1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file provides loop vectorization legality analysis. Original code 11 // resided in LoopVectorize.cpp for a long time. 12 // 13 // At this point, it is implemented as a utility class, not as an analysis 14 // pass. It should be easy to create an analysis pass around it if there 15 // is a need (but D45420 needs to happen first). 16 // 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/VectorUtils.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 21 using namespace llvm; 22 23 #define LV_NAME "loop-vectorize" 24 #define DEBUG_TYPE LV_NAME 25 26 static cl::opt<bool> 27 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 28 cl::desc("Enable if-conversion during vectorization.")); 29 30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 31 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 32 cl::desc("The maximum allowed number of runtime memory checks with a " 33 "vectorize(enable) pragma.")); 34 35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 36 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 37 cl::desc("The maximum number of SCEV checks allowed.")); 38 39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 40 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 41 cl::desc("The maximum number of SCEV checks allowed with a " 42 "vectorize(enable) pragma")); 43 44 /// Maximum vectorization interleave count. 45 static const unsigned MaxInterleaveFactor = 16; 46 47 namespace llvm { 48 49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 50 StringRef RemarkName, 51 Loop *TheLoop, 52 Instruction *I) { 53 Value *CodeRegion = TheLoop->getHeader(); 54 DebugLoc DL = TheLoop->getStartLoc(); 55 56 if (I) { 57 CodeRegion = I->getParent(); 58 // If there is no debug location attached to the instruction, revert back to 59 // using the loop's. 60 if (I->getDebugLoc()) 61 DL = I->getDebugLoc(); 62 } 63 64 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 65 R << "loop not vectorized: "; 66 return R; 67 } 68 69 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 70 switch (Kind) { 71 case HK_WIDTH: 72 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 73 case HK_UNROLL: 74 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 75 case HK_FORCE: 76 return (Val <= 1); 77 case HK_ISVECTORIZED: 78 return (Val == 0 || Val == 1); 79 } 80 return false; 81 } 82 83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving, 84 OptimizationRemarkEmitter &ORE) 85 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 86 Interleave("interleave.count", DisableInterleaving, HK_UNROLL), 87 Force("vectorize.enable", FK_Undefined, HK_FORCE), 88 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 89 // Populate values with existing loop metadata. 90 getHintsFromMetadata(); 91 92 // force-vector-interleave overrides DisableInterleaving. 93 if (VectorizerParams::isInterleaveForced()) 94 Interleave.Value = VectorizerParams::VectorizationInterleave; 95 96 if (IsVectorized.Value != 1) 97 // If the vectorization width and interleaving count are both 1 then 98 // consider the loop to have been already vectorized because there's 99 // nothing more that we can do. 100 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 101 LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs() 102 << "LV: Interleaving disabled by the pass manager\n"); 103 } 104 105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L, 106 bool AlwaysVectorize) const { 107 if (getForce() == LoopVectorizeHints::FK_Disabled) { 108 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 109 emitRemarkWithHints(); 110 return false; 111 } 112 113 if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) { 114 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 115 emitRemarkWithHints(); 116 return false; 117 } 118 119 if (getIsVectorized() == 1) { 120 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 121 // FIXME: Add interleave.disable metadata. This will allow 122 // vectorize.disable to be used without disabling the pass and errors 123 // to differentiate between disabled vectorization and a width of 1. 