1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/SizeOpts.h" 26 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define LV_NAME "loop-vectorize" 32 #define DEBUG_TYPE LV_NAME 33 34 extern cl::opt<bool> EnableVPlanPredication; 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 41 "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 42 cl::desc("The maximum allowed number of runtime memory checks with a " 43 "vectorize(enable) pragma.")); 44 45 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 46 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 47 cl::desc("The maximum number of SCEV checks allowed.")); 48 49 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 50 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 51 cl::desc("The maximum number of SCEV checks allowed with a " 52 "vectorize(enable) pragma")); 53 54 /// Maximum vectorization interleave count. 55 static const unsigned MaxInterleaveFactor = 16; 56 57 namespace llvm { 58 59 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 60 switch (Kind) { 61 case HK_WIDTH: 62 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 63 case HK_UNROLL: 64 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 65 case HK_FORCE: 66 return (Val <= 1); 67 case HK_ISVECTORIZED: 68 case HK_PREDICATE: 69 return (Val == 0 || Val == 1); 70 } 71 return false; 72 } 73 74 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 75 bool InterleaveOnlyWhenForced, 76 OptimizationRemarkEmitter &ORE) 77 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 78 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 79 Force("vectorize.enable", FK_Undefined, HK_FORCE), 80 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 81 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), TheLoop(L), 82 ORE(ORE) { 83 // Populate values with existing loop metadata. 84 getHintsFromMetadata(); 85 86 // force-vector-interleave overrides DisableInterleaving. 87 if (VectorizerParams::isInterleaveForced()) 88 Interleave.Value = VectorizerParams::VectorizationInterleave; 89 90 if (IsVectorized.Value != 1) 91 // If the vectorization width and interleaving count are both 1 then 92 // consider the loop to have been already vectorized because there's 93 // nothing more that we can do. 94 IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 95 LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 96 << "LV: Interleaving disabled by the pass manager\n"); 97 } 98 99 void LoopVectorizeHints::setAlreadyVectorized() { 100 LLVMContext &Context = TheLoop->getHeader()->getContext(); 101 102 MDNode *IsVectorizedMD = MDNode::get( 103 Context, 104 {MDString::get(Context, "llvm.loop.isvectorized"), 105 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 106 MDNode *LoopID = TheLoop->getLoopID(); 107 MDNode *NewLoopID = 108 makePostTransformationMetadata(Context, LoopID, 109 {Twine(Prefix(), "vectorize.").str(), 110 Twine(Prefix(), "interleave.").str()}, 111 {IsVectorizedMD}); 112 TheLoop->setLoopID(NewLoopID); 113 114 // Update internal cache. 115 IsVectorized.Value = 1; 116 } 117 118 bool LoopVectorizeHints::allowVectorization( 119 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 120 if (getForce() == LoopVectorizeHints::FK_Disabled) { 121 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 122 emitRemarkWithHints(); 123 return false; 124 } 125 126 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 127 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 128 emitRemarkWithHints(); 129 return false; 130 } 131 132 if (getIsVectorized() == 1) { 133 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 134 // FIXME: Add interleave.disable metadata. This will allow 135 // vectorize.disable to be used without disabling the pass and errors 136 // to differentiate between disabled vectorization and a width of 1. 137 ORE.emit([&]() { 138 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 139 "AllDisabled", L->getStartLoc(), 140 L->getHeader()) 141 << "loop not vectorized: vectorization and interleaving are " 142 "explicitly disabled, or the loop has already been " 143 "vectorized"; 144 }); 145 return false; 146 } 147 148 return true; 149 } 150 151 void LoopVectorizeHints::emitRemarkWithHints() const { 152 using namespace ore; 153 154 ORE.emit([&]() { 155 if (Force.Value == LoopVectorizeHints::FK_Disabled) 156 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 157 TheLoop->getStartLoc(), 158 TheLoop->getHeader()) 159 << "loop not vectorized: vectorization is explicitly disabled"; 160 else { 161 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 162 TheLoop->getStartLoc(), TheLoop->getHeader()); 163 R << "loop not vectorized"; 164 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 165 R << " (Force=" << NV("Force", true); 166 if (Width.Value != 0) 167 R << ", Vector Width=" << NV("VectorWidth", Width.Value); 168 if (Interleave.Value != 0) 169 R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 170 R << ")"; 171 } 172 return R; 173 } 174 }); 175 } 176 177 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 178 if (getWidth() == 1) 179 return LV_NAME; 180 if (getForce() == LoopVectorizeHints::FK_Disabled) 181 return LV_NAME; 182 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 183 return LV_NAME; 184 return OptimizationRemarkAnalysis::AlwaysPrint; 185 } 186 187 void LoopVectorizeHints::getHintsFromMetadata() { 188 MDNode *LoopID = TheLoop->getLoopID(); 189 if (!LoopID) 190 return; 191 192 // First operand should refer to the loop id itself. 