1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/VectorUtils.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 
20 using namespace llvm;
21 
22 #define LV_NAME "loop-vectorize"
23 #define DEBUG_TYPE LV_NAME
24 
25 extern cl::opt<bool> EnableVPlanPredication;
26 
27 static cl::opt<bool>
28     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
29                        cl::desc("Enable if-conversion during vectorization."));
30 
31 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
32     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
33     cl::desc("The maximum allowed number of runtime memory checks with a "
34              "vectorize(enable) pragma."));
35 
36 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
37     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
38     cl::desc("The maximum number of SCEV checks allowed."));
39 
40 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
41     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
42     cl::desc("The maximum number of SCEV checks allowed with a "
43              "vectorize(enable) pragma"));
44 
45 /// Maximum vectorization interleave count.
46 static const unsigned MaxInterleaveFactor = 16;
47 
48 namespace llvm {
49 
50 #ifndef NDEBUG
51 static void debugVectorizationFailure(const StringRef DebugMsg,
52     Instruction *I) {
53   dbgs() << "LV: Not vectorizing: " << DebugMsg;
54   if (I != nullptr)
55     dbgs() << " " << *I;
56   else
57     dbgs() << '.';
58   dbgs() << '\n';
59 }
60 #endif
61 
62 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
63                                                   StringRef RemarkName,
64                                                   Loop *TheLoop,
65                                                   Instruction *I) {
66   Value *CodeRegion = TheLoop->getHeader();
67   DebugLoc DL = TheLoop->getStartLoc();
68 
69   if (I) {
70     CodeRegion = I->getParent();
71     // If there is no debug location attached to the instruction, revert back to
72     // using the loop's.
73     if (I->getDebugLoc())
74       DL = I->getDebugLoc();
75   }
76 
77   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
78   R << "loop not vectorized: ";
79   return R;
80 }
81 
82 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
83   switch (Kind) {
84   case HK_WIDTH:
85     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
86   case HK_UNROLL:
87     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
88   case HK_FORCE:
89     return (Val <= 1);
90   case HK_ISVECTORIZED:
91   case HK_PREDICATE:
92     return (Val == 0 || Val == 1);
93   }
94   return false;
95 }
96 
97 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
98                                        bool InterleaveOnlyWhenForced,
99                                        OptimizationRemarkEmitter &ORE)
100     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
101       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
102       Force("vectorize.enable", FK_Undefined, HK_FORCE),
103       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
104       Predicate("vectorize.predicate.enable", 0, HK_PREDICATE), TheLoop(L),
105       ORE(ORE) {
106   // Populate values with existing loop metadata.
107   getHintsFromMetadata();
108 
109   // force-vector-interleave overrides DisableInterleaving.
110   if (VectorizerParams::isInterleaveForced())
111     Interleave.Value = VectorizerParams::VectorizationInterleave;
112 
113   if (IsVectorized.Value != 1)
114     // If the vectorization width and interleaving count are both 1 then
115     // consider the loop to have been already vectorized because there's
116     // nothing more that we can do.
117     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
118   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
119              << "LV: Interleaving disabled by the pass manager\n");
120 }
121 
122 void LoopVectorizeHints::setAlreadyVectorized() {
123   LLVMContext &Context = TheLoop->getHeader()->getContext();
124 
125   MDNode *IsVectorizedMD = MDNode::get(
126       Context,
127       {MDString::get(Context, "llvm.loop.isvectorized"),
128        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
129   MDNode *LoopID = TheLoop->getLoopID();
130   MDNode *NewLoopID =
131       makePostTransformationMetadata(Context, LoopID,
132                                      {Twine(Prefix(), "vectorize.").str(),
133                                       Twine(Prefix(), "interleave.").str()},
134                                      {IsVectorizedMD});
135   TheLoop->setLoopID(NewLoopID);
136 
137   // Update internal cache.
138   IsVectorized.Value = 1;
139 }
140 
141 bool LoopVectorizeHints::allowVectorization(
142     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
143   if (getForce() == LoopVectorizeHints::FK_Disabled) {
144     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
145     emitRemarkWithHints();
146     return false;
147   }
148 
149   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
150     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
151     emitRemarkWithHints();
152     return false;
153   }
154 
155   if (getIsVectorized() == 1) {
156     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
157     // FIXME: Add interleave.disable metadata. This will allow
158     // vectorize.disable to be used without disabling the pass and errors
159     // to differentiate between disabled vectorization and a width of 1.