124 ORE.emit([&]() { 125 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 126 "AllDisabled", L->getStartLoc(), 127 L->getHeader()) 128 << "loop not vectorized: vectorization and interleaving are " 129 "explicitly disabled, or the loop has already been " 130 "vectorized"; 131 }); 132 return false; 133 } 134 135 return true; 136 } 137 138 void LoopVectorizeHints::emitRemarkWithHints() const { 139 using namespace ore; 140 141 ORE.emit([&]() { 142 if (Force.Value == LoopVectorizeHints::FK_Disabled) 143 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 144 TheLoop->getStartLoc(), 145 TheLoop->getHeader()) 146 << "loop not vectorized: vectorization is explicitly disabled"; 147 else { 148 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 149 TheLoop->getStartLoc(), TheLoop->getHeader()); 150 R << "loop not vectorized"; 151 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 152 R << " (Force=" << NV("Force", true); 153 if (Width.Value != 0) 154 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 155 if (Interleave.Value != 0) 156 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 157 R << ")"; 158 } 159 return R; 160 } 161 }); 162 } 163 164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 165 if (getWidth() == 1) 166 return LV_NAME; 167 if (getForce() == LoopVectorizeHints::FK_Disabled) 168 return LV_NAME; 169 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 170 return LV_NAME; 171 return OptimizationRemarkAnalysis::AlwaysPrint; 172 } 173 174 void LoopVectorizeHints::getHintsFromMetadata() { 175 MDNode *LoopID = TheLoop->getLoopID(); 176 if (!LoopID) 177 return; 178 179 // First operand should refer to the loop id itself. 180 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 181 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 182 183 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 184 const MDString *S = nullptr; 185 SmallVector<Metadata *, 4> Args; 186 187 // The expected hint is either a MDString or a MDNode with the first 188 // operand a MDString. 189 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 190 if (!MD || MD->getNumOperands() == 0) 191 continue; 192 S = dyn_cast<MDString>(MD->getOperand(0)); 193 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 194 Args.push_back(MD->getOperand(i)); 195 } else { 196 S = dyn_cast<MDString>(LoopID->getOperand(i)); 197 assert(Args.size() == 0 && "too many arguments for MDString"); 198 } 199 200 if (!S) 201 continue; 202 203 // Check if the hint starts with the loop metadata prefix. 204 StringRef Name = S->getString(); 205 if (Args.size() == 1) 206 setHint(Name, Args[0]); 207 } 208 } 209 210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 211 if (!Name.startswith(Prefix())) 212 return; 213 Name = Name.substr(Prefix().size(), StringRef::npos); 214 215 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 216 if (!C) 217 return; 218 unsigned Val = C->getZExtValue(); 219 220 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 221 for (auto H : Hints) { 222 if (Name == H->Name) { 223 if (H->validate(Val)) 224 H->Value = Val; 225 else 226 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 227 break; 228 } 229 } 230 } 231 232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 233 unsigned V) const { 234 LLVMContext &Context = TheLoop->getHeader()->getContext(); 235 Metadata *MDs[] = { 236 MDString::get(Context, Name), 237 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 238 return MDNode::get(Context, MDs); 239 } 240 241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 242 ArrayRef<Hint> HintTypes) { 243 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 244 if (!Name) 245 return false; 246 247 for (auto H : HintTypes) 248 if (Name->getString().endswith(H.Name)) 249 return true; 250 return false; 251 } 252 253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 254 if (HintTypes.empty()) 255 return; 256 257 // Reserve the first element to LoopID (see below). 258 SmallVector<Metadata *, 4> MDs(1); 259 // If the loop already has metadata, then ignore the existing operands. 260 MDNode *LoopID = TheLoop->getLoopID(); 261 if (LoopID) { 262 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 263 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 264 // If node in update list, ignore old value. 265 if (!matchesHintMetadataName(Node, HintTypes)) 266 MDs.push_back(Node); 267 } 268 } 269 270 // Now, add the missing hints. 271 for (auto H : HintTypes) 272 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 273 274 // Replace current metadata node with new one. 275 LLVMContext &Context = TheLoop->getHeader()->getContext(); 276 MDNode *NewLoopID = MDNode::get(Context, MDs); 277 // Set operand 0 to refer to the loop id itself. 278 NewLoopID->replaceOperandWith(0, NewLoopID); 279 280 TheLoop->setLoopID(NewLoopID); 281 } 282 283 bool LoopVectorizationRequirements::doesNotMeet( 284 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 285 const char *PassName = Hints.vectorizeAnalysisPassName(); 286 bool Failed = false; 287 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 288 ORE.emit([&]() { 289 return OptimizationRemarkAnalysisFPCommute( 290 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 291 UnsafeAlgebraInst->getParent()) 292 << "loop not vectorized: cannot prove it is safe to reorder " 293 "floating-point operations"; 294 }); 295 Failed = true; 296 } 297 298 // Test if runtime memcheck thresholds are exceeded. 