1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 17 #include "llvm/Analysis/VectorUtils.h" 18 #include "llvm/IR/IntrinsicInst.h" 19 20 using namespace llvm; 21 22 #define LV_NAME "loop-vectorize" 23 #define DEBUG_TYPE LV_NAME 24 25 extern cl::opt<bool> EnableVPlanPredication; 26 27 static cl::opt<bool> 28 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 29 cl::desc("Enable if-conversion during vectorization.")); 30 31 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 32 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 33 cl::desc("The maximum allowed number of runtime memory checks with a " 34 "vectorize(enable) pragma.")); 35 36 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 37 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 38 cl::desc("The maximum number of SCEV checks allowed.")); 39 40 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 41 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 42 cl::desc("The maximum number of SCEV checks allowed with a " 43 "vectorize(enable) pragma")); 44 45 /// Maximum vectorization interleave count. 46 static const unsigned MaxInterleaveFactor = 16; 47 48 namespace llvm { 49 50 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 51 StringRef RemarkName, 52 Loop *TheLoop, 53 Instruction *I) { 54 Value *CodeRegion = TheLoop->getHeader(); 55 DebugLoc DL = TheLoop->getStartLoc(); 56 57 if (I) { 58 CodeRegion = I->getParent(); 59 // If there is no debug location attached to the instruction, revert back to 60 // using the loop's. 61 if (I->getDebugLoc()) 62 DL = I->getDebugLoc(); 63 } 64 65 OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 66 R << "loop not vectorized: "; 67 return R; 68 } 69 70 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 71 switch (Kind) { 72 case HK_WIDTH: 73 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 74 case HK_UNROLL: 75 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 76 case HK_FORCE: 77 return (Val <= 1); 78 case HK_ISVECTORIZED: 79 return (Val == 0 || Val == 1); 80 } 81 return false; 82 } 83 84 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 85 bool InterleaveOnlyWhenForced, 86 OptimizationRemarkEmitter &ORE) 87 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 88 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 89 Force("vectorize.enable", FK_Undefined, HK_FORCE), 90 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 91 // Populate values with existing loop metadata. 92 getHintsFromMetadata(); 93 94 // force-vector-interleave overrides DisableInterleaving. 95 if (VectorizerParams::isInterleaveForced()) 96 Interleave.Value = VectorizerParams::VectorizationInterleave; 97 98 if (IsVectorized.Value != 1) 99 // If the vectorization width and interleaving count are both 1 then 100 // consider the loop to have been already vectorized because there's 101 // nothing more that we can do. 102 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 103 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 104 << "LV: Interleaving disabled by the pass manager\n"); 105 } 106 107 bool LoopVectorizeHints::allowVectorization( 108 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 109 if (getForce() == LoopVectorizeHints::FK_Disabled) { 110 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 111 emitRemarkWithHints(); 112 return false; 113 } 114 115 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 116 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 117 emitRemarkWithHints(); 118 return false; 119 } 120 121 if (getIsVectorized() == 1) { 122 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 123 // FIXME: Add interleave.disable metadata. This will allow 124 // vectorize.disable to be used without disabling the pass and errors 125 // to differentiate between disabled vectorization and a width of 1. 126 ORE.emit([&]() { 127 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 128 "AllDisabled", L->getStartLoc(), 129 L->getHeader()) 130 << "loop not vectorized: vectorization and interleaving are " 131 "explicitly disabled, or the loop has already been " 132 "vectorized"; 133 }); 134 return false; 135 } 136 137 return true; 138 } 139 140 void LoopVectorizeHints::emitRemarkWithHints() const { 141 using namespace ore; 142 143 ORE.emit([&]() { 144 if (Force.Value == LoopVectorizeHints::FK_Disabled) 145 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 146 TheLoop->getStartLoc(), 147 TheLoop->getHeader()) 148 << "loop not vectorized: vectorization is explicitly disabled"; 149 else { 150 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 151 TheLoop->getStartLoc(), TheLoop->getHeader()); 152 R << "loop not vectorized"; 153 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 154 R << " (Force=" << NV("Force", true); 155 if (Width.Value != 0) 156 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 157 if (Interleave.Value != 0) 158 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 159 R << ")"; 160 } 161 return R; 162 } 163 }); 164 } 165 166 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 167 if (getWidth() == 1) 168 return LV_NAME; 169 if (getForce() == LoopVectorizeHints::FK_Disabled) 170 return LV_NAME; 171 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 172 return LV_NAME; 173 return OptimizationRemarkAnalysis::AlwaysPrint; 174 } 175 176 void LoopVectorizeHints::getHintsFromMetadata() { 177 MDNode *LoopID = TheLoop->getLoopID(); 178 if (!LoopID) 179 return; 180 181 // First operand should refer to the loop id itself. 