1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides loop vectorization legality analysis. Original code 11 // resided in LoopVectorize.cpp for a long time. 12 // 13 // At this point, it is implemented as a utility class, not as an analysis 14 // pass. It should be easy to create an analysis pass around it if there 15 // is a need (but D45420 needs to happen first). 16 // 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 21 using namespace llvm; 22 23 #define LV_NAME "loop-vectorize" 24 #define DEBUG_TYPE LV_NAME 25 26 static cl::opt<bool> 27 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 28 cl::desc("Enable if-conversion during vectorization.")); 29 30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 31 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 32 cl::desc("The maximum allowed number of runtime memory checks with a " 33 "vectorize(enable) pragma.")); 34 35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 36 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 37 cl::desc("The maximum number of SCEV checks allowed.")); 38 39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 40 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 41 cl::desc("The maximum number of SCEV checks allowed with a " 42 "vectorize(enable) pragma")); 43 44 /// Maximum vectorization interleave count. 45 static const unsigned MaxInterleaveFactor = 16; 46 47 namespace llvm { 48 49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 50 StringRef RemarkName, 51 Loop *TheLoop, 52 Instruction *I) { 53 Value *CodeRegion = TheLoop->getHeader(); 54 DebugLoc DL = TheLoop->getStartLoc(); 55 56 if (I) { 57 CodeRegion = I->getParent(); 58 // If there is no debug location attached to the instruction, revert back to 59 // using the loop's. 60 if (I->getDebugLoc()) 61 DL = I->getDebugLoc(); 62 } 63 64 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 65 R << "loop not vectorized: "; 66 return R; 67 } 68 69 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 70 switch (Kind) { 71 case HK_WIDTH: 72 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 73 case HK_UNROLL: 74 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 75 case HK_FORCE: 76 return (Val <= 1); 77 case HK_ISVECTORIZED: 78 return (Val == 0 || Val == 1); 79 } 80 return false; 81 } 82 83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 84 OptimizationRemarkEmitter &ORE) 85 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 86 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 87 Force("vectorize.enable", FK_Undefined, HK_FORCE), 88 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 89 // Populate values with existing loop metadata. 90 getHintsFromMetadata(); 91 92 // force-vector-interleave overrides DisableInterleaving. 93 if (VectorizerParams::isInterleaveForced()) 94 Interleave.Value = VectorizerParams::VectorizationInterleave; 95 96 if (IsVectorized.Value != 1) 97 // If the vectorization width and interleaving count are both 1 then 98 // consider the loop to have been already vectorized because there's 99 // nothing more that we can do. 100 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 101 DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 102 << "LV: Interleaving disabled by the pass manager\n"); 103 } 104 105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L, 106 bool AlwaysVectorize) const { 107 if (getForce() == LoopVectorizeHints::FK_Disabled) { 108 DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 109 emitRemarkWithHints(); 110 return false; 111 } 112 113 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 114 DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 115 emitRemarkWithHints(); 116 return false; 117 } 118 119 if (getIsVectorized() == 1) { 120 DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 121 // FIXME: Add interleave.disable metadata. This will allow 122 // vectorize.disable to be used without disabling the pass and errors 123 // to differentiate between disabled vectorization and a width of 1. 124 ORE.emit([&]() { 125 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 126 "AllDisabled", L->getStartLoc(), 127 L->getHeader()) 128 << "loop not vectorized: vectorization and interleaving are " 129 "explicitly disabled, or the loop has already been " 130 "vectorized"; 131 }); 132 return false; 133 } 134 135 return true; 136 } 137 138 void LoopVectorizeHints::emitRemarkWithHints() const { 139 using namespace ore; 140 141 ORE.emit([&]() { 142 if (Force.Value == LoopVectorizeHints::FK_Disabled) 143 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 144 TheLoop->getStartLoc(), 145 TheLoop->getHeader()) 146 << "loop not vectorized: vectorization is explicitly disabled"; 147 else { 148 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 149 TheLoop->getStartLoc(), TheLoop->getHeader()); 150 R << "loop not vectorized"; 151 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 152 R << " (Force=" << NV("Force", true); 153 if (Width.Value != 0) 154 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 155 if (Interleave.Value != 0) 156 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 157 R << ")"; 158 } 159 return R; 160 } 161 }); 162 } 163 164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 165 if (getWidth() == 1) 166 return LV_NAME; 167 if (getForce() == LoopVectorizeHints::FK_Disabled) 168 return LV_NAME; 169 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 170 return LV_NAME; 171 return OptimizationRemarkAnalysis::AlwaysPrint; 172 } 173 174 void LoopVectorizeHints::getHintsFromMetadata() { 175 MDNode *LoopID = TheLoop->getLoopID(); 176 if (!LoopID) 177 return; 178 179 // First operand should refer to the loop id itself. 