160     ORE.emit([&]() {
161       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
162                                         "AllDisabled", L->getStartLoc(),
163                                         L->getHeader())
164              << "loop not vectorized: vectorization and interleaving are "
165                 "explicitly disabled, or the loop has already been "
166                 "vectorized";
167     });
168     return false;
169   }
170 
171   return true;
172 }
173 
174 void LoopVectorizeHints::emitRemarkWithHints() const {
175   using namespace ore;
176 
177   ORE.emit([&]() {
178     if (Force.Value == LoopVectorizeHints::FK_Disabled)
179       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
180                                       TheLoop->getStartLoc(),
181                                       TheLoop->getHeader())
182              << "loop not vectorized: vectorization is explicitly disabled";
183     else {
184       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
185                                  TheLoop->getStartLoc(), TheLoop->getHeader());
186       R << "loop not vectorized";
187       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
188         R << " (Force=" << NV("Force", true);
189         if (Width.Value != 0)
190           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
191         if (Interleave.Value != 0)
192           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
193         R << ")";
194       }
195       return R;
196     }
197   });
198 }
199 
200 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
201   if (getWidth() == 1)
202     return LV_NAME;
203   if (getForce() == LoopVectorizeHints::FK_Disabled)
204     return LV_NAME;
205   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
206     return LV_NAME;
207   return OptimizationRemarkAnalysis::AlwaysPrint;
208 }
209 
210 void LoopVectorizeHints::getHintsFromMetadata() {
211   MDNode *LoopID = TheLoop->getLoopID();
212   if (!LoopID)
213     return;
214 
215   // First operand should refer to the loop id itself.
216   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
217   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
218 
219   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
220     const MDString *S = nullptr;
221     SmallVector<Metadata *, 4> Args;
222 
223     // The expected hint is either a MDString or a MDNode with the first
224     // operand a MDString.
225     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
226       if (!MD || MD->getNumOperands() == 0)
227         continue;
228       S = dyn_cast<MDString>(MD->getOperand(0));
229       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
230         Args.push_back(MD->getOperand(i));
231     } else {
232       S = dyn_cast<MDString>(LoopID->getOperand(i));
233       assert(Args.size() == 0 && "too many arguments for MDString");
234     }
235 
236     if (!S)
237       continue;
238 
239     // Check if the hint starts with the loop metadata prefix.
240     StringRef Name = S->getString();
241     if (Args.size() == 1)
242       setHint(Name, Args[0]);
243   }
244 }
245 
246 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
247   if (!Name.startswith(Prefix()))
248     return;
249   Name = Name.substr(Prefix().size(), StringRef::npos);
250 
251   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
252   if (!C)
253     return;
254   unsigned Val = C->getZExtValue();
255 
256   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
257   for (auto H : Hints) {
258     if (Name == H->Name) {
259       if (H->validate(Val))
260         H->Value = Val;
261       else
262         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
263       break;
264     }
265   }
266 }
267 
268 bool LoopVectorizationRequirements::doesNotMeet(
269     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
270   const char *PassName = Hints.vectorizeAnalysisPassName();
271   bool Failed = false;
272   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
273     ORE.emit([&]() {
274       return OptimizationRemarkAnalysisFPCommute(
275                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
276                  UnsafeAlgebraInst->getParent())
277              << "loop not vectorized: cannot prove it is safe to reorder "
278                 "floating-point operations";
279     });
280     Failed = true;
281   }
282 
283   // Test if runtime memcheck thresholds are exceeded.
284   bool PragmaThresholdReached =
285       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
286   bool ThresholdReached =
287       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
288   if ((ThresholdReached && !Hints.allowReordering()) ||
289       PragmaThresholdReached) {
290     ORE.emit([&]() {
291       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
292                                                 L->getStartLoc(),
293                                                 L->getHeader())
294              << "loop not vectorized: cannot prove it is safe to reorder "
295                 "memory operations";
296     });
297     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
298     Failed = true;
299   }
300 
301   return Failed;
302 }
303 
304 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
305 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
306 // executing the inner loop will execute the same iterations). This check is
307 // very constrained for now but it will be relaxed in the future. \p Lp is
308 // considered uniform if it meets all the following conditions:
309 //   1) it has a canonical IV (starting from 0 and with stride 1),
310 //   2) its latch terminator is a conditional branch and,
311 //   3) its latch condition is a compare instruction whose operands are the
312 //      canonical IV and an OuterLp invariant.
313 // This check doesn't take into account the uniformity of other conditions not
314 // related to the loop latch because they don't affect the loop uniformity.
315 //
316 // NOTE: We decided to keep all these checks and its associated documentation
317 // together so that we can easily have a picture of the current supported loop
318 // nests. However, some of the current checks don't depend on \p OuterLp and
319 // would be redundantly executed for each \p Lp if we invoked this function for
320 // different candidate outer loops. This is not the case for now because we
321 // don't currently have the infrastructure to evaluate multiple candidate outer
322 // loops and \p OuterLp will be a fixed parameter while we only support explicit
323 // outer loop vectorization. It's also very likely that these checks go away
324 // before introducing the aforementioned infrastructure. However, if this is not
325 // the case, we should move the \p OuterLp independent checks to a separate
326 // function that is only executed once for each \p Lp.
327 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
328   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
329 
330   // If Lp is the outer loop, it's uniform by definition.
331   if (Lp == OuterLp)
332     return true;
333   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
334 
335   // 1.
336   PHINode *IV = Lp->getCanonicalInductionVariable();
337   if (!IV) {
338     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
339     return false;
340   }
341 
342   // 2.