182 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 183 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 184 185 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 186 const MDString *S = nullptr; 187 SmallVector<Metadata *, 4> Args; 188 189 // The expected hint is either a MDString or a MDNode with the first 190 // operand a MDString. 191 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 192 if (!MD || MD->getNumOperands() == 0) 193 continue; 194 S = dyn_cast<MDString>(MD->getOperand(0)); 195 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 196 Args.push_back(MD->getOperand(i)); 197 } else { 198 S = dyn_cast<MDString>(LoopID->getOperand(i)); 199 assert(Args.size() == 0 && "too many arguments for MDString"); 200 } 201 202 if (!S) 203 continue; 204 205 // Check if the hint starts with the loop metadata prefix. 206 StringRef Name = S->getString(); 207 if (Args.size() == 1) 208 setHint(Name, Args[0]); 209 } 210 } 211 212 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 213 if (!Name.startswith(Prefix())) 214 return; 215 Name = Name.substr(Prefix().size(), StringRef::npos); 216 217 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 218 if (!C) 219 return; 220 unsigned Val = C->getZExtValue(); 221 222 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 223 for (auto H : Hints) { 224 if (Name == H->Name) { 225 if (H->validate(Val)) 226 H->Value = Val; 227 else 228 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 229 break; 230 } 231 } 232 } 233 234 MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 235 unsigned V) const { 236 LLVMContext &Context = TheLoop->getHeader()->getContext(); 237 Metadata *MDs[] = { 238 MDString::get(Context, Name), 239 ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 240 return MDNode::get(Context, MDs); 241 } 242 243 bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 244 ArrayRef<Hint> HintTypes) { 245 MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 246 if (!Name) 247 return false; 248 249 for (auto H : HintTypes) 250 if (Name->getString().endswith(H.Name)) 251 return true; 252 return false; 253 } 254 255 void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 256 if (HintTypes.empty()) 257 return; 258 259 // Reserve the first element to LoopID (see below). 260 SmallVector<Metadata *, 4> MDs(1); 261 // If the loop already has metadata, then ignore the existing operands. 262 MDNode *LoopID = TheLoop->getLoopID(); 263 if (LoopID) { 264 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 265 MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 266 // If node in update list, ignore old value. 267 if (!matchesHintMetadataName(Node, HintTypes)) 268 MDs.push_back(Node); 269 } 270 } 271 272 // Now, add the missing hints. 273 for (auto H : HintTypes) 274 MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 275 276 // Replace current metadata node with new one. 277 LLVMContext &Context = TheLoop->getHeader()->getContext(); 278 MDNode *NewLoopID = MDNode::get(Context, MDs); 279 // Set operand 0 to refer to the loop id itself. 280 NewLoopID->replaceOperandWith(0, NewLoopID); 281 282 TheLoop->setLoopID(NewLoopID); 283 } 284 285 bool LoopVectorizationRequirements::doesNotMeet( 286 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 287 const char *PassName = Hints.vectorizeAnalysisPassName(); 288 bool Failed = false; 289 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 290 ORE.emit([&]() { 291 return OptimizationRemarkAnalysisFPCommute( 292 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 293 UnsafeAlgebraInst->getParent()) 294 << "loop not vectorized: cannot prove it is safe to reorder " 295 "floating-point operations"; 296 }); 297 Failed = true; 298 } 299 300 // Test if runtime memcheck thresholds are exceeded. 301 bool PragmaThresholdReached = 302 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 303 bool ThresholdReached = 304 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 305 if ((ThresholdReached && !Hints.allowReordering()) || 306 PragmaThresholdReached) { 307 ORE.emit([&]() { 308 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 309 L->getStartLoc(), 310 L->getHeader()) 311 << "loop not vectorized: cannot prove it is safe to reorder " 312 "memory operations"; 313 }); 314 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 315 Failed = true; 316 } 317 318 return Failed; 319 } 320 321 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 322 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 323 // executing the inner loop will execute the same iterations). This check is 324 // very constrained for now but it will be relaxed in the future. \p Lp is 325 // considered uniform if it meets all the following conditions: 326 // 1) it has a canonical IV (starting from 0 and with stride 1), 327 // 2) its latch terminator is a conditional branch and, 328 // 3) its latch condition is a compare instruction whose operands are the 329 // canonical IV and an OuterLp invariant. 