysis)
543       Result = false;
544     else
545       return false;
546   }
547 
548   return Result;
549 }
550 
551 void LoopVectorizationLegality::addInductionPhi(
552     PHINode *Phi, const InductionDescriptor &ID,
553     SmallPtrSetImpl<Value *> &AllowedExit) {
554   Inductions[Phi] = ID;
555 
556   // In case this induction also comes with casts that we know we can ignore
557   // in the vectorized loop body, record them here. All casts could be recorded
558   // here for ignoring, but suffices to record only the first (as it is the
559   // only one that may bw used outside the cast sequence).
560   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
561   if (!Casts.empty())
562     InductionCastsToIgnore.insert(*Casts.begin());
563 
564   Type *PhiTy = Phi->getType();
565   const DataLayout &DL = Phi->getModule()->getDataLayout();
566 
567   // Get the widest type.
568   if (!PhiTy->isFloatingPointTy()) {
569     if (!WidestIndTy)
570       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
571     else
572       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
573   }
574 
575   // Int inductions are special because we only allow one IV.
576   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
577       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
578       isa<Constant>(ID.getStartValue()) &&
579       cast<Constant>(ID.getStartValue())->isNullValue()) {
580 
581     // Use the phi node with the widest type as induction. Use the last
582     // one if there are multiple (no good reason for doing this other
583     // than it is expedient). We've checked that it begins at zero and
584     // steps by one, so this is a canonical induction variable.
585     if (!PrimaryInduction || PhiTy == WidestIndTy)
586       PrimaryInduction = Phi;
587   }
588 
589   // Both the PHI node itself, and the "post-increment" value feeding
590   // back into the PHI node may have external users.
591   // We can allow those uses, except if the SCEVs we have for them rely
592   // on predicates that only hold within the loop, since allowing the exit
593   // currently means re-using this SCEV outside the loop (see PR33706 for more
594   // details).
595   if (PSE.getPredicate().isAlwaysTrue()) {
596     AllowedExit.insert(Phi);
597     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
598   }
599 
600   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
601 }
602 
603 bool LoopVectorizationLegality::setupOuterLoopInductions() {
604   BasicBlock *Header = TheLoop->getHeader();
605 
606   // Returns true if a given Phi is a supported induction.
607   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
608     InductionDescriptor ID;
609     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
610         ID.getKind() == InductionDescriptor::IK_IntInduction) {
611       addInductionPhi(&Phi, ID, AllowedExit);
612       return true;
613     } else {
614       // Bail out for any Phi in the outer loop header that is not a supported
615       // induction.
616       LLVM_DEBUG(
617           dbgs()
618           << "LV: Found unsupported PHI for outer loop vectorization.\n");
619       return false;
620     }
621   };
622 
623   if (llvm::all_of(Header->phis(), isSupportedPhi))
624     return true;
625   else
626     return false;
627 }
628 
629 /// Checks if a function is scalarizable according to the TLI, in
630 /// the sense that it should be vectorized and then expanded in
631 /// multiple scalar calls. This is represented in the
632 /// TLI via mappings that do not specify a vector name, as in the
633 /// following example:
634 ///
635 ///    const VecDesc VecIntrinsics[] = {
636 ///      {"llvm.phx.abs.i32", "", 4}
637 ///    };
638 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
639   const StringRef ScalarName = CI.getCalledFunction()->getName();
640   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
641   // Check that all known VFs are not associated to a vector
642   // function, i.e. the vector name is emty.
643   if (Scalarize) {
644     ElementCount WidestFixedVF, WidestScalableVF;
645     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
646     for (ElementCount VF = ElementCount::getFixed(2);
647          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
648       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
649     for (ElementCount VF = ElementCount::getScalable(1);
650          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
651       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
652     assert((WidestScalableVF.isZero() || !Scalarize) &&
653            "Caller may decide to scalarize a variant using a scalable VF");
654   }
655   return Scalarize;
656 }
657 
658 bool LoopVectorizationLegality::canVectorizeInstrs() {
659   BasicBlock *Header = TheLoop->getHeader();
660 
661   // For each block in the loop.
662   for (BasicBlock *BB : TheLoop->blocks()) {
663     // Scan the instructions in the block and look for hazards.