343   BasicBlock *Latch = Lp->getLoopLatch();
344   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
345   if (!LatchBr || LatchBr->isUnconditional()) {
346     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
347     return false;
348   }
349 
350   // 3.
351   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
352   if (!LatchCmp) {
353     LLVM_DEBUG(
354         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
355     return false;
356   }
357 
358   Value *CondOp0 = LatchCmp->getOperand(0);
359   Value *CondOp1 = LatchCmp->getOperand(1);
360   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
361   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
362       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
363     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
364     return false;
365   }
366 
367   return true;
368 }
369 
370 // Return true if \p Lp and all its nested loops are uniform with regard to \p
371 // OuterLp.
372 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
373   if (!isUniformLoop(Lp, OuterLp))
374     return false;
375 
376   // Check if nested loops are uniform.
377   for (Loop *SubLp : *Lp)
378     if (!isUniformLoopNest(SubLp, OuterLp))
379       return false;
380 
381   return true;
382 }
383 
384 /// Check whether it is safe to if-convert this phi node.
385 ///
386 /// Phi nodes with constant expressions that can trap are not safe to if
387 /// convert.
388 static bool canIfConvertPHINodes(BasicBlock *BB) {
389   for (PHINode &Phi : BB->phis()) {
390     for (Value *V : Phi.incoming_values())
391       if (auto *C = dyn_cast<Constant>(V))
392         if (C->canTrap())
393           return false;
394   }
395   return true;
396 }
397 
398 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
399   if (Ty->isPointerTy())
400     return DL.getIntPtrType(Ty);
401 
402   // It is possible that char's or short's overflow when we ask for the loop's
403   // trip count, work around this by changing the type size.
404   if (Ty->getScalarSizeInBits() < 32)
405     return Type::getInt32Ty(Ty->getContext());
406 
407   return Ty;
408 }
409 
410 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
411   Ty0 = convertPointerToIntegerType(DL, Ty0);
412   Ty1 = convertPointerToIntegerType(DL, Ty1);
413   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
414     return Ty0;
415   return Ty1;
416 }
417 
418 /// Check that the instruction has outside loop users and is not an
419 /// identified reduction variable.
420 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
421                                SmallPtrSetImpl<Value *> &AllowedExit) {
422   // Reductions, Inductions and non-header phis are allowed to have exit users. All
423   // other instructions must not have external users.
424   if (!AllowedExit.count(Inst))
425     // Check that all of the users of the loop are inside the BB.
426     for (User *U : Inst->users()) {
427       Instruction *UI = cast<Instruction>(U);
428       // This user may be a reduction exit value.
429       if (!TheLoop->contains(UI)) {
430         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
431         return true;
432       }
433     }
434   return false;
435 }
436 
437 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
438   const ValueToValueMap &Strides =
439       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
440 
441   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
442   if (Stride == 1 || Stride == -1)
443     return Stride;
444   return 0;
445 }
446 
447 bool LoopVectorizationLegality::isUniform(Value *V) {
448   return LAI->isUniform(V);
449 }
450 
451 void LoopVectorizationLegality::reportVectorizationFailure(
452     const StringRef DebugMsg, const StringRef OREMsg,
453     const StringRef ORETag, Instruction *I) const {
454   LLVM_DEBUG(debugVectorizationFailure(DebugMsg, I));
455   ORE->emit(createLVMissedAnalysis(Hints->vectorizeAnalysisPassName(),
456       ORETag, TheLoop, I) << OREMsg);
457 }
458 
459 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
460   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
461   // Store the result and return it at the end instead of exiting early, in case
462   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
463   bool Result = true;
464   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
465 
466   for (BasicBlock *BB : TheLoop->blocks()) {
467     // Check whether the BB terminator is a BranchInst. Any other terminator is
468     // not supported yet.
469     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
470     if (!Br) {
471       reportVectorizationFailure("Unsupported basic block terminator",
472           "loop control flow is not understood by vectorizer",
473           "CFGNotUnderstood");
474       if (DoExtraAnalysis)
475         Result = false;
476       else
477         return false;
478     }
479 
480     // Check whether the BranchInst is a supported one. Only unconditional
481     // branches, conditional branches with an outer loop invariant condition or
482     // backedges are supported.
483     // FIXME: We skip these checks when VPlan predication is enabled as we
484     // want to allow divergent branches. This whole check will be removed
485     // once VPlan predication is on by default.
486     if (!EnableVPlanPredication && Br && Br->isConditional() &&
487         !TheLoop->isLoopInvariant(Br->getCondition()) &&
488         !LI->isLoopHeader(Br->getSuccessor(0)) &&
489         !LI->isLoopHeader(Br->getSuccessor(1))) {
490       reportVectorizationFailure("Unsupported conditional branch",
491           "loop control flow is not understood by vectorizer",
492           "CFGNotUnderstood");
493       if (DoExtraAnalysis)
494         Result = false;
495       else
496         return false;
497     }
498   }
499 
500   // Check whether inner loops are uniform. At this point, we only support
501   // simple outer loops scenarios with uniform nested loops.