299 bool PragmaThresholdReached = 300 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 301 bool ThresholdReached = 302 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 303 if ((ThresholdReached && !Hints.allowReordering()) || 304 PragmaThresholdReached) { 305 ORE.emit([&]() { 306 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 307 L->getStartLoc(), 308 L->getHeader()) 309 << "loop not vectorized: cannot prove it is safe to reorder " 310 "memory operations"; 311 }); 312 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 313 Failed = true; 314 } 315 316 return Failed; 317 } 318 319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 321 // executing the inner loop will execute the same iterations). This check is 322 // very constrained for now but it will be relaxed in the future. \p Lp is 323 // considered uniform if it meets all the following conditions: 324 // 1) it has a canonical IV (starting from 0 and with stride 1), 325 // 2) its latch terminator is a conditional branch and, 326 // 3) its latch condition is a compare instruction whose operands are the 327 // canonical IV and an OuterLp invariant. 328 // This check doesn't take into account the uniformity of other conditions not 329 // related to the loop latch because they don't affect the loop uniformity. 330 // 331 // NOTE: We decided to keep all these checks and its associated documentation 332 // together so that we can easily have a picture of the current supported loop 333 // nests. However, some of the current checks don't depend on \p OuterLp and 334 // would be redundantly executed for each \p Lp if we invoked this function for 335 // different candidate outer loops. This is not the case for now because we 336 // don't currently have the infrastructure to evaluate multiple candidate outer 337 // loops and \p OuterLp will be a fixed parameter while we only support explicit 338 // outer loop vectorization. It's also very likely that these checks go away 339 // before introducing the aforementioned infrastructure. However, if this is not 340 // the case, we should move the \p OuterLp independent checks to a separate 341 // function that is only executed once for each \p Lp. 342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 343 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 344 345 // If Lp is the outer loop, it's uniform by definition. 346 if (Lp == OuterLp) 347 return true; 348 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 349 350 // 1. 351 PHINode *IV = Lp->getCanonicalInductionVariable(); 352 if (!IV) { 353 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 354 return false; 355 } 356 357 // 2. 358 BasicBlock *Latch = Lp->getLoopLatch(); 359 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 360 if (!LatchBr || LatchBr->isUnconditional()) { 361 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 362 return false; 363 } 364 365 // 3. 366 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 367 if (!LatchCmp) { 368 LLVM_DEBUG( 369 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 370 return false; 371 } 372 373 Value *CondOp0 = LatchCmp->getOperand(0); 374 Value *CondOp1 = LatchCmp->getOperand(1); 375 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 376 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 377 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 378 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 379 return false; 380 } 381 382 return true; 383 } 384 385 // Return true if \p Lp and all its nested loops are uniform with regard to \p 386 // OuterLp. 387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 388 if (!isUniformLoop(Lp, OuterLp)) 389 return false; 390 391 // Check if nested loops are uniform. 392 for (Loop *SubLp : *Lp) 393 if (!isUniformLoopNest(SubLp, OuterLp)) 394 return false; 395 396 return true; 397 } 398 399 /// Check whether it is safe to if-convert this phi node. 400 /// 401 /// Phi nodes with constant expressions that can trap are not safe to if 402 /// convert. 403 static bool canIfConvertPHINodes(BasicBlock *BB) { 404 for (PHINode &Phi : BB->phis()) { 405 for (Value *V : Phi.incoming_values()) 406 if (auto *C = dyn_cast<Constant>(V)) 407 if (C->canTrap()) 408 return false; 409 } 410 return true; 411 } 412 413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 414 if (Ty->isPointerTy()) 415 return DL.getIntPtrType(Ty); 416 417 // It is possible that char's or short's overflow when we ask for the loop's 418 // trip count, work around this by changing the type size. 419 if (Ty->getScalarSizeInBits() < 32) 420 return Type::getInt32Ty(Ty->getContext()); 421 422 return Ty; 423 } 424 425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 426 Ty0 = convertPointerToIntegerType(DL, Ty0); 427 Ty1 = convertPointerToIntegerType(DL, Ty1); 428 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 429 return Ty0; 430 return Ty1; 431 } 432 433 /// Check that the instruction has outside loop users and is not an 434 /// identified reduction variable. 