1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides loop vectorization legality analysis. Original code
11 // resided in LoopVectorize.cpp for a long time.
12 //
13 // At this point, it is implemented as a utility class, not as an analysis
14 // pass. It should be easy to create an analysis pass around it if there
15 // is a need (but D45420 needs to happen first).
16 //
17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18 #include "llvm/Analysis/VectorUtils.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 
21 using namespace llvm;
22 
23 #define LV_NAME "loop-vectorize"
24 #define DEBUG_TYPE LV_NAME
25 
26 static cl::opt<bool>
27     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
28                        cl::desc("Enable if-conversion during vectorization."));
29 
30 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
31     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
32     cl::desc("The maximum allowed number of runtime memory checks with a "
33              "vectorize(enable) pragma."));
34 
35 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
36     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
37     cl::desc("The maximum number of SCEV checks allowed."));
38 
39 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
40     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
41     cl::desc("The maximum number of SCEV checks allowed with a "
42              "vectorize(enable) pragma"));
43 
44 /// Maximum vectorization interleave count.
45 static const unsigned MaxInterleaveFactor = 16;
46 
47 namespace llvm {
48 
49 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
50                                                   StringRef RemarkName,
51                                                   Loop *TheLoop,
52                                                   Instruction *I) {
53   Value *CodeRegion = TheLoop->getHeader();
54   DebugLoc DL = TheLoop->getStartLoc();
55 
56   if (I) {
57     CodeRegion = I->getParent();
58     // If there is no debug location attached to the instruction, revert back to
59     // using the loop's.
60     if (I->getDebugLoc())
61       DL = I->getDebugLoc();
62   }
63 
64   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
65   R << "loop not vectorized: ";
66   return R;
67 }
68 
69 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
70   switch (Kind) {
71   case HK_WIDTH:
72     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
73   case HK_UNROLL:
74     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
75   case HK_FORCE:
76     return (Val <= 1);
77   case HK_ISVECTORIZED:
78     return (Val == 0 || Val == 1);
79   }
80   return false;
81 }
82 
83 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, bool DisableInterleaving,
84                                        OptimizationRemarkEmitter &ORE)
85     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
86       Interleave("interleave.count", DisableInterleaving, HK_UNROLL),
87       Force("vectorize.enable", FK_Undefined, HK_FORCE),
88       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
89   // Populate values with existing loop metadata.
90   getHintsFromMetadata();
91 
92   // force-vector-interleave overrides DisableInterleaving.
93   if (VectorizerParams::isInterleaveForced())
94     Interleave.Value = VectorizerParams::VectorizationInterleave;
95 
96   if (IsVectorized.Value != 1)
97     // If the vectorization width and interleaving count are both 1 then
98     // consider the loop to have been already vectorized because there's
99     // nothing more that we can do.
100     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
101   LLVM_DEBUG(if (DisableInterleaving && Interleave.Value == 1) dbgs()
102              << "LV: Interleaving disabled by the pass manager\n");
103 }
104 
105 bool LoopVectorizeHints::allowVectorization(Function *F, Loop *L,
106                                             bool AlwaysVectorize) const {
107   if (getForce() == LoopVectorizeHints::FK_Disabled) {
108     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
109     emitRemarkWithHints();
110     return false;
111   }
112 
113   if (!AlwaysVectorize && getForce() != LoopVectorizeHints::FK_Enabled) {
114     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
115     emitRemarkWithHints();
116     return false;
117   }
118 
119   if (getIsVectorized() == 1) {
120     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
121     // FIXME: Add interleave.disable metadata. This will allow
122     // vectorize.disable to be used without disabling the pass and errors
123     // to differentiate between disabled vectorization and a width of 1.
