1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/TargetLibraryInfo.h" 22 #include "llvm/Analysis/TargetTransformInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Analysis/VectorUtils.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Transforms/Utils/SizeOpts.h" 28 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 29 30 using namespace llvm; 31 using namespace PatternMatch; 32 33 #define LV_NAME "loop-vectorize" 34 #define DEBUG_TYPE LV_NAME 35 36 extern cl::opt<bool> EnableVPlanPredication; 37 38 static cl::opt<bool> 39 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 40 cl::desc("Enable if-conversion during vectorization.")); 41 42 namespace llvm { 43 cl::opt<bool> 44 HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 45 cl::desc("Allow enabling loop hints to reorder " 46 "FP operations during vectorization.")); 47 } 48 49 // TODO: Move size-based thresholds out of legality checking, make cost based 50 // decisions instead of hard thresholds. 51 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 52 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 53 cl::desc("The maximum number of SCEV checks allowed.")); 54 55 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 56 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 57 cl::desc("The maximum number of SCEV checks allowed with a " 58 "vectorize(enable) pragma")); 59 60 static cl::opt<LoopVectorizeHints::ScalableForceKind> 61 ForceScalableVectorization( 62 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 63 cl::Hidden, 64 cl::desc("Control whether the compiler can use scalable vectors to " 65 "vectorize a loop"), 66 cl::values( 67 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 68 "Scalable vectorization is disabled."), 69 clEnumValN( 70 LoopVectorizeHints::SK_PreferScalable, "preferred", 71 "Scalable vectorization is available and favored when the " 72 "cost is inconclusive."), 73 clEnumValN( 74 LoopVectorizeHints::SK_PreferScalable, "on", 75 "Scalable vectorization is available and favored when the " 76 "cost is inconclusive."))); 77 78 /// Maximum vectorization interleave count. 79 static const unsigned MaxInterleaveFactor = 16; 80 81 namespace llvm { 82 83 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 84 switch (Kind) { 85 case HK_WIDTH: 86 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 87 case HK_INTERLEAVE: 88 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 89 case HK_FORCE: 90 return (Val <= 1); 91 case HK_ISVECTORIZED: 92 case HK_PREDICATE: 93 case HK_SCALABLE: 94 return (Val == 0 || Val == 1); 95 } 96 return false; 97 } 98 99 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 100 bool InterleaveOnlyWhenForced, 101 OptimizationRemarkEmitter &ORE, 102 const TargetTransformInfo *TTI) 103 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 104 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 105 Force("vectorize.enable", FK_Undefined, HK_FORCE), 106 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 107 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 108 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 109 TheLoop(L), ORE(ORE) { 110 // Populate values with existing loop metadata. 111 getHintsFromMetadata(); 112 113 // force-vector-interleave overrides DisableInterleaving. 114 if (VectorizerParams::isInterleaveForced()) 115 Interleave.Value = VectorizerParams::VectorizationInterleave; 116 117 // If the metadata doesn't explicitly specify whether to enable scalable 118 // vectorization, then decide based on the following criteria (increasing 119 // level of priority): 120 // - Target default 121 // - Metadata width 122 // - Force option (always overrides) 123 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 124 if (TTI) 125 Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 126 : SK_FixedWidthOnly; 127 128 if (Width.Value) 129 // If the width is set, but the metadata says nothing about the scalable 130 // property, then assume it concerns only a fixed-width UserVF. 131 // If width is not set, the flag takes precedence. 132 Scalable.Value = SK_FixedWidthOnly; 133 } 134 135 // If the flag is set to force any use of scalable vectors, override the loop 136 // hints. 137 if (ForceScalableVectorization.getValue() != 138 LoopVectorizeHints::SK_Unspecified) 139 Scalable.Value = ForceScalableVectorization.getValue(); 140 141 // Scalable vectorization is disabled if no preference is specified. 