1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 17 #include "llvm/Analysis/VectorUtils.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 20 using namespace llvm; 21 22 #define LV_NAME "loop-vectorize" 23 #define DEBUG_TYPE LV_NAME 24 25 static cl::opt<bool> 26 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 27 cl::desc("Enable if-conversion during vectorization.")); 28 29 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 30 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 31 cl::desc("The maximum allowed number of runtime memory checks with a " 32 "vectorize(enable) pragma.")); 33 34 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 35 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 36 cl::desc("The maximum number of SCEV checks allowed.")); 37 38 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 39 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 40 cl::desc("The maximum number of SCEV checks allowed with a " 41 "vectorize(enable) pragma")); 42 43 /// Maximum vectorization interleave count. 44 static const unsigned MaxInterleaveFactor = 16; 45 46 namespace llvm { 47 48 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 49 StringRef RemarkName, 50 Loop *TheLoop, 51 Instruction *I) { 52 Value *CodeRegion = TheLoop->getHeader(); 53 DebugLoc DL = TheLoop->getStartLoc(); 54 55 if (I) { 56 CodeRegion = I->getParent(); 57 // If there is no debug location attached to the instruction, revert back to 58 // using the loop's. 59 if (I->getDebugLoc()) 60 DL = I->getDebugLoc(); 61 } 62 63 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 64 R << "loop not vectorized: "; 65 return R; 66 } 67 68 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 69 switch (Kind) { 70 case HK_WIDTH: 71 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 72 case HK_UNROLL: 73 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 74 case HK_FORCE: 75 return (Val <= 1); 76 case HK_ISVECTORIZED: 77 return (Val == 0 || Val == 1); 78 } 79 return false; 80 } 81 82 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 83 bool InterleaveOnlyWhenForced, 84 OptimizationRemarkEmitter &ORE) 85 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 86 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 87 Force("vectorize.enable", FK_Undefined, HK_FORCE), 88 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 89 // Populate values with existing loop metadata. 90 getHintsFromMetadata(); 91 92 // force-vector-interleave overrides DisableInterleaving. 93 if (VectorizerParams::isInterleaveForced()) 94 Interleave.Value = VectorizerParams::VectorizationInterleave; 95 96 if (IsVectorized.Value != 1) 97 // If the vectorization width and interleaving count are both 1 then 98 // consider the loop to have been already vectorized because there's 99 // nothing more that we can do. 100 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 101 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 102 << "LV: Interleaving disabled by the pass manager\n"); 103 } 104 105 bool LoopVectorizeHints::allowVectorization( 106 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 107 if (getForce() == LoopVectorizeHints::FK_Disabled) { 108 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 109 emitRemarkWithHints(); 110 return false; 111 } 112 113 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 114 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 115 emitRemarkWithHints(); 116 return false; 117 } 118 119 if (getIsVectorized() == 1) { 120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 121 // FIXME: Add interleave.disable metadata. This will allow 122 // vectorize.disable to be used without disabling the pass and errors 123 // to differentiate between disabled vectorization and a width of 1. 124 ORE.emit([&]() { 125 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 126 "AllDisabled", L->getStartLoc(), 127 L->getHeader()) 128 << "loop not vectorized: vectorization and interleaving are " 129 "explicitly disabled, or the loop has already been " 130 "vectorized"; 131 }); 132 return false; 133 } 134 135 return true; 136 } 137 138 void LoopVectorizeHints::emitRemarkWithHints() const { 139 using namespace ore; 140 141 ORE.emit([&]() { 142 if (Force.Value == LoopVectorizeHints::FK_Disabled) 143 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 144 TheLoop->getStartLoc(), 145 TheLoop->getHeader()) 146 << "loop not vectorized: vectorization is explicitly disabled"; 147 else { 148 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 149 TheLoop->getStartLoc(), TheLoop->getHeader()); 150 R << "loop not vectorized"; 151 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 152 R << " (Force=" << NV("Force", true); 153 if (Width.Value != 0) 154 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 155 if (Interleave.Value != 0) 156 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 157 R << ")"; 158 } 159 return R; 160 } 161 }); 162 } 163 164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 165 if (getWidth() == 1) 166 return LV_NAME; 167 if (getForce() == LoopVectorizeHints::FK_Disabled) 168 return LV_NAME; 169 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 170 return LV_NAME; 171 return OptimizationRemarkAnalysis::AlwaysPrint; 172 } 173 174 void LoopVectorizeHints::getHintsFromMetadata() { 175 MDNode *LoopID = TheLoop->getLoopID(); 176 if (!LoopID) 177 return; 178 179 // First operand should refer to the loop id itself. 