1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Transforms/Utils/SizeOpts.h" 28 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define LV_NAME "loop-vectorize" 34 #define DEBUG_TYPE LV_NAME 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 namespace llvm { 41 cl::opt<bool> 42 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 43 cl::desc("Allow enabling loop hints to reorder " 44 "FP operations during vectorization.")); 45 } 46 47 // TODO: Move size-based thresholds out of legality checking, make cost based 48 // decisions instead of hard thresholds. 49 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 50 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 51 cl::desc("The maximum number of SCEV checks allowed.")); 52 53 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 54 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 55 cl::desc("The maximum number of SCEV checks allowed with a " 56 "vectorize(enable) pragma")); 57 58 static cl::opt<LoopVectorizeHints::ScalableForceKind> 59 ForceScalableVectorization( 60 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 61 cl::Hidden, 62 cl::desc("Control whether the compiler can use scalable vectors to " 63 "vectorize a loop"), 64 cl::values( 65 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 66 "Scalable vectorization is disabled."), 67 clEnumValN( 68 LoopVectorizeHints::SK_PreferScalable, "preferred", 69 "Scalable vectorization is available and favored when the " 70 "cost is inconclusive."), 71 clEnumValN( 72 LoopVectorizeHints::SK_PreferScalable, "on", 73 "Scalable vectorization is available and favored when the " 74 "cost is inconclusive."))); 75 76 /// Maximum vectorization interleave count. 77 static const unsigned MaxInterleaveFactor = 16; 78 79 namespace llvm { 80 81 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 82 switch (Kind) { 83 case HK_WIDTH: 84 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 85 case HK_INTERLEAVE: 86 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 87 case HK_FORCE: 88 return (Val <= 1); 89 case HK_ISVECTORIZED: 90 case HK_PREDICATE: 91 case HK_SCALABLE: 92 return (Val == 0 || Val == 1); 93 } 94 return false; 95 } 96 97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 98 bool InterleaveOnlyWhenForced, 99 OptimizationRemarkEmitter &ORE, 100 const TargetTransformInfo *TTI) 101 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 102 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 103 Force("vectorize.enable", FK_Undefined, HK_FORCE), 104 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 105 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 106 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 107 TheLoop(L), ORE(ORE) { 108 // Populate values with existing loop metadata. 109 getHintsFromMetadata(); 110 111 // force-vector-interleave overrides DisableInterleaving. 112 if (VectorizerParams::isInterleaveForced()) 113 Interleave.Value = VectorizerParams::VectorizationInterleave; 114 115 // If the metadata doesn't explicitly specify whether to enable scalable 116 // vectorization, then decide based on the following criteria (increasing 117 // level of priority): 118 // - Target default 119 // - Metadata width 120 // - Force option (always overrides) 121 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 122 if (TTI) 123 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 124 : SK_FixedWidthOnly; 125 126 if (Width.Value) 127 // If the width is set, but the metadata says nothing about the scalable 128 // property, then assume it concerns only a fixed-width UserVF. 129 // If width is not set, the flag takes precedence. 130 Scalable.Value = SK_FixedWidthOnly; 131 } 132 133 // If the flag is set to force any use of scalable vectors, override the loop 134 // hints. 135 if (ForceScalableVectorization.getValue() != 136 LoopVectorizeHints::SK_Unspecified) 137 Scalable.Value = ForceScalableVectorization.getValue(); 138 139 // Scalable vectorization is disabled if no preference is specified. 140 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 141 Scalable.Value = SK_FixedWidthOnly; 142 143 if (IsVectorized.Value != 1) 144 // If the vectorization width and interleaving count are both 1 then 145 // consider the loop to have been already vectorized because there's 146 // nothing more that we can do. 147 IsVectorized.Value = 148 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 149 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 150 << "LV: Interleaving disabled by the pass manager\n"); 151 } 152 153 void LoopVectorizeHints::setAlreadyVectorized() { 154 LLVMContext &Context = TheLoop->getHeader()->getContext(); 155 156 MDNode *IsVectorizedMD = MDNode::get( 157 Context, 158 {MDString::get(Context, "llvm.loop.isvectorized"), 159 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 160 MDNode *LoopID = TheLoop->getLoopID(); 161 MDNode *NewLoopID = 162 makePostTransformationMetadata(Context, LoopID, 163 {Twine(Prefix(), "vectorize.").str(), 164 Twine(Prefix(), "interleave.").str()}, 165 {IsVectorizedMD}); 166 TheLoop->setLoopID(NewLoopID); 167 168 // Update internal cache. 169 IsVectorized.Value = 1; 170 } 171 172 bool LoopVectorizeHints::allowVectorization( 173 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 174 if (getForce() == LoopVectorizeHints::FK_Disabled) { 175 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 176 emitRemarkWithHints(); 177 return false; 178 } 179 180 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 181 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 182 emitRemarkWithHints(); 183 return false; 184 } 185 186 if (getIsVectorized() == 1) { 187 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 188 // FIXME: Add interleave.disable metadata. This will allow 189 // vectorize.disable to be used without disabling the pass and errors 190 // to differentiate between disabled vectorization and a width of 1. 