142 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 143 Scalable.Value = SK_FixedWidthOnly; 144 145 if (IsVectorized.Value != 1) 146 // If the vectorization width and interleaving count are both 1 then 147 // consider the loop to have been already vectorized because there's 148 // nothing more that we can do. 149 IsVectorized.Value = 150 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 151 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 152 << "LV: Interleaving disabled by the pass manager\n"); 153 } 154 155 void LoopVectorizeHints::setAlreadyVectorized() { 156 LLVMContext &Context = TheLoop->getHeader()->getContext(); 157 158 MDNode *IsVectorizedMD = MDNode::get( 159 Context, 160 {MDString::get(Context, "llvm.loop.isvectorized"), 161 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 162 MDNode *LoopID = TheLoop->getLoopID(); 163 MDNode *NewLoopID = 164 makePostTransformationMetadata(Context, LoopID, 165 {Twine(Prefix(), "vectorize.").str(), 166 Twine(Prefix(), "interleave.").str()}, 167 {IsVectorizedMD}); 168 TheLoop->setLoopID(NewLoopID); 169 170 // Update internal cache. 171 IsVectorized.Value = 1; 172 } 173 174 bool LoopVectorizeHints::allowVectorization( 175 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 176 if (getForce() == LoopVectorizeHints::FK_Disabled) { 177 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 178 emitRemarkWithHints(); 179 return false; 180 } 181 182 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 183 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 184 emitRemarkWithHints(); 185 return false; 186 } 187 188 if (getIsVectorized() == 1) { 189 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 190 // FIXME: Add interleave.disable metadata. This will allow 191 // vectorize.disable to be used without disabling the pass and errors 192 // to differentiate between disabled vectorization and a width of 1. 193 ORE.emit([&]() { 194 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 195 "AllDisabled", L->getStartLoc(), 196 L->getHeader()) 197 << "loop not vectorized: vectorization and interleaving are " 198 "explicitly disabled, or the loop has already been " 199 "vectorized"; 200 }); 201 return false; 202 } 203 204 return true; 205 } 206 207 void LoopVectorizeHints::emitRemarkWithHints() const { 208 using namespace ore; 209 210 ORE.emit([&]() { 211 if (Force.Value == LoopVectorizeHints::FK_Disabled) 212 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 213 TheLoop->getStartLoc(), 214 TheLoop->getHeader()) 215 << "loop not vectorized: vectorization is explicitly disabled"; 216 else { 217 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 218 TheLoop->getStartLoc(), TheLoop->getHeader()); 219 R << "loop not vectorized"; 220 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 221 R << " (Force=" << NV("Force", true); 222 if (Width.Value != 0) 223 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 224 if (getInterleave() != 0) 225 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 226 R << ")"; 227 } 228 return R; 229 } 230 }); 231 } 232 233 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 234 if (getWidth() == ElementCount::getFixed(1)) 235 return LV_NAME; 236 if (getForce() == LoopVectorizeHints::FK_Disabled) 237 return LV_NAME; 238 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 239 return LV_NAME; 240 return OptimizationRemarkAnalysis::AlwaysPrint; 241 } 242 243 bool LoopVectorizeHints::allowReordering() const { 244 // Allow the vectorizer to change the order of operations if enabling 245 // loop hints are provided 246 ElementCount EC = getWidth(); 247 return HintsAllowReordering && 248 (getForce() == LoopVectorizeHints::FK_Enabled || 249 EC.getKnownMinValue() > 1); 250 } 251 252 void LoopVectorizeHints::getHintsFromMetadata() { 253 MDNode *LoopID = TheLoop->getLoopID(); 254 if (!LoopID) 255 return; 256 257 // First operand should refer to the loop id itself. 258 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 259 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 260 261 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 262 const MDString *S = nullptr; 263 SmallVector<Metadata *, 4> Args; 264 265 // The expected hint is either a MDString or a MDNode with the first 266 // operand a MDString. 267 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 268 if (!MD || MD->getNumOperands() == 0) 269 continue; 270 S = dyn_cast<MDString>(MD->getOperand(0)); 271 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 272 Args.push_back(MD->getOperand(i)); 273 } else { 274 S = dyn_cast<MDString>(LoopID->getOperand(i)); 275 assert(Args.size() == 0 && "too many arguments for MDString"); 276 } 277 278 if (!S) 279 continue; 280 281 // Check if the hint starts with the loop metadata prefix. 