330 // This check doesn't take into account the uniformity of other conditions not 331 // related to the loop latch because they don't affect the loop uniformity. 332 // 333 // NOTE: We decided to keep all these checks and its associated documentation 334 // together so that we can easily have a picture of the current supported loop 335 // nests. However, some of the current checks don't depend on \p OuterLp and 336 // would be redundantly executed for each \p Lp if we invoked this function for 337 // different candidate outer loops. This is not the case for now because we 338 // don't currently have the infrastructure to evaluate multiple candidate outer 339 // loops and \p OuterLp will be a fixed parameter while we only support explicit 340 // outer loop vectorization. It's also very likely that these checks go away 341 // before introducing the aforementioned infrastructure. However, if this is not 342 // the case, we should move the \p OuterLp independent checks to a separate 343 // function that is only executed once for each \p Lp. 344 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 345 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 346 347 // If Lp is the outer loop, it's uniform by definition. 348 if (Lp == OuterLp) 349 return true; 350 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 351 352 // 1. 353 PHINode *IV = Lp->getCanonicalInductionVariable(); 354 if (!IV) { 355 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 356 return false; 357 } 358 359 // 2. 360 BasicBlock *Latch = Lp->getLoopLatch(); 361 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 362 if (!LatchBr || LatchBr->isUnconditional()) { 363 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 364 return false; 365 } 366 367 // 3. 368 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 369 if (!LatchCmp) { 370 LLVM_DEBUG( 371 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 372 return false; 373 } 374 375 Value *CondOp0 = LatchCmp->getOperand(0); 376 Value *CondOp1 = LatchCmp->getOperand(1); 377 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 378 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 379 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 380 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 381 return false; 382 } 383 384 return true; 385 } 386 387 // Return true if \p Lp and all its nested loops are uniform with regard to \p 388 // OuterLp. 389 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 390 if (!isUniformLoop(Lp, OuterLp)) 391 return false; 392 393 // Check if nested loops are uniform. 394 for (Loop *SubLp : *Lp) 395 if (!isUniformLoopNest(SubLp, OuterLp)) 396 return false; 397 398 return true; 399 } 400 401 /// Check whether it is safe to if-convert this phi node. 402 /// 403 /// Phi nodes with constant expressions that can trap are not safe to if 404 /// convert. 405 static bool canIfConvertPHINodes(BasicBlock *BB) { 406 for (PHINode &Phi : BB->phis()) { 407 for (Value *V : Phi.incoming_values()) 408 if (auto *C = dyn_cast<Constant>(V)) 409 if (C->canTrap()) 410 return false; 411 } 412 return true; 413 } 414 415 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 416 if (Ty->isPointerTy()) 417 return DL.getIntPtrType(Ty); 418 419 // It is possible that char's or short's overflow when we ask for the loop's 420 // trip count, work around this by changing the type size. 421 if (Ty->getScalarSizeInBits() < 32) 422 return Type::getInt32Ty(Ty->getContext()); 423 424 return Ty; 425 } 426 427 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 428 Ty0 = convertPointerToIntegerType(DL, Ty0); 429 Ty1 = convertPointerToIntegerType(DL, Ty1); 430 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 431 return Ty0; 432 return Ty1; 433 } 434 435 /// Check that the instruction has outside loop users and is not an 436 /// identified reduction variable. 437 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 438 SmallPtrSetImpl<Value *> &AllowedExit) { 439 // Reductions, Inductions and non-header phis are allowed to have exit users. All 440 // other instructions must not have external users. 441 if (!AllowedExit.count(Inst)) 442 // Check that all of the users of the loop are inside the BB. 443 for (User *U : Inst->users()) { 444 Instruction *UI = cast<Instruction>(U); 445 // This user may be a reduction exit value. 446 if (!TheLoop->contains(UI)) { 447 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 448 return true; 449 } 450 } 451 return false; 452 } 453 454 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 455 const ValueToValueMap &Strides = 456 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 457 458 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 459 if (Stride == 1 || Stride == -1) 460 return Stride; 461 return 0; 462 } 463 464 bool LoopVectorizationLegality::isUniform(Value *V) { 465 return LAI->isUniform(V); 466 } 467 468 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 469 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 470 // Store the result and return it at the end instead of exiting early, in case 471 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 472 bool Result = true; 473 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 474 475 for (BasicBlock *BB : TheLoop->blocks()) { 476 // Check whether the BB terminator is a BranchInst. Any other terminator is 477 // not supported yet. 478 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 479 if (!Br) { 480 LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 481 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 482 << "loop control flow is not understood by vectorizer"); 483 if (DoExtraAnalysis) 484 Result = false; 485 else 486 return false; 487 } 488 489 // Check whether the BranchInst is a supported one. Only unconditional 490 // branches, conditional branches with an outer loop invariant condition or 491 // backedges are supported. 