664     for (Instruction &I : *BB) {
665       if (auto *Phi = dyn_cast<PHINode>(&I)) {
666         Type *PhiTy = Phi->getType();
667         // Check that this PHI type is allowed.
668         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
669             !PhiTy->isPointerTy()) {
670           reportVectorizationFailure("Found a non-int non-pointer PHI",
671                                      "loop control flow is not understood by vectorizer",
672                                      "CFGNotUnderstood", ORE, TheLoop);
673           return false;
674         }
675 
676         // If this PHINode is not in the header block, then we know that we
677         // can convert it to select during if-conversion. No need to check if
678         // the PHIs in this block are induction or reduction variables.
679         if (BB != Header) {
680           // Non-header phi nodes that have outside uses can be vectorized. Add
681           // them to the list of allowed exits.
682           // Unsafe cyclic dependencies with header phis are identified during
683           // legalization for reduction, induction and first order
684           // recurrences.
685           AllowedExit.insert(&I);
686           continue;
687         }
688 
689         // We only allow if-converted PHIs with exactly two incoming values.
690         if (Phi->getNumIncomingValues() != 2) {
691           reportVectorizationFailure("Found an invalid PHI",
692               "loop control flow is not understood by vectorizer",
693               "CFGNotUnderstood", ORE, TheLoop, Phi);
694           return false;
695         }
696 
697         RecurrenceDescriptor RedDes;
698         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
699                                                  DT, PSE.getSE())) {
700           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
701           AllowedExit.insert(RedDes.getLoopExitInstr());
702           Reductions[Phi] = RedDes;
703           continue;
704         }
705 
706         // TODO: Instead of recording the AllowedExit, it would be good to record the
707         // complementary set: NotAllowedExit. These include (but may not be
708         // limited to):
709         // 1. Reduction phis as they represent the one-before-last value, which
710         // is not available when vectorized
711         // 2. Induction phis and increment when SCEV predicates cannot be used
712         // outside the loop - see addInductionPhi
713         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
714         // outside the loop - see call to hasOutsideLoopUser in the non-phi
715         // handling below
716         // 4. FirstOrderRecurrence phis that can possibly be handled by
717         // extraction.
718         // By recording these, we can then reason about ways to vectorize each
719         // of these NotAllowedExit.
720         InductionDescriptor ID;
721         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
722           addInductionPhi(Phi, ID, AllowedExit);
723           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
724           continue;
725         }
726 
727         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
728                                                          SinkAfter, DT)) {
729           AllowedExit.insert(Phi);
730           FirstOrderRecurrences.insert(Phi);
731           continue;
732         }
733 
734         // As a last resort, coerce the PHI to a AddRec expression
735         // and re-try classifying it a an induction PHI.
736         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
737           addInductionPhi(Phi, ID, AllowedExit);
738           continue;
739         }
740 
741         reportVectorizationFailure("Found an unidentified PHI",
742             "value that could not be identified as "
743             "reduction is used outside the loop",
744             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
745         return false;
746       } // end of PHI handling
747 
748       // We handle calls that:
749       //   * Are debug info intrinsics.
750       //   * Have a mapping to an IR intrinsic.
751       //   * Have a vector version available.
752       auto *CI = dyn_cast<CallInst>(&I);
753 
754       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
755           !isa<DbgInfoIntrinsic>(CI) &&
756           !(CI->getCalledFunction() && TLI &&
757             (!VFDatabase::getMappings(*CI).empty() ||
758              isTLIScalarize(*TLI, *CI)))) {
759         // If the call is a recognized math libary call, it is likely that
760         // we can vectorize it given loosened floating-point constraints.
761         LibFunc Func;
762         bool IsMathLibCall =
763             TLI && CI->getCalledFunction() &&
764             CI->getType()->isFloatingPointTy() &&
765             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
766             TLI->hasOptimizedCodeGen(Func);
767 
768         if (IsMathLibCall) {
769           // TODO: Ideally, we should not use clang-specific language here,
770           // but it's hard to provide meaningful yet generic advice.
771           // Also, should this be guarded by allowExtraAnalysis() and/or be part
772           // of the returned info from isFunctionVectorizable()?