193 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 194 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 195 196 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 197 const MDString *S = nullptr; 198 SmallVector<Metadata *, 4> Args; 199 200 // The expected hint is either a MDString or a MDNode with the first 201 // operand a MDString. 202 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 203 if (!MD || MD->getNumOperands() == 0) 204 continue; 205 S = dyn_cast<MDString>(MD->getOperand(0)); 206 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 207 Args.push_back(MD->getOperand(i)); 208 } else { 209 S = dyn_cast<MDString>(LoopID->getOperand(i)); 210 assert(Args.size() == 0 && "too many arguments for MDString"); 211 } 212 213 if (!S) 214 continue; 215 216 // Check if the hint starts with the loop metadata prefix. 217 StringRef Name = S->getString(); 218 if (Args.size() == 1) 219 setHint(Name, Args[0]); 220 } 221 } 222 223 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 224 if (!Name.startswith(Prefix())) 225 return; 226 Name = Name.substr(Prefix().size(), StringRef::npos); 227 228 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 229 if (!C) 230 return; 231 unsigned Val = C->getZExtValue(); 232 233 Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate}; 234 for (auto H : Hints) { 235 if (Name == H->Name) { 236 if (H->validate(Val)) 237 H->Value = Val; 238 else 239 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 240 break; 241 } 242 } 243 } 244 245 bool LoopVectorizationRequirements::doesNotMeet( 246 Function *F, Loop *L, const LoopVectorizeHints &Hints) { 247 const char *PassName = Hints.vectorizeAnalysisPassName(); 248 bool Failed = false; 249 if (UnsafeAlgebraInst && !Hints.allowReordering()) { 250 ORE.emit([&]() { 251 return OptimizationRemarkAnalysisFPCommute( 252 PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 253 UnsafeAlgebraInst->getParent()) 254 << "loop not vectorized: cannot prove it is safe to reorder " 255 "floating-point operations"; 256 }); 257 Failed = true; 258 } 259 260 // Test if runtime memcheck thresholds are exceeded. 261 bool PragmaThresholdReached = 262 NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 263 bool ThresholdReached = 264 NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 265 if ((ThresholdReached && !Hints.allowReordering()) || 266 PragmaThresholdReached) { 267 ORE.emit([&]() { 268 return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 269 L->getStartLoc(), 270 L->getHeader()) 271 << "loop not vectorized: cannot prove it is safe to reorder " 272 "memory operations"; 273 }); 274 LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 275 Failed = true; 276 } 277 278 return Failed; 279 } 280 281 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 282 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 283 // executing the inner loop will execute the same iterations). This check is 284 // very constrained for now but it will be relaxed in the future. \p Lp is 285 // considered uniform if it meets all the following conditions: 286 // 1) it has a canonical IV (starting from 0 and with stride 1), 287 // 2) its latch terminator is a conditional branch and, 288 // 3) its latch condition is a compare instruction whose operands are the 289 // canonical IV and an OuterLp invariant. 290 // This check doesn't take into account the uniformity of other conditions not 291 // related to the loop latch because they don't affect the loop uniformity. 292 // 293 // NOTE: We decided to keep all these checks and its associated documentation 294 // together so that we can easily have a picture of the current supported loop 295 // nests. However, some of the current checks don't depend on \p OuterLp and 296 // would be redundantly executed for each \p Lp if we invoked this function for 297 // different candidate outer loops. This is not the case for now because we 298 // don't currently have the infrastructure to evaluate multiple candidate outer 299 // loops and \p OuterLp will be a fixed parameter while we only support explicit 300 // outer loop vectorization. It's also very likely that these checks go away 301 // before introducing the aforementioned infrastructure. However, if this is not 302 // the case, we should move the \p OuterLp independent checks to a separate 303 // function that is only executed once for each \p Lp. 304 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 305 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 306 307 // If Lp is the outer loop, it's uniform by definition. 308 if (Lp == OuterLp) 309 return true; 310 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 311 312 // 1. 313 PHINode *IV = Lp->getCanonicalInductionVariable(); 314 if (!IV) { 315 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 316 return false; 317 } 318 319 // 2. 320 BasicBlock *Latch = Lp->getLoopLatch(); 321 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 322 if (!LatchBr || LatchBr->isUnconditional()) { 323 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 324 return false; 325 } 326 327 // 3. 328 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 329 if (!LatchCmp) { 330 LLVM_DEBUG( 331 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 332 return false; 333 } 334 335 Value *CondOp0 = LatchCmp->getOperand(0); 336 Value *CondOp1 = LatchCmp->getOperand(1); 337 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 338 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 339 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 340 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 341 return false; 342 } 343 344 return true; 345 } 346 347 // Return true if \p Lp and all its nested loops are uniform with regard to \p 348 // OuterLp. 