180 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 181 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 182 183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 184 const MDString *S = nullptr; 185 SmallVector<Metadata *, 4> Args; 186 187 // The expected hint is either a MDString or a MDNode with the first 188 // operand a MDString. 189 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 190 if (!MD || MD->getNumOperands() == 0) 191 continue; 192 S = dyn_cast<MDString>(MD->getOperand(0)); 193 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 194 Args.push_back(MD->getOperand(i)); 195 } else { 196 S = dyn_cast<MDString>(LoopID->getOperand(i)); 197 assert(Args.size() == 0 && "too many arguments for MDString"); 198 } 199 200 if (!S) 201 continue; 202 203 // Check if the hint starts with the loop metadata prefix. 204 StringRef Name = S->getString(); 205 if (Args.size() == 1) 206 setHint(Name, Args[0]); 207 } 208 } 209 210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 211 if (!Name.startswith(Prefix())) 212 return; 213 Name = Name.substr(Prefix().size(), StringRef::npos); 214 215 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 216 if (!C) 217 return; 218 unsigned Val = C->getZExtValue(); 219 220 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 221 for (auto H : Hints) { 222 if (Name == H->Name) { 223 if (H->validate(Val)) 224 H->Value = Val; 225 else 226 DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 227 break; 228 } 229 } 230 } 231 232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 233 unsigned V) const { 234 LLVMContext &Context = TheLoop->getHeader()->getContext(); 235 Metadata *MDs[] = { 236 MDString::get(Context, Name), 237 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 238 return MDNode::get(Context, MDs); 239 } 240 241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 242 ArrayRef<Hint> HintTypes) { 243 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 244 if (!Name) 245 return false; 246 247 for (auto H : HintTypes) 248 if (Name->getString().endswith(H.Name)) 249 return true; 250 return false; 251 } 252 253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 254 if (HintTypes.empty()) 255 return; 256 257 // Reserve the first element to LoopID (see below). 258 SmallVector<Metadata *, 4> MDs(1); 259 // If the loop already has metadata, then ignore the existing operands. 260 MDNode *LoopID = TheLoop->getLoopID(); 261 if (LoopID) { 262 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 263 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 264 // If node in update list, ignore old value. 265 if (!matchesHintMetadataName(Node, HintTypes)) 266 MDs.push_back(Node); 267 } 268 } 269 270 // Now, add the missing hints. 271 for (auto H : HintTypes) 272 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 273 274 // Replace current metadata node with new one. 275 LLVMContext &Context = TheLoop->getHeader()->getContext(); 276 MDNode *NewLoopID = MDNode::get(Context, MDs); 277 // Set operand 0 to refer to the loop id itself. 278 NewLoopID->replaceOperandWith(0, NewLoopID); 279 280 TheLoop->setLoopID(NewLoopID); 281 } 282 283 bool LoopVectorizationRequirements::doesNotMeet( 284 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 285 const char *PassName = Hints.vectorizeAnalysisPassName(); 286 bool Failed = false; 287 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 288 ORE.emit([&]() { 289 return OptimizationRemarkAnalysisFPCommute( 290 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 291 UnsafeAlgebraInst->getParent()) 292 << "loop not vectorized: cannot prove it is safe to reorder " 293 "floating-point operations"; 294 }); 295 Failed = true; 296 } 297 298 // Test if runtime memcheck thresholds are exceeded. 299 bool PragmaThresholdReached = 300 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 301 bool ThresholdReached = 302 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 303 if ((ThresholdReached && !Hints.allowReordering()) || 304 PragmaThresholdReached) { 305 ORE.emit([&]() { 306 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 307 L->getStartLoc(), 308 L->getHeader()) 309 << "loop not vectorized: cannot prove it is safe to reorder " 310 "memory operations"; 311 }); 312 DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 313 Failed = true; 314 } 315 316 return Failed; 317 } 318 319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 321 // executing the inner loop will execute the same iterations). This check is 322 // very constrained for now but it will be relaxed in the future. \p Lp is 323 // considered uniform if it meets all the following conditions: 324 // 1) it has a canonical IV (starting from 0 and with stride 1), 325 // 2) its latch terminator is a conditional branch and, 326 // 3) its latch condition is a compare instruction whose operands are the 327 // canonical IV and an OuterLp invariant. 