124     ORE.emit([&]() {
125       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
126                                         "AllDisabled", L->getStartLoc(),
127                                         L->getHeader())
128              << "loop not vectorized: vectorization and interleaving are "
129                 "explicitly disabled, or the loop has already been "
130                 "vectorized";
131     });
132     return false;
133   }
134 
135   return true;
136 }
137 
138 void LoopVectorizeHints::emitRemarkWithHints() const {
139   using namespace ore;
140 
141   ORE.emit([&]() {
142     if (Force.Value == LoopVectorizeHints::FK_Disabled)
143       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
144                                       TheLoop->getStartLoc(),
145                                       TheLoop->getHeader())
146              << "loop not vectorized: vectorization is explicitly disabled";
147     else {
148       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
149                                  TheLoop->getStartLoc(), TheLoop->getHeader());
150       R << "loop not vectorized";
151       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
152         R << " (Force=" << NV("Force", true);
153         if (Width.Value != 0)
154           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
155         if (Interleave.Value != 0)
156           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
157         R << ")";
158       }
159       return R;
160     }
161   });
162 }
163 
164 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
165   if (getWidth() == 1)
166     return LV_NAME;
167   if (getForce() == LoopVectorizeHints::FK_Disabled)
168     return LV_NAME;
169   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
170     return LV_NAME;
171   return OptimizationRemarkAnalysis::AlwaysPrint;
172 }
173 
174 void LoopVectorizeHints::getHintsFromMetadata() {
175   MDNode *LoopID = TheLoop->getLoopID();
176   if (!LoopID)
177     return;
178 
179   // First operand should refer to the loop id itself.
180   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
181   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
182 
183   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
184     const MDString *S = nullptr;
185     SmallVector<Metadata *, 4> Args;
186 
187     // The expected hint is either a MDString or a MDNode with the first
188     // operand a MDString.
189     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
190       if (!MD || MD->getNumOperands() == 0)
191         continue;
192       S = dyn_cast<MDString>(MD->getOperand(0));
193       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
194         Args.push_back(MD->getOperand(i));
195     } else {
196       S = dyn_cast<MDString>(LoopID->getOperand(i));
197       assert(Args.size() == 0 && "too many arguments for MDString");
198     }
199 
200     if (!S)
201       continue;
202 
203     // Check if the hint starts with the loop metadata prefix.
204     StringRef Name = S->getString();
205     if (Args.size() == 1)
206       setHint(Name, Args[0]);
207   }
208 }
209 
210 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
211   if (!Name.startswith(Prefix()))
212     return;
213   Name = Name.substr(Prefix().size(), StringRef::npos);
214 
215   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
216   if (!C)
217     return;
218   unsigned Val = C->getZExtValue();
219 
220   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
221   for (auto H : Hints) {
222     if (Name == H->Name) {
223       if (H->validate(Val))
224         H->Value = Val;
225       else
226         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
227       break;
228     }
229   }
230 }
231 
232 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name,
233                                                unsigned V) const {
234   LLVMContext &Context = TheLoop->getHeader()->getContext();
235   Metadata *MDs[] = {
236       MDString::get(Context, Name),
237       ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))};
238   return MDNode::get(Context, MDs);
239 }
240 
241 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node,
242                                                  ArrayRef<Hint> HintTypes) {
243   MDString *Name = dyn_cast<MDString>(Node->getOperand(0));
244   if (!Name)
245     return false;
246 
247   for (auto H : HintTypes)
248     if (Name->getString().endswith(H.Name))
249       return true;
250   return false;
251 }
252 
253 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) {
254   if (HintTypes.empty())
255     return;
256 
257   // Reserve the first element to LoopID (see below).
258   SmallVector<Metadata *, 4> MDs(1);
259   // If the loop already has metadata, then ignore the existing operands.
260   MDNode *LoopID = TheLoop->getLoopID();
261   if (LoopID) {
262     for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
263       MDNode *Node = cast<MDNode>(LoopID->getOperand(i));
264       // If node in update list, ignore old value.
265       if (!matchesHintMetadataName(Node, HintTypes))
266         MDs.push_back(Node);
267     }
268   }
269 
270   // Now, add the missing hints.
271   for (auto H : HintTypes)
272     MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value));
273 
274   // Replace current metadata node with new one.
275   LLVMContext &Context = TheLoop->getHeader()->getContext();
276   MDNode *NewLoopID = MDNode::get(Context, MDs);
277   // Set operand 0 to refer to the loop id itself.