435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 436 SmallPtrSetImpl<Value *> &AllowedExit) { 437 // Reductions, Inductions and non-header phis are allowed to have exit users. All 438 // other instructions must not have external users. 439 if (!AllowedExit.count(Inst)) 440 // Check that all of the users of the loop are inside the BB. 441 for (User *U : Inst->users()) { 442 Instruction *UI = cast<Instruction>(U); 443 // This user may be a reduction exit value. 444 if (!TheLoop->contains(UI)) { 445 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 446 return true; 447 } 448 } 449 return false; 450 } 451 452 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 453 const ValueToValueMap &Strides = 454 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 455 456 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 457 if (Stride == 1 || Stride == -1) 458 return Stride; 459 return 0; 460 } 461 462 bool LoopVectorizationLegality::isUniform(Value *V) { 463 return LAI->isUniform(V); 464 } 465 466 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 467 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 468 // Store the result and return it at the end instead of exiting early, in case 469 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 470 bool Result = true; 471 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 472 473 for (BasicBlock *BB : TheLoop->blocks()) { 474 // Check whether the BB terminator is a BranchInst. Any other terminator is 475 // not supported yet. 476 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 477 if (!Br) { 478 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 479 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 480 << "loop control flow is not understood by vectorizer"); 481 if (DoExtraAnalysis) 482 Result = false; 483 else 484 return false; 485 } 486 487 // Check whether the BranchInst is a supported one. Only unconditional 488 // branches, conditional branches with an outer loop invariant condition or 489 // backedges are supported. 490 if (Br && Br->isConditional() && 491 !TheLoop->isLoopInvariant(Br->getCondition()) && 492 !LI->isLoopHeader(Br->getSuccessor(0)) && 493 !LI->isLoopHeader(Br->getSuccessor(1))) { 494 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 495 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 496 << "loop control flow is not understood by vectorizer"); 497 if (DoExtraAnalysis) 498 Result = false; 499 else 500 return false; 501 } 502 } 503 504 // Check whether inner loops are uniform. At this point, we only support 505 // simple outer loops scenarios with uniform nested loops. 506 if (!isUniformLoopNest(TheLoop /*loop nest*/, 507 TheLoop /*context outer loop*/)) { 508 LLVM_DEBUG( 509 dbgs() 510 << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 511 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 512 << "loop control flow is not understood by vectorizer"); 513 if (DoExtraAnalysis) 514 Result = false; 515 else 516 return false; 517 } 518 519 return Result; 520 } 521 522 void LoopVectorizationLegality::addInductionPhi( 523 PHINode *Phi, const InductionDescriptor &ID, 524 SmallPtrSetImpl<Value *> &AllowedExit) { 525 Inductions[Phi] = ID; 526 527 // In case this induction also comes with casts that we know we can ignore 528 // in the vectorized loop body, record them here. All casts could be recorded 529 // here for ignoring, but suffices to record only the first (as it is the 530 // only one that may bw used outside the cast sequence). 531 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 532 if (!Casts.empty()) 533 InductionCastsToIgnore.insert(*Casts.begin()); 534 535 Type *PhiTy = Phi->getType(); 536 const DataLayout &DL = Phi->getModule()->getDataLayout(); 537 538 // Get the widest type. 539 if (!PhiTy->isFloatingPointTy()) { 540 if (!WidestIndTy) 541 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 542 else 543 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 544 } 545 546 // Int inductions are special because we only allow one IV. 547 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 548 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 549 isa<Constant>(ID.getStartValue()) && 550 cast<Constant>(ID.getStartValue())->isNullValue()) { 551 552 // Use the phi node with the widest type as induction. Use the last 553 // one if there are multiple (no good reason for doing this other 554 // than it is expedient). We've checked that it begins at zero and 555 // steps by one, so this is a canonical induction variable. 