349 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 350 if (!isUniformLoop(Lp, OuterLp)) 351 return false; 352 353 // Check if nested loops are uniform. 354 for (Loop *SubLp : *Lp) 355 if (!isUniformLoopNest(SubLp, OuterLp)) 356 return false; 357 358 return true; 359 } 360 361 /// Check whether it is safe to if-convert this phi node. 362 /// 363 /// Phi nodes with constant expressions that can trap are not safe to if 364 /// convert. 365 static bool canIfConvertPHINodes(BasicBlock *BB) { 366 for (PHINode &Phi : BB->phis()) { 367 for (Value *V : Phi.incoming_values()) 368 if (auto *C = dyn_cast<Constant>(V)) 369 if (C->canTrap()) 370 return false; 371 } 372 return true; 373 } 374 375 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 376 if (Ty->isPointerTy()) 377 return DL.getIntPtrType(Ty); 378 379 // It is possible that char's or short's overflow when we ask for the loop's 380 // trip count, work around this by changing the type size. 381 if (Ty->getScalarSizeInBits() < 32) 382 return Type::getInt32Ty(Ty->getContext()); 383 384 return Ty; 385 } 386 387 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 388 Ty0 = convertPointerToIntegerType(DL, Ty0); 389 Ty1 = convertPointerToIntegerType(DL, Ty1); 390 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 391 return Ty0; 392 return Ty1; 393 } 394 395 /// Check that the instruction has outside loop users and is not an 396 /// identified reduction variable. 397 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 398 SmallPtrSetImpl<Value *> &AllowedExit) { 399 // Reductions, Inductions and non-header phis are allowed to have exit users. All 400 // other instructions must not have external users. 401 if (!AllowedExit.count(Inst)) 402 // Check that all of the users of the loop are inside the BB. 403 for (User *U : Inst->users()) { 404 Instruction *UI = cast<Instruction>(U); 405 // This user may be a reduction exit value. 406 if (!TheLoop->contains(UI)) { 407 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 408 return true; 409 } 410 } 411 return false; 412 } 413 414 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 415 const ValueToValueMap &Strides = 416 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 417 418 Function *F = TheLoop->getHeader()->getParent(); 419 bool OptForSize = F->hasOptSize() || 420 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 421 PGSOQueryType::IRPass); 422 bool CanAddPredicate = !OptForSize; 423 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false); 424 if (Stride == 1 || Stride == -1) 425 return Stride; 426 return 0; 427 } 428 429 bool LoopVectorizationLegality::isUniform(Value *V) { 430 return LAI->isUniform(V); 431 } 432 433 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 434 assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 435 // Store the result and return it at the end instead of exiting early, in case 436 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 437 bool Result = true; 438 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 439 440 for (BasicBlock *BB : TheLoop->blocks()) { 441 // Check whether the BB terminator is a BranchInst. Any other terminator is 442 // not supported yet. 443 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 444 if (!Br) { 445 reportVectorizationFailure("Unsupported basic block terminator", 446 "loop control flow is not understood by vectorizer", 447 "CFGNotUnderstood", ORE, TheLoop); 448 if (DoExtraAnalysis) 449 Result = false; 450 else 451 return false; 452 } 453 454 // Check whether the BranchInst is a supported one. Only unconditional 455 // branches, conditional branches with an outer loop invariant condition or 456 // backedges are supported. 457 // FIXME: We skip these checks when VPlan predication is enabled as we 458 // want to allow divergent branches. This whole check will be removed 459 // once VPlan predication is on by default. 460 if (!EnableVPlanPredication && Br && Br->isConditional() && 461 !TheLoop->isLoopInvariant(Br->getCondition()) && 462 !LI->isLoopHeader(Br->getSuccessor(0)) && 463 !LI->isLoopHeader(Br->getSuccessor(1))) { 464 reportVectorizationFailure("Unsupported conditional branch", 465 "loop control flow is not understood by vectorizer", 466 "CFGNotUnderstood", ORE, TheLoop); 467 if (DoExtraAnalysis) 468 Result = false; 469 else 470 return false; 471 } 472 } 473 474 // Check whether inner loops are uniform. At this point, we only support 475 // simple outer loops scenarios with uniform nested loops. 476 if (!isUniformLoopNest(TheLoop /*loop nest*/, 477 TheLoop /*context outer loop*/)) { 478 reportVectorizationFailure("Outer loop contains divergent loops", 479 "loop control flow is not understood by vectorizer", 480 "CFGNotUnderstood", ORE, TheLoop); 481 if (DoExtraAnalysis) 482 Result = false; 483 else 484 return false; 485 } 486 487 // Check whether we are able to set up outer loop induction. 488 if (!setupOuterLoopInductions()) { 489 reportVectorizationFailure("Unsupported outer loop Phi(s)", 490 "Unsupported outer loop Phi(s)", 491 "UnsupportedPhi", ORE, TheLoop); 492 if (DoExtraAnalysis) 493 Result = false; 494 else 495 return false; 496 } 497 498 return Result; 499 } 500 501 void LoopVectorizationLegality::addInductionPhi( 502 PHINode *Phi, const InductionDescriptor &ID, 503 SmallPtrSetImpl<Value *> &AllowedExit) { 504 Inductions[Phi] = ID; 505 506 // In case this induction also comes with casts that we know we can ignore 507 // in the vectorized loop body, record them here. All casts could be recorded 508 // here for ignoring, but suffices to record only the first (as it is the 509 // only one that may bw used outside the cast sequence). 