328 // This check doesn't take into account the uniformity of other conditions not 329 // related to the loop latch because they don't affect the loop uniformity. 330 // 331 // NOTE: We decided to keep all these checks and its associated documentation 332 // together so that we can easily have a picture of the current supported loop 333 // nests. However, some of the current checks don't depend on \p OuterLp and 334 // would be redundantly executed for each \p Lp if we invoked this function for 335 // different candidate outer loops. This is not the case for now because we 336 // don't currently have the infrastructure to evaluate multiple candidate outer 337 // loops and \p OuterLp will be a fixed parameter while we only support explicit 338 // outer loop vectorization. It's also very likely that these checks go away 339 // before introducing the aforementioned infrastructure. However, if this is not 340 // the case, we should move the \p OuterLp independent checks to a separate 341 // function that is only executed once for each \p Lp. 342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 343 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 344 345 // If Lp is the outer loop, it's uniform by definition. 346 if (Lp == OuterLp) 347 return true; 348 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 349 350 // 1. 351 PHINode *IV = Lp->getCanonicalInductionVariable(); 352 if (!IV) { 353 DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 354 return false; 355 } 356 357 // 2. 358 BasicBlock *Latch = Lp->getLoopLatch(); 359 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 360 if (!LatchBr || LatchBr->isUnconditional()) { 361 DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 362 return false; 363 } 364 365 // 3. 366 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 367 if (!LatchCmp) { 368 DEBUG(dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 369 return false; 370 } 371 372 Value *CondOp0 = LatchCmp->getOperand(0); 373 Value *CondOp1 = LatchCmp->getOperand(1); 374 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 375 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 376 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 377 DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 378 return false; 379 } 380 381 return true; 382 } 383 384 // Return true if \p Lp and all its nested loops are uniform with regard to \p 385 // OuterLp. 386 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 387 if (!isUniformLoop(Lp, OuterLp)) 388 return false; 389 390 // Check if nested loops are uniform. 391 for (Loop *SubLp : *Lp) 392 if (!isUniformLoopNest(SubLp, OuterLp)) 393 return false; 394 395 return true; 396 } 397 398 /// Check whether it is safe to if-convert this phi node. 399 /// 400 /// Phi nodes with constant expressions that can trap are not safe to if 401 /// convert. 402 static bool canIfConvertPHINodes(BasicBlock *BB) { 403 for (PHINode &Phi : BB->phis()) { 404 for (Value *V : Phi.incoming_values()) 405 if (auto *C = dyn_cast<Constant>(V)) 406 if (C->canTrap()) 407 return false; 408 } 409 return true; 410 } 411 412 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 413 if (Ty->isPointerTy()) 414 return DL.getIntPtrType(Ty); 415 416 // It is possible that char's or short's overflow when we ask for the loop's 417 // trip count, work around this by changing the type size. 418 if (Ty->getScalarSizeInBits() < 32) 419 return Type::getInt32Ty(Ty->getContext()); 420 421 return Ty; 422 } 423 424 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 425 Ty0 = convertPointerToIntegerType(DL, Ty0); 426 Ty1 = convertPointerToIntegerType(DL, Ty1); 427 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 428 return Ty0; 429 return Ty1; 430 } 431 432 /// Check that the instruction has outside loop users and is not an 433 /// identified reduction variable. 434 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 435 SmallPtrSetImpl<Value *> &AllowedExit) { 436 // Reduction and Induction instructions are allowed to have exit users. All 437 // other instructions must not have external users. 438 if (!AllowedExit.count(Inst)) 439 // Check that all of the users of the loop are inside the BB. 440 for (User *U : Inst->users()) { 441 Instruction *UI = cast<Instruction>(U); 442 // This user may be a reduction exit value. 