773           reportVectorizationFailure(
774               "Found a non-intrinsic callsite",
775               "library call cannot be vectorized. "
776               "Try compiling with -fno-math-errno, -ffast-math, "
777               "or similar flags",
778               "CantVectorizeLibcall", ORE, TheLoop, CI);
779         } else {
780           reportVectorizationFailure("Found a non-intrinsic callsite",
781                                      "call instruction cannot be vectorized",
782                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
783         }
784         return false;
785       }
786 
787       // Some intrinsics have scalar arguments and should be same in order for
788       // them to be vectorized (i.e. loop invariant).
789       if (CI) {
790         auto *SE = PSE.getSE();
791         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
792         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
793           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
794             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
795               reportVectorizationFailure("Found unvectorizable intrinsic",
796                   "intrinsic instruction cannot be vectorized",
797                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
798               return false;
799             }
800           }
801       }
802 
803       // Check that the instruction return type is vectorizable.
804       // Also, we can't vectorize extractelement instructions.
805       if ((!VectorType::isValidElementType(I.getType()) &&
806            !I.getType()->isVoidTy()) ||
807           isa<ExtractElementInst>(I)) {
808         reportVectorizationFailure("Found unvectorizable type",
809             "instruction return type cannot be vectorized",
810             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
811         return false;
812       }
813 
814       // Check that the stored type is vectorizable.
815       if (auto *ST = dyn_cast<StoreInst>(&I)) {
816         Type *T = ST->getValueOperand()->getType();
817         if (!VectorType::isValidElementType(T)) {
818           reportVectorizationFailure("Store instruction cannot be vectorized",
819                                      "store instruction cannot be vectorized",
820                                      "CantVectorizeStore", ORE, TheLoop, ST);
821           return false;
822         }
823 
824         // For nontemporal stores, check that a nontemporal vector version is
825         // supported on the target.
826         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
827           // Arbitrarily try a vector of 2 elements.
828           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
829           assert(VecTy && "did not find vectorized version of stored type");
830           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
831             reportVectorizationFailure(
832                 "nontemporal store instruction cannot be vectorized",
833                 "nontemporal store instruction cannot be vectorized",
834                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
835             return false;
836           }
837         }
838 
839       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
840         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
841           // For nontemporal loads, check that a nontemporal vector version is
842           // supported on the target (arbitrarily try a vector of 2 elements).
843           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
844           assert(VecTy && "did not find vectorized version of load type");
845           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
846             reportVectorizationFailure(
847                 "nontemporal load instruction cannot be vectorized",
848                 "nontemporal load instruction cannot be vectorized",
849                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
850             return false;
851           }
852         }
853 
854         // FP instructions can allow unsafe algebra, thus vectorizable by
855         // non-IEEE-754 compliant SIMD units.
856         // This applies to floating-point math operations and calls, not memory
857         // operations, shuffles, or casts, as they don't change precision or
858         // semantics.
859       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
860                  !I.isFast()) {
861         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
862         Hints->setPotentiallyUnsafe();
863       }
864 
865       // Reduction instructions are allowed to have exit users.
866       // All other instructions must not have external users.
867       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
868         // We can safely vectorize loops where instructions within the loop are
869         // used outside the loop only if the SCEV predicates within the loop is
870         // same as outside the loop. Allowing the exit means reusing the SCEV
871         // outside the loop.
872         if (PSE.getPredicate().isAlwaysTrue()) {
873           AllowedExit.insert(&I);
874           continue;
875         }
876         reportVectorizationFailure("Value cannot be used outside the loop",
877                                    "value cannot be used outside the loop",
878                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
879         return false;
880       }
881     } // next instr.
882   }
883 
884   if (!PrimaryInduction) {
885     if (Inductions.empty()) {
886       reportVectorizationFailure("Did not find one integer induction var",
887           "loop induction variable could not be identified",
888           "NoInductionVariable", ORE, TheLoop);
889       return false;
890     } else if (!WidestIndTy) {
891       reportVectorizationFailure("Did not find one integer induction var",
892           "integer loop induction variable could not be identified",
893           "NoIntegerInductionVariable", ORE, TheLoop);
894       return false;
895     } else {
896       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
897     }
898   }
899 
900   // For first order recurrences, we use the previous value (incoming value from
901   // the latch) to check if it dominates all users of the recurrence. Bail out
902   // if we have to sink such an instruction for another recurrence, as the
903   // dominance requirement may not hold after sinking.