180 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 181 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 182 183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 184 const MDString *S = nullptr; 185 SmallVector<Metadata *, 4> Args; 186 187 // The expected hint is either a MDString or a MDNode with the first 188 // operand a MDString. 189 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 190 if (!MD || MD->getNumOperands() == 0) 191 continue; 192 S = dyn_cast<MDString>(MD->getOperand(0)); 193 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 194 Args.push_back(MD->getOperand(i)); 195 } else { 196 S = dyn_cast<MDString>(LoopID->getOperand(i)); 197 assert(Args.size() == 0 && "too many arguments for MDString"); 198 } 199 200 if (!S) 201 continue; 202 203 // Check if the hint starts with the loop metadata prefix. 204 StringRef Name = S->getString(); 205 if (Args.size() == 1) 206 setHint(Name, Args[0]); 207 } 208 } 209 210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 211 if (!Name.startswith(Prefix())) 212 return; 213 Name = Name.substr(Prefix().size(), StringRef::npos); 214 215 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 216 if (!C) 217 return; 218 unsigned Val = C->getZExtValue(); 219 220 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 221 for (auto H : Hints) { 222 if (Name == H->Name) { 223 if (H->validate(Val)) 224 H->Value = Val; 225 else 226 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 227 break; 228 } 229 } 230 } 231 232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 233 unsigned V) const { 234 LLVMContext &Context = TheLoop->getHeader()->getContext(); 235 Metadata *MDs[] = { 236 MDString::get(Context, Name), 237 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 238 return MDNode::get(Context, MDs); 239 } 240 241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 242 ArrayRef<Hint> HintTypes) { 243 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 244 if (!Name) 245 return false; 246 247 for (auto H : HintTypes) 248 if (Name->getString().endswith(H.Name)) 249 return true; 250 return false; 251 } 252 253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 254 if (HintTypes.empty()) 255 return; 256 257 // Reserve the first element to LoopID (see below). 258 SmallVector<Metadata *, 4> MDs(1); 259 // If the loop already has metadata, then ignore the existing operands. 260 MDNode *LoopID = TheLoop->getLoopID(); 261 if (LoopID) { 262 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 263 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 264 // If node in update list, ignore old value. 265 if (!matchesHintMetadataName(Node, HintTypes)) 266 MDs.push_back(Node); 267 } 268 } 269 270 // Now, add the missing hints. 271 for (auto H : HintTypes) 272 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 273 274 // Replace current metadata node with new one. 275 LLVMContext &Context = TheLoop->getHeader()->getContext(); 276 MDNode *NewLoopID = MDNode::get(Context, MDs); 277 // Set operand 0 to refer to the loop id itself. 278 NewLoopID->replaceOperandWith(0, NewLoopID); 279 280 TheLoop->setLoopID(NewLoopID); 281 } 282 283 bool LoopVectorizationRequirements::doesNotMeet( 284 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 285 const char *PassName = Hints.vectorizeAnalysisPassName(); 286 bool Failed = false; 287 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 288 ORE.emit([&]() { 289 return OptimizationRemarkAnalysisFPCommute( 290 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 291 UnsafeAlgebraInst->getParent()) 292 << "loop not vectorized: cannot prove it is safe to reorder " 293 "floating-point operations"; 294 }); 295 Failed = true; 296 } 297 298 // Test if runtime memcheck thresholds are exceeded. 299 bool PragmaThresholdReached = 300 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 301 bool ThresholdReached = 302 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 303 if ((ThresholdReached && !Hints.allowReordering()) || 304 PragmaThresholdReached) { 305 ORE.emit([&]() { 306 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 307 L->getStartLoc(), 308 L->getHeader()) 309 << "loop not vectorized: cannot prove it is safe to reorder " 310 "memory operations"; 311 }); 312 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 313 Failed = true; 314 } 315 316 return Failed; 317 } 318 319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 321 // executing the inner loop will execute the same iterations). This check is 322 // very constrained for now but it will be relaxed in the future. \p Lp is 323 // considered uniform if it meets all the following conditions: 324 // 1) it has a canonical IV (starting from 0 and with stride 1), 325 // 2) its latch terminator is a conditional branch and, 326 // 3) its latch condition is a compare instruction whose operands are the 327 // canonical IV and an OuterLp invariant. 