282 StringRef Name = S->getString(); 283 if (Args.size() == 1) 284 setHint(Name, Args[0]); 285 } 286 } 287 288 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 289 if (!Name.startswith(Prefix())) 290 return; 291 Name = Name.substr(Prefix().size(), StringRef::npos); 292 293 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 294 if (!C) 295 return; 296 unsigned Val = C->getZExtValue(); 297 298 Hint *Hints[] = {&Width, &Interleave, &Force, 299 &IsVectorized, &Predicate, &Scalable}; 300 for (auto H : Hints) { 301 if (Name == H->Name) { 302 if (H->validate(Val)) 303 H->Value = Val; 304 else 305 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 306 break; 307 } 308 } 309 } 310 311 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 312 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 313 // executing the inner loop will execute the same iterations). This check is 314 // very constrained for now but it will be relaxed in the future. \p Lp is 315 // considered uniform if it meets all the following conditions: 316 // 1) it has a canonical IV (starting from 0 and with stride 1), 317 // 2) its latch terminator is a conditional branch and, 318 // 3) its latch condition is a compare instruction whose operands are the 319 // canonical IV and an OuterLp invariant. 320 // This check doesn't take into account the uniformity of other conditions not 321 // related to the loop latch because they don't affect the loop uniformity. 322 // 323 // NOTE: We decided to keep all these checks and its associated documentation 324 // together so that we can easily have a picture of the current supported loop 325 // nests. However, some of the current checks don't depend on \p OuterLp and 326 // would be redundantly executed for each \p Lp if we invoked this function for 327 // different candidate outer loops. This is not the case for now because we 328 // don't currently have the infrastructure to evaluate multiple candidate outer 329 // loops and \p OuterLp will be a fixed parameter while we only support explicit 330 // outer loop vectorization. It's also very likely that these checks go away 331 // before introducing the aforementioned infrastructure. However, if this is not 332 // the case, we should move the \p OuterLp independent checks to a separate 333 // function that is only executed once for each \p Lp. 334 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 335 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 336 337 // If Lp is the outer loop, it's uniform by definition. 338 if (Lp == OuterLp) 339 return true; 340 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 341 342 // 1. 343 PHINode *IV = Lp->getCanonicalInductionVariable(); 344 if (!IV) { 345 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 346 return false; 347 } 348 349 // 2. 350 BasicBlock *Latch = Lp->getLoopLatch(); 351 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 352 if (!LatchBr || LatchBr->isUnconditional()) { 353 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 354 return false; 355 } 356 357 // 3. 358 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 359 if (!LatchCmp) { 360 LLVM_DEBUG( 361 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 362 return false; 363 } 364 365 Value *CondOp0 = LatchCmp->getOperand(0); 366 Value *CondOp1 = LatchCmp->getOperand(1); 367 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 368 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 369 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 370 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 371 return false; 372 } 373 374 return true; 375 } 376 377 // Return true if \p Lp and all its nested loops are uniform with regard to \p 378 // OuterLp. 379 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 380 if (!isUniformLoop(Lp, OuterLp)) 381 return false; 382 383 // Check if nested loops are uniform. 384 for (Loop *SubLp : *Lp) 385 if (!isUniformLoopNest(SubLp, OuterLp)) 386 return false; 387 388 return true; 389 } 390 391 /// Check whether it is safe to if-convert this phi node. 392 /// 393 /// Phi nodes with constant expressions that can trap are not safe to if 394 /// convert. 395 static bool canIfConvertPHINodes(BasicBlock *BB) { 396 for (PHINode &Phi : BB->phis()) { 397 for (Value *V : Phi.incoming_values()) 398 if (auto *C = dyn_cast<Constant>(V)) 399 if (C->canTrap()) 400 return false; 401 } 402 return true; 403 } 404 405 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 406 if (Ty->isPointerTy()) 407 return DL.getIntPtrType(Ty); 408 409 // It is possible that char's or short's overflow when we ask for the loop's 410 // trip count, work around this by changing the type size. 411 if (Ty->getScalarSizeInBits() < 32) 412 return Type::getInt32Ty(Ty->getContext()); 413 414 return Ty; 415 } 416 417 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 418 Ty0 = convertPointerToIntegerType(DL, Ty0); 419 Ty1 = convertPointerToIntegerType(DL, Ty1); 420 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 421 return Ty0; 422 return Ty1; 423 } 424 425 /// Check that the instruction has outside loop users and is not an 426 /// identified reduction variable. 