904   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
905   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
906         Instruction *V =
907             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
908         return SinkAfter.find(V) != SinkAfter.end();
909       }))
910     return false;
911 
912   // Now we know the widest induction type, check if our found induction
913   // is the same size. If it's not, unset it here and InnerLoopVectorizer
914   // will create another.
915   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
916     PrimaryInduction = nullptr;
917 
918   return true;
919 }
920 
921 bool LoopVectorizationLegality::canVectorizeMemory() {
922   LAI = &(*GetLAA)(*TheLoop);
923   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
924   if (LAR) {
925     ORE->emit([&]() {
926       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
927                                         "loop not vectorized: ", *LAR);
928     });
929   }
930 
931   if (!LAI->canVectorizeMemory())
932     return false;
933 
934   // We can vectorize stores to invariant address when final reduction value is
935   // guaranteed to be stored at the end of the loop. Also, if decision to
936   // vectorize loop is made, runtime checks are added so as to make sure that
937   // invariant address won't alias with any other objects.
938   if (!LAI->getStoresToInvariantAddresses().empty()) {
939     // For each invariant address, check its last stored value is unconditional.
940     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
941       if (isInvariantStoreOfReduction(SI) &&
942           blockNeedsPredication(SI->getParent())) {
943         reportVectorizationFailure(
944             "We don't allow storing to uniform addresses",
945             "write of conditional recurring variant value to a loop "
946             "invariant address could not be vectorized",
947             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
948         return false;
949       }
950     }
951 
952     if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
953       // For each invariant address, check its last stored value is the result
954       // of one of our reductions.
955       //
956       // We do not check if dependence with loads exists because they are
957       // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
958       // behaviour changes we have to modify this code.
959       ScalarEvolution *SE = PSE.getSE();
960       SmallVector<StoreInst *, 4> UnhandledStores;
961       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
962         if (isInvariantStoreOfReduction(SI)) {
963           // Earlier stores to this address are effectively deadcode.
964           // With opaque pointers it is possible for one pointer to be used with
965           // different sizes of stored values:
966           //    store i32 0, ptr %x
967           //    store i8 0, ptr %x
968           // The latest store doesn't complitely overwrite the first one in the
969           // example. That is why we have to make sure that types of stored
970           // values are same.
971           // TODO: Check that bitwidth of unhandled store is smaller then the
972           // one that overwrites it and add a test.
973           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
974             return storeToSameAddress(SE, SI, I) &&
975                    I->getValueOperand()->getType() ==
976                        SI->getValueOperand()->getType();
977           });
978           continue;
979         }
980         UnhandledStores.push_back(SI);
981       }
982 
983       bool IsOK = UnhandledStores.empty();
984       // TODO: we should also validate against InvariantMemSets.
985       if (!IsOK) {
986         reportVectorizationFailure(
987             "We don't allow storing to uniform addresses",
988             "write to a loop invariant address could not "
989             "be vectorized",
990             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
991         return false;
992       }
993     }
994   }
995 
996   PSE.addPredicate(LAI->getPSE().getPredicate());
997   return true;
998 }
999 
1000 bool LoopVectorizationLegality::canVectorizeFPMath(
1001     bool EnableStrictReductions) {
1002 
1003   // First check if there is any ExactFP math or if we allow reassociations
1004   if (!Requirements->getExactFPInst() || Hints->allowReordering())
1005     return true;
1006 
1007   // If the above is false, we have ExactFPMath & do not allow reordering.
1008   // If the EnableStrictReductions flag is set, first check if we have any
1009   // Exact FP induction vars, which we cannot vectorize.
1010   if (!EnableStrictReductions ||
1011       any_of(getInductionVars(), [&](auto &Induction) -> bool {
1012         InductionDescriptor IndDesc = Induction.second;
1013         return IndDesc.getExactFPMathInst();
1014       }))
1015     return false;
1016 
1017   // We can now only vectorize if all reductions with Exact FP math also
1018   // have the isOrdered flag set, which indicates that we can move the
1019   // reduction operations in-loop.