328 // This check doesn't take into account the uniformity of other conditions not 329 // related to the loop latch because they don't affect the loop uniformity. 330 // 331 // NOTE: We decided to keep all these checks and its associated documentation 332 // together so that we can easily have a picture of the current supported loop 333 // nests. However, some of the current checks don't depend on \p OuterLp and 334 // would be redundantly executed for each \p Lp if we invoked this function for 335 // different candidate outer loops. This is not the case for now because we 336 // don't currently have the infrastructure to evaluate multiple candidate outer 337 // loops and \p OuterLp will be a fixed parameter while we only support explicit 338 // outer loop vectorization. It's also very likely that these checks go away 339 // before introducing the aforementioned infrastructure. However, if this is not 340 // the case, we should move the \p OuterLp independent checks to a separate 341 // function that is only executed once for each \p Lp. 342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 343 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 344 345 // If Lp is the outer loop, it's uniform by definition. 346 if (Lp == OuterLp) 347 return true; 348 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 349 350 // 1. 351 PHINode *IV = Lp->getCanonicalInductionVariable(); 352 if (!IV) { 353 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 354 return false; 355 } 356 357 // 2. 358 BasicBlock *Latch = Lp->getLoopLatch(); 359 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 360 if (!LatchBr || LatchBr->isUnconditional()) { 361 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 362 return false; 363 } 364 365 // 3. 366 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 367 if (!LatchCmp) { 368 LLVM_DEBUG( 369 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 370 return false; 371 } 372 373 Value *CondOp0 = LatchCmp->getOperand(0); 374 Value *CondOp1 = LatchCmp->getOperand(1); 375 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 376 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 377 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 378 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 379 return false; 380 } 381 382 return true; 383 } 384 385 // Return true if \p Lp and all its nested loops are uniform with regard to \p 386 // OuterLp. 387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 388 if (!isUniformLoop(Lp, OuterLp)) 389 return false; 390 391 // Check if nested loops are uniform. 392 for (Loop *SubLp : *Lp) 393 if (!isUniformLoopNest(SubLp, OuterLp)) 394 return false; 395 396 return true; 397 } 398 399 /// Check whether it is safe to if-convert this phi node. 400 /// 401 /// Phi nodes with constant expressions that can trap are not safe to if 402 /// convert. 403 static bool canIfConvertPHINodes(BasicBlock *BB) { 404 for (PHINode &Phi : BB->phis()) { 405 for (Value *V : Phi.incoming_values()) 406 if (auto *C = dyn_cast<Constant>(V)) 407 if (C->canTrap()) 408 return false; 409 } 410 return true; 411 } 412 413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 414 if (Ty->isPointerTy()) 415 return DL.getIntPtrType(Ty); 416 417 // It is possible that char's or short's overflow when we ask for the loop's 418 // trip count, work around this by changing the type size. 419 if (Ty->getScalarSizeInBits() < 32) 420 return Type::getInt32Ty(Ty->getContext()); 421 422 return Ty; 423 } 424 425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 426 Ty0 = convertPointerToIntegerType(DL, Ty0); 427 Ty1 = convertPointerToIntegerType(DL, Ty1); 428 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 429 return Ty0; 430 return Ty1; 431 } 432 433 /// Check that the instruction has outside loop users and is not an 434 /// identified reduction variable. 435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 436 SmallPtrSetImpl<Value *> &AllowedExit) { 437 // Reductions, Inductions and non-header phis are allowed to have exit users. All 438 // other instructions must not have external users. 439 if (!AllowedExit.count(Inst)) 440 // Check that all of the users of the loop are inside the BB. 441 for (User *U : Inst->users()) { 442 Instruction *UI = cast<Instruction>(U); 443 // This user may be a reduction exit value. 444 if (!TheLoop->contains(UI)) { 445 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 446 return true; 447 } 448 } 449 return false; 450 } 451 452 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 453 const ValueToValueMap &Strides = 454 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 455 456 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 457 if (Stride == 1 || Stride == -1) 458 return Stride; 459 return 0; 460 } 461 462 bool LoopVectorizationLegality::isUniform(Value *V) { 463 return LAI->isUniform(V); 464 } 465 466 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 467 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 468 // Store the result and return it at the end instead of exiting early, in case 469 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 470 bool Result = true; 471 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 472 473 for (BasicBlock *BB : TheLoop->blocks()) { 474 // Check whether the BB terminator is a BranchInst. Any other terminator is 475 // not supported yet. 476 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 477 if (!Br) { 478 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 479 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 480 << "loop control flow is not understood by vectorizer"); 481 if (DoExtraAnalysis) 482 Result = false; 483 else 484 return false; 485 } 486 487 // Check whether the BranchInst is a supported one. Only unconditional 488 // branches, conditional branches with an outer loop invariant condition or 489 // backedges are supported. 