492 // FIXME: We skip these checks when VPlan predication is enabled as we 493 // want to allow divergent branches. This whole check will be removed 494 // once VPlan predication is on by default. 495 if (!EnableVPlanPredication && Br && Br->isConditional() && 496 !TheLoop->isLoopInvariant(Br->getCondition()) && 497 !LI->isLoopHeader(Br->getSuccessor(0)) && 498 !LI->isLoopHeader(Br->getSuccessor(1))) { 499 LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 500 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 501 << "loop control flow is not understood by vectorizer"); 502 if (DoExtraAnalysis) 503 Result = false; 504 else 505 return false; 506 } 507 } 508 509 // Check whether inner loops are uniform. At this point, we only support 510 // simple outer loops scenarios with uniform nested loops. 511 if (!isUniformLoopNest(TheLoop /*loop nest*/, 512 TheLoop /*context outer loop*/)) { 513 LLVM_DEBUG( 514 dbgs() 515 << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 516 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 517 << "loop control flow is not understood by vectorizer"); 518 if (DoExtraAnalysis) 519 Result = false; 520 else 521 return false; 522 } 523 524 // Check whether we are able to set up outer loop induction. 525 if (!setupOuterLoopInductions()) { 526 LLVM_DEBUG( 527 dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n"); 528 ORE->emit(createMissedAnalysis("UnsupportedPhi") 529 << "Unsupported outer loop Phi(s)"); 530 if (DoExtraAnalysis) 531 Result = false; 532 else 533 return false; 534 } 535 536 return Result; 537 } 538 539 void LoopVectorizationLegality::addInductionPhi( 540 PHINode *Phi, const InductionDescriptor &ID, 541 SmallPtrSetImpl<Value *> &AllowedExit) { 542 Inductions[Phi] = ID; 543 544 // In case this induction also comes with casts that we know we can ignore 545 // in the vectorized loop body, record them here. All casts could be recorded 546 // here for ignoring, but suffices to record only the first (as it is the 547 // only one that may bw used outside the cast sequence). 548 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 549 if (!Casts.empty()) 550 InductionCastsToIgnore.insert(*Casts.begin()); 551 552 Type *PhiTy = Phi->getType(); 553 const DataLayout &DL = Phi->getModule()->getDataLayout(); 554 555 // Get the widest type. 556 if (!PhiTy->isFloatingPointTy()) { 557 if (!WidestIndTy) 558 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 559 else 560 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 561 } 562 563 // Int inductions are special because we only allow one IV. 564 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 565 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 566 isa<Constant>(ID.getStartValue()) && 567 cast<Constant>(ID.getStartValue())->isNullValue()) { 568 569 // Use the phi node with the widest type as induction. Use the last 570 // one if there are multiple (no good reason for doing this other 571 // than it is expedient). We've checked that it begins at zero and 572 // steps by one, so this is a canonical induction variable. 573 if (!PrimaryInduction || PhiTy == WidestIndTy) 574 PrimaryInduction = Phi; 575 } 576 577 // Both the PHI node itself, and the "post-increment" value feeding 578 // back into the PHI node may have external users. 579 // We can allow those uses, except if the SCEVs we have for them rely 580 // on predicates that only hold within the loop, since allowing the exit 581 // currently means re-using this SCEV outside the loop (see PR33706 for more 582 // details). 583 if (PSE.getUnionPredicate().isAlwaysTrue()) { 584 AllowedExit.insert(Phi); 585 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 586 } 587 588 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 589 } 590 591 bool LoopVectorizationLegality::setupOuterLoopInductions() { 592 BasicBlock *Header = TheLoop->getHeader(); 593 594 // Returns true if a given Phi is a supported induction. 595 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 596 InductionDescriptor ID; 597 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 598 ID.getKind() == InductionDescriptor::IK_IntInduction) { 599 addInductionPhi(&Phi, ID, AllowedExit); 600 return true; 601 } else { 602 // Bail out for any Phi in the outer loop header that is not a supported 603 // induction. 604 LLVM_DEBUG( 605 dbgs() 606 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 607 return false; 608 } 609 }; 610 611 if (llvm::all_of(Header->phis(), isSupportedPhi)) 612 return true; 613 else 614 return false; 615 } 616 617 bool LoopVectorizationLegality::canVectorizeInstrs() { 618 BasicBlock *Header = TheLoop->getHeader(); 619 620 // Look for the attribute signaling the absence of NaNs. 621 Function &F = *Header->getParent(); 622 HasFunNoNaNAttr = 623 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 624 625 // For each block in the loop. 626 for (BasicBlock *BB : TheLoop->blocks()) { 627 // Scan the instructions in the block and look for hazards. 