502   if (!isUniformLoopNest(TheLoop /*loop nest*/,
503                          TheLoop /*context outer loop*/)) {
504     reportVectorizationFailure("Outer loop contains divergent loops",
505         "loop control flow is not understood by vectorizer",
506         "CFGNotUnderstood");
507     if (DoExtraAnalysis)
508       Result = false;
509     else
510       return false;
511   }
512 
513   // Check whether we are able to set up outer loop induction.
514   if (!setupOuterLoopInductions()) {
515     reportVectorizationFailure("Unsupported outer loop Phi(s)",
516                                "Unsupported outer loop Phi(s)",
517                                "UnsupportedPhi");
518     if (DoExtraAnalysis)
519       Result = false;
520     else
521       return false;
522   }
523 
524   return Result;
525 }
526 
527 void LoopVectorizationLegality::addInductionPhi(
528     PHINode *Phi, const InductionDescriptor &ID,
529     SmallPtrSetImpl<Value *> &AllowedExit) {
530   Inductions[Phi] = ID;
531 
532   // In case this induction also comes with casts that we know we can ignore
533   // in the vectorized loop body, record them here. All casts could be recorded
534   // here for ignoring, but suffices to record only the first (as it is the
535   // only one that may bw used outside the cast sequence).
536   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
537   if (!Casts.empty())
538     InductionCastsToIgnore.insert(*Casts.begin());
539 
540   Type *PhiTy = Phi->getType();
541   const DataLayout &DL = Phi->getModule()->getDataLayout();
542 
543   // Get the widest type.
544   if (!PhiTy->isFloatingPointTy()) {
545     if (!WidestIndTy)
546       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
547     else
548       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
549   }
550 
551   // Int inductions are special because we only allow one IV.
552   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
553       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
554       isa<Constant>(ID.getStartValue()) &&
555       cast<Constant>(ID.getStartValue())->isNullValue()) {
556 
557     // Use the phi node with the widest type as induction. Use the last
558     // one if there are multiple (no good reason for doing this other
559     // than it is expedient). We've checked that it begins at zero and
560     // steps by one, so this is a canonical induction variable.
561     if (!PrimaryInduction || PhiTy == WidestIndTy)
562       PrimaryInduction = Phi;
563   }
564 
565   // Both the PHI node itself, and the "post-increment" value feeding
566   // back into the PHI node may have external users.
567   // We can allow those uses, except if the SCEVs we have for them rely
568   // on predicates that only hold within the loop, since allowing the exit
569   // currently means re-using this SCEV outside the loop (see PR33706 for more
570   // details).
571   if (PSE.getUnionPredicate().isAlwaysTrue()) {
572     AllowedExit.insert(Phi);
573     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
574   }
575 
576   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
577 }
578 
579 bool LoopVectorizationLegality::setupOuterLoopInductions() {
580   BasicBlock *Header = TheLoop->getHeader();
581 
582   // Returns true if a given Phi is a supported induction.
583   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
584     InductionDescriptor ID;
585     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
586         ID.getKind() == InductionDescriptor::IK_IntInduction) {
587       addInductionPhi(&Phi, ID, AllowedExit);
588       return true;
589     } else {
590       // Bail out for any Phi in the outer loop header that is not a supported
591       // induction.
592       LLVM_DEBUG(
593           dbgs()
594           << "LV: Found unsupported PHI for outer loop vectorization.\n");
595       return false;
596     }
597   };
598 
599   if (llvm::all_of(Header->phis(), isSupportedPhi))
600     return true;
601   else
602     return false;
603 }
604 
605 bool LoopVectorizationLegality::canVectorizeInstrs() {
606   BasicBlock *Header = TheLoop->getHeader();
607 
608   // Look for the attribute signaling the absence of NaNs.
609   Function &F = *Header->getParent();
610   HasFunNoNaNAttr =
611       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
612 
613   // For each block in the loop.
614   for (BasicBlock *BB : TheLoop->blocks()) {
615     // Scan the instructions in the block and look for hazards.
616     for (Instruction &I : *BB) {
617       if (auto *Phi = dyn_cast<PHINode>(&I)) {
618         Type *PhiTy = Phi->getType();
619         // Check that this PHI type is allowed.
620         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
621             !PhiTy->isPointerTy()) {
622           reportVectorizationFailure("Found a non-int non-pointer PHI",
623                                      "loop control flow is not understood by vectorizer",
624                                      "CFGNotUnderstood");
625           return false;
626         }
627 
628         // If this PHINode is not in the header block, then we know that we
629         // can convert it to select during if-conversion. No need to check if
630         // the PHIs in this block are induction or reduction variables.
631         if (BB != Header) {
632           // Non-header phi nodes that have outside uses can be vectorized. Add
633           // them to the list of allowed exits.
634           // Unsafe cyclic dependencies with header phis are identified during
635           // legalization for reduction, induction and first order
636           // recurrences.
637           continue;
638         }
639 
640         // We only allow if-converted PHIs with exactly two incoming values.