490 if (Br && Br->isConditional() && 491 !TheLoop->isLoopInvariant(Br->getCondition()) && 492 !LI->isLoopHeader(Br->getSuccessor(0)) && 493 !LI->isLoopHeader(Br->getSuccessor(1))) { 494 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 495 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 496 << "loop control flow is not understood by vectorizer"); 497 if (DoExtraAnalysis) 498 Result = false; 499 else 500 return false; 501 } 502 } 503 504 // Check whether inner loops are uniform. At this point, we only support 505 // simple outer loops scenarios with uniform nested loops. 506 if (!isUniformLoopNest(TheLoop /*loop nest*/, 507 TheLoop /*context outer loop*/)) { 508 LLVM_DEBUG( 509 dbgs() 510 << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 511 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 512 << "loop control flow is not understood by vectorizer"); 513 if (DoExtraAnalysis) 514 Result = false; 515 else 516 return false; 517 } 518 519 // Check whether we are able to set up outer loop induction. 520 if (!setupOuterLoopInductions()) { 521 LLVM_DEBUG( 522 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n"); 523 ORE->emit(createMissedAnalysis("UnsupportedPhi") 524 << "Unsupported outer loop Phi(s)"); 525 if (DoExtraAnalysis) 526 Result = false; 527 else 528 return false; 529 } 530 531 return Result; 532 } 533 534 void LoopVectorizationLegality::addInductionPhi( 535 PHINode *Phi, const InductionDescriptor &ID, 536 SmallPtrSetImpl<Value *> &AllowedExit) { 537 Inductions[Phi] = ID; 538 539 // In case this induction also comes with casts that we know we can ignore 540 // in the vectorized loop body, record them here. All casts could be recorded 541 // here for ignoring, but suffices to record only the first (as it is the 542 // only one that may bw used outside the cast sequence). 543 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 544 if (!Casts.empty()) 545 InductionCastsToIgnore.insert(*Casts.begin()); 546 547 Type *PhiTy = Phi->getType(); 548 const DataLayout &DL = Phi->getModule()->getDataLayout(); 549 550 // Get the widest type. 551 if (!PhiTy->isFloatingPointTy()) { 552 if (!WidestIndTy) 553 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 554 else 555 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 556 } 557 558 // Int inductions are special because we only allow one IV. 559 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 560 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 561 isa<Constant>(ID.getStartValue()) && 562 cast<Constant>(ID.getStartValue())->isNullValue()) { 563 564 // Use the phi node with the widest type as induction. Use the last 565 // one if there are multiple (no good reason for doing this other 566 // than it is expedient). We've checked that it begins at zero and 567 // steps by one, so this is a canonical induction variable. 568 if (!PrimaryInduction || PhiTy == WidestIndTy) 569 PrimaryInduction = Phi; 570 } 571 572 // Both the PHI node itself, and the "post-increment" value feeding 573 // back into the PHI node may have external users. 574 // We can allow those uses, except if the SCEVs we have for them rely 575 // on predicates that only hold within the loop, since allowing the exit 576 // currently means re-using this SCEV outside the loop (see PR33706 for more 577 // details). 578 if (PSE.getUnionPredicate().isAlwaysTrue()) { 579 AllowedExit.insert(Phi); 580 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 581 } 582 583 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 584 } 585 586 bool LoopVectorizationLegality::setupOuterLoopInductions() { 587 BasicBlock *Header = TheLoop->getHeader(); 588 589 // Returns true if a given Phi is a supported induction. 590 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 591 InductionDescriptor ID; 592 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 593 ID.getKind() == InductionDescriptor::IK_IntInduction) { 594 addInductionPhi(&Phi, ID, AllowedExit); 595 return true; 596 } else { 597 // Bail out for any Phi in the outer loop header that is not a supported 598 // induction. 599 LLVM_DEBUG( 600 dbgs() 601 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 602 return false; 603 } 604 }; 605 606 if (llvm::all_of(Header->phis(), isSupportedPhi)) 607 return true; 608 else 609 return false; 610 } 611 612 bool LoopVectorizationLegality::canVectorizeInstrs() { 613 BasicBlock *Header = TheLoop->getHeader(); 614 615 // Look for the attribute signaling the absence of NaNs. 616 Function &F = *Header->getParent(); 617 HasFunNoNaNAttr = 618 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 619 620 // For each block in the loop. 621 for (BasicBlock *BB : TheLoop->blocks()) { 622 // Scan the instructions in the block and look for hazards. 