278   NewLoopID->replaceOperandWith(0, NewLoopID);
279 
280   TheLoop->setLoopID(NewLoopID);
281 }
282 
283 bool LoopVectorizationRequirements::doesNotMeet(
284     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
285   const char *PassName = Hints.vectorizeAnalysisPassName();
286   bool Failed = false;
287   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
288     ORE.emit([&]() {
289       return OptimizationRemarkAnalysisFPCommute(
290                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
291                  UnsafeAlgebraInst->getParent())
292              << "loop not vectorized: cannot prove it is safe to reorder "
293                 "floating-point operations";
294     });
295     Failed = true;
296   }
297 
298   // Test if runtime memcheck thresholds are exceeded.
299   bool PragmaThresholdReached =
300       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
301   bool ThresholdReached =
302       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
303   if ((ThresholdReached && !Hints.allowReordering()) ||
304       PragmaThresholdReached) {
305     ORE.emit([&]() {
306       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
307                                                 L->getStartLoc(),
308                                                 L->getHeader())
309              << "loop not vectorized: cannot prove it is safe to reorder "
310                 "memory operations";
311     });
312     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
313     Failed = true;
314   }
315 
316   return Failed;
317 }
318 
319 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
320 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
321 // executing the inner loop will execute the same iterations). This check is
322 // very constrained for now but it will be relaxed in the future. \p Lp is
323 // considered uniform if it meets all the following conditions:
324 //   1) it has a canonical IV (starting from 0 and with stride 1),
325 //   2) its latch terminator is a conditional branch and,
326 //   3) its latch condition is a compare instruction whose operands are the
327 //      canonical IV and an OuterLp invariant.
328 // This check doesn't take into account the uniformity of other conditions not
329 // related to the loop latch because they don't affect the loop uniformity.
330 //
331 // NOTE: We decided to keep all these checks and its associated documentation
332 // together so that we can easily have a picture of the current supported loop
333 // nests. However, some of the current checks don't depend on \p OuterLp and
334 // would be redundantly executed for each \p Lp if we invoked this function for
335 // different candidate outer loops. This is not the case for now because we
336 // don't currently have the infrastructure to evaluate multiple candidate outer
337 // loops and \p OuterLp will be a fixed parameter while we only support explicit
338 // outer loop vectorization. It's also very likely that these checks go away
339 // before introducing the aforementioned infrastructure. However, if this is not
340 // the case, we should move the \p OuterLp independent checks to a separate
341 // function that is only executed once for each \p Lp.
342 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
343   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
344 
345   // If Lp is the outer loop, it's uniform by definition.
346   if (Lp == OuterLp)
347     return true;
348   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
349 
350   // 1.
351   PHINode *IV = Lp->getCanonicalInductionVariable();
352   if (!IV) {
353     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
354     return false;
355   }
356 
357   // 2.
358   BasicBlock *Latch = Lp->getLoopLatch();
359   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
360   if (!LatchBr || LatchBr->isUnconditional()) {
361     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
362     return false;
363   }
364 
365   // 3.
366   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
367   if (!LatchCmp) {
368     LLVM_DEBUG(
369         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
370     return false;
371   }
372 
373   Value *CondOp0 = LatchCmp->getOperand(0);
374   Value *CondOp1 = LatchCmp->getOperand(1);
375   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
376   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
377       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
378     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
379     return false;
380   }
381 
382   return true;
383 }
384 
385 // Return true if \p Lp and all its nested loops are uniform with regard to \p
386 // OuterLp.
387 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
388   if (!isUniformLoop(Lp, OuterLp))
389     return false;
390 
391   // Check if nested loops are uniform.
392   for (Loop *SubLp : *Lp)
393     if (!isUniformLoopNest(SubLp, OuterLp))
394       return false;
395 
396   return true;
397 }
398 
399 /// Check whether it is safe to if-convert this phi node.
400 ///
401 /// Phi nodes with constant expressions that can trap are not safe to if
402 /// convert.