427 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 428 SmallPtrSetImpl<Value *> &AllowedExit) { 429 // Reductions, Inductions and non-header phis are allowed to have exit users. All 430 // other instructions must not have external users. 431 if (!AllowedExit.count(Inst)) 432 // Check that all of the users of the loop are inside the BB. 433 for (User *U : Inst->users()) { 434 Instruction *UI = cast<Instruction>(U); 435 // This user may be a reduction exit value. 436 if (!TheLoop->contains(UI)) { 437 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 438 return true; 439 } 440 } 441 return false; 442 } 443 444 /// Returns true if A and B have same pointer operands or same SCEVs addresses 445 static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 446 StoreInst *B) { 447 // Compare store 448 if (A == B) 449 return true; 450 451 // Otherwise Compare pointers 452 Value *APtr = A->getPointerOperand(); 453 Value *BPtr = B->getPointerOperand(); 454 if (APtr == BPtr) 455 return true; 456 457 // Otherwise compare address SCEVs 458 if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) 459 return true; 460 461 return false; 462 } 463 464 int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 465 Value *Ptr) const { 466 const ValueToValueMap &Strides = 467 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 468 469 Function *F = TheLoop->getHeader()->getParent(); 470 bool OptForSize = F->hasOptSize() || 471 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 472 PGSOQueryType::IRPass); 473 bool CanAddPredicate = !OptForSize; 474 int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 475 CanAddPredicate, false); 476 if (Stride == 1 || Stride == -1) 477 return Stride; 478 return 0; 479 } 480 481 bool LoopVectorizationLegality::isUniform(Value *V) { 482 return LAI->isUniform(V); 483 } 484 485 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 486 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 487 // Store the result and return it at the end instead of exiting early, in case 488 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 489 bool Result = true; 490 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 491 492 for (BasicBlock *BB : TheLoop->blocks()) { 493 // Check whether the BB terminator is a BranchInst. Any other terminator is 494 // not supported yet. 495 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 496 if (!Br) { 497 reportVectorizationFailure("Unsupported basic block terminator", 498 "loop control flow is not understood by vectorizer", 499 "CFGNotUnderstood", ORE, TheLoop); 500 if (DoExtraAnalysis) 501 Result = false; 502 else 503 return false; 504 } 505 506 // Check whether the BranchInst is a supported one. Only unconditional 507 // branches, conditional branches with an outer loop invariant condition or 508 // backedges are supported. 509 // FIXME: We skip these checks when VPlan predication is enabled as we 510 // want to allow divergent branches. This whole check will be removed 511 // once VPlan predication is on by default. 512 if (!EnableVPlanPredication && Br && Br->isConditional() && 513 !TheLoop->isLoopInvariant(Br->getCondition()) && 514 !LI->isLoopHeader(Br->getSuccessor(0)) && 515 !LI->isLoopHeader(Br->getSuccessor(1))) { 516 reportVectorizationFailure("Unsupported conditional branch", 517 "loop control flow is not understood by vectorizer", 518 "CFGNotUnderstood", ORE, TheLoop); 519 if (DoExtraAnalysis) 520 Result = false; 521 else 522 return false; 523 } 524 } 525 526 // Check whether inner loops are uniform. At this point, we only support 527 // simple outer loops scenarios with uniform nested loops. 528 if (!isUniformLoopNest(TheLoop /*loop nest*/, 529 TheLoop /*context outer loop*/)) { 530 reportVectorizationFailure("Outer loop contains divergent loops", 531 "loop control flow is not understood by vectorizer", 532 "CFGNotUnderstood", ORE, TheLoop); 533 if (DoExtraAnalysis) 534 Result = false; 535 else 536 return false; 537 } 538 539 // Check whether we are able to set up outer loop induction. 540 if (!setupOuterLoopInductions()) { 541 reportVectorizationFailure("Unsupported outer loop Phi(s)", 542 "Unsupported outer loop Phi(s)", 543 "UnsupportedPhi", ORE, TheLoop); 544 if (DoExtraAnalysis) 545 Result = false; 546 else 547 return false; 548 } 549 550 return Result; 551 } 552 553 void LoopVectorizationLegality::addInductionPhi( 554 PHINode *Phi, const InductionDescriptor &ID, 555 SmallPtrSetImpl<Value *> &AllowedExit) { 556 Inductions[Phi] = ID; 557 558 // In case this induction also comes with casts that we know we can ignore 559 // in the vectorized loop body, record them here. All casts could be recorded 560 // here for ignoring, but suffices to record only the first (as it is the 561 // only one that may bw used outside the cast sequence). 