628 for (Instruction &I : *BB) { 629 if (auto *Phi = dyn_cast<PHINode>(&I)) { 630 Type *PhiTy = Phi->getType(); 631 // Check that this PHI type is allowed. 632 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 633 !PhiTy->isPointerTy()) { 634 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 635 << "loop control flow is not understood by vectorizer"); 636 LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 637 return false; 638 } 639 640 // If this PHINode is not in the header block, then we know that we 641 // can convert it to select during if-conversion. No need to check if 642 // the PHIs in this block are induction or reduction variables. 643 if (BB != Header) { 644 // Non-header phi nodes that have outside uses can be vectorized. Add 645 // them to the list of allowed exits. 646 // Unsafe cyclic dependencies with header phis are identified during 647 // legalization for reduction, induction and first order 648 // recurrences. 649 continue; 650 } 651 652 // We only allow if-converted PHIs with exactly two incoming values. 653 if (Phi->getNumIncomingValues() != 2) { 654 ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 655 << "control flow not understood by vectorizer"); 656 LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 657 return false; 658 } 659 660 RecurrenceDescriptor RedDes; 661 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 662 DT)) { 663 if (RedDes.hasUnsafeAlgebra()) 664 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 665 AllowedExit.insert(RedDes.getLoopExitInstr()); 666 Reductions[Phi] = RedDes; 667 continue; 668 } 669 670 // TODO: Instead of recording the AllowedExit, it would be good to record the 671 // complementary set: NotAllowedExit. These include (but may not be 672 // limited to): 673 // 1. Reduction phis as they represent the one-before-last value, which 674 // is not available when vectorized 675 // 2. Induction phis and increment when SCEV predicates cannot be used 676 // outside the loop - see addInductionPhi 677 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 678 // outside the loop - see call to hasOutsideLoopUser in the non-phi 679 // handling below 680 // 4. FirstOrderRecurrence phis that can possibly be handled by 681 // extraction. 682 // By recording these, we can then reason about ways to vectorize each 683 // of these NotAllowedExit. 684 InductionDescriptor ID; 685 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 686 addInductionPhi(Phi, ID, AllowedExit); 687 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 688 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 689 continue; 690 } 691 692 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 693 SinkAfter, DT)) { 694 FirstOrderRecurrences.insert(Phi); 695 continue; 696 } 697 698 // As a last resort, coerce the PHI to a AddRec expression 699 // and re-try classifying it a an induction PHI. 700 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 701 addInductionPhi(Phi, ID, AllowedExit); 702 continue; 703 } 704 705 ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 706 << "value that could not be identified as " 707 "reduction is used outside the loop"); 708 LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 709 return false; 710 } // end of PHI handling 711 712 // We handle calls that: 713 // * Are debug info intrinsics. 714 // * Have a mapping to an IR intrinsic. 715 // * Have a vector version available. 716 auto *CI = dyn_cast<CallInst>(&I); 717 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 718 !isa<DbgInfoIntrinsic>(CI) && 719 !(CI->getCalledFunction() && TLI && 720 TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 721 // If the call is a recognized math libary call, it is likely that 722 // we can vectorize it given loosened floating-point constraints. 723 LibFunc Func; 724 bool IsMathLibCall = 725 TLI && CI->getCalledFunction() && 726 CI->getType()->isFloatingPointTy() && 727 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 728 TLI->hasOptimizedCodeGen(Func); 729 730 if (IsMathLibCall) { 731 // TODO: Ideally, we should not use clang-specific language here, 732 // but it's hard to provide meaningful yet generic advice. 733 // Also, should this be guarded by allowExtraAnalysis() and/or be part 734 // of the returned info from isFunctionVectorizable()? 735 ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI) 736 << "library call cannot be vectorized. " 737 "Try compiling with -fno-math-errno, -ffast-math, " 738 "or similar flags"); 739 } else { 740 ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 741 << "call instruction cannot be vectorized"); 742 } 743 LLVM_DEBUG( 744 dbgs() << "LV: Found a non-intrinsic callsite.