191 ORE.emit([&]() { 192 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 193 "AllDisabled", L->getStartLoc(), 194 L->getHeader()) 195 << "loop not vectorized: vectorization and interleaving are " 196 "explicitly disabled, or the loop has already been " 197 "vectorized"; 198 }); 199 return false; 200 } 201 202 return true; 203 } 204 205 void LoopVectorizeHints::emitRemarkWithHints() const { 206 using namespace ore; 207 208 ORE.emit([&]() { 209 if (Force.Value == LoopVectorizeHints::FK_Disabled) 210 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 211 TheLoop->getStartLoc(), 212 TheLoop->getHeader()) 213 << "loop not vectorized: vectorization is explicitly disabled"; 214 else { 215 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 216 TheLoop->getStartLoc(), TheLoop->getHeader()); 217 R << "loop not vectorized"; 218 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 219 R << " (Force=" << NV("Force", true); 220 if (Width.Value != 0) 221 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 222 if (getInterleave() != 0) 223 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 224 R << ")"; 225 } 226 return R; 227 } 228 }); 229 } 230 231 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 232 if (getWidth() == ElementCount::getFixed(1)) 233 return LV_NAME; 234 if (getForce() == LoopVectorizeHints::FK_Disabled) 235 return LV_NAME; 236 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 237 return LV_NAME; 238 return OptimizationRemarkAnalysis::AlwaysPrint; 239 } 240 241 bool LoopVectorizeHints::allowReordering() const { 242 // Allow the vectorizer to change the order of operations if enabling 243 // loop hints are provided 244 ElementCount EC = getWidth(); 245 return HintsAllowReordering && 246 (getForce() == LoopVectorizeHints::FK_Enabled || 247 EC.getKnownMinValue() > 1); 248 } 249 250 void LoopVectorizeHints::getHintsFromMetadata() { 251 MDNode *LoopID = TheLoop->getLoopID(); 252 if (!LoopID) 253 return; 254 255 // First operand should refer to the loop id itself. 256 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 257 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 258 259 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 260 const MDString *S = nullptr; 261 SmallVector<Metadata *, 4> Args; 262 263 // The expected hint is either a MDString or a MDNode with the first 264 // operand a MDString. 265 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 266 if (!MD || MD->getNumOperands() == 0) 267 continue; 268 S = dyn_cast<MDString>(MD->getOperand(0)); 269 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 270 Args.push_back(MD->getOperand(i)); 271 } else { 272 S = dyn_cast<MDString>(LoopID->getOperand(i)); 273 assert(Args.size() == 0 && "too many arguments for MDString"); 274 } 275 276 if (!S) 277 continue; 278 279 // Check if the hint starts with the loop metadata prefix. 280 StringRef Name = S->getString(); 281 if (Args.size() == 1) 282 setHint(Name, Args[0]); 283 } 284 } 285 286 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 287 if (!Name.startswith(Prefix())) 288 return; 289 Name = Name.substr(Prefix().size(), StringRef::npos); 290 291 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 292 if (!C) 293 return; 294 unsigned Val = C->getZExtValue(); 295 296 Hint *Hints[] = {&Width, &Interleave, &Force, 297 &IsVectorized, &Predicate, &Scalable}; 298 for (auto H : Hints) { 299 if (Name == H->Name) { 300 if (H->validate(Val)) 301 H->Value = Val; 302 else 303 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 304 break; 305 } 306 } 307 } 308 309 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 310 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 311 // executing the inner loop will execute the same iterations). This check is 312 // very constrained for now but it will be relaxed in the future. \p Lp is 313 // considered uniform if it meets all the following conditions: 314 // 1) it has a canonical IV (starting from 0 and with stride 1), 315 // 2) its latch terminator is a conditional branch and, 316 // 3) its latch condition is a compare instruction whose operands are the 317 // canonical IV and an OuterLp invariant. 318 // This check doesn't take into account the uniformity of other conditions not 319 // related to the loop latch because they don't affect the loop uniformity. 320 // 321 // NOTE: We decided to keep all these checks and its associated documentation 322 // together so that we can easily have a picture of the current supported loop 323 // nests. However, some of the current checks don't depend on \p OuterLp and 324 // would be redundantly executed for each \p Lp if we invoked this function for 325 // different candidate outer loops. This is not the case for now because we 326 // don't currently have the infrastructure to evaluate multiple candidate outer 327 // loops and \p OuterLp will be a fixed parameter while we only support explicit 328 // outer loop vectorization. It's also very likely that these checks go away 329 // before introducing the aforementioned infrastructure. However, if this is not 330 // the case, we should move the \p OuterLp independent checks to a separate 331 // function that is only executed once for each \p Lp. 332 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 333 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 334 335 // If Lp is the outer loop, it's uniform by definition. 336 if (Lp == OuterLp) 337 return true; 338 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 339 340 // 1. 341 PHINode *IV = Lp->getCanonicalInductionVariable(); 342 if (!IV) { 343 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 344 return false; 345 } 346 347 // 2. 348 BasicBlock *Latch = Lp->getLoopLatch(); 349 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 350 if (!LatchBr || LatchBr->isUnconditional()) { 351 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 352 return false; 353 } 354 355 // 3. 356 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 357 if (!LatchCmp) { 358 LLVM_DEBUG( 359 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 360 return false; 361 } 362 363 Value *CondOp0 = LatchCmp->getOperand(0); 364 Value *CondOp1 = LatchCmp->getOperand(1); 365 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 366 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 367 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 368 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 369 return false; 370 } 371 372 return true; 373 } 374 375 // Return true if \p Lp and all its nested loops are uniform with regard to \p 376 // OuterLp. 377 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 378 if (!isUniformLoop(Lp, OuterLp)) 379 return false; 380 381 // Check if nested loops are uniform. 382 for (Loop *SubLp : *Lp) 383 if (!isUniformLoopNest(SubLp, OuterLp)) 384 return false; 385 386 return true; 387 } 388 389 /// Check whether it is safe to if-convert this phi node. 390 /// 391 /// Phi nodes with constant expressions that can trap are not safe to if 392 /// convert. 