641         if (Phi->getNumIncomingValues() != 2) {
642           reportVectorizationFailure("Found an invalid PHI",
643               "loop control flow is not understood by vectorizer",
644               "CFGNotUnderstood", Phi);
645           return false;
646         }
647 
648         RecurrenceDescriptor RedDes;
649         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
650                                                  DT)) {
651           if (RedDes.hasUnsafeAlgebra())
652             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
653           AllowedExit.insert(RedDes.getLoopExitInstr());
654           Reductions[Phi] = RedDes;
655           continue;
656         }
657 
658         // TODO: Instead of recording the AllowedExit, it would be good to record the
659         // complementary set: NotAllowedExit. These include (but may not be
660         // limited to):
661         // 1. Reduction phis as they represent the one-before-last value, which
662         // is not available when vectorized
663         // 2. Induction phis and increment when SCEV predicates cannot be used
664         // outside the loop - see addInductionPhi
665         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
666         // outside the loop - see call to hasOutsideLoopUser in the non-phi
667         // handling below
668         // 4. FirstOrderRecurrence phis that can possibly be handled by
669         // extraction.
670         // By recording these, we can then reason about ways to vectorize each
671         // of these NotAllowedExit.
672         InductionDescriptor ID;
673         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
674           addInductionPhi(Phi, ID, AllowedExit);
675           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
676             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
677           continue;
678         }
679 
680         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
681                                                          SinkAfter, DT)) {
682           FirstOrderRecurrences.insert(Phi);
683           continue;
684         }
685 
686         // As a last resort, coerce the PHI to a AddRec expression
687         // and re-try classifying it a an induction PHI.
688         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
689           addInductionPhi(Phi, ID, AllowedExit);
690           continue;
691         }
692 
693         reportVectorizationFailure("Found an unidentified PHI",
694             "value that could not be identified as "
695             "reduction is used outside the loop",
696             "NonReductionValueUsedOutsideLoop", Phi);
697         return false;
698       } // end of PHI handling
699 
700       // We handle calls that:
701       //   * Are debug info intrinsics.
702       //   * Have a mapping to an IR intrinsic.
703       //   * Have a vector version available.
704       auto *CI = dyn_cast<CallInst>(&I);
705       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
706           !isa<DbgInfoIntrinsic>(CI) &&
707           !(CI->getCalledFunction() && TLI &&
708             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
709         // If the call is a recognized math libary call, it is likely that
710         // we can vectorize it given loosened floating-point constraints.
711         LibFunc Func;
712         bool IsMathLibCall =
713             TLI && CI->getCalledFunction() &&
714             CI->getType()->isFloatingPointTy() &&
715             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
716             TLI->hasOptimizedCodeGen(Func);
717 
718         if (IsMathLibCall) {
719           // TODO: Ideally, we should not use clang-specific language here,
720           // but it's hard to provide meaningful yet generic advice.
721           // Also, should this be guarded by allowExtraAnalysis() and/or be part
722           // of the returned info from isFunctionVectorizable()?
723           reportVectorizationFailure("Found a non-intrinsic callsite",
724               "library call cannot be vectorized. "
725               "Try compiling with -fno-math-errno, -ffast-math, "
726               "or similar flags",
727               "CantVectorizeLibcall", CI);
728         } else {
729           reportVectorizationFailure("Found a non-intrinsic callsite",
730                                      "call instruction cannot be vectorized",
731                                      "CantVectorizeLibcall", CI);
732         }
733         return false;
734       }
735 
736       // Some intrinsics have scalar arguments and should be same in order for
737       // them to be vectorized (i.e. loop invariant).
738       if (CI) {
739         auto *SE = PSE.getSE();
740         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
741         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
742           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
743             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
744               reportVectorizationFailure("Found unvectorizable intrinsic",
745                   "intrinsic instruction cannot be vectorized",
746                   "CantVectorizeIntrinsic", CI);
747               return false;
748             }
749           }
750       }
751 
752       // Check that the instruction return type is vectorizable.
753       // Also, we can't vectorize extractelement instructions.
754       if ((!VectorType::isValidElementType(I.getType()) &&
755            !I.getType()->isVoidTy()) ||
756           isa<ExtractElementInst>(I)) {
757         reportVectorizationFailure("Found unvectorizable type",
758             "instruction return type cannot be vectorized",
759             "CantVectorizeInstructionReturnType", &I);
760         return false;
761       }
762 
763       // Check that the stored type is vectorizable.
764       if (auto *ST = dyn_cast<StoreInst>(&I)) {
765         Type *T = ST->getValueOperand()->getType();
766         if (!VectorType::isValidElementType(T)) {
767           reportVectorizationFailure("Store instruction cannot be vectorized",
768                                      "store instruction cannot be vectorized",
769                                      "CantVectorizeStore", ST);
770           return false;
771         }
772 
773         // For nontemporal stores, check that a nontemporal vector version is
774         // supported on the target.
775         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
776           // Arbitrarily try a vector of 2 elements.