\n"); 745 return false; 746 } 747 748 // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 749 // second argument is the same (i.e. loop invariant) 750 if (CI && hasVectorInstrinsicScalarOpd( 751 getVectorIntrinsicIDForCall(CI, TLI), 1)) { 752 auto *SE = PSE.getSE(); 753 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 754 ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 755 << "intrinsic instruction cannot be vectorized"); 756 LLVM_DEBUG(dbgs() 757 << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 758 return false; 759 } 760 } 761 762 // Check that the instruction return type is vectorizable. 763 // Also, we can't vectorize extractelement instructions. 764 if ((!VectorType::isValidElementType(I.getType()) && 765 !I.getType()->isVoidTy()) || 766 isa<ExtractElementInst>(I)) { 767 ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 768 << "instruction return type cannot be vectorized"); 769 LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 770 return false; 771 } 772 773 // Check that the stored type is vectorizable. 774 if (auto *ST = dyn_cast<StoreInst>(&I)) { 775 Type *T = ST->getValueOperand()->getType(); 776 if (!VectorType::isValidElementType(T)) { 777 ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 778 << "store instruction cannot be vectorized"); 779 return false; 780 } 781 782 // FP instructions can allow unsafe algebra, thus vectorizable by 783 // non-IEEE-754 compliant SIMD units. 784 // This applies to floating-point math operations and calls, not memory 785 // operations, shuffles, or casts, as they don't change precision or 786 // semantics. 787 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 788 !I.isFast()) { 789 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 790 Hints->setPotentiallyUnsafe(); 791 } 792 793 // Reduction instructions are allowed to have exit users. 794 // All other instructions must not have external users. 795 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 796 // We can safely vectorize loops where instructions within the loop are 797 // used outside the loop only if the SCEV predicates within the loop is 798 // same as outside the loop. Allowing the exit means reusing the SCEV 799 // outside the loop. 800 if (PSE.getUnionPredicate().isAlwaysTrue()) { 801 AllowedExit.insert(&I); 802 continue; 803 } 804 ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 805 << "value cannot be used outside the loop"); 806 return false; 807 } 808 } // next instr. 809 } 810 811 if (!PrimaryInduction) { 812 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 813 if (Inductions.empty()) { 814 ORE->emit(createMissedAnalysis("NoInductionVariable") 815 << "loop induction variable could not be identified"); 816 return false; 817 } else if (!WidestIndTy) { 818 ORE->emit(createMissedAnalysis("NoIntegerInductionVariable") 819 << "integer loop induction variable could not be identified"); 820 return false; 821 } 822 } 823 824 // Now we know the widest induction type, check if our found induction 825 // is the same size. If it's not, unset it here and InnerLoopVectorizer 826 // will create another. 827 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 828 PrimaryInduction = nullptr; 829 830 return true; 831 } 832 833 bool LoopVectorizationLegality::canVectorizeMemory() { 834 LAI = &(*GetLAA)(*TheLoop); 835 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 836 if (LAR) { 837 ORE->emit([&]() { 838 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 839 "loop not vectorized: ", *LAR); 840 }); 841 } 842 if (!LAI->canVectorizeMemory()) 843 return false; 844 845 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 846 ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 847 << "write to a loop invariant address could not " 848 "be vectorized"); 849 LLVM_DEBUG( 850 dbgs() << "LV: Non vectorizable stores to a uniform address\n"); 851 return false; 852 } 853 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 854 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 855 856 return true; 857 } 858 859 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 860 Value *In0 = const_cast<Value *>(V); 861 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 862 if (!PN) 863 return false; 864 865 return Inductions.count(PN); 866 } 867 868 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 869 auto *Inst = dyn_cast<Instruction>(V); 870 return (Inst && InductionCastsToIgnore.count(Inst)); 871 } 872 873 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 874 return isInductionPhi(V) || isCastedInductionVariable(V); 875 } 876 877 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 878 return FirstOrderRecurrences.count(Phi); 879 } 880 881 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 882 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 883 } 884 885 bool LoopVectorizationLegality::blockCanBePredicated( 886 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 887 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 888 889 for (Instruction &I : *BB) { 890 // Check that we don't have a constant expression that can trap as operand. 891 for (Value *Operand : I.operands()) { 892 if (auto *C = dyn_cast<Constant>(Operand)) 893 if (C->canTrap()) 894 return false; 895 } 896 // We might be able to hoist the load. 897 if (I.mayReadFromMemory()) { 898 auto *LI = dyn_cast<LoadInst>(&I); 899 if (!LI) 900 return false; 901 if (!SafePtrs.count(LI->getPointerOperand())) { 902 // !llvm.mem.parallel_loop_access implies if-conversion safety. 