393 static bool canIfConvertPHINodes(BasicBlock *BB) { 394 for (PHINode &Phi : BB->phis()) { 395 for (Value *V : Phi.incoming_values()) 396 if (auto *C = dyn_cast<Constant>(V)) 397 if (C->canTrap()) 398 return false; 399 } 400 return true; 401 } 402 403 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 404 if (Ty->isPointerTy()) 405 return DL.getIntPtrType(Ty); 406 407 // It is possible that char's or short's overflow when we ask for the loop's 408 // trip count, work around this by changing the type size. 409 if (Ty->getScalarSizeInBits() < 32) 410 return Type::getInt32Ty(Ty->getContext()); 411 412 return Ty; 413 } 414 415 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 416 Ty0 = convertPointerToIntegerType(DL, Ty0); 417 Ty1 = convertPointerToIntegerType(DL, Ty1); 418 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 419 return Ty0; 420 return Ty1; 421 } 422 423 /// Check that the instruction has outside loop users and is not an 424 /// identified reduction variable. 425 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 426 SmallPtrSetImpl<Value *> &AllowedExit) { 427 // Reductions, Inductions and non-header phis are allowed to have exit users. All 428 // other instructions must not have external users. 429 if (!AllowedExit.count(Inst)) 430 // Check that all of the users of the loop are inside the BB. 431 for (User *U : Inst->users()) { 432 Instruction *UI = cast<Instruction>(U); 433 // This user may be a reduction exit value. 434 if (!TheLoop->contains(UI)) { 435 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 436 return true; 437 } 438 } 439 return false; 440 } 441 442 /// Returns true if A and B have same pointer operands or same SCEVs addresses 443 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 444 StoreInst *B) { 445 // Compare store 446 if (A == B) 447 return true; 448 449 // Otherwise Compare pointers 450 Value *APtr = A->getPointerOperand(); 451 Value *BPtr = B->getPointerOperand(); 452 if (APtr == BPtr) 453 return true; 454 455 // Otherwise compare address SCEVs 456 if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) 457 return true; 458 459 return false; 460 } 461 462 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 463 Value *Ptr) const { 464 const ValueToValueMap &Strides = 465 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 466 467 Function *F = TheLoop->getHeader()->getParent(); 468 bool OptForSize = F->hasOptSize() || 469 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 470 PGSOQueryType::IRPass); 471 bool CanAddPredicate = !OptForSize; 472 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 473 CanAddPredicate, false); 474 if (Stride == 1 || Stride == -1) 475 return Stride; 476 return 0; 477 } 478 479 bool LoopVectorizationLegality::isUniform(Value *V) { 480 return LAI->isUniform(V); 481 } 482 483 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 484 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 485 // Store the result and return it at the end instead of exiting early, in case 486 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 487 bool Result = true; 488 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 489 490 for (BasicBlock *BB : TheLoop->blocks()) { 491 // Check whether the BB terminator is a BranchInst. Any other terminator is 492 // not supported yet. 493 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 494 if (!Br) { 495 reportVectorizationFailure("Unsupported basic block terminator", 496 "loop control flow is not understood by vectorizer", 497 "CFGNotUnderstood", ORE, TheLoop); 498 if (DoExtraAnalysis) 499 Result = false; 500 else 501 return false; 502 } 503 504 // Check whether the BranchInst is a supported one. Only unconditional 505 // branches, conditional branches with an outer loop invariant condition or 506 // backedges are supported. 507 // FIXME: We skip these checks when VPlan predication is enabled as we 508 // want to allow divergent branches. This whole check will be removed 509 // once VPlan predication is on by default. 510 if (Br && Br->isConditional() && 511 !TheLoop->isLoopInvariant(Br->getCondition()) && 512 !LI->isLoopHeader(Br->getSuccessor(0)) && 513 !LI->isLoopHeader(Br->getSuccessor(1))) { 514 reportVectorizationFailure("Unsupported conditional branch", 515 "loop control flow is not understood by vectorizer", 516 "CFGNotUnderstood", ORE, TheLoop); 517 if (DoExtraAnalysis) 518 Result = false; 519 else 520 return false; 521 } 522 } 523 524 // Check whether inner loops are uniform. At this point, we only support 525 // simple outer loops scenarios with uniform nested loops. 526 if (!isUniformLoopNest(TheLoop /*loop nest*/, 527 TheLoop /*context outer loop*/)) { 528 reportVectorizationFailure("Outer loop contains divergent loops", 529 "loop control flow is not understood by vectorizer", 530 "CFGNotUnderstood", ORE, TheLoop); 531 if (DoExtraAnalysis) 532 Result = false; 533 else 534 return false; 535 } 536 537 // Check whether we are able to set up outer loop induction. 538 if (!setupOuterLoopInductions()) { 539 reportVectorizationFailure("Unsupported outer loop Phi(s)", 540 "Unsupported outer loop Phi(s)", 541 "UnsupportedPhi", ORE, TheLoop); 542 if (DoExtraAnalysis) 543 Result = false; 544 else 545 return false; 546 } 547 548 return Result; 549 } 550 551 void LoopVectorizationLegality::addInductionPhi( 552 PHINode *Phi, const InductionDescriptor &ID, 553 SmallPtrSetImpl<Value *> &AllowedExit) { 554 Inductions[Phi] = ID; 555 556 // In case this induction also comes with casts that we know we can ignore 557 // in the vectorized loop body, record them here. All casts could be recorded 558 // here for ignoring, but suffices to record only the first (as it is the 559 // only one that may bw used outside the cast sequence). 560 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 561 if (!Casts.empty()) 562 InductionCastsToIgnore.insert(*Casts.begin()); 563 564 Type *PhiTy = Phi->getType(); 565 const DataLayout &DL = Phi->getModule()->getDataLayout(); 566 567 // Get the widest type. 568 if (!PhiTy->isFloatingPointTy()) { 569 if (!WidestIndTy) 570 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 571 else 572 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 573 } 574 575 // Int inductions are special because we only allow one IV. 576 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 577 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 578 isa<Constant>(ID.getStartValue()) && 579 cast<Constant>(ID.getStartValue())->isNullValue()) { 580 581 // Use the phi node with the widest type as induction. Use the last 582 // one if there are multiple (no good reason for doing this other 583 // than it is expedient). We've checked that it begins at zero and 584 // steps by one, so this is a canonical induction variable. 