443 if (!TheLoop->contains(UI)) { 444 DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 445 return true; 446 } 447 } 448 return false; 449 } 450 451 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 452 const ValueToValueMap &Strides = 453 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 454 455 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 456 if (Stride == 1 || Stride == -1) 457 return Stride; 458 return 0; 459 } 460 461 bool LoopVectorizationLegality::isUniform(Value *V) { 462 return LAI->isUniform(V); 463 } 464 465 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 466 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 467 // Store the result and return it at the end instead of exiting early, in case 468 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 469 bool Result = true; 470 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 471 472 for (BasicBlock *BB : TheLoop->blocks()) { 473 // Check whether the BB terminator is a BranchInst. Any other terminator is 474 // not supported yet. 475 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 476 if (!Br) { 477 DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 478 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 479 << "loop control flow is not understood by vectorizer"); 480 if (DoExtraAnalysis) 481 Result = false; 482 else 483 return false; 484 } 485 486 // Check whether the BranchInst is a supported one. Only unconditional 487 // branches, conditional branches with an outer loop invariant condition or 488 // backedges are supported. 489 if (Br && Br->isConditional() && 490 !TheLoop->isLoopInvariant(Br->getCondition()) && 491 !LI->isLoopHeader(Br->getSuccessor(0)) && 492 !LI->isLoopHeader(Br->getSuccessor(1))) { 493 DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 494 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 495 << "loop control flow is not understood by vectorizer"); 496 if (DoExtraAnalysis) 497 Result = false; 498 else 499 return false; 500 } 501 } 502 503 // Check whether inner loops are uniform. At this point, we only support 504 // simple outer loops scenarios with uniform nested loops. 505 if (!isUniformLoopNest(TheLoop /*loop nest*/, 506 TheLoop /*context outer loop*/)) { 507 DEBUG(dbgs() 508 << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 509 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 510 << "loop control flow is not understood by vectorizer"); 511 if (DoExtraAnalysis) 512 Result = false; 513 else 514 return false; 515 } 516 517 return Result; 518 } 519 520 void LoopVectorizationLegality::addInductionPhi( 521 PHINode *Phi, const InductionDescriptor &ID, 522 SmallPtrSetImpl<Value *> &AllowedExit) { 523 Inductions[Phi] = ID; 524 525 // In case this induction also comes with casts that we know we can ignore 526 // in the vectorized loop body, record them here. All casts could be recorded 527 // here for ignoring, but suffices to record only the first (as it is the 528 // only one that may bw used outside the cast sequence). 529 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 530 if (!Casts.empty()) 531 InductionCastsToIgnore.insert(*Casts.begin()); 532 533 Type *PhiTy = Phi->getType(); 534 const DataLayout &DL = Phi->getModule()->getDataLayout(); 535 536 // Get the widest type. 537 if (!PhiTy->isFloatingPointTy()) { 538 if (!WidestIndTy) 539 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 540 else 541 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 542 } 543 544 // Int inductions are special because we only allow one IV. 545 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 546 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 547 isa<Constant>(ID.getStartValue()) && 548 cast<Constant>(ID.getStartValue())->isNullValue()) { 549 550 // Use the phi node with the widest type as induction. Use the last 551 // one if there are multiple (no good reason for doing this other 552 // than it is expedient). We've checked that it begins at zero and 553 // steps by one, so this is a canonical induction variable. 554 if (!PrimaryInduction || PhiTy == WidestIndTy) 555 PrimaryInduction = Phi; 556 } 557 558 // Both the PHI node itself, and the "post-increment" value feeding 559 // back into the PHI node may have external users. 560 // We can allow those uses, except if the SCEVs we have for them rely 561 // on predicates that only hold within the loop, since allowing the exit 562 // currently means re-using this SCEV outside the loop. 563 if (PSE.getUnionPredicate().isAlwaysTrue()) { 564 AllowedExit.insert(Phi); 565 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 566 } 567 568 DEBUG(dbgs() << "LV: Found an induction variable.\n"); 569 } 570 571 bool LoopVectorizationLegality::canVectorizeInstrs() { 572 BasicBlock *Header = TheLoop->getHeader(); 573 574 // Look for the attribute signaling the absence of NaNs. 575 Function &F = *Header->getParent(); 576 HasFunNoNaNAttr = 577 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 578 579 // For each block in the loop. 580 for (BasicBlock *BB : TheLoop->blocks()) { 581 // Scan the instructions in the block and look for hazards. 582 for (Instruction &I : *BB) { 583 if (auto *Phi = dyn_cast<PHINode>(&I)) { 584 Type *PhiTy = Phi->getType(); 585 // Check that this PHI type is allowed. 586 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 587 !PhiTy->isPointerTy()) { 588 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 589 << "loop control flow is not understood by vectorizer"); 590 DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 591 return false; 592 } 593 594 // If this PHINode is not in the header block, then we know that we 595 // can convert it to select during if-conversion. No need to check if 596 // the PHIs in this block are induction or reduction variables. 