403 static bool canIfConvertPHINodes(BasicBlock *BB) {
404   for (PHINode &Phi : BB->phis()) {
405     for (Value *V : Phi.incoming_values())
406       if (auto *C = dyn_cast<Constant>(V))
407         if (C->canTrap())
408           return false;
409   }
410   return true;
411 }
412 
413 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
414   if (Ty->isPointerTy())
415     return DL.getIntPtrType(Ty);
416 
417   // It is possible that char's or short's overflow when we ask for the loop's
418   // trip count, work around this by changing the type size.
419   if (Ty->getScalarSizeInBits() < 32)
420     return Type::getInt32Ty(Ty->getContext());
421 
422   return Ty;
423 }
424 
425 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
426   Ty0 = convertPointerToIntegerType(DL, Ty0);
427   Ty1 = convertPointerToIntegerType(DL, Ty1);
428   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
429     return Ty0;
430   return Ty1;
431 }
432 
433 /// Check that the instruction has outside loop users and is not an
434 /// identified reduction variable.
435 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
436                                SmallPtrSetImpl<Value *> &AllowedExit) {
437   // Reductions, Inductions and non-header phis are allowed to have exit users. All
438   // other instructions must not have external users.
439   if (!AllowedExit.count(Inst))
440     // Check that all of the users of the loop are inside the BB.
441     for (User *U : Inst->users()) {
442       Instruction *UI = cast<Instruction>(U);
443       // This user may be a reduction exit value.
444       if (!TheLoop->contains(UI)) {
445         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
446         return true;
447       }
448     }
449   return false;
450 }
451 
452 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
453   const ValueToValueMap &Strides =
454       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
455 
456   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
457   if (Stride == 1 || Stride == -1)
458     return Stride;
459   return 0;
460 }
461 
462 bool LoopVectorizationLegality::isUniform(Value *V) {
463   return LAI->isUniform(V);
464 }
465 
466 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
467   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
468   // Store the result and return it at the end instead of exiting early, in case
469   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
470   bool Result = true;
471   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
472 
473   for (BasicBlock *BB : TheLoop->blocks()) {
474     // Check whether the BB terminator is a BranchInst. Any other terminator is
475     // not supported yet.
476     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
477     if (!Br) {
478       LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
479       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
480                 << "loop control flow is not understood by vectorizer");
481       if (DoExtraAnalysis)
482         Result = false;
483       else
484         return false;
485     }
486 
487     // Check whether the BranchInst is a supported one. Only unconditional
488     // branches, conditional branches with an outer loop invariant condition or
489     // backedges are supported.
490     if (Br && Br->isConditional() &&
491         !TheLoop->isLoopInvariant(Br->getCondition()) &&
492         !LI->isLoopHeader(Br->getSuccessor(0)) &&
493         !LI->isLoopHeader(Br->getSuccessor(1))) {
494       LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
495       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
496                 << "loop control flow is not understood by vectorizer");
497       if (DoExtraAnalysis)
498         Result = false;
499       else
500         return false;
501     }
502   }
503 
504   // Check whether inner loops are uniform. At this point, we only support
505   // simple outer loops scenarios with uniform nested loops.
506   if (!isUniformLoopNest(TheLoop /*loop nest*/,
507                          TheLoop /*context outer loop*/)) {
508     LLVM_DEBUG(
509         dbgs()
510         << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
511     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
512               << "loop control flow is not understood by vectorizer");
513     if (DoExtraAnalysis)
514       Result = false;
515     else
516       return false;
517   }
518 
519   return Result;
520 }
521 
522 void LoopVectorizationLegality::addInductionPhi(
523     PHINode *Phi, const InductionDescriptor &ID,
524     SmallPtrSetImpl<Value *> &AllowedExit) {
525   Inductions[Phi] = ID;
526 
527   // In case this induction also comes with casts that we know we can ignore
528   // in the vectorized loop body, record them here. All casts could be recorded
529   // here for ignoring, but suffices to record only the first (as it is the
530   // only one that may bw used outside the cast sequence).
531   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
532   if (!Casts.empty())
533     InductionCastsToIgnore.insert(*Casts.begin());
534 
535   Type *PhiTy = Phi->getType();
536   const DataLayout &DL = Phi->getModule()->getDataLayout();
537 
538   // Get the widest type.