510 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 511 if (!Casts.empty()) 512 InductionCastsToIgnore.insert(*Casts.begin()); 513 514 Type *PhiTy = Phi->getType(); 515 const DataLayout &DL = Phi->getModule()->getDataLayout(); 516 517 // Get the widest type. 518 if (!PhiTy->isFloatingPointTy()) { 519 if (!WidestIndTy) 520 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 521 else 522 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 523 } 524 525 // Int inductions are special because we only allow one IV. 526 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 527 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 528 isa<Constant>(ID.getStartValue()) && 529 cast<Constant>(ID.getStartValue())->isNullValue()) { 530 531 // Use the phi node with the widest type as induction. Use the last 532 // one if there are multiple (no good reason for doing this other 533 // than it is expedient). We've checked that it begins at zero and 534 // steps by one, so this is a canonical induction variable. 535 if (!PrimaryInduction || PhiTy == WidestIndTy) 536 PrimaryInduction = Phi; 537 } 538 539 // Both the PHI node itself, and the "post-increment" value feeding 540 // back into the PHI node may have external users. 541 // We can allow those uses, except if the SCEVs we have for them rely 542 // on predicates that only hold within the loop, since allowing the exit 543 // currently means re-using this SCEV outside the loop (see PR33706 for more 544 // details). 545 if (PSE.getUnionPredicate().isAlwaysTrue()) { 546 AllowedExit.insert(Phi); 547 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 548 } 549 550 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 551 } 552 553 bool LoopVectorizationLegality::setupOuterLoopInductions() { 554 BasicBlock *Header = TheLoop->getHeader(); 555 556 // Returns true if a given Phi is a supported induction. 557 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 558 InductionDescriptor ID; 559 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 560 ID.getKind() == InductionDescriptor::IK_IntInduction) { 561 addInductionPhi(&Phi, ID, AllowedExit); 562 return true; 563 } else { 564 // Bail out for any Phi in the outer loop header that is not a supported 565 // induction. 566 LLVM_DEBUG( 567 dbgs() 568 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 569 return false; 570 } 571 }; 572 573 if (llvm::all_of(Header->phis(), isSupportedPhi)) 574 return true; 575 else 576 return false; 577 } 578 579 /// Checks if a function is scalarizable according to the TLI, in 580 /// the sense that it should be vectorized and then expanded in 581 /// multiple scalarcalls. This is represented in the 582 /// TLI via mappings that do not specify a vector name, as in the 583 /// following example: 584 /// 585 /// const VecDesc VecIntrinsics[] = { 586 /// {"llvm.phx.abs.i32", "", 4} 587 /// }; 588 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 589 const StringRef ScalarName = CI.getCalledFunction()->getName(); 590 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 591 // Check that all known VFs are not associated to a vector 592 // function, i.e. the vector name is emty. 593 if (Scalarize) 594 for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); 595 VF <= WidestVF; VF *= 2) { 596 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 597 } 598 return Scalarize; 599 } 600 601 bool LoopVectorizationLegality::canVectorizeInstrs() { 602 BasicBlock *Header = TheLoop->getHeader(); 603 604 // Look for the attribute signaling the absence of NaNs. 605 Function &F = *Header->getParent(); 606 HasFunNoNaNAttr = 607 F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 608 609 // For each block in the loop. 610 for (BasicBlock *BB : TheLoop->blocks()) { 611 // Scan the instructions in the block and look for hazards. 612 for (Instruction &I : *BB) { 613 if (auto *Phi = dyn_cast<PHINode>(&I)) { 614 Type *PhiTy = Phi->getType(); 615 // Check that this PHI type is allowed. 616 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 617 !PhiTy->isPointerTy()) { 618 reportVectorizationFailure("Found a non-int non-pointer PHI", 619 "loop control flow is not understood by vectorizer", 620 "CFGNotUnderstood", ORE, TheLoop); 621 return false; 622 } 623 624 // If this PHINode is not in the header block, then we know that we 625 // can convert it to select during if-conversion. No need to check if 626 // the PHIs in this block are induction or reduction variables. 627 if (BB != Header) { 628 // Non-header phi nodes that have outside uses can be vectorized. Add 629 // them to the list of allowed exits. 630 // Unsafe cyclic dependencies with header phis are identified during 631 // legalization for reduction, induction and first order 632 // recurrences. 633 AllowedExit.insert(&I); 634 continue; 635 } 636 637 // We only allow if-converted PHIs with exactly two incoming values. 638 if (Phi->getNumIncomingValues() != 2) { 639 reportVectorizationFailure("Found an invalid PHI", 640 "loop control flow is not understood by vectorizer", 641 "CFGNotUnderstood", ORE, TheLoop, Phi); 642 return false; 643 } 644 645 RecurrenceDescriptor RedDes; 646 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 647 DT)) { 648 if (RedDes.hasUnsafeAlgebra()) 649 Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 650 AllowedExit.insert(RedDes.getLoopExitInstr()); 651 Reductions[Phi] = RedDes; 652 continue; 653 } 654 655 // TODO: Instead of recording the AllowedExit, it would be good to record the 656 // complementary set: NotAllowedExit. These include (but may not be 657 // limited to): 658 // 1. Reduction phis as they represent the one-before-last value, which 659 // is not available when vectorized 660 // 2. Induction phis and increment when SCEV predicates cannot be used 661 // outside the loop - see addInductionPhi 662 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 663 // outside the loop - see call to hasOutsideLoopUser in the non-phi 664 // handling below 665 // 4. FirstOrderRecurrence phis that can possibly be handled by 666 // extraction. 