585 if (!PrimaryInduction || PhiTy == WidestIndTy) 586 PrimaryInduction = Phi; 587 } 588 589 // Both the PHI node itself, and the "post-increment" value feeding 590 // back into the PHI node may have external users. 591 // We can allow those uses, except if the SCEVs we have for them rely 592 // on predicates that only hold within the loop, since allowing the exit 593 // currently means re-using this SCEV outside the loop (see PR33706 for more 594 // details). 595 if (PSE.getPredicate().isAlwaysTrue()) { 596 AllowedExit.insert(Phi); 597 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 598 } 599 600 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 601 } 602 603 bool LoopVectorizationLegality::setupOuterLoopInductions() { 604 BasicBlock *Header = TheLoop->getHeader(); 605 606 // Returns true if a given Phi is a supported induction. 607 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 608 InductionDescriptor ID; 609 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 610 ID.getKind() == InductionDescriptor::IK_IntInduction) { 611 addInductionPhi(&Phi, ID, AllowedExit); 612 return true; 613 } else { 614 // Bail out for any Phi in the outer loop header that is not a supported 615 // induction. 616 LLVM_DEBUG( 617 dbgs() 618 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 619 return false; 620 } 621 }; 622 623 if (llvm::all_of(Header->phis(), isSupportedPhi)) 624 return true; 625 else 626 return false; 627 } 628 629 /// Checks if a function is scalarizable according to the TLI, in 630 /// the sense that it should be vectorized and then expanded in 631 /// multiple scalar calls. This is represented in the 632 /// TLI via mappings that do not specify a vector name, as in the 633 /// following example: 634 /// 635 /// const VecDesc VecIntrinsics[] = { 636 /// {"llvm.phx.abs.i32", "", 4} 637 /// }; 638 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 639 const StringRef ScalarName = CI.getCalledFunction()->getName(); 640 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 641 // Check that all known VFs are not associated to a vector 642 // function, i.e. the vector name is emty. 643 if (Scalarize) { 644 ElementCount WidestFixedVF, WidestScalableVF; 645 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 646 for (ElementCount VF = ElementCount::getFixed(2); 647 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 648 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 649 for (ElementCount VF = ElementCount::getScalable(1); 650 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 651 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 652 assert((WidestScalableVF.isZero() || !Scalarize) && 653 "Caller may decide to scalarize a variant using a scalable VF"); 654 } 655 return Scalarize; 656 } 657 658 bool LoopVectorizationLegality::canVectorizeInstrs() { 659 BasicBlock *Header = TheLoop->getHeader(); 660 661 // For each block in the loop. 662 for (BasicBlock *BB : TheLoop->blocks()) { 663 // Scan the instructions in the block and look for hazards. 664 for (Instruction &I : *BB) { 665 if (auto *Phi = dyn_cast<PHINode>(&I)) { 666 Type *PhiTy = Phi->getType(); 667 // Check that this PHI type is allowed. 668 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 669 !PhiTy->isPointerTy()) { 670 reportVectorizationFailure("Found a non-int non-pointer PHI", 671 "loop control flow is not understood by vectorizer", 672 "CFGNotUnderstood", ORE, TheLoop); 673 return false; 674 } 675 676 // If this PHINode is not in the header block, then we know that we 677 // can convert it to select during if-conversion. No need to check if 678 // the PHIs in this block are induction or reduction variables. 679 if (BB != Header) { 680 // Non-header phi nodes that have outside uses can be vectorized. Add 681 // them to the list of allowed exits. 682 // Unsafe cyclic dependencies with header phis are identified during 683 // legalization for reduction, induction and first order 684 // recurrences. 685 AllowedExit.insert(&I); 686 continue; 687 } 688 689 // We only allow if-converted PHIs with exactly two incoming values. 690 if (Phi->getNumIncomingValues() != 2) { 691 reportVectorizationFailure("Found an invalid PHI", 692 "loop control flow is not understood by vectorizer", 693 "CFGNotUnderstood", ORE, TheLoop, Phi); 694 return false; 695 } 696 697 RecurrenceDescriptor RedDes; 698 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 699 DT, PSE.getSE())) { 700 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 701 AllowedExit.insert(RedDes.getLoopExitInstr()); 702 Reductions[Phi] = RedDes; 703 continue; 704 } 705 706 // TODO: Instead of recording the AllowedExit, it would be good to record the 707 // complementary set: NotAllowedExit. These include (but may not be 708 // limited to): 709 // 1. Reduction phis as they represent the one-before-last value, which 710 // is not available when vectorized 711 // 2. Induction phis and increment when SCEV predicates cannot be used 712 // outside the loop - see addInductionPhi 713 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 714 // outside the loop - see call to hasOutsideLoopUser in the non-phi 715 // handling below 716 // 4. FirstOrderRecurrence phis that can possibly be handled by 717 // extraction. 718 // By recording these, we can then reason about ways to vectorize each 719 // of these NotAllowedExit. 720 InductionDescriptor ID; 721 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 722 addInductionPhi(Phi, ID, AllowedExit); 723 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 724 continue; 725 } 726 727 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 728 SinkAfter, DT)) { 729 AllowedExit.insert(Phi); 730 FirstOrderRecurrences.insert(Phi); 731 continue; 732 } 733 734 // As a last resort, coerce the PHI to a AddRec expression 735 // and re-try classifying it a an induction PHI. 736 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 737 addInductionPhi(Phi, ID, AllowedExit); 738 continue; 739 } 740 741 reportVectorizationFailure("Found an unidentified PHI", 742 "value that could not be identified as " 743 "reduction is used outside the loop", 744 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 745 return false; 746 } // end of PHI handling 747 748 // We handle calls that: 749 // * Are debug info intrinsics. 