556 if (!PrimaryInduction || PhiTy == WidestIndTy) 557 PrimaryInduction = Phi; 558 } 559 560 // Both the PHI node itself, and the "post-increment" value feeding 561 // back into the PHI node may have external users. 562 // We can allow those uses, except if the SCEVs we have for them rely 563 // on predicates that only hold within the loop, since allowing the exit 564 // currently means re-using this SCEV outside the loop (see PR33706 for more 565 // details). 566 if (PSE.getUnionPredicate().isAlwaysTrue()) { 567 AllowedExit.insert(Phi); 568 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 569 } 570 571 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 572 } 573 574 bool LoopVectorizationLegality::canVectorizeInstrs() { 575 BasicBlock *Header = TheLoop->getHeader(); 576 577 // Look for the attribute signaling the absence of NaNs. 578 Function &F = *Header->getParent(); 579 HasFunNoNaNAttr = 580 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 581 582 // For each block in the loop. 583 for (BasicBlock *BB : TheLoop->blocks()) { 584 // Scan the instructions in the block and look for hazards. 585 for (Instruction &I : *BB) { 586 if (auto *Phi = dyn_cast<PHINode>(&I)) { 587 Type *PhiTy = Phi->getType(); 588 // Check that this PHI type is allowed. 589 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 590 !PhiTy->isPointerTy()) { 591 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 592 << "loop control flow is not understood by vectorizer"); 593 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 594 return false; 595 } 596 597 // If this PHINode is not in the header block, then we know that we 598 // can convert it to select during if-conversion. No need to check if 599 // the PHIs in this block are induction or reduction variables. 600 if (BB != Header) { 601 // Non-header phi nodes that have outside uses can be vectorized. Add 602 // them to the list of allowed exits. 603 // Unsafe cyclic dependencies with header phis are identified during 604 // legalization for reduction, induction and first order 605 // recurrences. 606 continue; 607 } 608 609 // We only allow if-converted PHIs with exactly two incoming values. 610 if (Phi->getNumIncomingValues() != 2) { 611 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 612 << "control flow not understood by vectorizer"); 613 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 614 return false; 615 } 616 617 RecurrenceDescriptor RedDes; 618 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 619 DT)) { 620 if (RedDes.hasUnsafeAlgebra()) 621 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 622 AllowedExit.insert(RedDes.getLoopExitInstr()); 623 Reductions[Phi] = RedDes; 624 continue; 625 } 626 627 // TODO: Instead of recording the AllowedExit, it would be good to record the 628 // complementary set: NotAllowedExit. These include (but may not be 629 // limited to): 630 // 1. Reduction phis as they represent the one-before-last value, which 631 // is not available when vectorized 632 // 2. Induction phis and increment when SCEV predicates cannot be used 633 // outside the loop - see addInductionPhi 634 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 635 // outside the loop - see call to hasOutsideLoopUser in the non-phi 636 // handling below 637 // 4. FirstOrderRecurrence phis that can possibly be handled by 638 // extraction. 639 // By recording these, we can then reason about ways to vectorize each 640 // of these NotAllowedExit. 641 InductionDescriptor ID; 642 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 643 addInductionPhi(Phi, ID, AllowedExit); 644 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 645 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 646 continue; 647 } 648 649 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 650 SinkAfter, DT)) { 651 FirstOrderRecurrences.insert(Phi); 652 continue; 653 } 654 655 // As a last resort, coerce the PHI to a AddRec expression 656 // and re-try classifying it a an induction PHI. 657 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 658 addInductionPhi(Phi, ID, AllowedExit); 659 continue; 660 } 661 662 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 663 << "value that could not be identified as " 664 "reduction is used outside the loop"); 665 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 666 return false; 667 } // end of PHI handling 668 669 // We handle calls that: 670 // * Are debug info intrinsics. 671 // * Have a mapping to an IR intrinsic. 