667 // By recording these, we can then reason about ways to vectorize each 668 // of these NotAllowedExit. 669 InductionDescriptor ID; 670 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 671 addInductionPhi(Phi, ID, AllowedExit); 672 if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 673 Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 674 continue; 675 } 676 677 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 678 SinkAfter, DT)) { 679 AllowedExit.insert(Phi); 680 FirstOrderRecurrences.insert(Phi); 681 continue; 682 } 683 684 // As a last resort, coerce the PHI to a AddRec expression 685 // and re-try classifying it a an induction PHI. 686 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 687 addInductionPhi(Phi, ID, AllowedExit); 688 continue; 689 } 690 691 reportVectorizationFailure("Found an unidentified PHI", 692 "value that could not be identified as " 693 "reduction is used outside the loop", 694 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 695 return false; 696 } // end of PHI handling 697 698 // We handle calls that: 699 // * Are debug info intrinsics. 700 // * Have a mapping to an IR intrinsic. 701 // * Have a vector version available. 702 auto *CI = dyn_cast<CallInst>(&I); 703 704 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 705 !isa<DbgInfoIntrinsic>(CI) && 706 !(CI->getCalledFunction() && TLI && 707 (!VFDatabase::getMappings(*CI).empty() || 708 isTLIScalarize(*TLI, *CI)))) { 709 // If the call is a recognized math libary call, it is likely that 710 // we can vectorize it given loosened floating-point constraints. 711 LibFunc Func; 712 bool IsMathLibCall = 713 TLI && CI->getCalledFunction() && 714 CI->getType()->isFloatingPointTy() && 715 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 716 TLI->hasOptimizedCodeGen(Func); 717 718 if (IsMathLibCall) { 719 // TODO: Ideally, we should not use clang-specific language here, 720 // but it's hard to provide meaningful yet generic advice. 721 // Also, should this be guarded by allowExtraAnalysis() and/or be part 722 // of the returned info from isFunctionVectorizable()? 723 reportVectorizationFailure( 724 "Found a non-intrinsic callsite", 725 "library call cannot be vectorized. " 726 "Try compiling with -fno-math-errno, -ffast-math, " 727 "or similar flags", 728 "CantVectorizeLibcall", ORE, TheLoop, CI); 729 } else { 730 reportVectorizationFailure("Found a non-intrinsic callsite", 731 "call instruction cannot be vectorized", 732 "CantVectorizeLibcall", ORE, TheLoop, CI); 733 } 734 return false; 735 } 736 737 // Some intrinsics have scalar arguments and should be same in order for 738 // them to be vectorized (i.e. loop invariant). 739 if (CI) { 740 auto *SE = PSE.getSE(); 741 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 742 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 743 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 744 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 745 reportVectorizationFailure("Found unvectorizable intrinsic", 746 "intrinsic instruction cannot be vectorized", 747 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 748 return false; 749 } 750 } 751 } 752 753 // Check that the instruction return type is vectorizable. 754 // Also, we can't vectorize extractelement instructions. 755 if ((!VectorType::isValidElementType(I.getType()) && 756 !I.getType()->isVoidTy()) || 757 isa<ExtractElementInst>(I)) { 758 reportVectorizationFailure("Found unvectorizable type", 759 "instruction return type cannot be vectorized", 760 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 761 return false; 762 } 763 764 // Check that the stored type is vectorizable. 765 if (auto *ST = dyn_cast<StoreInst>(&I)) { 766 Type *T = ST->getValueOperand()->getType(); 767 if (!VectorType::isValidElementType(T)) { 768 reportVectorizationFailure("Store instruction cannot be vectorized", 769 "store instruction cannot be vectorized", 770 "CantVectorizeStore", ORE, TheLoop, ST); 771 return false; 772 } 773 774 // For nontemporal stores, check that a nontemporal vector version is 775 // supported on the target. 776 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 777 // Arbitrarily try a vector of 2 elements. 778 auto *VecTy = FixedVectorType::get(T, /*NumElements=*/2); 779 assert(VecTy && "did not find vectorized version of stored type"); 780 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 781 reportVectorizationFailure( 782 "nontemporal store instruction cannot be vectorized", 783 "nontemporal store instruction cannot be vectorized", 784 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 785 return false; 786 } 787 } 788 789 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 790 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 791 // For nontemporal loads, check that a nontemporal vector version is 792 // supported on the target (arbitrarily try a vector of 2 elements). 793 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElements=*/2); 794 assert(VecTy && "did not find vectorized version of load type"); 795 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 796 reportVectorizationFailure( 797 "nontemporal load instruction cannot be vectorized", 798 "nontemporal load instruction cannot be vectorized", 799 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 800 return false; 801 } 802 } 803 804 // FP instructions can allow unsafe algebra, thus vectorizable by 805 // non-IEEE-754 compliant SIMD units. 