623 for (Instruction &I : *BB) { 624 if (auto *Phi = dyn_cast<PHINode>(&I)) { 625 Type *PhiTy = Phi->getType(); 626 // Check that this PHI type is allowed. 627 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 628 !PhiTy->isPointerTy()) { 629 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 630 << "loop control flow is not understood by vectorizer"); 631 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 632 return false; 633 } 634 635 // If this PHINode is not in the header block, then we know that we 636 // can convert it to select during if-conversion. No need to check if 637 // the PHIs in this block are induction or reduction variables. 638 if (BB != Header) { 639 // Non-header phi nodes that have outside uses can be vectorized. Add 640 // them to the list of allowed exits. 641 // Unsafe cyclic dependencies with header phis are identified during 642 // legalization for reduction, induction and first order 643 // recurrences. 644 continue; 645 } 646 647 // We only allow if-converted PHIs with exactly two incoming values. 648 if (Phi->getNumIncomingValues() != 2) { 649 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 650 << "control flow not understood by vectorizer"); 651 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 652 return false; 653 } 654 655 RecurrenceDescriptor RedDes; 656 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 657 DT)) { 658 if (RedDes.hasUnsafeAlgebra()) 659 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 660 AllowedExit.insert(RedDes.getLoopExitInstr()); 661 Reductions[Phi] = RedDes; 662 continue; 663 } 664 665 // TODO: Instead of recording the AllowedExit, it would be good to record the 666 // complementary set: NotAllowedExit. These include (but may not be 667 // limited to): 668 // 1. Reduction phis as they represent the one-before-last value, which 669 // is not available when vectorized 670 // 2. Induction phis and increment when SCEV predicates cannot be used 671 // outside the loop - see addInductionPhi 672 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 673 // outside the loop - see call to hasOutsideLoopUser in the non-phi 674 // handling below 675 // 4. FirstOrderRecurrence phis that can possibly be handled by 676 // extraction. 677 // By recording these, we can then reason about ways to vectorize each 678 // of these NotAllowedExit. 679 InductionDescriptor ID; 680 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 681 addInductionPhi(Phi, ID, AllowedExit); 682 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 683 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 684 continue; 685 } 686 687 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 688 SinkAfter, DT)) { 689 FirstOrderRecurrences.insert(Phi); 690 continue; 691 } 692 693 // As a last resort, coerce the PHI to a AddRec expression 694 // and re-try classifying it a an induction PHI. 695 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 696 addInductionPhi(Phi, ID, AllowedExit); 697 continue; 698 } 699 700 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 701 << "value that could not be identified as " 702 "reduction is used outside the loop"); 703 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 704 return false; 705 } // end of PHI handling 706 707 // We handle calls that: 708 // * Are debug info intrinsics. 709 // * Have a mapping to an IR intrinsic. 710 // * Have a vector version available. 711 auto *CI = dyn_cast<CallInst>(&I); 712 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 713 !isa<DbgInfoIntrinsic>(CI) && 714 !(CI->getCalledFunction() && TLI && 715 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 716 // If the call is a recognized math libary call, it is likely that 717 // we can vectorize it given loosened floating-point constraints. 718 LibFunc Func; 719 bool IsMathLibCall = 720 TLI && CI->getCalledFunction() && 721 CI->getType()->isFloatingPointTy() && 722 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 723 TLI->hasOptimizedCodeGen(Func); 724 725 if (IsMathLibCall) { 726 // TODO: Ideally, we should not use clang-specific language here, 727 // but it's hard to provide meaningful yet generic advice. 728 // Also, should this be guarded by allowExtraAnalysis() and/or be part 729 // of the returned info from isFunctionVectorizable()? 730 ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI) 731 << "library call cannot be vectorized. " 732 "Try compiling with -fno-math-errno, -ffast-math, " 733 "or similar flags"); 734 } else { 735 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 736 << "call instruction cannot be vectorized"); 737 } 738 LLVM_DEBUG( 739 dbgs() << "LV: Found a non-intrinsic callsite.\n"); 740 return false; 741 } 742 743 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 744 // second argument is the same (i.e. loop invariant) 745 if (CI && hasVectorInstrinsicScalarOpd( 746 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 747 auto *SE = PSE.getSE(); 748 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 749 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 750 << "intrinsic instruction cannot be vectorized"); 751 LLVM_DEBUG(dbgs() 752 << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 753 return false; 754 } 755 } 756 757 // Check that the instruction return type is vectorizable. 