597 if (BB != Header) { 598 // Check that this instruction has no outside users or is an 599 // identified reduction value with an outside user. 600 if (!hasOutsideLoopUser(TheLoop, Phi, AllowedExit)) 601 continue; 602 ORE->emit(createMissedAnalysis("NeitherInductionNorReduction", Phi) 603 << "value could not be identified as " 604 "an induction or reduction variable"); 605 return false; 606 } 607 608 // We only allow if-converted PHIs with exactly two incoming values. 609 if (Phi->getNumIncomingValues() != 2) { 610 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 611 << "control flow not understood by vectorizer"); 612 DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 613 return false; 614 } 615 616 RecurrenceDescriptor RedDes; 617 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 618 DT)) { 619 if (RedDes.hasUnsafeAlgebra()) 620 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 621 AllowedExit.insert(RedDes.getLoopExitInstr()); 622 Reductions[Phi] = RedDes; 623 continue; 624 } 625 626 InductionDescriptor ID; 627 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 628 addInductionPhi(Phi, ID, AllowedExit); 629 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 630 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 631 continue; 632 } 633 634 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 635 SinkAfter, DT)) { 636 FirstOrderRecurrences.insert(Phi); 637 continue; 638 } 639 640 // As a last resort, coerce the PHI to a AddRec expression 641 // and re-try classifying it a an induction PHI. 642 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 643 addInductionPhi(Phi, ID, AllowedExit); 644 continue; 645 } 646 647 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 648 << "value that could not be identified as " 649 "reduction is used outside the loop"); 650 DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 651 return false; 652 } // end of PHI handling 653 654 // We handle calls that: 655 // * Are debug info intrinsics. 656 // * Have a mapping to an IR intrinsic. 657 // * Have a vector version available. 658 auto *CI = dyn_cast<CallInst>(&I); 659 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 660 !isa<DbgInfoIntrinsic>(CI) && 661 !(CI->getCalledFunction() && TLI && 662 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 663 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 664 << "call instruction cannot be vectorized"); 665 DEBUG(dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 666 return false; 667 } 668 669 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 670 // second argument is the same (i.e. loop invariant) 671 if (CI && hasVectorInstrinsicScalarOpd( 672 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 673 auto *SE = PSE.getSE(); 674 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 675 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 676 << "intrinsic instruction cannot be vectorized"); 677 DEBUG(dbgs() << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 678 return false; 679 } 680 } 681 682 // Check that the instruction return type is vectorizable. 683 // Also, we can't vectorize extractelement instructions. 684 if ((!VectorType::isValidElementType(I.getType()) && 685 !I.getType()->isVoidTy()) || 686 isa<ExtractElementInst>(I)) { 687 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 688 << "instruction return type cannot be vectorized"); 689 DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 690 return false; 691 } 692 693 // Check that the stored type is vectorizable. 694 if (auto *ST = dyn_cast<StoreInst>(&I)) { 695 Type *T = ST->getValueOperand()->getType(); 696 if (!VectorType::isValidElementType(T)) { 697 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 698 << "store instruction cannot be vectorized"); 699 return false; 700 } 701 702 // FP instructions can allow unsafe algebra, thus vectorizable by 703 // non-IEEE-754 compliant SIMD units. 704 // This applies to floating-point math operations and calls, not memory 705 // operations, shuffles, or casts, as they don't change precision or 706 // semantics. 707 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 708 !I.isFast()) { 709 DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 710 Hints->setPotentiallyUnsafe(); 711 } 712 713 // Reduction instructions are allowed to have exit users. 714 // All other instructions must not have external users. 715 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 716 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 717 << "value cannot be used outside the loop"); 718 return false; 719 } 720 } // next instr. 721 } 722 723 if (!PrimaryInduction) { 724 DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 725 if (Inductions.empty()) { 726 ORE->emit(createMissedAnalysis("NoInductionVariable") 727 << "loop induction variable could not be identified"); 728 return false; 729 } 730 } 731 732 // Now we know the widest induction type, check if our found induction 733 // is the same size. If it's not, unset it here and InnerLoopVectorizer 734 // will create another. 