806 // This applies to floating-point math operations and calls, not memory 807 // operations, shuffles, or casts, as they don't change precision or 808 // semantics. 809 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 810 !I.isFast()) { 811 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 812 Hints->setPotentiallyUnsafe(); 813 } 814 815 // Reduction instructions are allowed to have exit users. 816 // All other instructions must not have external users. 817 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 818 // We can safely vectorize loops where instructions within the loop are 819 // used outside the loop only if the SCEV predicates within the loop is 820 // same as outside the loop. Allowing the exit means reusing the SCEV 821 // outside the loop. 822 if (PSE.getUnionPredicate().isAlwaysTrue()) { 823 AllowedExit.insert(&I); 824 continue; 825 } 826 reportVectorizationFailure("Value cannot be used outside the loop", 827 "value cannot be used outside the loop", 828 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 829 return false; 830 } 831 } // next instr. 832 } 833 834 if (!PrimaryInduction) { 835 if (Inductions.empty()) { 836 reportVectorizationFailure("Did not find one integer induction var", 837 "loop induction variable could not be identified", 838 "NoInductionVariable", ORE, TheLoop); 839 return false; 840 } else if (!WidestIndTy) { 841 reportVectorizationFailure("Did not find one integer induction var", 842 "integer loop induction variable could not be identified", 843 "NoIntegerInductionVariable", ORE, TheLoop); 844 return false; 845 } else { 846 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 847 } 848 } 849 850 // For first order recurrences, we use the previous value (incoming value from 851 // the latch) to check if it dominates all users of the recurrence. Bail out 852 // if we have to sink such an instruction for another recurrence, as the 853 // dominance requirement may not hold after sinking. 854 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 855 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 856 Instruction *V = 857 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 858 return SinkAfter.find(V) != SinkAfter.end(); 859 })) 860 return false; 861 862 // Now we know the widest induction type, check if our found induction 863 // is the same size. If it's not, unset it here and InnerLoopVectorizer 864 // will create another. 865 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 866 PrimaryInduction = nullptr; 867 868 return true; 869 } 870 871 bool LoopVectorizationLegality::canVectorizeMemory() { 872 LAI = &(*GetLAA)(*TheLoop); 873 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 874 if (LAR) { 875 ORE->emit([&]() { 876 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 877 "loop not vectorized: ", *LAR); 878 }); 879 } 880 if (!LAI->canVectorizeMemory()) 881 return false; 882 883 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 884 reportVectorizationFailure("Stores to a uniform address", 885 "write to a loop invariant address could not be vectorized", 886 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 887 return false; 888 } 889 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 890 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 891 892 return true; 893 } 894 895 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 896 Value *In0 = const_cast<Value *>(V); 897 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 898 if (!PN) 899 return false; 900 901 return Inductions.count(PN); 902 } 903 904 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 905 auto *Inst = dyn_cast<Instruction>(V); 906 return (Inst && InductionCastsToIgnore.count(Inst)); 907 } 908 909 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 910 return isInductionPhi(V) || isCastedInductionVariable(V); 911 } 912 913 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 914 return FirstOrderRecurrences.count(Phi); 915 } 916 917 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 918 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 919 } 920 921 bool LoopVectorizationLegality::blockCanBePredicated( 922 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 923 SmallPtrSetImpl<const Instruction *> &MaskedOp, 924 SmallPtrSetImpl<Instruction *> &ConditionalAssumes, 925 bool PreserveGuards) const { 926 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 927 928 for (Instruction &I : *BB) { 929 // Check that we don't have a constant expression that can trap as operand. 930 for (Value *Operand : I.operands()) { 931 if (auto *C = dyn_cast<Constant>(Operand)) 932 if (C->canTrap()) 933 return false; 934 } 935 936 // We can predicate blocks with calls to assume, as long as we drop them in 937 // case we flatten the CFG via predication. 938 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 939 ConditionalAssumes.insert(&I); 940 continue; 941 } 942 943 // We might be able to hoist the load. 944 if (I.mayReadFromMemory()) { 945 auto *LI = dyn_cast<LoadInst>(&I); 946 if (!LI) 947 return false; 948 if (!SafePtrs.count(LI->getPointerOperand())) { 949 // !llvm.mem.parallel_loop_access implies if-conversion safety. 950 // Otherwise, record that the load needs (real or emulated) masking 951 // and let the cost model decide. 952 if (!IsAnnotatedParallel || PreserveGuards) 953 MaskedOp.insert(LI); 954 continue; 955 } 956 } 957 958 if (I.mayWriteToMemory()) { 959 auto *SI = dyn_cast<StoreInst>(&I); 960 if (!SI) 961 return false; 962 // Predicated store requires some form of masking: 963 // 1) masked store HW instruction, 964 // 2) emulation via load-blend-store (only if safe and legal to do so, 965 // be aware on the race conditions), or 966 // 3) element-by-element predicate check and scalar store. 