750 // * Have a mapping to an IR intrinsic. 751 // * Have a vector version available. 752 auto *CI = dyn_cast<CallInst>(&I); 753 754 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 755 !isa<DbgInfoIntrinsic>(CI) && 756 !(CI->getCalledFunction() && TLI && 757 (!VFDatabase::getMappings(*CI).empty() || 758 isTLIScalarize(*TLI, *CI)))) { 759 // If the call is a recognized math libary call, it is likely that 760 // we can vectorize it given loosened floating-point constraints. 761 LibFunc Func; 762 bool IsMathLibCall = 763 TLI && CI->getCalledFunction() && 764 CI->getType()->isFloatingPointTy() && 765 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 766 TLI->hasOptimizedCodeGen(Func); 767 768 if (IsMathLibCall) { 769 // TODO: Ideally, we should not use clang-specific language here, 770 // but it's hard to provide meaningful yet generic advice. 771 // Also, should this be guarded by allowExtraAnalysis() and/or be part 772 // of the returned info from isFunctionVectorizable()? 773 reportVectorizationFailure( 774 "Found a non-intrinsic callsite", 775 "library call cannot be vectorized. " 776 "Try compiling with -fno-math-errno, -ffast-math, " 777 "or similar flags", 778 "CantVectorizeLibcall", ORE, TheLoop, CI); 779 } else { 780 reportVectorizationFailure("Found a non-intrinsic callsite", 781 "call instruction cannot be vectorized", 782 "CantVectorizeLibcall", ORE, TheLoop, CI); 783 } 784 return false; 785 } 786 787 // Some intrinsics have scalar arguments and should be same in order for 788 // them to be vectorized (i.e. loop invariant). 789 if (CI) { 790 auto *SE = PSE.getSE(); 791 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 792 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 793 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { 794 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 795 reportVectorizationFailure("Found unvectorizable intrinsic", 796 "intrinsic instruction cannot be vectorized", 797 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 798 return false; 799 } 800 } 801 } 802 803 // Check that the instruction return type is vectorizable. 804 // Also, we can't vectorize extractelement instructions. 805 if ((!VectorType::isValidElementType(I.getType()) && 806 !I.getType()->isVoidTy()) || 807 isa<ExtractElementInst>(I)) { 808 reportVectorizationFailure("Found unvectorizable type", 809 "instruction return type cannot be vectorized", 810 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 811 return false; 812 } 813 814 // Check that the stored type is vectorizable. 815 if (auto *ST = dyn_cast<StoreInst>(&I)) { 816 Type *T = ST->getValueOperand()->getType(); 817 if (!VectorType::isValidElementType(T)) { 818 reportVectorizationFailure("Store instruction cannot be vectorized", 819 "store instruction cannot be vectorized", 820 "CantVectorizeStore", ORE, TheLoop, ST); 821 return false; 822 } 823 824 // For nontemporal stores, check that a nontemporal vector version is 825 // supported on the target. 826 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 827 // Arbitrarily try a vector of 2 elements. 828 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 829 assert(VecTy && "did not find vectorized version of stored type"); 830 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 831 reportVectorizationFailure( 832 "nontemporal store instruction cannot be vectorized", 833 "nontemporal store instruction cannot be vectorized", 834 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 835 return false; 836 } 837 } 838 839 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 840 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 841 // For nontemporal loads, check that a nontemporal vector version is 842 // supported on the target (arbitrarily try a vector of 2 elements). 843 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 844 assert(VecTy && "did not find vectorized version of load type"); 845 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 846 reportVectorizationFailure( 847 "nontemporal load instruction cannot be vectorized", 848 "nontemporal load instruction cannot be vectorized", 849 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 850 return false; 851 } 852 } 853 854 // FP instructions can allow unsafe algebra, thus vectorizable by 855 // non-IEEE-754 compliant SIMD units. 856 // This applies to floating-point math operations and calls, not memory 857 // operations, shuffles, or casts, as they don't change precision or 858 // semantics. 859 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 860 !I.isFast()) { 861 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 862 Hints->setPotentiallyUnsafe(); 863 } 864 865 // Reduction instructions are allowed to have exit users. 866 // All other instructions must not have external users. 867 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 868 // We can safely vectorize loops where instructions within the loop are 869 // used outside the loop only if the SCEV predicates within the loop is 870 // same as outside the loop. Allowing the exit means reusing the SCEV 871 // outside the loop. 872 if (PSE.getPredicate().isAlwaysTrue()) { 873 AllowedExit.insert(&I); 874 continue; 875 } 876 reportVectorizationFailure("Value cannot be used outside the loop", 877 "value cannot be used outside the loop", 878 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 879 return false; 880 } 881 } // next instr. 882 } 883 884 if (!PrimaryInduction) { 885 if (Inductions.empty()) { 886 reportVectorizationFailure("Did not find one integer induction var", 887 "loop induction variable could not be identified", 888 "NoInductionVariable", ORE, TheLoop); 889 return false; 890 } else if (!WidestIndTy) { 891 reportVectorizationFailure("Did not find one integer induction var", 892 "integer loop induction variable could not be identified", 893 "NoIntegerInductionVariable", ORE, TheLoop); 894 return false; 895 } else { 896 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 897 } 898 } 899 900 // For first order recurrences, we use the previous value (incoming value from 901 // the latch) to check if it dominates all users of the recurrence. Bail out 902 // if we have to sink such an instruction for another recurrence, as the 903 // dominance requirement may not hold after sinking. 