539   if (!PhiTy->isFloatingPointTy()) {
540     if (!WidestIndTy)
541       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
542     else
543       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
544   }
545 
546   // Int inductions are special because we only allow one IV.
547   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
548       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
549       isa<Constant>(ID.getStartValue()) &&
550       cast<Constant>(ID.getStartValue())->isNullValue()) {
551 
552     // Use the phi node with the widest type as induction. Use the last
553     // one if there are multiple (no good reason for doing this other
554     // than it is expedient). We've checked that it begins at zero and
555     // steps by one, so this is a canonical induction variable.
556     if (!PrimaryInduction || PhiTy == WidestIndTy)
557       PrimaryInduction = Phi;
558   }
559 
560   // Both the PHI node itself, and the "post-increment" value feeding
561   // back into the PHI node may have external users.
562   // We can allow those uses, except if the SCEVs we have for them rely
563   // on predicates that only hold within the loop, since allowing the exit
564   // currently means re-using this SCEV outside the loop (see PR33706 for more
565   // details).
566   if (PSE.getUnionPredicate().isAlwaysTrue()) {
567     AllowedExit.insert(Phi);
568     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
569   }
570 
571   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
572 }
573 
574 bool LoopVectorizationLegality::canVectorizeInstrs() {
575   BasicBlock *Header = TheLoop->getHeader();
576 
577   // Look for the attribute signaling the absence of NaNs.
578   Function &F = *Header->getParent();
579   HasFunNoNaNAttr =
580       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
581 
582   // For each block in the loop.
583   for (BasicBlock *BB : TheLoop->blocks()) {
584     // Scan the instructions in the block and look for hazards.
585     for (Instruction &I : *BB) {
586       if (auto *Phi = dyn_cast<PHINode>(&I)) {
587         Type *PhiTy = Phi->getType();
588         // Check that this PHI type is allowed.
589         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
590             !PhiTy->isPointerTy()) {
591           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
592                     << "loop control flow is not understood by vectorizer");
593           LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
594           return false;
595         }
596 
597         // If this PHINode is not in the header block, then we know that we
598         // can convert it to select during if-conversion. No need to check if
599         // the PHIs in this block are induction or reduction variables.
600         if (BB != Header) {
601           // Non-header phi nodes that have outside uses can be vectorized. Add
602           // them to the list of allowed exits.
603           // Unsafe cyclic dependencies with header phis are identified during
604           // legalization for reduction, induction and first order
605           // recurrences.
606           continue;
607         }
608 
609         // We only allow if-converted PHIs with exactly two incoming values.
610         if (Phi->getNumIncomingValues() != 2) {
611           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
612                     << "control flow not understood by vectorizer");
613           LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
614           return false;
615         }
616 
617         RecurrenceDescriptor RedDes;
618         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
619                                                  DT)) {
620           if (RedDes.hasUnsafeAlgebra())
621             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
622           AllowedExit.insert(RedDes.getLoopExitInstr());
623           Reductions[Phi] = RedDes;
624           continue;
625         }
626 
627         // TODO: Instead of recording the AllowedExit, it would be good to record the
628         // complementary set: NotAllowedExit. These include (but may not be
629         // limited to):
630         // 1. Reduction phis as they represent the one-before-last value, which
631         // is not available when vectorized
632         // 2. Induction phis and increment when SCEV predicates cannot be used
633         // outside the loop - see addInductionPhi
634         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
635         // outside the loop - see call to hasOutsideLoopUser in the non-phi
636         // handling below
637         // 4. FirstOrderRecurrence phis that can possibly be handled by
638         // extraction.
639         // By recording these, we can then reason about ways to vectorize each
640         // of these NotAllowedExit.
641         InductionDescriptor ID;
642         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
643           addInductionPhi(Phi, ID, AllowedExit);
644           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
645             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
646           continue;
647         }
648 
649         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
650                                                          SinkAfter, DT)) {
651           FirstOrderRecurrences.insert(Phi);
652           continue;
653         }
654 
655         // As a last resort, coerce the PHI to a AddRec expression
656         // and re-try classifying it a an induction PHI.