1020   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
1021     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1022     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
1023   }));
1024 }
1025 
1026 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1027   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1028     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1029     return RdxDesc.IntermediateStore == SI;
1030   });
1031 }
1032 
1033 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1034   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1035     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1036     if (!RdxDesc.IntermediateStore)
1037       return false;
1038 
1039     ScalarEvolution *SE = PSE.getSE();
1040     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1041     return V == InvariantAddress ||
1042            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1043   });
1044 }
1045 
1046 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1047   Value *In0 = const_cast<Value *>(V);
1048   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1049   if (!PN)
1050     return false;
1051 
1052   return Inductions.count(PN);
1053 }
1054 
1055 const InductionDescriptor *
1056 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1057   if (!isInductionPhi(Phi))
1058     return nullptr;
1059   auto &ID = getInductionVars().find(Phi)->second;
1060   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1061       ID.getKind() == InductionDescriptor::IK_FpInduction)
1062     return &ID;
1063   return nullptr;
1064 }
1065 
1066 const InductionDescriptor *
1067 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
1068   if (!isInductionPhi(Phi))
1069     return nullptr;
1070   auto &ID = getInductionVars().find(Phi)->second;
1071   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
1072     return &ID;
1073   return nullptr;
1074 }
1075 
1076 bool LoopVectorizationLegality::isCastedInductionVariable(
1077     const Value *V) const {
1078   auto *Inst = dyn_cast<Instruction>(V);
1079   return (Inst && InductionCastsToIgnore.count(Inst));
1080 }
1081 
1082 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1083   return isInductionPhi(V) || isCastedInductionVariable(V);
1084 }
1085 
1086 bool LoopVectorizationLegality::isFirstOrderRecurrence(
1087     const PHINode *Phi) const {
1088   return FirstOrderRecurrences.count(Phi);
1089 }
1090 
1091 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1092   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1093 }
1094 
1095 bool LoopVectorizationLegality::blockCanBePredicated(
1096     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1097     SmallPtrSetImpl<const Instruction *> &MaskedOp,
1098     SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1099   for (Instruction &I : *BB) {
1100     // Check that we don't have a constant expression that can trap as operand.
1101     for (Value *Operand : I.operands()) {
1102       if (auto *C = dyn_cast<Constant>(Operand))
1103         if (C->canTrap())
1104           return false;
1105     }
1106 
1107     // We can predicate blocks with calls to assume, as long as we drop them in
1108     // case we flatten the CFG via predication.
1109     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
1110       ConditionalAssumes.insert(&I);
1111       continue;
1112     }
1113 
1114     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1115     // TODO: there might be cases that it should block the vectorization. Let's
1116     // ignore those for now.
1117     if (isa<NoAliasScopeDeclInst>(&I))
1118       continue;
1119 
1120     // We might be able to hoist the load.
1121     if (I.mayReadFromMemory()) {
1122       auto *LI = dyn_cast<LoadInst>(&I);
1123       if (!LI)
1124         return false;
1125       if (!SafePtrs.count(LI->getPointerOperand())) {
1126         MaskedOp.insert(LI);
1127         continue;
1128       }
1129     }
1130 
1131     if (I.mayWriteToMemory()) {
1132       auto *SI = dyn_cast<StoreInst>(&I);
1133       if (!SI)
1134         return false;
1135       // Predicated store requires some form of masking:
1136       // 1) masked store HW instruction,
1137       // 2) emulation via load-blend-store (only if safe and legal to do so,
1138       //    be aware on the race conditions), or
1139       // 3) element-by-element predicate check and scalar store.
1140       MaskedOp.insert(SI);
1141       continue;
1142     }
1143     if (I.mayThrow())
1144       return false;
1145   }
1146 
1147   return true;
1148 }
1149 
1150 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1151   if (!EnableIfConversion) {
1152     reportVectorizationFailure("If-conversion is disabled",
1153                                "if-conversion is disabled",
1154                                "IfConversionDisabled",
1155                                ORE, TheLoop);
1156     return false;
1157   }
1158 
1159   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1160 
1161   // A list of pointers which are known to be dereferenceable within scope of
1162   // the loop body for each iteration of the loop which executes.  That is,
1163   // the memory pointed to can be dereferenced (with the access size implied by
1164   // the value's type) unconditionally within the loop header without
1165   // introducing a new fault.