735 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 736 PrimaryInduction = nullptr; 737 738 return true; 739 } 740 741 bool LoopVectorizationLegality::canVectorizeMemory() { 742 LAI = &(*GetLAA)(*TheLoop); 743 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 744 if (LAR) { 745 ORE->emit([&]() { 746 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 747 "loop not vectorized: ", *LAR); 748 }); 749 } 750 if (!LAI->canVectorizeMemory()) 751 return false; 752 753 if (LAI->hasStoreToLoopInvariantAddress()) { 754 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 755 << "write to a loop invariant address could not be vectorized"); 756 DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 757 return false; 758 } 759 760 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 761 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 762 763 return true; 764 } 765 766 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 767 Value *In0 = const_cast<Value *>(V); 768 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 769 if (!PN) 770 return false; 771 772 return Inductions.count(PN); 773 } 774 775 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 776 auto *Inst = dyn_cast<Instruction>(V); 777 return (Inst && InductionCastsToIgnore.count(Inst)); 778 } 779 780 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 781 return isInductionPhi(V) || isCastedInductionVariable(V); 782 } 783 784 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 785 return FirstOrderRecurrences.count(Phi); 786 } 787 788 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 789 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 790 } 791 792 bool LoopVectorizationLegality::blockCanBePredicated( 793 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 794 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 795 796 for (Instruction &I : *BB) { 797 // Check that we don't have a constant expression that can trap as operand. 798 for (Value *Operand : I.operands()) { 799 if (auto *C = dyn_cast<Constant>(Operand)) 800 if (C->canTrap()) 801 return false; 802 } 803 // We might be able to hoist the load. 804 if (I.mayReadFromMemory()) { 805 auto *LI = dyn_cast<LoadInst>(&I); 806 if (!LI) 807 return false; 808 if (!SafePtrs.count(LI->getPointerOperand())) { 809 // !llvm.mem.parallel_loop_access implies if-conversion safety. 810 // Otherwise, record that the load needs (real or emulated) masking 811 // and let the cost model decide. 812 if (!IsAnnotatedParallel) 813 MaskedOp.insert(LI); 814 continue; 815 } 816 } 817 818 if (I.mayWriteToMemory()) { 819 auto *SI = dyn_cast<StoreInst>(&I); 820 if (!SI) 821 return false; 822 // Predicated store requires some form of masking: 823 // 1) masked store HW instruction, 824 // 2) emulation via load-blend-store (only if safe and legal to do so, 825 // be aware on the race conditions), or 826 // 3) element-by-element predicate check and scalar store. 827 MaskedOp.insert(SI); 828 continue; 829 } 830 if (I.mayThrow()) 831 return false; 832 } 833 834 return true; 835 } 836 837 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 838 if (!EnableIfConversion) { 839 ORE->emit(createMissedAnalysis("IfConversionDisabled") 840 << "if-conversion is disabled"); 841 return false; 842 } 843 844 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 845 846 // A list of pointers that we can safely read and write to. 847 SmallPtrSet<Value *, 8> SafePointes; 848 849 // Collect safe addresses. 850 for (BasicBlock *BB : TheLoop->blocks()) { 851 if (blockNeedsPredication(BB)) 852 continue; 853 854 for (Instruction &I : *BB) 855 if (auto *Ptr = getLoadStorePointerOperand(&I)) 856 SafePointes.insert(Ptr); 857 } 858 859 // Collect the blocks that need predication. 860 BasicBlock *Header = TheLoop->getHeader(); 861 for (BasicBlock *BB : TheLoop->blocks()) { 862 // We don't support switch statements inside loops. 863 if (!isa<BranchInst>(BB->getTerminator())) { 864 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 865 << "loop contains a switch statement"); 866 return false; 867 } 868 869 // We must be able to predicate all blocks that need to be predicated. 870 if (blockNeedsPredication(BB)) { 871 if (!blockCanBePredicated(BB, SafePointes)) { 872 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 873 << "control flow cannot be substituted for a select"); 874 return false; 875 } 876 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 877 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 878 << "control flow cannot be substituted for a select"); 879 return false; 880 } 881 } 882 883 // We can if-convert this loop. 884 return true; 885 } 886 887 // Helper function to canVectorizeLoopNestCFG. 888 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 889 bool UseVPlanNativePath) { 890 assert((UseVPlanNativePath || Lp->empty()) && 891 "VPlan-native path is not enabled."); 892 893 // TODO: ORE should be improved to show more accurate information when an 894 // outer loop can't be vectorized because a nested loop is not understood or 895 // legal. Something like: "outer_loop_location: loop not vectorized: 896 // (inner_loop_location) loop control flow is not understood by vectorizer". 897 898 // Store the result and return it at the end instead of exiting early, in case 899 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 900 bool Result = true; 901 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 902 903 // We must have a loop in canonical form. Loops with indirectbr in them cannot 904 // be canonicalized. 