904 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 905 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 906 Instruction *V = 907 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 908 return SinkAfter.find(V) != SinkAfter.end(); 909 })) 910 return false; 911 912 // Now we know the widest induction type, check if our found induction 913 // is the same size. If it's not, unset it here and InnerLoopVectorizer 914 // will create another. 915 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 916 PrimaryInduction = nullptr; 917 918 return true; 919 } 920 921 bool LoopVectorizationLegality::canVectorizeMemory() { 922 LAI = &(*GetLAA)(*TheLoop); 923 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 924 if (LAR) { 925 ORE->emit([&]() { 926 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 927 "loop not vectorized: ", *LAR); 928 }); 929 } 930 931 if (!LAI->canVectorizeMemory()) 932 return false; 933 934 // We can vectorize stores to invariant address when final reduction value is 935 // guaranteed to be stored at the end of the loop. Also, if decision to 936 // vectorize loop is made, runtime checks are added so as to make sure that 937 // invariant address won't alias with any other objects. 938 if (!LAI->getStoresToInvariantAddresses().empty()) { 939 // For each invariant address, check its last stored value is unconditional. 940 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 941 if (isInvariantStoreOfReduction(SI) && 942 blockNeedsPredication(SI->getParent())) { 943 reportVectorizationFailure( 944 "We don't allow storing to uniform addresses", 945 "write of conditional recurring variant value to a loop " 946 "invariant address could not be vectorized", 947 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 948 return false; 949 } 950 } 951 952 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 953 // For each invariant address, check its last stored value is the result 954 // of one of our reductions. 955 // 956 // We do not check if dependence with loads exists because they are 957 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this 958 // behaviour changes we have to modify this code. 959 ScalarEvolution *SE = PSE.getSE(); 960 SmallVector<StoreInst *, 4> UnhandledStores; 961 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 962 if (isInvariantStoreOfReduction(SI)) { 963 // Earlier stores to this address are effectively deadcode. 964 // With opaque pointers it is possible for one pointer to be used with 965 // different sizes of stored values: 966 // store i32 0, ptr %x 967 // store i8 0, ptr %x 968 // The latest store doesn't complitely overwrite the first one in the 969 // example. That is why we have to make sure that types of stored 970 // values are same. 971 // TODO: Check that bitwidth of unhandled store is smaller then the 972 // one that overwrites it and add a test. 973 erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 974 return storeToSameAddress(SE, SI, I) && 975 I->getValueOperand()->getType() == 976 SI->getValueOperand()->getType(); 977 }); 978 continue; 979 } 980 UnhandledStores.push_back(SI); 981 } 982 983 bool IsOK = UnhandledStores.empty(); 984 // TODO: we should also validate against InvariantMemSets. 985 if (!IsOK) { 986 reportVectorizationFailure( 987 "We don't allow storing to uniform addresses", 988 "write to a loop invariant address could not " 989 "be vectorized", 990 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 991 return false; 992 } 993 } 994 } 995 996 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 997 PSE.addPredicate(LAI->getPSE().getPredicate()); 998 return true; 999 } 1000 1001 bool LoopVectorizationLegality::canVectorizeFPMath( 1002 bool EnableStrictReductions) { 1003 1004 // First check if there is any ExactFP math or if we allow reassociations 1005 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 1006 return true; 1007 1008 // If the above is false, we have ExactFPMath & do not allow reordering. 1009 // If the EnableStrictReductions flag is set, first check if we have any 1010 // Exact FP induction vars, which we cannot vectorize. 1011 if (!EnableStrictReductions || 1012 any_of(getInductionVars(), [&](auto &Induction) -> bool { 1013 InductionDescriptor IndDesc = Induction.second; 1014 return IndDesc.getExactFPMathInst(); 1015 })) 1016 return false; 1017 1018 // We can now only vectorize if all reductions with Exact FP math also 1019 // have the isOrdered flag set, which indicates that we can move the 1020 // reduction operations in-loop, and do not have intermediate store. 1021 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 1022 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1023 return !RdxDesc.hasExactFPMath() || 1024 (RdxDesc.isOrdered() && !RdxDesc.IntermediateStore); 1025 })); 1026 } 1027 1028 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1029 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1030 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1031 return RdxDesc.IntermediateStore == SI; 1032 }); 1033 } 1034 1035 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1036 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1037 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1038 if (!RdxDesc.IntermediateStore) 1039 return false; 1040 1041 ScalarEvolution *SE = PSE.getSE(); 1042 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1043 return V == InvariantAddress || 1044 SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1045 }); 1046 } 1047 1048 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1049 Value *In0 = const_cast<Value *>(V); 1050 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1051 if (!PN) 1052 return false; 1053 1054 return Inductions.count(PN); 1055 } 1056 1057 const InductionDescriptor * 1058 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1059 if (!isInductionPhi(Phi)) 1060 return nullptr; 1061 auto &ID = getInductionVars().find(Phi)->second; 1062 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1063 ID.getKind() == InductionDescriptor::IK_FpInduction) 1064 return &ID; 1065 return nullptr; 