672 // * Have a vector version available. 673 auto *CI = dyn_cast<CallInst>(&I); 674 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 675 !isa<DbgInfoIntrinsic>(CI) && 676 !(CI->getCalledFunction() && TLI && 677 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 678 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 679 << "call instruction cannot be vectorized"); 680 LLVM_DEBUG( 681 dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n"); 682 return false; 683 } 684 685 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 686 // second argument is the same (i.e. loop invariant) 687 if (CI && hasVectorInstrinsicScalarOpd( 688 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 689 auto *SE = PSE.getSE(); 690 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 691 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 692 << "intrinsic instruction cannot be vectorized"); 693 LLVM_DEBUG(dbgs() 694 << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 695 return false; 696 } 697 } 698 699 // Check that the instruction return type is vectorizable. 700 // Also, we can't vectorize extractelement instructions. 701 if ((!VectorType::isValidElementType(I.getType()) && 702 !I.getType()->isVoidTy()) || 703 isa<ExtractElementInst>(I)) { 704 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 705 << "instruction return type cannot be vectorized"); 706 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 707 return false; 708 } 709 710 // Check that the stored type is vectorizable. 711 if (auto *ST = dyn_cast<StoreInst>(&I)) { 712 Type *T = ST->getValueOperand()->getType(); 713 if (!VectorType::isValidElementType(T)) { 714 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 715 << "store instruction cannot be vectorized"); 716 return false; 717 } 718 719 // FP instructions can allow unsafe algebra, thus vectorizable by 720 // non-IEEE-754 compliant SIMD units. 721 // This applies to floating-point math operations and calls, not memory 722 // operations, shuffles, or casts, as they don't change precision or 723 // semantics. 724 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 725 !I.isFast()) { 726 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 727 Hints->setPotentiallyUnsafe(); 728 } 729 730 // Reduction instructions are allowed to have exit users. 731 // All other instructions must not have external users. 732 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 733 // We can safely vectorize loops where instructions within the loop are 734 // used outside the loop only if the SCEV predicates within the loop is 735 // same as outside the loop. Allowing the exit means reusing the SCEV 736 // outside the loop. 737 if (PSE.getUnionPredicate().isAlwaysTrue()) { 738 AllowedExit.insert(&I); 739 continue; 740 } 741 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 742 << "value cannot be used outside the loop"); 743 return false; 744 } 745 } // next instr. 746 } 747 748 if (!PrimaryInduction) { 749 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 750 if (Inductions.empty()) { 751 ORE->emit(createMissedAnalysis("NoInductionVariable") 752 << "loop induction variable could not be identified"); 753 return false; 754 } 755 } 756 757 // Now we know the widest induction type, check if our found induction 758 // is the same size. If it's not, unset it here and InnerLoopVectorizer 759 // will create another. 760 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 761 PrimaryInduction = nullptr; 762 763 return true; 764 } 765 766 bool LoopVectorizationLegality::canVectorizeMemory() { 767 LAI = &(*GetLAA)(*TheLoop); 768 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 769 if (LAR) { 770 ORE->emit([&]() { 771 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 772 "loop not vectorized: ", *LAR); 773 }); 774 } 775 if (!LAI->canVectorizeMemory()) 776 return false; 777 778 if (LAI->hasStoreToLoopInvariantAddress()) { 779 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 780 << "write to a loop invariant address could not be vectorized"); 781 LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n"); 782 return false; 783 } 784 785 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 786 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 787 788 return true; 789 } 790 791 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 792 Value *In0 = const_cast<Value *>(V); 793 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 794 if (!PN) 795 return false; 796 797 return Inductions.count(PN); 798 } 799 800 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 801 auto *Inst = dyn_cast<Instruction>(V); 802 return (Inst && InductionCastsToIgnore.count(Inst)); 803 } 804 805 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 806 return isInductionPhi(V) || isCastedInductionVariable(V); 807 } 808 809 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 810 return FirstOrderRecurrences.count(Phi); 811 } 812 813 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 814 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 815 } 816 817 bool LoopVectorizationLegality::blockCanBePredicated( 818 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 819 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 820 821 for (Instruction &I : *BB) { 822 // Check that we don't have a constant expression that can trap as operand. 