903 // Otherwise, record that the load needs (real or emulated) masking 904 // and let the cost model decide. 905 if (!IsAnnotatedParallel) 906 MaskedOp.insert(LI); 907 continue; 908 } 909 } 910 911 if (I.mayWriteToMemory()) { 912 auto *SI = dyn_cast<StoreInst>(&I); 913 if (!SI) 914 return false; 915 // Predicated store requires some form of masking: 916 // 1) masked store HW instruction, 917 // 2) emulation via load-blend-store (only if safe and legal to do so, 918 // be aware on the race conditions), or 919 // 3) element-by-element predicate check and scalar store. 920 MaskedOp.insert(SI); 921 continue; 922 } 923 if (I.mayThrow()) 924 return false; 925 } 926 927 return true; 928 } 929 930 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 931 if (!EnableIfConversion) { 932 ORE->emit(createMissedAnalysis("IfConversionDisabled") 933 << "if-conversion is disabled"); 934 return false; 935 } 936 937 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 938 939 // A list of pointers that we can safely read and write to. 940 SmallPtrSet<Value *, 8> SafePointes; 941 942 // Collect safe addresses. 943 for (BasicBlock *BB : TheLoop->blocks()) { 944 if (blockNeedsPredication(BB)) 945 continue; 946 947 for (Instruction &I : *BB) 948 if (auto *Ptr = getLoadStorePointerOperand(&I)) 949 SafePointes.insert(Ptr); 950 } 951 952 // Collect the blocks that need predication. 953 BasicBlock *Header = TheLoop->getHeader(); 954 for (BasicBlock *BB : TheLoop->blocks()) { 955 // We don't support switch statements inside loops. 956 if (!isa<BranchInst>(BB->getTerminator())) { 957 ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 958 << "loop contains a switch statement"); 959 return false; 960 } 961 962 // We must be able to predicate all blocks that need to be predicated. 963 if (blockNeedsPredication(BB)) { 964 if (!blockCanBePredicated(BB, SafePointes)) { 965 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 966 << "control flow cannot be substituted for a select"); 967 return false; 968 } 969 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 970 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 971 << "control flow cannot be substituted for a select"); 972 return false; 973 } 974 } 975 976 // We can if-convert this loop. 977 return true; 978 } 979 980 // Helper function to canVectorizeLoopNestCFG. 981 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 982 bool UseVPlanNativePath) { 983 assert((UseVPlanNativePath || Lp->empty()) && 984 "VPlan-native path is not enabled."); 985 986 // TODO: ORE should be improved to show more accurate information when an 987 // outer loop can't be vectorized because a nested loop is not understood or 988 // legal. Something like: "outer_loop_location: loop not vectorized: 989 // (inner_loop_location) loop control flow is not understood by vectorizer". 990 991 // Store the result and return it at the end instead of exiting early, in case 992 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 993 bool Result = true; 994 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 995 996 // We must have a loop in canonical form. Loops with indirectbr in them cannot 997 // be canonicalized. 998 if (!Lp->getLoopPreheader()) { 999 LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 1000 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1001 << "loop control flow is not understood by vectorizer"); 1002 if (DoExtraAnalysis) 1003 Result = false; 1004 else 1005 return false; 1006 } 1007 1008 // We must have a single backedge. 1009 if (Lp->getNumBackEdges() != 1) { 1010 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1011 << "loop control flow is not understood by vectorizer"); 1012 if (DoExtraAnalysis) 1013 Result = false; 1014 else 1015 return false; 1016 } 1017 1018 // We must have a single exiting block. 1019 if (!Lp->getExitingBlock()) { 1020 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1021 << "loop control flow is not understood by vectorizer"); 1022 if (DoExtraAnalysis) 1023 Result = false; 1024 else 1025 return false; 1026 } 1027 1028 // We only handle bottom-tested loops, i.e. loop in which the condition is 1029 // checked at the end of each iteration. With that we can assume that all 1030 // instructions in the loop are executed the same number of times. 1031 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 1032 ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1033 << "loop control flow is not understood by vectorizer"); 1034 if (DoExtraAnalysis) 1035 Result = false; 1036 else 1037 return false; 1038 } 1039 1040 return Result; 1041 } 1042 1043 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1044 Loop *Lp, bool UseVPlanNativePath) { 1045 // Store the result and return it at the end instead of exiting early, in case 1046 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1047 bool Result = true; 1048 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1049 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1050 if (DoExtraAnalysis) 1051 Result = false; 1052 else 1053 return false; 1054 } 1055 1056 // Recursively check whether the loop control flow of nested loops is 1057 // understood. 