1166   SmallPtrSet<Value *, 8> SafePointers;
1167 
1168   // Collect safe addresses.
1169   for (BasicBlock *BB : TheLoop->blocks()) {
1170     if (!blockNeedsPredication(BB)) {
1171       for (Instruction &I : *BB)
1172         if (auto *Ptr = getLoadStorePointerOperand(&I))
1173           SafePointers.insert(Ptr);
1174       continue;
1175     }
1176 
1177     // For a block which requires predication, a address may be safe to access
1178     // in the loop w/o predication if we can prove dereferenceability facts
1179     // sufficient to ensure it'll never fault within the loop. For the moment,
1180     // we restrict this to loads; stores are more complicated due to
1181     // concurrency restrictions.
1182     ScalarEvolution &SE = *PSE.getSE();
1183     for (Instruction &I : *BB) {
1184       LoadInst *LI = dyn_cast<LoadInst>(&I);
1185       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
1186           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1187         SafePointers.insert(LI->getPointerOperand());
1188     }
1189   }
1190 
1191   // Collect the blocks that need predication.
1192   BasicBlock *Header = TheLoop->getHeader();
1193   for (BasicBlock *BB : TheLoop->blocks()) {
1194     // We don't support switch statements inside loops.
1195     if (!isa<BranchInst>(BB->getTerminator())) {
1196       reportVectorizationFailure("Loop contains a switch statement",
1197                                  "loop contains a switch statement",
1198                                  "LoopContainsSwitch", ORE, TheLoop,
1199                                  BB->getTerminator());
1200       return false;
1201     }
1202 
1203     // We must be able to predicate all blocks that need to be predicated.
1204     if (blockNeedsPredication(BB)) {
1205       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1206                                 ConditionalAssumes)) {
1207         reportVectorizationFailure(
1208             "Control flow cannot be substituted for a select",
1209             "control flow cannot be substituted for a select",
1210             "NoCFGForSelect", ORE, TheLoop,
1211             BB->getTerminator());
1212         return false;
1213       }
1214     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
1215       reportVectorizationFailure(
1216           "Control flow cannot be substituted for a select",
1217           "control flow cannot be substituted for a select",
1218           "NoCFGForSelect", ORE, TheLoop,
1219           BB->getTerminator());
1220       return false;
1221     }
1222   }
1223 
1224   // We can if-convert this loop.
1225   return true;
1226 }
1227 
1228 // Helper function to canVectorizeLoopNestCFG.
1229 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1230                                                     bool UseVPlanNativePath) {
1231   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1232          "VPlan-native path is not enabled.");
1233 
1234   // TODO: ORE should be improved to show more accurate information when an
1235   // outer loop can't be vectorized because a nested loop is not understood or
1236   // legal. Something like: "outer_loop_location: loop not vectorized:
1237   // (inner_loop_location) loop control flow is not understood by vectorizer".
1238 
1239   // Store the result and return it at the end instead of exiting early, in case
1240   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1241   bool Result = true;
1242   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1243 
1244   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1245   // be canonicalized.
1246   if (!Lp->getLoopPreheader()) {
1247     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1248         "loop control flow is not understood by vectorizer",
1249         "CFGNotUnderstood", ORE, TheLoop);
1250     if (DoExtraAnalysis)
1251       Result = false;
1252     else
1253       return false;
1254   }
1255 
1256   // We must have a single backedge.
1257   if (Lp->getNumBackEdges() != 1) {
1258     reportVectorizationFailure("The loop must have a single backedge",
1259         "loop control flow is not understood by vectorizer",
1260         "CFGNotUnderstood", ORE, TheLoop);
1261     if (DoExtraAnalysis)
1262       Result = false;
1263     else
1264       return false;
1265   }
1266 
1267   return Result;
1268 }
1269 
1270 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1271     Loop *Lp, bool UseVPlanNativePath) {
1272   // Store the result and return it at the end instead of exiting early, in case
1273   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1274   bool Result = true;
1275   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1276   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1277     if (DoExtraAnalysis)
1278       Result = false;
1279     else
1280       return false;
1281   }
1282 
1283   // Recursively check whether the loop control flow of nested loops is
1284   // understood.