823 for (Value *Operand : I.operands()) { 824 if (auto *C = dyn_cast<Constant>(Operand)) 825 if (C->canTrap()) 826 return false; 827 } 828 // We might be able to hoist the load. 829 if (I.mayReadFromMemory()) { 830 auto *LI = dyn_cast<LoadInst>(&I); 831 if (!LI) 832 return false; 833 if (!SafePtrs.count(LI->getPointerOperand())) { 834 // !llvm.mem.parallel_loop_access implies if-conversion safety. 835 // Otherwise, record that the load needs (real or emulated) masking 836 // and let the cost model decide. 837 if (!IsAnnotatedParallel) 838 MaskedOp.insert(LI); 839 continue; 840 } 841 } 842 843 if (I.mayWriteToMemory()) { 844 auto *SI = dyn_cast<StoreInst>(&I); 845 if (!SI) 846 return false; 847 // Predicated store requires some form of masking: 848 // 1) masked store HW instruction, 849 // 2) emulation via load-blend-store (only if safe and legal to do so, 850 // be aware on the race conditions), or 851 // 3) element-by-element predicate check and scalar store. 852 MaskedOp.insert(SI); 853 continue; 854 } 855 if (I.mayThrow()) 856 return false; 857 } 858 859 return true; 860 } 861 862 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 863 if (!EnableIfConversion) { 864 ORE->emit(createMissedAnalysis("IfConversionDisabled") 865 << "if-conversion is disabled"); 866 return false; 867 } 868 869 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 870 871 // A list of pointers that we can safely read and write to. 872 SmallPtrSet<Value *, 8> SafePointes; 873 874 // Collect safe addresses. 875 for (BasicBlock *BB : TheLoop->blocks()) { 876 if (blockNeedsPredication(BB)) 877 continue; 878 879 for (Instruction &I : *BB) 880 if (auto *Ptr = getLoadStorePointerOperand(&I)) 881 SafePointes.insert(Ptr); 882 } 883 884 // Collect the blocks that need predication. 885 BasicBlock *Header = TheLoop->getHeader(); 886 for (BasicBlock *BB : TheLoop->blocks()) { 887 // We don't support switch statements inside loops. 888 if (!isa<BranchInst>(BB->getTerminator())) { 889 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 890 << "loop contains a switch statement"); 891 return false; 892 } 893 894 // We must be able to predicate all blocks that need to be predicated. 895 if (blockNeedsPredication(BB)) { 896 if (!blockCanBePredicated(BB, SafePointes)) { 897 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 898 << "control flow cannot be substituted for a select"); 899 return false; 900 } 901 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 902 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 903 << "control flow cannot be substituted for a select"); 904 return false; 905 } 906 } 907 908 // We can if-convert this loop. 909 return true; 910 } 911 912 // Helper function to canVectorizeLoopNestCFG. 913 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 914 bool UseVPlanNativePath) { 915 assert((UseVPlanNativePath || Lp->empty()) && 916 "VPlan-native path is not enabled."); 917 918 // TODO: ORE should be improved to show more accurate information when an 919 // outer loop can't be vectorized because a nested loop is not understood or 920 // legal. Something like: "outer_loop_location: loop not vectorized: 921 // (inner_loop_location) loop control flow is not understood by vectorizer". 922 923 // Store the result and return it at the end instead of exiting early, in case 924 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 925 bool Result = true; 926 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 927 928 // We must have a loop in canonical form. Loops with indirectbr in them cannot 929 // be canonicalized. 930 if (!Lp->getLoopPreheader()) { 931 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 932 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 933 << "loop control flow is not understood by vectorizer"); 934 if (DoExtraAnalysis) 935 Result = false; 936 else 937 return false; 938 } 939 940 // We must have a single backedge. 