967 MaskedOp.insert(SI); 968 continue; 969 } 970 if (I.mayThrow()) 971 return false; 972 } 973 974 return true; 975 } 976 977 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 978 if (!EnableIfConversion) { 979 reportVectorizationFailure("If-conversion is disabled", 980 "if-conversion is disabled", 981 "IfConversionDisabled", 982 ORE, TheLoop); 983 return false; 984 } 985 986 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 987 988 // A list of pointers which are known to be dereferenceable within scope of 989 // the loop body for each iteration of the loop which executes. That is, 990 // the memory pointed to can be dereferenced (with the access size implied by 991 // the value's type) unconditionally within the loop header without 992 // introducing a new fault. 993 SmallPtrSet<Value *, 8> SafePointers; 994 995 // Collect safe addresses. 996 for (BasicBlock *BB : TheLoop->blocks()) { 997 if (!blockNeedsPredication(BB)) { 998 for (Instruction &I : *BB) 999 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1000 SafePointers.insert(Ptr); 1001 continue; 1002 } 1003 1004 // For a block which requires predication, a address may be safe to access 1005 // in the loop w/o predication if we can prove dereferenceability facts 1006 // sufficient to ensure it'll never fault within the loop. For the moment, 1007 // we restrict this to loads; stores are more complicated due to 1008 // concurrency restrictions. 1009 ScalarEvolution &SE = *PSE.getSE(); 1010 for (Instruction &I : *BB) { 1011 LoadInst *LI = dyn_cast<LoadInst>(&I); 1012 if (LI && !mustSuppressSpeculation(*LI) && 1013 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1014 SafePointers.insert(LI->getPointerOperand()); 1015 } 1016 } 1017 1018 // Collect the blocks that need predication. 1019 BasicBlock *Header = TheLoop->getHeader(); 1020 for (BasicBlock *BB : TheLoop->blocks()) { 1021 // We don't support switch statements inside loops. 1022 if (!isa<BranchInst>(BB->getTerminator())) { 1023 reportVectorizationFailure("Loop contains a switch statement", 1024 "loop contains a switch statement", 1025 "LoopContainsSwitch", ORE, TheLoop, 1026 BB->getTerminator()); 1027 return false; 1028 } 1029 1030 // We must be able to predicate all blocks that need to be predicated. 1031 if (blockNeedsPredication(BB)) { 1032 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1033 ConditionalAssumes)) { 1034 reportVectorizationFailure( 1035 "Control flow cannot be substituted for a select", 1036 "control flow cannot be substituted for a select", 1037 "NoCFGForSelect", ORE, TheLoop, 1038 BB->getTerminator()); 1039 return false; 1040 } 1041 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1042 reportVectorizationFailure( 1043 "Control flow cannot be substituted for a select", 1044 "control flow cannot be substituted for a select", 1045 "NoCFGForSelect", ORE, TheLoop, 1046 BB->getTerminator()); 1047 return false; 1048 } 1049 } 1050 1051 // We can if-convert this loop. 1052 return true; 1053 } 1054 1055 // Helper function to canVectorizeLoopNestCFG. 1056 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1057 bool UseVPlanNativePath) { 1058 assert((UseVPlanNativePath || Lp->empty()) && 1059 "VPlan-native path is not enabled."); 1060 1061 // TODO: ORE should be improved to show more accurate information when an 1062 // outer loop can't be vectorized because a nested loop is not understood or 1063 // legal. Something like: "outer_loop_location: loop not vectorized: 1064 // (inner_loop_location) loop control flow is not understood by vectorizer". 1065 1066 // Store the result and return it at the end instead of exiting early, in case 1067 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1068 bool Result = true; 1069 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1070 1071 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1072 // be canonicalized. 1073 if (!Lp->getLoopPreheader()) { 1074 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1075 "loop control flow is not understood by vectorizer", 1076 "CFGNotUnderstood", ORE, TheLoop); 1077 if (DoExtraAnalysis) 1078 Result = false; 1079 else 1080 return false; 1081 } 1082 1083 // We must have a single backedge. 1084 if (Lp->getNumBackEdges() != 1) { 1085 reportVectorizationFailure("The loop must have a single backedge", 1086 "loop control flow is not understood by vectorizer", 1087 "CFGNotUnderstood", ORE, TheLoop); 1088 if (DoExtraAnalysis) 1089 Result = false; 1090 else 1091 return false; 1092 } 1093 1094 // We must have a single exiting block. 1095 if (!Lp->getExitingBlock()) { 1096 reportVectorizationFailure("The loop must have an exiting block", 1097 "loop control flow is not understood by vectorizer", 1098 "CFGNotUnderstood", ORE, TheLoop); 1099 if (DoExtraAnalysis) 1100 Result = false; 1101 else 1102 return false; 1103 } 1104 1105 // We only handle bottom-tested loops, i.e. loop in which the condition is 1106 // checked at the end of each iteration. With that we can assume that all 1107 // instructions in the loop are executed the same number of times. 