777           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
778           assert(VecTy && "did not find vectorized version of stored type");
779           unsigned Alignment = getLoadStoreAlignment(ST);
780           if (!TTI->isLegalNTStore(VecTy, Alignment)) {
781             reportVectorizationFailure(
782                 "nontemporal store instruction cannot be vectorized",
783                 "nontemporal store instruction cannot be vectorized",
784                 "CantVectorizeNontemporalStore", ST);
785             return false;
786           }
787         }
788 
789       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
790         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
791           // For nontemporal loads, check that a nontemporal vector version is
792           // supported on the target (arbitrarily try a vector of 2 elements).
793           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
794           assert(VecTy && "did not find vectorized version of load type");
795           unsigned Alignment = getLoadStoreAlignment(LD);
796           if (!TTI->isLegalNTLoad(VecTy, Alignment)) {
797             reportVectorizationFailure(
798                 "nontemporal load instruction cannot be vectorized",
799                 "nontemporal load instruction cannot be vectorized",
800                 "CantVectorizeNontemporalLoad", LD);
801             return false;
802           }
803         }
804 
805         // FP instructions can allow unsafe algebra, thus vectorizable by
806         // non-IEEE-754 compliant SIMD units.
807         // This applies to floating-point math operations and calls, not memory
808         // operations, shuffles, or casts, as they don't change precision or
809         // semantics.
810       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
811                  !I.isFast()) {
812         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
813         Hints->setPotentiallyUnsafe();
814       }
815 
816       // Reduction instructions are allowed to have exit users.
817       // All other instructions must not have external users.
818       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
819         // We can safely vectorize loops where instructions within the loop are
820         // used outside the loop only if the SCEV predicates within the loop is
821         // same as outside the loop. Allowing the exit means reusing the SCEV
822         // outside the loop.
823         if (PSE.getUnionPredicate().isAlwaysTrue()) {
824           AllowedExit.insert(&I);
825           continue;
826         }
827         reportVectorizationFailure("Value cannot be used outside the loop",
828                                    "value cannot be used outside the loop",
829                                    "ValueUsedOutsideLoop", &I);
830         return false;
831       }
832     } // next instr.
833   }
834 
835   if (!PrimaryInduction) {
836     if (Inductions.empty()) {
837       reportVectorizationFailure("Did not find one integer induction var",
838           "loop induction variable could not be identified",
839           "NoInductionVariable");
840       return false;
841     } else if (!WidestIndTy) {
842       reportVectorizationFailure("Did not find one integer induction var",
843           "integer loop induction variable could not be identified",
844           "NoIntegerInductionVariable");
845       return false;
846     } else {
847       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
848     }
849   }
850 
851   // Now we know the widest induction type, check if our found induction
852   // is the same size. If it's not, unset it here and InnerLoopVectorizer
853   // will create another.
854   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
855     PrimaryInduction = nullptr;
856 
857   return true;
858 }
859 
860 bool LoopVectorizationLegality::canVectorizeMemory() {
861   LAI = &(*GetLAA)(*TheLoop);
862   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
863   if (LAR) {
864     ORE->emit([&]() {
865       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
866                                         "loop not vectorized: ", *LAR);
867     });
868   }
869   if (!LAI->canVectorizeMemory())
870     return false;
871 
872   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
873     reportVectorizationFailure("Stores to a uniform address",
874         "write to a loop invariant address could not be vectorized",
875         "CantVectorizeStoreToLoopInvariantAddress");
876     return false;
877   }
878   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
879   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
880 
881   return true;
882 }
883 
884 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
885   Value *In0 = const_cast<Value *>(V);
886   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
887   if (!PN)
888     return false;
889 
890   return Inductions.count(PN);
891 }
892 
893 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
894   auto *Inst = dyn_cast<Instruction>(V);
895   return (Inst && InductionCastsToIgnore.count(Inst));
896 }
897 
898 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
899   return isInductionPhi(V) || isCastedInductionVariable(V);
900 }
901 
902 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
903   return FirstOrderRecurrences.count(Phi);
904 }
905 
906 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
907   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
908 }
909 
910 bool LoopVectorizationLegality::blockCanBePredicated(
911     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
912   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
913 
914   for (Instruction &I : *BB) {
915     // Check that we don't have a constant expression that can trap as operand.
916     for (Value *Operand : I.operands()) {
917       if (auto *C = dyn_cast<Constant>(Operand))
918         if (C->canTrap())
919           return false;
920     }
921     // We might be able to hoist the load.
922     if (I.mayReadFromMemory()) {
923       auto *LI = dyn_cast<LoadInst>(&I);
924       if (!LI)
925         return false;
926       if (!SafePtrs.count(LI->getPointerOperand())) {
927         // !llvm.mem.parallel_loop_access implies if-conversion safety.
928         // Otherwise, record that the load needs (real or emulated) masking
929         // and let the cost model decide.