1285   for (Loop *SubLp : *Lp)
1286     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1287       if (DoExtraAnalysis)
1288         Result = false;
1289       else
1290         return false;
1291     }
1292 
1293   return Result;
1294 }
1295 
1296 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1297   // Store the result and return it at the end instead of exiting early, in case
1298   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1299   bool Result = true;
1300 
1301   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1302   // Check whether the loop-related control flow in the loop nest is expected by
1303   // vectorizer.
1304   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1305     if (DoExtraAnalysis)
1306       Result = false;
1307     else
1308       return false;
1309   }
1310 
1311   // We need to have a loop header.
1312   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1313                     << '\n');
1314 
1315   // Specific checks for outer loops. We skip the remaining legal checks at this
1316   // point because they don't support outer loops.
1317   if (!TheLoop->isInnermost()) {
1318     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1319 
1320     if (!canVectorizeOuterLoop()) {
1321       reportVectorizationFailure("Unsupported outer loop",
1322                                  "unsupported outer loop",
1323                                  "UnsupportedOuterLoop",
1324                                  ORE, TheLoop);
1325       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1326       // outer loops.
1327       return false;
1328     }
1329 
1330     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1331     return Result;
1332   }
1333 
1334   assert(TheLoop->isInnermost() && "Inner loop expected.");
1335   // Check if we can if-convert non-single-bb loops.
1336   unsigned NumBlocks = TheLoop->getNumBlocks();
1337   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1338     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1339     if (DoExtraAnalysis)
1340       Result = false;
1341     else
1342       return false;
1343   }
1344 
1345   // Check if we can vectorize the instructions and CFG in this loop.
1346   if (!canVectorizeInstrs()) {
1347     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1348     if (DoExtraAnalysis)
1349       Result = false;
1350     else
1351       return false;
1352   }
1353 
1354   // Go over each instruction and look at memory deps.
1355   if (!canVectorizeMemory()) {
1356     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1357     if (DoExtraAnalysis)
1358       Result = false;
1359     else
1360       return false;
1361   }
1362 
1363   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1364                     << (LAI->getRuntimePointerChecking()->Need
1365                             ? " (with a runtime bound check)"
1366                             : "")
1367                     << "!\n");
1368 
1369   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1370   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1371     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1372 
1373   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
1374     reportVectorizationFailure("Too many SCEV checks needed",
1375         "Too many SCEV assumptions need to be made and checked at runtime",
1376         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1377     if (DoExtraAnalysis)
1378       Result = false;
1379     else
1380       return false;
1381   }
1382 
1383   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1384   // we can vectorize, and at this point we don't have any other mem analysis
1385   // which may limit our maximum vectorization factor, so just return true with
1386   // no restrictions.
1387   return Result;
1388 }
1389 
1390 bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1391 
1392   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1393 
1394   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1395 
1396   for (auto &Reduction : getReductionVars())
1397     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1398 
1399   // TODO: handle non-reduction outside users when tail is folded by masking.
1400   for (auto *AE : AllowedExit) {
1401     // Check that all users of allowed exit values are inside the loop or
1402     // are the live-out of a reduction.
1403     if (ReductionLiveOuts.count(AE))
1404       continue;
1405     for (User *U : AE->users()) {
1406       Instruction *UI = cast<Instruction>(U);
1407       if (TheLoop->contains(UI))
1408         continue;
1409       LLVM_DEBUG(
1410           dbgs()
1411           << "LV: Cannot fold tail by masking, loop has an outside user for "
1412           << *UI << "\n");
1413       return false;
1414     }
1415   }
1416 
1417   // The list of pointers that we can safely read and write to remains empty.
1418   SmallPtrSet<Value *, 8> SafePointers;
1419 
1420   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1421   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1422 
1423   // Check and mark all blocks for predication, including those that ordinarily
1424   // do not need predication such as the header block.
1425   for (BasicBlock *BB : TheLoop->blocks()) {
1426     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1427                               TmpConditionalAssumes)) {
1428       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1429       return false;
1430     }
1431   }
1432 
1433   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1434 
1435   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1436   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1437                             TmpConditionalAssumes.end());
1438 
1439   return true;
1440 }
1441 
1442 } // namespace llvm
1443