1066 } 1067 1068 const InductionDescriptor * 1069 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 1070 if (!isInductionPhi(Phi)) 1071 return nullptr; 1072 auto &ID = getInductionVars().find(Phi)->second; 1073 if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 1074 return &ID; 1075 return nullptr; 1076 } 1077 1078 bool LoopVectorizationLegality::isCastedInductionVariable( 1079 const Value *V) const { 1080 auto *Inst = dyn_cast<Instruction>(V); 1081 return (Inst && InductionCastsToIgnore.count(Inst)); 1082 } 1083 1084 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1085 return isInductionPhi(V) || isCastedInductionVariable(V); 1086 } 1087 1088 bool LoopVectorizationLegality::isFirstOrderRecurrence( 1089 const PHINode *Phi) const { 1090 return FirstOrderRecurrences.count(Phi); 1091 } 1092 1093 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1094 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1095 } 1096 1097 bool LoopVectorizationLegality::blockCanBePredicated( 1098 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1099 SmallPtrSetImpl<const Instruction *> &MaskedOp, 1100 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 1101 for (Instruction &I : *BB) { 1102 // Check that we don't have a constant expression that can trap as operand. 1103 for (Value *Operand : I.operands()) { 1104 if (auto *C = dyn_cast<Constant>(Operand)) 1105 if (C->canTrap()) 1106 return false; 1107 } 1108 1109 // We can predicate blocks with calls to assume, as long as we drop them in 1110 // case we flatten the CFG via predication. 1111 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1112 ConditionalAssumes.insert(&I); 1113 continue; 1114 } 1115 1116 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1117 // TODO: there might be cases that it should block the vectorization. Let's 1118 // ignore those for now. 1119 if (isa<NoAliasScopeDeclInst>(&I)) 1120 continue; 1121 1122 // We might be able to hoist the load. 1123 if (I.mayReadFromMemory()) { 1124 auto *LI = dyn_cast<LoadInst>(&I); 1125 if (!LI) 1126 return false; 1127 if (!SafePtrs.count(LI->getPointerOperand())) { 1128 MaskedOp.insert(LI); 1129 continue; 1130 } 1131 } 1132 1133 if (I.mayWriteToMemory()) { 1134 auto *SI = dyn_cast<StoreInst>(&I); 1135 if (!SI) 1136 return false; 1137 // Predicated store requires some form of masking: 1138 // 1) masked store HW instruction, 1139 // 2) emulation via load-blend-store (only if safe and legal to do so, 1140 // be aware on the race conditions), or 1141 // 3) element-by-element predicate check and scalar store. 1142 MaskedOp.insert(SI); 1143 continue; 1144 } 1145 if (I.mayThrow()) 1146 return false; 1147 } 1148 1149 return true; 1150 } 1151 1152 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1153 if (!EnableIfConversion) { 1154 reportVectorizationFailure("If-conversion is disabled", 1155 "if-conversion is disabled", 1156 "IfConversionDisabled", 1157 ORE, TheLoop); 1158 return false; 1159 } 1160 1161 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1162 1163 // A list of pointers which are known to be dereferenceable within scope of 1164 // the loop body for each iteration of the loop which executes. That is, 1165 // the memory pointed to can be dereferenced (with the access size implied by 1166 // the value's type) unconditionally within the loop header without 1167 // introducing a new fault. 1168 SmallPtrSet<Value *, 8> SafePointers; 1169 1170 // Collect safe addresses. 1171 for (BasicBlock *BB : TheLoop->blocks()) { 1172 if (!blockNeedsPredication(BB)) { 1173 for (Instruction &I : *BB) 1174 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1175 SafePointers.insert(Ptr); 1176 continue; 1177 } 1178 1179 // For a block which requires predication, a address may be safe to access 1180 // in the loop w/o predication if we can prove dereferenceability facts 1181 // sufficient to ensure it'll never fault within the loop. For the moment, 1182 // we restrict this to loads; stores are more complicated due to 1183 // concurrency restrictions. 1184 ScalarEvolution &SE = *PSE.getSE(); 1185 for (Instruction &I : *BB) { 1186 LoadInst *LI = dyn_cast<LoadInst>(&I); 1187 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1188 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1189 SafePointers.insert(LI->getPointerOperand()); 1190 } 1191 } 1192 1193 // Collect the blocks that need predication. 1194 BasicBlock *Header = TheLoop->getHeader(); 1195 for (BasicBlock *BB : TheLoop->blocks()) { 1196 // We don't support switch statements inside loops. 1197 if (!isa<BranchInst>(BB->getTerminator())) { 1198 reportVectorizationFailure("Loop contains a switch statement", 1199 "loop contains a switch statement", 1200 "LoopContainsSwitch", ORE, TheLoop, 1201 BB->getTerminator()); 1202 return false; 1203 } 1204 1205 // We must be able to predicate all blocks that need to be predicated. 1206 if (blockNeedsPredication(BB)) { 1207 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1208 ConditionalAssumes)) { 1209 reportVectorizationFailure( 1210 "Control flow cannot be substituted for a select", 1211 "control flow cannot be substituted for a select", 1212 "NoCFGForSelect", ORE, TheLoop, 1213 BB->getTerminator()); 1214 return false; 1215 } 1216 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1217 reportVectorizationFailure( 1218 "Control flow cannot be substituted for a select", 1219 "control flow cannot be substituted for a select", 1220 "NoCFGForSelect", ORE, TheLoop, 1221 BB->getTerminator()); 1222 return false; 1223 } 1224 } 1225 1226 // We can if-convert this loop. 1227 return true; 1228 } 1229 1230 // Helper function to canVectorizeLoopNestCFG. 1231 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1232 bool UseVPlanNativePath) { 1233 assert((UseVPlanNativePath || Lp->isInnermost()) && 1234 "VPlan-native path is not enabled."); 1235 1236 // TODO: ORE should be improved to show more accurate information when an 1237 // outer loop can't be vectorized because a nested loop is not understood or 1238 // legal. Something like: "outer_loop_location: loop not vectorized: 1239 // (inner_loop_location) loop control flow is not understood by vectorizer". 1240 1241 // Store the result and return it at the end instead of exiting early, in case 1242 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1243 bool Result = true; 1244 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1245 1246 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1247 // be canonicalized. 