562 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 563 if (!Casts.empty()) 564 InductionCastsToIgnore.insert(*Casts.begin()); 565 566 Type *PhiTy = Phi->getType(); 567 const DataLayout &DL = Phi->getModule()->getDataLayout(); 568 569 // Get the widest type. 570 if (!PhiTy->isFloatingPointTy()) { 571 if (!WidestIndTy) 572 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 573 else 574 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 575 } 576 577 // Int inductions are special because we only allow one IV. 578 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 579 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 580 isa<Constant>(ID.getStartValue()) && 581 cast<Constant>(ID.getStartValue())->isNullValue()) { 582 583 // Use the phi node with the widest type as induction. Use the last 584 // one if there are multiple (no good reason for doing this other 585 // than it is expedient). We've checked that it begins at zero and 586 // steps by one, so this is a canonical induction variable. 587 if (!PrimaryInduction || PhiTy == WidestIndTy) 588 PrimaryInduction = Phi; 589 } 590 591 // Both the PHI node itself, and the "post-increment" value feeding 592 // back into the PHI node may have external users. 593 // We can allow those uses, except if the SCEVs we have for them rely 594 // on predicates that only hold within the loop, since allowing the exit 595 // currently means re-using this SCEV outside the loop (see PR33706 for more 596 // details). 597 if (PSE.getPredicate().isAlwaysTrue()) { 598 AllowedExit.insert(Phi); 599 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 600 } 601 602 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 603 } 604 605 bool LoopVectorizationLegality::setupOuterLoopInductions() { 606 BasicBlock *Header = TheLoop->getHeader(); 607 608 // Returns true if a given Phi is a supported induction. 609 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 610 InductionDescriptor ID; 611 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 612 ID.getKind() == InductionDescriptor::IK_IntInduction) { 613 addInductionPhi(&Phi, ID, AllowedExit); 614 return true; 615 } else { 616 // Bail out for any Phi in the outer loop header that is not a supported 617 // induction. 618 LLVM_DEBUG( 619 dbgs() 620 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 621 return false; 622 } 623 }; 624 625 if (llvm::all_of(Header->phis(), isSupportedPhi)) 626 return true; 627 else 628 return false; 629 } 630 631 /// Checks if a function is scalarizable according to the TLI, in 632 /// the sense that it should be vectorized and then expanded in 633 /// multiple scalar calls. This is represented in the 634 /// TLI via mappings that do not specify a vector name, as in the 635 /// following example: 636 /// 637 /// const VecDesc VecIntrinsics[] = { 638 /// {"llvm.phx.abs.i32", "", 4} 639 /// }; 640 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 641 const StringRef ScalarName = CI.getCalledFunction()->getName(); 642 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 643 // Check that all known VFs are not associated to a vector 644 // function, i.e. the vector name is emty. 645 if (Scalarize) { 646 ElementCount WidestFixedVF, WidestScalableVF; 647 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 648 for (ElementCount VF = ElementCount::getFixed(2); 649 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 650 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 651 for (ElementCount VF = ElementCount::getScalable(1); 652 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 653 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 654 assert((WidestScalableVF.isZero() || !Scalarize) && 655 "Caller may decide to scalarize a variant using a scalable VF"); 656 } 657 return Scalarize; 658 } 659 660 bool LoopVectorizationLegality::canVectorizeInstrs() { 661 BasicBlock *Header = TheLoop->getHeader(); 662 663 // For each block in the loop. 664 for (BasicBlock *BB : TheLoop->blocks()) { 665 // Scan the instructions in the block and look for hazards. 666 for (Instruction &I : *BB) { 667 if (auto *Phi = dyn_cast<PHINode>(&I)) { 668 Type *PhiTy = Phi->getType(); 669 // Check that this PHI type is allowed. 670 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 671 !PhiTy->isPointerTy()) { 672 reportVectorizationFailure("Found a non-int non-pointer PHI", 673 "loop control flow is not understood by vectorizer", 674 "CFGNotUnderstood", ORE, TheLoop); 675 return false; 676 } 677 678 // If this PHINode is not in the header block, then we know that we 679 // can convert it to select during if-conversion. No need to check if 680 // the PHIs in this block are induction or reduction variables. 