758 // Also, we can't vectorize extractelement instructions. 759 if ((!VectorType::isValidElementType(I.getType()) && 760 !I.getType()->isVoidTy()) || 761 isa<ExtractElementInst>(I)) { 762 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 763 << "instruction return type cannot be vectorized"); 764 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 765 return false; 766 } 767 768 // Check that the stored type is vectorizable. 769 if (auto *ST = dyn_cast<StoreInst>(&I)) { 770 Type *T = ST->getValueOperand()->getType(); 771 if (!VectorType::isValidElementType(T)) { 772 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 773 << "store instruction cannot be vectorized"); 774 return false; 775 } 776 777 // FP instructions can allow unsafe algebra, thus vectorizable by 778 // non-IEEE-754 compliant SIMD units. 779 // This applies to floating-point math operations and calls, not memory 780 // operations, shuffles, or casts, as they don't change precision or 781 // semantics. 782 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 783 !I.isFast()) { 784 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 785 Hints->setPotentiallyUnsafe(); 786 } 787 788 // Reduction instructions are allowed to have exit users. 789 // All other instructions must not have external users. 790 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 791 // We can safely vectorize loops where instructions within the loop are 792 // used outside the loop only if the SCEV predicates within the loop is 793 // same as outside the loop. Allowing the exit means reusing the SCEV 794 // outside the loop. 795 if (PSE.getUnionPredicate().isAlwaysTrue()) { 796 AllowedExit.insert(&I); 797 continue; 798 } 799 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 800 << "value cannot be used outside the loop"); 801 return false; 802 } 803 } // next instr. 804 } 805 806 if (!PrimaryInduction) { 807 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 808 if (Inductions.empty()) { 809 ORE->emit(createMissedAnalysis("NoInductionVariable") 810 << "loop induction variable could not be identified"); 811 return false; 812 } else if (!WidestIndTy) { 813 ORE->emit(createMissedAnalysis("NoIntegerInductionVariable") 814 << "integer loop induction variable could not be identified"); 815 return false; 816 } 817 } 818 819 // Now we know the widest induction type, check if our found induction 820 // is the same size. If it's not, unset it here and InnerLoopVectorizer 821 // will create another. 822 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 823 PrimaryInduction = nullptr; 824 825 return true; 826 } 827 828 bool LoopVectorizationLegality::canVectorizeMemory() { 829 LAI = &(*GetLAA)(*TheLoop); 830 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 831 if (LAR) { 832 ORE->emit([&]() { 833 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 834 "loop not vectorized: ", *LAR); 835 }); 836 } 837 if (!LAI->canVectorizeMemory()) 838 return false; 839 840 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 841 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 842 << "write to a loop invariant address could not " 843 "be vectorized"); 844 LLVM_DEBUG( 845 dbgs() << "LV: Non vectorizable stores to a uniform address\n"); 846 return false; 847 } 848 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 849 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 850 851 return true; 852 } 853 854 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 855 Value *In0 = const_cast<Value *>(V); 856 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 857 if (!PN) 858 return false; 859 860 return Inductions.count(PN); 861 } 862 863 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 864 auto *Inst = dyn_cast<Instruction>(V); 865 return (Inst && InductionCastsToIgnore.count(Inst)); 866 } 867 868 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 869 return isInductionPhi(V) || isCastedInductionVariable(V); 870 } 871 872 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 873 return FirstOrderRecurrences.count(Phi); 874 } 875 876 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 877 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 878 } 879 880 bool LoopVectorizationLegality::blockCanBePredicated( 881 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 882 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 883 884 for (Instruction &I : *BB) { 885 // Check that we don't have a constant expression that can trap as operand. 886 for (Value *Operand : I.operands()) { 887 if (auto *C = dyn_cast<Constant>(Operand)) 888 if (C->canTrap()) 889 return false; 890 } 891 // We might be able to hoist the load. 892 if (I.mayReadFromMemory()) { 893 auto *LI = dyn_cast<LoadInst>(&I); 894 if (!LI) 895 return false; 896 if (!SafePtrs.count(LI->getPointerOperand())) { 897 // !llvm.mem.parallel_loop_access implies if-conversion safety. 898 // Otherwise, record that the load needs (real or emulated) masking 899 // and let the cost model decide. 