1058 for (Loop *SubLp : *Lp) 1059 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1060 if (DoExtraAnalysis) 1061 Result = false; 1062 else 1063 return false; 1064 } 1065 1066 return Result; 1067 } 1068 1069 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1070 // Store the result and return it at the end instead of exiting early, in case 1071 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1072 bool Result = true; 1073 1074 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1075 // Check whether the loop-related control flow in the loop nest is expected by 1076 // vectorizer. 1077 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1078 if (DoExtraAnalysis) 1079 Result = false; 1080 else 1081 return false; 1082 } 1083 1084 // We need to have a loop header. 1085 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1086 << '\n'); 1087 1088 // Specific checks for outer loops. We skip the remaining legal checks at this 1089 // point because they don't support outer loops. 1090 if (!TheLoop->empty()) { 1091 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1092 1093 if (!canVectorizeOuterLoop()) { 1094 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1095 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1096 // outer loops. 1097 return false; 1098 } 1099 1100 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1101 return Result; 1102 } 1103 1104 assert(TheLoop->empty() && "Inner loop expected."); 1105 // Check if we can if-convert non-single-bb loops. 1106 unsigned NumBlocks = TheLoop->getNumBlocks(); 1107 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1108 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1109 if (DoExtraAnalysis) 1110 Result = false; 1111 else 1112 return false; 1113 } 1114 1115 // Check if we can vectorize the instructions and CFG in this loop. 1116 if (!canVectorizeInstrs()) { 1117 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1118 if (DoExtraAnalysis) 1119 Result = false; 1120 else 1121 return false; 1122 } 1123 1124 // Go over each instruction and look at memory deps. 1125 if (!canVectorizeMemory()) { 1126 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1127 if (DoExtraAnalysis) 1128 Result = false; 1129 else 1130 return false; 1131 } 1132 1133 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1134 << (LAI->getRuntimePointerChecking()->Need 1135 ? " (with a runtime bound check)" 1136 : "") 1137 << "!\n"); 1138 1139 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1140 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1141 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1142 1143 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1144 ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1145 << "Too many SCEV assumptions need to be made and checked " 1146 << "at runtime"); 1147 LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1148 if (DoExtraAnalysis) 1149 Result = false; 1150 else 1151 return false; 1152 } 1153 1154 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1155 // we can vectorize, and at this point we don't have any other mem analysis 1156 // which may limit our maximum vectorization factor, so just return true with 1157 // no restrictions. 1158 return Result; 1159 } 1160 1161 bool LoopVectorizationLegality::canFoldTailByMasking() { 1162 1163 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1164 1165 if (!PrimaryInduction) { 1166 ORE->emit(createMissedAnalysis("NoPrimaryInduction") 1167 << "Missing a primary induction variable in the loop, which is " 1168 << "needed in order to fold tail by masking as required."); 1169 LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by " 1170 << "masking.\n"); 1171 return false; 1172 } 1173 1174 // TODO: handle reductions when tail is folded by masking. 1175 if (!Reductions.empty()) { 1176 ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking") 1177 << "Cannot fold tail by masking in the presence of reductions."); 1178 LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by " 1179 << "masking.\n"); 1180 return false; 1181 } 1182 1183 // TODO: handle outside users when tail is folded by masking. 1184 for (auto *AE : AllowedExit) { 1185 // Check that all users of allowed exit values are inside the loop. 1186 for (User *U : AE->users()) { 1187 Instruction *UI = cast<Instruction>(U); 1188 if (TheLoop->contains(UI)) 1189 continue; 1190 ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking") 1191 << "Cannot fold tail by masking in the presence of live outs."); 1192 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an " 1193 << "outside user for : " << *UI << '\n'); 1194 return false; 1195 } 1196 } 1197 1198 // The list of pointers that we can safely read and write to remains empty. 1199 SmallPtrSet<Value *, 8> SafePointers; 1200 1201 // Check and mark all blocks for predication, including those that ordinarily 1202 // do not need predication such as the header block. 1203 for (BasicBlock *BB : TheLoop->blocks()) { 1204 if (!blockCanBePredicated(BB, SafePointers)) { 1205 ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 1206 << "control flow cannot be substituted for a select"); 1207 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n"); 1208 return false; 1209 } 1210 } 1211 1212 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1213 return true; 1214 } 1215 1216 } // namespace llvm 1217