1108 if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 1109 reportVectorizationFailure("The exiting block is not the loop latch", 1110 "loop control flow is not understood by vectorizer", 1111 "CFGNotUnderstood", ORE, TheLoop); 1112 if (DoExtraAnalysis) 1113 Result = false; 1114 else 1115 return false; 1116 } 1117 1118 return Result; 1119 } 1120 1121 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1122 Loop *Lp, bool UseVPlanNativePath) { 1123 // Store the result and return it at the end instead of exiting early, in case 1124 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1125 bool Result = true; 1126 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1127 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1128 if (DoExtraAnalysis) 1129 Result = false; 1130 else 1131 return false; 1132 } 1133 1134 // Recursively check whether the loop control flow of nested loops is 1135 // understood. 1136 for (Loop *SubLp : *Lp) 1137 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1138 if (DoExtraAnalysis) 1139 Result = false; 1140 else 1141 return false; 1142 } 1143 1144 return Result; 1145 } 1146 1147 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1148 // Store the result and return it at the end instead of exiting early, in case 1149 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1150 bool Result = true; 1151 1152 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1153 // Check whether the loop-related control flow in the loop nest is expected by 1154 // vectorizer. 1155 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1156 if (DoExtraAnalysis) 1157 Result = false; 1158 else 1159 return false; 1160 } 1161 1162 // We need to have a loop header. 1163 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1164 << '\n'); 1165 1166 // Specific checks for outer loops. We skip the remaining legal checks at this 1167 // point because they don't support outer loops. 1168 if (!TheLoop->empty()) { 1169 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1170 1171 if (!canVectorizeOuterLoop()) { 1172 reportVectorizationFailure("Unsupported outer loop", 1173 "unsupported outer loop", 1174 "UnsupportedOuterLoop", 1175 ORE, TheLoop); 1176 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1177 // outer loops. 1178 return false; 1179 } 1180 1181 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1182 return Result; 1183 } 1184 1185 assert(TheLoop->empty() && "Inner loop expected."); 1186 // Check if we can if-convert non-single-bb loops. 1187 unsigned NumBlocks = TheLoop->getNumBlocks(); 1188 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1189 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1190 if (DoExtraAnalysis) 1191 Result = false; 1192 else 1193 return false; 1194 } 1195 1196 // Check if we can vectorize the instructions and CFG in this loop. 1197 if (!canVectorizeInstrs()) { 1198 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1199 if (DoExtraAnalysis) 1200 Result = false; 1201 else 1202 return false; 1203 } 1204 1205 // Go over each instruction and look at memory deps. 1206 if (!canVectorizeMemory()) { 1207 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1208 if (DoExtraAnalysis) 1209 Result = false; 1210 else 1211 return false; 1212 } 1213 1214 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1215 << (LAI->getRuntimePointerChecking()->Need 1216 ? " (with a runtime bound check)" 1217 : "") 1218 << "!\n"); 1219 1220 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1221 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1222 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1223 1224 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1225 reportVectorizationFailure("Too many SCEV checks needed", 1226 "Too many SCEV assumptions need to be made and checked at runtime", 1227 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1228 if (DoExtraAnalysis) 1229 Result = false; 1230 else 1231 return false; 1232 } 1233 1234 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1235 // we can vectorize, and at this point we don't have any other mem analysis 1236 // which may limit our maximum vectorization factor, so just return true with 1237 // no restrictions. 1238 return Result; 1239 } 1240 1241 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1242 1243 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1244 1245 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1246 1247 for (auto &Reduction : getReductionVars()) 1248 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1249 1250 // TODO: handle non-reduction outside users when tail is folded by masking. 1251 for (auto *AE : AllowedExit) { 1252 // Check that all users of allowed exit values are inside the loop or 1253 // are the live-out of a reduction. 1254 if (ReductionLiveOuts.count(AE)) 1255 continue; 1256 for (User *U : AE->users()) { 1257 Instruction *UI = cast<Instruction>(U); 1258 if (TheLoop->contains(UI)) 1259 continue; 1260 LLVM_DEBUG( 1261 dbgs() 1262 << "LV: Cannot fold tail by masking, loop has an outside user for " 1263 << *UI << "\n"); 1264 return false; 1265 } 1266 } 1267 1268 // The list of pointers that we can safely read and write to remains empty. 1269 SmallPtrSet<Value *, 8> SafePointers; 1270 1271 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1272 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1273 1274 // Check and mark all blocks for predication, including those that ordinarily 1275 // do not need predication such as the header block. 1276 for (BasicBlock *BB : TheLoop->blocks()) { 1277 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1278 TmpConditionalAssumes, 1279 /* MaskAllLoads= */ true)) { 1280 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1281 return false; 1282 } 1283 } 1284 1285 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1286 1287 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1288 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1289 TmpConditionalAssumes.end()); 1290 1291 return true; 1292 } 1293 1294 } // namespace llvm 1295