657         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
658           addInductionPhi(Phi, ID, AllowedExit);
659           continue;
660         }
661 
662         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
663                   << "value that could not be identified as "
664                      "reduction is used outside the loop");
665         LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
666         return false;
667       } // end of PHI handling
668 
669       // We handle calls that:
670       //   * Are debug info intrinsics.
671       //   * Have a mapping to an IR intrinsic.
672       //   * Have a vector version available.
673       auto *CI = dyn_cast<CallInst>(&I);
674       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
675           !isa<DbgInfoIntrinsic>(CI) &&
676           !(CI->getCalledFunction() && TLI &&
677             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
678         ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
679                   << "call instruction cannot be vectorized");
680         LLVM_DEBUG(
681             dbgs() << "LV: Found a non-intrinsic, non-libfunc callsite.\n");
682         return false;
683       }
684 
685       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
686       // second argument is the same (i.e. loop invariant)
687       if (CI && hasVectorInstrinsicScalarOpd(
688                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
689         auto *SE = PSE.getSE();
690         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
691           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
692                     << "intrinsic instruction cannot be vectorized");
693           LLVM_DEBUG(dbgs()
694                      << "LV: Found unvectorizable intrinsic " << *CI << "\n");
695           return false;
696         }
697       }
698 
699       // Check that the instruction return type is vectorizable.
700       // Also, we can't vectorize extractelement instructions.
701       if ((!VectorType::isValidElementType(I.getType()) &&
702            !I.getType()->isVoidTy()) ||
703           isa<ExtractElementInst>(I)) {
704         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
705                   << "instruction return type cannot be vectorized");
706         LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
707         return false;
708       }
709 
710       // Check that the stored type is vectorizable.
711       if (auto *ST = dyn_cast<StoreInst>(&I)) {
712         Type *T = ST->getValueOperand()->getType();
713         if (!VectorType::isValidElementType(T)) {
714           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
715                     << "store instruction cannot be vectorized");
716           return false;
717         }
718 
719         // FP instructions can allow unsafe algebra, thus vectorizable by
720         // non-IEEE-754 compliant SIMD units.
721         // This applies to floating-point math operations and calls, not memory
722         // operations, shuffles, or casts, as they don't change precision or
723         // semantics.
724       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
725                  !I.isFast()) {
726         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
727         Hints->setPotentiallyUnsafe();
728       }
729 
730       // Reduction instructions are allowed to have exit users.
731       // All other instructions must not have external users.
732       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
733         // We can safely vectorize loops where instructions within the loop are
734         // used outside the loop only if the SCEV predicates within the loop is
735         // same as outside the loop. Allowing the exit means reusing the SCEV
736         // outside the loop.
737         if (PSE.getUnionPredicate().isAlwaysTrue()) {
738           AllowedExit.insert(&I);
739           continue;
740         }
741         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
742                   << "value cannot be used outside the loop");
743         return false;
744       }
745     } // next instr.
746   }
747 
748   if (!PrimaryInduction) {
749     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
750     if (Inductions.empty()) {
751       ORE->emit(createMissedAnalysis("NoInductionVariable")
752                 << "loop induction variable could not be identified");
753       return false;
754     }
755   }
756 
757   // Now we know the widest induction type, check if our found induction
758   // is the same size. If it's not, unset it here and InnerLoopVectorizer
759   // will create another.
760   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
761     PrimaryInduction = nullptr;
762 
763   return true;
764 }
765 
766 bool LoopVectorizationLegality::canVectorizeMemory() {
767   LAI = &(*GetLAA)(*TheLoop);
768   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
769   if (LAR) {
770     ORE->emit([&]() {
771       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
772                                         "loop not vectorized: ", *LAR);
773     });
774   }
775   if (!LAI->canVectorizeMemory())
776     return false;
777 
778   if (LAI->hasStoreToLoopInvariantAddress()) {
779     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
780               << "write to a loop invariant address could not be vectorized");
781     LLVM_DEBUG(dbgs() << "LV: We don't allow storing to uniform addresses\n");
782     return false;
783   }
784 
785   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
786   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
787 
788   return true;
789 }
790 
791 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
792   Value *In0 = const_cast<Value *>(V);
793   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
794   if (!PN)
795     return false;
796 
797   return Inductions.count(PN);
798 }
799 
800 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
801   auto *Inst = dyn_cast<Instruction>(V);
802   return (Inst && InductionCastsToIgnore.count(Inst));
803 }
804 
805 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
806   return isInductionPhi(V) || isCastedInductionVariable(V);
807 }
808 
809 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
810   return FirstOrderRecurrences.count(Phi);
811 }
812 
813 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
814   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
815 }
816 
817 bool LoopVectorizationLegality::blockCanBePredicated(
818     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
819   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
820 
821   for (Instruction &I : *BB) {
822     // Check that we don't have a constant expression that can trap as operand.