930         if (!IsAnnotatedParallel)
931           MaskedOp.insert(LI);
932         continue;
933       }
934     }
935 
936     if (I.mayWriteToMemory()) {
937       auto *SI = dyn_cast<StoreInst>(&I);
938       if (!SI)
939         return false;
940       // Predicated store requires some form of masking:
941       // 1) masked store HW instruction,
942       // 2) emulation via load-blend-store (only if safe and legal to do so,
943       //    be aware on the race conditions), or
944       // 3) element-by-element predicate check and scalar store.
945       MaskedOp.insert(SI);
946       continue;
947     }
948     if (I.mayThrow())
949       return false;
950   }
951 
952   return true;
953 }
954 
955 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
956   if (!EnableIfConversion) {
957     reportVectorizationFailure("If-conversion is disabled",
958                                "if-conversion is disabled",
959                                "IfConversionDisabled");
960     return false;
961   }
962 
963   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
964 
965   // A list of pointers that we can safely read and write to.
966   SmallPtrSet<Value *, 8> SafePointes;
967 
968   // Collect safe addresses.
969   for (BasicBlock *BB : TheLoop->blocks()) {
970     if (blockNeedsPredication(BB))
971       continue;
972 
973     for (Instruction &I : *BB)
974       if (auto *Ptr = getLoadStorePointerOperand(&I))
975         SafePointes.insert(Ptr);
976   }
977 
978   // Collect the blocks that need predication.
979   BasicBlock *Header = TheLoop->getHeader();
980   for (BasicBlock *BB : TheLoop->blocks()) {
981     // We don't support switch statements inside loops.
982     if (!isa<BranchInst>(BB->getTerminator())) {
983       reportVectorizationFailure("Loop contains a switch statement",
984                                  "loop contains a switch statement",
985                                  "LoopContainsSwitch", BB->getTerminator());
986       return false;
987     }
988 
989     // We must be able to predicate all blocks that need to be predicated.
990     if (blockNeedsPredication(BB)) {
991       if (!blockCanBePredicated(BB, SafePointes)) {
992         reportVectorizationFailure(
993             "Control flow cannot be substituted for a select",
994             "control flow cannot be substituted for a select",
995             "NoCFGForSelect", BB->getTerminator());
996         return false;
997       }
998     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
999       reportVectorizationFailure(
1000           "Control flow cannot be substituted for a select",
1001           "control flow cannot be substituted for a select",
1002           "NoCFGForSelect", BB->getTerminator());
1003       return false;
1004     }
1005   }
1006 
1007   // We can if-convert this loop.
1008   return true;
1009 }
1010 
1011 // Helper function to canVectorizeLoopNestCFG.
1012 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1013                                                     bool UseVPlanNativePath) {
1014   assert((UseVPlanNativePath || Lp->empty()) &&
1015          "VPlan-native path is not enabled.");
1016 
1017   // TODO: ORE should be improved to show more accurate information when an
1018   // outer loop can't be vectorized because a nested loop is not understood or
1019   // legal. Something like: "outer_loop_location: loop not vectorized:
1020   // (inner_loop_location) loop control flow is not understood by vectorizer".
1021 
1022   // Store the result and return it at the end instead of exiting early, in case
1023   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1024   bool Result = true;
1025   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1026 
1027   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1028   // be canonicalized.
1029   if (!Lp->getLoopPreheader()) {
1030     reportVectorizationFailure("Loop doesn't have a legal pre-header",
1031         "loop control flow is not understood by vectorizer",
1032         "CFGNotUnderstood");
1033     if (DoExtraAnalysis)
1034       Result = false;
1035     else
1036       return false;
1037   }
1038 
1039   // We must have a single backedge.
1040   if (Lp->getNumBackEdges() != 1) {
1041     reportVectorizationFailure("The loop must have a single backedge",
1042         "loop control flow is not understood by vectorizer",
1043         "CFGNotUnderstood");
1044     if (DoExtraAnalysis)
1045       Result = false;
1046     else
1047       return false;
1048   }
1049 
1050   // We must have a single exiting block.
1051   if (!Lp->getExitingBlock()) {
1052     reportVectorizationFailure("The loop must have an exiting block",
1053         "loop control flow is not understood by vectorizer",
1054         "CFGNotUnderstood");
1055     if (DoExtraAnalysis)
1056       Result = false;
1057     else
1058       return false;
1059   }
1060 
1061   // We only handle bottom-tested loops, i.e. loop in which the condition is
1062   // checked at the end of each iteration. With that we can assume that all
1063   // instructions in the loop are executed the same number of times.
1064   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1065     reportVectorizationFailure("The exiting block is not the loop latch",
1066         "loop control flow is not understood by vectorizer",
1067         "CFGNotUnderstood");
1068     if (DoExtraAnalysis)
1069       Result = false;
1070     else
1071       return false;
1072   }
1073 
1074   return Result;
1075 }
1076 
1077 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1078     Loop *Lp, bool UseVPlanNativePath) {
1079   // Store the result and return it at the end instead of exiting early, in case
1080   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1081   bool Result = true;
1082   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1083   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1084     if (DoExtraAnalysis)
1085       Result = false;
1086     else
1087       return false;
1088   }
1089 
1090   // Recursively check whether the loop control flow of nested loops is
1091   // understood.