905 if (!Lp->getLoopPreheader()) { 906 DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 907 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 908 << "loop control flow is not understood by vectorizer"); 909 if (DoExtraAnalysis) 910 Result = false; 911 else 912 return false; 913 } 914 915 // We must have a single backedge. 916 if (Lp->getNumBackEdges() != 1) { 917 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 918 << "loop control flow is not understood by vectorizer"); 919 if (DoExtraAnalysis) 920 Result = false; 921 else 922 return false; 923 } 924 925 // We must have a single exiting block. 926 if (!Lp->getExitingBlock()) { 927 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 928 << "loop control flow is not understood by vectorizer"); 929 if (DoExtraAnalysis) 930 Result = false; 931 else 932 return false; 933 } 934 935 // We only handle bottom-tested loops, i.e. loop in which the condition is 936 // checked at the end of each iteration. With that we can assume that all 937 // instructions in the loop are executed the same number of times. 938 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 939 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 940 << "loop control flow is not understood by vectorizer"); 941 if (DoExtraAnalysis) 942 Result = false; 943 else 944 return false; 945 } 946 947 return Result; 948 } 949 950 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 951 Loop *Lp, bool UseVPlanNativePath) { 952 // Store the result and return it at the end instead of exiting early, in case 953 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 954 bool Result = true; 955 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 956 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 957 if (DoExtraAnalysis) 958 Result = false; 959 else 960 return false; 961 } 962 963 // Recursively check whether the loop control flow of nested loops is 964 // understood. 965 for (Loop *SubLp : *Lp) 966 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 967 if (DoExtraAnalysis) 968 Result = false; 969 else 970 return false; 971 } 972 973 return Result; 974 } 975 976 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 977 // Store the result and return it at the end instead of exiting early, in case 978 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 979 bool Result = true; 980 981 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 982 // Check whether the loop-related control flow in the loop nest is expected by 983 // vectorizer. 984 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 985 if (DoExtraAnalysis) 986 Result = false; 987 else 988 return false; 989 } 990 991 // We need to have a loop header. 992 DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 993 << '\n'); 994 995 // Specific checks for outer loops. We skip the remaining legal checks at this 996 // point because they don't support outer loops. 997 if (!TheLoop->empty()) { 998 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 999 1000 if (!canVectorizeOuterLoop()) { 1001 DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1002 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1003 // outer loops. 1004 return false; 1005 } 1006 1007 DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1008 return Result; 1009 } 1010 1011 assert(TheLoop->empty() && "Inner loop expected."); 1012 // Check if we can if-convert non-single-bb loops. 1013 unsigned NumBlocks = TheLoop->getNumBlocks(); 1014 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1015 DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1016 if (DoExtraAnalysis) 1017 Result = false; 1018 else 1019 return false; 1020 } 1021 1022 // Check if we can vectorize the instructions and CFG in this loop. 1023 if (!canVectorizeInstrs()) { 1024 DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1025 if (DoExtraAnalysis) 1026 Result = false; 1027 else 1028 return false; 1029 } 1030 1031 // Go over each instruction and look at memory deps. 1032 if (!canVectorizeMemory()) { 1033 DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1034 if (DoExtraAnalysis) 1035 Result = false; 1036 else 1037 return false; 1038 } 1039 1040 DEBUG(dbgs() << "LV: We can vectorize this loop" 1041 << (LAI->getRuntimePointerChecking()->Need 1042 ? " (with a runtime bound check)" 1043 : "") 1044 << "!\n"); 1045 1046 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1047 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1048 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1049 1050 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1051 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1052 << "Too many SCEV assumptions need to be made and checked " 1053 << "at runtime"); 1054 DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1055 if (DoExtraAnalysis) 1056 Result = false; 1057 else 1058 return false; 1059 } 1060 1061 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1062 // we can vectorize, and at this point we don't have any other mem analysis 1063 // which may limit our maximum vectorization factor, so just return true with 1064 // no restrictions. 1065 return Result; 1066 } 1067 1068 } // namespace llvm 1069