823     for (Value *Operand : I.operands()) {
824       if (auto *C = dyn_cast<Constant>(Operand))
825         if (C->canTrap())
826           return false;
827     }
828     // We might be able to hoist the load.
829     if (I.mayReadFromMemory()) {
830       auto *LI = dyn_cast<LoadInst>(&I);
831       if (!LI)
832         return false;
833       if (!SafePtrs.count(LI->getPointerOperand())) {
834         // !llvm.mem.parallel_loop_access implies if-conversion safety.
835         // Otherwise, record that the load needs (real or emulated) masking
836         // and let the cost model decide.
837         if (!IsAnnotatedParallel)
838           MaskedOp.insert(LI);
839         continue;
840       }
841     }
842 
843     if (I.mayWriteToMemory()) {
844       auto *SI = dyn_cast<StoreInst>(&I);
845       if (!SI)
846         return false;
847       // Predicated store requires some form of masking:
848       // 1) masked store HW instruction,
849       // 2) emulation via load-blend-store (only if safe and legal to do so,
850       //    be aware on the race conditions), or
851       // 3) element-by-element predicate check and scalar store.
852       MaskedOp.insert(SI);
853       continue;
854     }
855     if (I.mayThrow())
856       return false;
857   }
858 
859   return true;
860 }
861 
862 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
863   if (!EnableIfConversion) {
864     ORE->emit(createMissedAnalysis("IfConversionDisabled")
865               << "if-conversion is disabled");
866     return false;
867   }
868 
869   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
870 
871   // A list of pointers that we can safely read and write to.
872   SmallPtrSet<Value *, 8> SafePointes;
873 
874   // Collect safe addresses.
875   for (BasicBlock *BB : TheLoop->blocks()) {
876     if (blockNeedsPredication(BB))
877       continue;
878 
879     for (Instruction &I : *BB)
880       if (auto *Ptr = getLoadStorePointerOperand(&I))
881         SafePointes.insert(Ptr);
882   }
883 
884   // Collect the blocks that need predication.
885   BasicBlock *Header = TheLoop->getHeader();
886   for (BasicBlock *BB : TheLoop->blocks()) {
887     // We don't support switch statements inside loops.
888     if (!isa<BranchInst>(BB->getTerminator())) {
889       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
890                 << "loop contains a switch statement");
891       return false;
892     }
893 
894     // We must be able to predicate all blocks that need to be predicated.
895     if (blockNeedsPredication(BB)) {
896       if (!blockCanBePredicated(BB, SafePointes)) {
897         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
898                   << "control flow cannot be substituted for a select");
899         return false;
900       }
901     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
902       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
903                 << "control flow cannot be substituted for a select");
904       return false;
905     }
906   }
907 
908   // We can if-convert this loop.
909   return true;
910 }
911 
912 // Helper function to canVectorizeLoopNestCFG.
913 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
914                                                     bool UseVPlanNativePath) {
915   assert((UseVPlanNativePath || Lp->empty()) &&
916          "VPlan-native path is not enabled.");
917 
918   // TODO: ORE should be improved to show more accurate information when an
919   // outer loop can't be vectorized because a nested loop is not understood or
920   // legal. Something like: "outer_loop_location: loop not vectorized:
921   // (inner_loop_location) loop control flow is not understood by vectorizer".
922 
923   // Store the result and return it at the end instead of exiting early, in case
924   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
925   bool Result = true;
926   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
927 
928   // We must have a loop in canonical form. Loops with indirectbr in them cannot
929   // be canonicalized.