900 if (!IsAnnotatedParallel) 901 MaskedOp.insert(LI); 902 continue; 903 } 904 } 905 906 if (I.mayWriteToMemory()) { 907 auto *SI = dyn_cast<StoreInst>(&I); 908 if (!SI) 909 return false; 910 // Predicated store requires some form of masking: 911 // 1) masked store HW instruction, 912 // 2) emulation via load-blend-store (only if safe and legal to do so, 913 // be aware on the race conditions), or 914 // 3) element-by-element predicate check and scalar store. 915 MaskedOp.insert(SI); 916 continue; 917 } 918 if (I.mayThrow()) 919 return false; 920 } 921 922 return true; 923 } 924 925 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 926 if (!EnableIfConversion) { 927 ORE->emit(createMissedAnalysis("IfConversionDisabled") 928 << "if-conversion is disabled"); 929 return false; 930 } 931 932 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 933 934 // A list of pointers that we can safely read and write to. 935 SmallPtrSet<Value *, 8> SafePointes; 936 937 // Collect safe addresses. 938 for (BasicBlock *BB : TheLoop->blocks()) { 939 if (blockNeedsPredication(BB)) 940 continue; 941 942 for (Instruction &I : *BB) 943 if (auto *Ptr = getLoadStorePointerOperand(&I)) 944 SafePointes.insert(Ptr); 945 } 946 947 // Collect the blocks that need predication. 948 BasicBlock *Header = TheLoop->getHeader(); 949 for (BasicBlock *BB : TheLoop->blocks()) { 950 // We don't support switch statements inside loops. 951 if (!isa<BranchInst>(BB->getTerminator())) { 952 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 953 << "loop contains a switch statement"); 954 return false; 955 } 956 957 // We must be able to predicate all blocks that need to be predicated. 958 if (blockNeedsPredication(BB)) { 959 if (!blockCanBePredicated(BB, SafePointes)) { 960 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 961 << "control flow cannot be substituted for a select"); 962 return false; 963 } 964 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 965 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 966 << "control flow cannot be substituted for a select"); 967 return false; 968 } 969 } 970 971 // We can if-convert this loop. 972 return true; 973 } 974 975 // Helper function to canVectorizeLoopNestCFG. 976 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 977 bool UseVPlanNativePath) { 978 assert((UseVPlanNativePath || Lp->empty()) && 979 "VPlan-native path is not enabled."); 980 981 // TODO: ORE should be improved to show more accurate information when an 982 // outer loop can't be vectorized because a nested loop is not understood or 983 // legal. Something like: "outer_loop_location: loop not vectorized: 984 // (inner_loop_location) loop control flow is not understood by vectorizer". 985 986 // Store the result and return it at the end instead of exiting early, in case 987 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 988 bool Result = true; 989 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 990 991 // We must have a loop in canonical form. Loops with indirectbr in them cannot 992 // be canonicalized. 993 if (!Lp->getLoopPreheader()) { 994 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 995 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 996 << "loop control flow is not understood by vectorizer"); 997 if (DoExtraAnalysis) 998 Result = false; 999 else 1000 return false; 1001 } 1002 1003 // We must have a single backedge. 1004 if (Lp->getNumBackEdges() != 1) { 1005 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1006 << "loop control flow is not understood by vectorizer"); 1007 if (DoExtraAnalysis) 1008 Result = false; 1009 else 1010 return false; 1011 } 1012 1013 // We must have a single exiting block. 1014 if (!Lp->getExitingBlock()) { 1015 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1016 << "loop control flow is not understood by vectorizer"); 1017 if (DoExtraAnalysis) 1018 Result = false; 1019 else 1020 return false; 1021 } 1022 1023 // We only handle bottom-tested loops, i.e. loop in which the condition is 1024 // checked at the end of each iteration. With that we can assume that all 1025 // instructions in the loop are executed the same number of times. 1026 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 1027 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1028 << "loop control flow is not understood by vectorizer"); 1029 if (DoExtraAnalysis) 1030 Result = false; 1031 else 1032 return false; 1033 } 1034 1035 return Result; 1036 } 1037 1038 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1039 Loop *Lp, bool UseVPlanNativePath) { 1040 // Store the result and return it at the end instead of exiting early, in case 1041 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1042 bool Result = true; 1043 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1044 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1045 if (DoExtraAnalysis) 1046 Result = false; 1047 else 1048 return false; 1049 } 1050 1051 // Recursively check whether the loop control flow of nested loops is 1052 // understood. 