1092   for (Loop *SubLp : *Lp)
1093     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1094       if (DoExtraAnalysis)
1095         Result = false;
1096       else
1097         return false;
1098     }
1099 
1100   return Result;
1101 }
1102 
1103 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1104   // Store the result and return it at the end instead of exiting early, in case
1105   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1106   bool Result = true;
1107 
1108   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1109   // Check whether the loop-related control flow in the loop nest is expected by
1110   // vectorizer.
1111   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1112     if (DoExtraAnalysis)
1113       Result = false;
1114     else
1115       return false;
1116   }
1117 
1118   // We need to have a loop header.
1119   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1120                     << '\n');
1121 
1122   // Specific checks for outer loops. We skip the remaining legal checks at this
1123   // point because they don't support outer loops.
1124   if (!TheLoop->empty()) {
1125     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1126 
1127     if (!canVectorizeOuterLoop()) {
1128       reportVectorizationFailure("Unsupported outer loop",
1129                                  "unsupported outer loop",
1130                                  "UnsupportedOuterLoop");
1131       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1132       // outer loops.
1133       return false;
1134     }
1135 
1136     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1137     return Result;
1138   }
1139 
1140   assert(TheLoop->empty() && "Inner loop expected.");
1141   // Check if we can if-convert non-single-bb loops.
1142   unsigned NumBlocks = TheLoop->getNumBlocks();
1143   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1144     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1145     if (DoExtraAnalysis)
1146       Result = false;
1147     else
1148       return false;
1149   }
1150 
1151   // Check if we can vectorize the instructions and CFG in this loop.
1152   if (!canVectorizeInstrs()) {
1153     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1154     if (DoExtraAnalysis)
1155       Result = false;
1156     else
1157       return false;
1158   }
1159 
1160   // Go over each instruction and look at memory deps.
1161   if (!canVectorizeMemory()) {
1162     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1163     if (DoExtraAnalysis)
1164       Result = false;
1165     else
1166       return false;
1167   }
1168 
1169   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1170                     << (LAI->getRuntimePointerChecking()->Need
1171                             ? " (with a runtime bound check)"
1172                             : "")
1173                     << "!\n");
1174 
1175   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1176   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1177     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1178 
1179   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1180     reportVectorizationFailure("Too many SCEV checks needed",
1181         "Too many SCEV assumptions need to be made and checked at runtime",
1182         "TooManySCEVRunTimeChecks");
1183     if (DoExtraAnalysis)
1184       Result = false;
1185     else
1186       return false;
1187   }
1188 
1189   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1190   // we can vectorize, and at this point we don't have any other mem analysis
1191   // which may limit our maximum vectorization factor, so just return true with
1192   // no restrictions.
1193   return Result;
1194 }
1195 
1196 bool LoopVectorizationLegality::canFoldTailByMasking() {
1197 
1198   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1199 
1200   if (!PrimaryInduction) {
1201     reportVectorizationFailure(
1202         "No primary induction, cannot fold tail by masking",
1203         "Missing a primary induction variable in the loop, which is "
1204         "needed in order to fold tail by masking as required.",
1205         "NoPrimaryInduction");
1206     return false;
1207   }
1208 
1209   // TODO: handle reductions when tail is folded by masking.
1210   if (!Reductions.empty()) {
1211     reportVectorizationFailure(
1212         "Loop has reductions, cannot fold tail by masking",
1213         "Cannot fold tail by masking in the presence of reductions.",
1214         "ReductionFoldingTailByMasking");
1215     return false;
1216   }
1217 
1218   // TODO: handle outside users when tail is folded by masking.
1219   for (auto *AE : AllowedExit) {
1220     // Check that all users of allowed exit values are inside the loop.
1221     for (User *U : AE->users()) {
1222       Instruction *UI = cast<Instruction>(U);
1223       if (TheLoop->contains(UI))
1224         continue;
1225       reportVectorizationFailure(
1226           "Cannot fold tail by masking, loop has an outside user for",
1227           "Cannot fold tail by masking in the presence of live outs.",
1228           "LiveOutFoldingTailByMasking", UI);
1229       return false;
1230     }
1231   }
1232 
1233   // The list of pointers that we can safely read and write to remains empty.
1234   SmallPtrSet<Value *, 8> SafePointers;
1235 
1236   // Check and mark all blocks for predication, including those that ordinarily
1237   // do not need predication such as the header block.
1238   for (BasicBlock *BB : TheLoop->blocks()) {
1239     if (!blockCanBePredicated(BB, SafePointers)) {
1240       reportVectorizationFailure(
1241           "Cannot fold tail by masking as required",
1242           "control flow cannot be substituted for a select",
1243           "NoCFGForSelect", BB->getTerminator());
1244       return false;
1245     }
1246   }
1247 
1248   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1249   return true;
1250 }
1251 
1252 } // namespace llvm
1253