941 if (Lp->getNumBackEdges() != 1) { 942 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 943 << "loop control flow is not understood by vectorizer"); 944 if (DoExtraAnalysis) 945 Result = false; 946 else 947 return false; 948 } 949 950 // We must have a single exiting block. 951 if (!Lp->getExitingBlock()) { 952 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 953 << "loop control flow is not understood by vectorizer"); 954 if (DoExtraAnalysis) 955 Result = false; 956 else 957 return false; 958 } 959 960 // We only handle bottom-tested loops, i.e. loop in which the condition is 961 // checked at the end of each iteration. With that we can assume that all 962 // instructions in the loop are executed the same number of times. 963 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 964 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 965 << "loop control flow is not understood by vectorizer"); 966 if (DoExtraAnalysis) 967 Result = false; 968 else 969 return false; 970 } 971 972 return Result; 973 } 974 975 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 976 Loop *Lp, bool UseVPlanNativePath) { 977 // Store the result and return it at the end instead of exiting early, in case 978 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 979 bool Result = true; 980 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 981 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 982 if (DoExtraAnalysis) 983 Result = false; 984 else 985 return false; 986 } 987 988 // Recursively check whether the loop control flow of nested loops is 989 // understood. 990 for (Loop *SubLp : *Lp) 991 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 992 if (DoExtraAnalysis) 993 Result = false; 994 else 995 return false; 996 } 997 998 return Result; 999 } 1000 1001 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1002 // Store the result and return it at the end instead of exiting early, in case 1003 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1004 bool Result = true; 1005 1006 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1007 // Check whether the loop-related control flow in the loop nest is expected by 1008 // vectorizer. 1009 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1010 if (DoExtraAnalysis) 1011 Result = false; 1012 else 1013 return false; 1014 } 1015 1016 // We need to have a loop header. 1017 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1018 << '\n'); 1019 1020 // Specific checks for outer loops. We skip the remaining legal checks at this 1021 // point because they don't support outer loops. 1022 if (!TheLoop->empty()) { 1023 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1024 1025 if (!canVectorizeOuterLoop()) { 1026 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1027 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1028 // outer loops. 1029 return false; 1030 } 1031 1032 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1033 return Result; 1034 } 1035 1036 assert(TheLoop->empty() && "Inner loop expected."); 1037 // Check if we can if-convert non-single-bb loops. 1038 unsigned NumBlocks = TheLoop->getNumBlocks(); 1039 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1040 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1041 if (DoExtraAnalysis) 1042 Result = false; 1043 else 1044 return false; 1045 } 1046 1047 // Check if we can vectorize the instructions and CFG in this loop. 1048 if (!canVectorizeInstrs()) { 1049 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1050 if (DoExtraAnalysis) 1051 Result = false; 1052 else 1053 return false; 1054 } 1055 1056 // Go over each instruction and look at memory deps. 1057 if (!canVectorizeMemory()) { 1058 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1059 if (DoExtraAnalysis) 1060 Result = false; 1061 else 1062 return false; 1063 } 1064 1065 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1066 << (LAI->getRuntimePointerChecking()->Need 1067 ? " (with a runtime bound check)" 1068 : "") 1069 << "!\n"); 1070 1071 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1072 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1073 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1074 1075 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1076 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1077 << "Too many SCEV assumptions need to be made and checked " 1078 << "at runtime"); 1079 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1080 if (DoExtraAnalysis) 1081 Result = false; 1082 else 1083 return false; 1084 } 1085 1086 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1087 // we can vectorize, and at this point we don't have any other mem analysis 1088 // which may limit our maximum vectorization factor, so just return true with 1089 // no restrictions. 1090 return Result; 1091 } 1092 1093 } // namespace llvm 1094