1248 if (!Lp->getLoopPreheader()) { 1249 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1250 "loop control flow is not understood by vectorizer", 1251 "CFGNotUnderstood", ORE, TheLoop); 1252 if (DoExtraAnalysis) 1253 Result = false; 1254 else 1255 return false; 1256 } 1257 1258 // We must have a single backedge. 1259 if (Lp->getNumBackEdges() != 1) { 1260 reportVectorizationFailure("The loop must have a single backedge", 1261 "loop control flow is not understood by vectorizer", 1262 "CFGNotUnderstood", ORE, TheLoop); 1263 if (DoExtraAnalysis) 1264 Result = false; 1265 else 1266 return false; 1267 } 1268 1269 return Result; 1270 } 1271 1272 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1273 Loop *Lp, bool UseVPlanNativePath) { 1274 // Store the result and return it at the end instead of exiting early, in case 1275 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1276 bool Result = true; 1277 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1278 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1279 if (DoExtraAnalysis) 1280 Result = false; 1281 else 1282 return false; 1283 } 1284 1285 // Recursively check whether the loop control flow of nested loops is 1286 // understood. 1287 for (Loop *SubLp : *Lp) 1288 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1289 if (DoExtraAnalysis) 1290 Result = false; 1291 else 1292 return false; 1293 } 1294 1295 return Result; 1296 } 1297 1298 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1299 // Store the result and return it at the end instead of exiting early, in case 1300 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1301 bool Result = true; 1302 1303 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1304 // Check whether the loop-related control flow in the loop nest is expected by 1305 // vectorizer. 1306 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1307 if (DoExtraAnalysis) 1308 Result = false; 1309 else 1310 return false; 1311 } 1312 1313 // We need to have a loop header. 1314 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1315 << '\n'); 1316 1317 // Specific checks for outer loops. We skip the remaining legal checks at this 1318 // point because they don't support outer loops. 1319 if (!TheLoop->isInnermost()) { 1320 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1321 1322 if (!canVectorizeOuterLoop()) { 1323 reportVectorizationFailure("Unsupported outer loop", 1324 "unsupported outer loop", 1325 "UnsupportedOuterLoop", 1326 ORE, TheLoop); 1327 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1328 // outer loops. 1329 return false; 1330 } 1331 1332 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1333 return Result; 1334 } 1335 1336 assert(TheLoop->isInnermost() && "Inner loop expected."); 1337 // Check if we can if-convert non-single-bb loops. 1338 unsigned NumBlocks = TheLoop->getNumBlocks(); 1339 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1340 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1341 if (DoExtraAnalysis) 1342 Result = false; 1343 else 1344 return false; 1345 } 1346 1347 // Check if we can vectorize the instructions and CFG in this loop. 1348 if (!canVectorizeInstrs()) { 1349 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1350 if (DoExtraAnalysis) 1351 Result = false; 1352 else 1353 return false; 1354 } 1355 1356 // Go over each instruction and look at memory deps. 1357 if (!canVectorizeMemory()) { 1358 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1359 if (DoExtraAnalysis) 1360 Result = false; 1361 else 1362 return false; 1363 } 1364 1365 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1366 << (LAI->getRuntimePointerChecking()->Need 1367 ? " (with a runtime bound check)" 1368 : "") 1369 << "!\n"); 1370 1371 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1372 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1373 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1374 1375 if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 1376 reportVectorizationFailure("Too many SCEV checks needed", 1377 "Too many SCEV assumptions need to be made and checked at runtime", 1378 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1379 if (DoExtraAnalysis) 1380 Result = false; 1381 else 1382 return false; 1383 } 1384 1385 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1386 // we can vectorize, and at this point we don't have any other mem analysis 1387 // which may limit our maximum vectorization factor, so just return true with 1388 // no restrictions. 1389 return Result; 1390 } 1391 1392 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1393 1394 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1395 1396 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1397 1398 for (auto &Reduction : getReductionVars()) 1399 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1400 1401 // TODO: handle non-reduction outside users when tail is folded by masking. 1402 for (auto *AE : AllowedExit) { 1403 // Check that all users of allowed exit values are inside the loop or 1404 // are the live-out of a reduction. 1405 if (ReductionLiveOuts.count(AE)) 1406 continue; 1407 for (User *U : AE->users()) { 1408 Instruction *UI = cast<Instruction>(U); 1409 if (TheLoop->contains(UI)) 1410 continue; 1411 LLVM_DEBUG( 1412 dbgs() 1413 << "LV: Cannot fold tail by masking, loop has an outside user for " 1414 << *UI << "\n"); 1415 return false; 1416 } 1417 } 1418 1419 // The list of pointers that we can safely read and write to remains empty. 1420 SmallPtrSet<Value *, 8> SafePointers; 1421 1422 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1423 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1424 1425 // Check and mark all blocks for predication, including those that ordinarily 1426 // do not need predication such as the header block. 1427 for (BasicBlock *BB : TheLoop->blocks()) { 1428 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1429 TmpConditionalAssumes)) { 1430 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1431 return false; 1432 } 1433 } 1434 1435 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1436 1437 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1438 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1439 TmpConditionalAssumes.end()); 1440 1441 return true; 1442 } 1443 1444 } // namespace llvm 1445