1053 for (Loop *SubLp : *Lp) 1054 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1055 if (DoExtraAnalysis) 1056 Result = false; 1057 else 1058 return false; 1059 } 1060 1061 return Result; 1062 } 1063 1064 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1065 // Store the result and return it at the end instead of exiting early, in case 1066 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1067 bool Result = true; 1068 1069 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1070 // Check whether the loop-related control flow in the loop nest is expected by 1071 // vectorizer. 1072 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1073 if (DoExtraAnalysis) 1074 Result = false; 1075 else 1076 return false; 1077 } 1078 1079 // We need to have a loop header. 1080 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1081 << '\n'); 1082 1083 // Specific checks for outer loops. We skip the remaining legal checks at this 1084 // point because they don't support outer loops. 1085 if (!TheLoop->empty()) { 1086 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1087 1088 if (!canVectorizeOuterLoop()) { 1089 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1090 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1091 // outer loops. 1092 return false; 1093 } 1094 1095 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1096 return Result; 1097 } 1098 1099 assert(TheLoop->empty() && "Inner loop expected."); 1100 // Check if we can if-convert non-single-bb loops. 1101 unsigned NumBlocks = TheLoop->getNumBlocks(); 1102 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1103 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1104 if (DoExtraAnalysis) 1105 Result = false; 1106 else 1107 return false; 1108 } 1109 1110 // Check if we can vectorize the instructions and CFG in this loop. 1111 if (!canVectorizeInstrs()) { 1112 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1113 if (DoExtraAnalysis) 1114 Result = false; 1115 else 1116 return false; 1117 } 1118 1119 // Go over each instruction and look at memory deps. 1120 if (!canVectorizeMemory()) { 1121 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1122 if (DoExtraAnalysis) 1123 Result = false; 1124 else 1125 return false; 1126 } 1127 1128 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1129 << (LAI->getRuntimePointerChecking()->Need 1130 ? " (with a runtime bound check)" 1131 : "") 1132 << "!\n"); 1133 1134 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1135 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1136 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1137 1138 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1139 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1140 << "Too many SCEV assumptions need to be made and checked " 1141 << "at runtime"); 1142 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1143 if (DoExtraAnalysis) 1144 Result = false; 1145 else 1146 return false; 1147 } 1148 1149 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1150 // we can vectorize, and at this point we don't have any other mem analysis 1151 // which may limit our maximum vectorization factor, so just return true with 1152 // no restrictions. 1153 return Result; 1154 } 1155 1156 bool LoopVectorizationLegality::canFoldTailByMasking() { 1157 1158 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1159 1160 if (!PrimaryInduction) { 1161 ORE->emit(createMissedAnalysis("NoPrimaryInduction") 1162 << "Missing a primary induction variable in the loop, which is " 1163 << "needed in order to fold tail by masking as required."); 1164 LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by " 1165 << "masking.\n"); 1166 return false; 1167 } 1168 1169 // TODO: handle reductions when tail is folded by masking. 1170 if (!Reductions.empty()) { 1171 ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking") 1172 << "Cannot fold tail by masking in the presence of reductions."); 1173 LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by " 1174 << "masking.\n"); 1175 return false; 1176 } 1177 1178 // TODO: handle outside users when tail is folded by masking. 1179 for (auto *AE : AllowedExit) { 1180 // Check that all users of allowed exit values are inside the loop. 1181 for (User *U : AE->users()) { 1182 Instruction *UI = cast<Instruction>(U); 1183 if (TheLoop->contains(UI)) 1184 continue; 1185 ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking") 1186 << "Cannot fold tail by masking in the presence of live outs."); 1187 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an " 1188 << "outside user for : " << *UI << '\n'); 1189 return false; 1190 } 1191 } 1192 1193 // The list of pointers that we can safely read and write to remains empty. 1194 SmallPtrSet<Value *, 8> SafePointers; 1195 1196 // Check and mark all blocks for predication, including those that ordinarily 1197 // do not need predication such as the header block. 1198 for (BasicBlock *BB : TheLoop->blocks()) { 1199 if (!blockCanBePredicated(BB, SafePointers)) { 1200 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 1201 << "control flow cannot be substituted for a select"); 1202 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n"); 1203 return false; 1204 } 1205 } 1206 1207 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1208 return true; 1209 } 1210 1211 } // namespace llvm 1212