930   if (!Lp->getLoopPreheader()) {
931     LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
932     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
933               << "loop control flow is not understood by vectorizer");
934     if (DoExtraAnalysis)
935       Result = false;
936     else
937       return false;
938   }
939 
940   // We must have a single backedge.
941   if (Lp->getNumBackEdges() != 1) {
942     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
943               << "loop control flow is not understood by vectorizer");
944     if (DoExtraAnalysis)
945       Result = false;
946     else
947       return false;
948   }
949 
950   // We must have a single exiting block.
951   if (!Lp->getExitingBlock()) {
952     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
953               << "loop control flow is not understood by vectorizer");
954     if (DoExtraAnalysis)
955       Result = false;
956     else
957       return false;
958   }
959 
960   // We only handle bottom-tested loops, i.e. loop in which the condition is
961   // checked at the end of each iteration. With that we can assume that all
962   // instructions in the loop are executed the same number of times.
963   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
964     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
965               << "loop control flow is not understood by vectorizer");
966     if (DoExtraAnalysis)
967       Result = false;
968     else
969       return false;
970   }
971 
972   return Result;
973 }
974 
975 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
976     Loop *Lp, bool UseVPlanNativePath) {
977   // Store the result and return it at the end instead of exiting early, in case
978   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
979   bool Result = true;
980   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
981   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
982     if (DoExtraAnalysis)
983       Result = false;
984     else
985       return false;
986   }
987 
988   // Recursively check whether the loop control flow of nested loops is
989   // understood.
990   for (Loop *SubLp : *Lp)
991     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
992       if (DoExtraAnalysis)
993         Result = false;
994       else
995         return false;
996     }
997 
998   return Result;
999 }
1000 
1001 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1002   // Store the result and return it at the end instead of exiting early, in case
1003   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1004   bool Result = true;
1005 
1006   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1007   // Check whether the loop-related control flow in the loop nest is expected by
1008   // vectorizer.
1009   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1010     if (DoExtraAnalysis)
1011       Result = false;
1012     else
1013       return false;
1014   }
1015 
1016   // We need to have a loop header.
1017   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1018                     << '\n');
1019 
1020   // Specific checks for outer loops. We skip the remaining legal checks at this
1021   // point because they don't support outer loops.
1022   if (!TheLoop->empty()) {
1023     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1024 
1025     if (!canVectorizeOuterLoop()) {
1026       LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1027       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1028       // outer loops.
1029       return false;
1030     }
1031 
1032     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1033     return Result;
1034   }
1035 
1036   assert(TheLoop->empty() && "Inner loop expected.");
1037   // Check if we can if-convert non-single-bb loops.
1038   unsigned NumBlocks = TheLoop->getNumBlocks();
1039   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1040     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1041     if (DoExtraAnalysis)
1042       Result = false;
1043     else
1044       return false;
1045   }
1046 
1047   // Check if we can vectorize the instructions and CFG in this loop.
1048   if (!canVectorizeInstrs()) {
1049     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1050     if (DoExtraAnalysis)
1051       Result = false;
1052     else
1053       return false;
1054   }
1055 
1056   // Go over each instruction and look at memory deps.
1057   if (!canVectorizeMemory()) {
1058     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1059     if (DoExtraAnalysis)
1060       Result = false;
1061     else
1062       return false;
1063   }
1064 
1065   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1066                     << (LAI->getRuntimePointerChecking()->Need
1067                             ? " (with a runtime bound check)"
1068                             : "")
1069                     << "!\n");
1070 
1071   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1072   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1073     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1074 
1075   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1076     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1077               << "Too many SCEV assumptions need to be made and checked "
1078               << "at runtime");
1079     LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1080     if (DoExtraAnalysis)
1081       Result = false;
1082     else
1083       return false;
1084   }
1085 
1086   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1087   // we can vectorize, and at this point we don't have any other mem analysis
1088   // which may limit our maximum vectorization factor, so just return true with
1089   // no restrictions.
1090   return Result;
1091 }
1092 
1093 } // namespace llvm
1094