681 if (BB != Header) { 682 // Non-header phi nodes that have outside uses can be vectorized. Add 683 // them to the list of allowed exits. 684 // Unsafe cyclic dependencies with header phis are identified during 685 // legalization for reduction, induction and first order 686 // recurrences. 687 AllowedExit.insert(&I); 688 continue; 689 } 690 691 // We only allow if-converted PHIs with exactly two incoming values. 692 if (Phi->getNumIncomingValues() != 2) { 693 reportVectorizationFailure("Found an invalid PHI", 694 "loop control flow is not understood by vectorizer", 695 "CFGNotUnderstood", ORE, TheLoop, Phi); 696 return false; 697 } 698 699 RecurrenceDescriptor RedDes; 700 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 701 DT, PSE.getSE())) { 702 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 703 AllowedExit.insert(RedDes.getLoopExitInstr()); 704 Reductions[Phi] = RedDes; 705 continue; 706 } 707 708 // TODO: Instead of recording the AllowedExit, it would be good to record the 709 // complementary set: NotAllowedExit. These include (but may not be 710 // limited to): 711 // 1. Reduction phis as they represent the one-before-last value, which 712 // is not available when vectorized 713 // 2. Induction phis and increment when SCEV predicates cannot be used 714 // outside the loop - see addInductionPhi 715 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 716 // outside the loop - see call to hasOutsideLoopUser in the non-phi 717 // handling below 718 // 4. FirstOrderRecurrence phis that can possibly be handled by 719 // extraction. 720 // By recording these, we can then reason about ways to vectorize each 721 // of these NotAllowedExit. 722 InductionDescriptor ID; 723 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 724 addInductionPhi(Phi, ID, AllowedExit); 725 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 726 continue; 727 } 728 729 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 730 SinkAfter, DT)) { 731 AllowedExit.insert(Phi); 732 FirstOrderRecurrences.insert(Phi); 733 continue; 734 } 735 736 // As a last resort, coerce the PHI to a AddRec expression 737 // and re-try classifying it a an induction PHI. 738 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 739 addInductionPhi(Phi, ID, AllowedExit); 740 continue; 741 } 742 743 reportVectorizationFailure("Found an unidentified PHI", 744 "value that could not be identified as " 745 "reduction is used outside the loop", 746 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 747 return false; 748 } // end of PHI handling 749 750 // We handle calls that: 751 // * Are debug info intrinsics. 752 // * Have a mapping to an IR intrinsic. 753 // * Have a vector version available. 754 auto *CI = dyn_cast<CallInst>(&I); 755 756 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 757 !isa<DbgInfoIntrinsic>(CI) && 758 !(CI->getCalledFunction() && TLI && 759 (!VFDatabase::getMappings(*CI).empty() || 760 isTLIScalarize(*TLI, *CI)))) { 761 // If the call is a recognized math libary call, it is likely that 762 // we can vectorize it given loosened floating-point constraints. 763 LibFunc Func; 764 bool IsMathLibCall = 765 TLI && CI->getCalledFunction() && 766 CI->getType()->isFloatingPointTy() && 767 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 768 TLI->hasOptimizedCodeGen(Func); 769 770 if (IsMathLibCall) { 771 // TODO: Ideally, we should not use clang-specific language here, 772 // but it's hard to provide meaningful yet generic advice. 773 // Also, should this be guarded by allowExtraAnalysis() and/or be part 774 // of the returned info from isFunctionVectorizable()? 775 reportVectorizationFailure( 776 "Found a non-intrinsic callsite", 777 "library call cannot be vectorized. " 778 "Try compiling with -fno-math-errno, -ffast-math, " 779 "or similar flags", 780 "CantVectorizeLibcall", ORE, TheLoop, CI); 781 } else { 782 reportVectorizationFailure("Found a non-intrinsic callsite", 783 "call instruction cannot be vectorized", 784 "CantVectorizeLibcall", ORE, TheLoop, CI); 785 } 786 return false; 787 } 788 789 // Some intrinsics have scalar arguments and should be same in order for 790 // them to be vectorized (i.e. loop invariant). 791 if (CI) { 792 auto *SE = PSE.getSE(); 793 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 794 for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 795 if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { 796 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 797 reportVectorizationFailure("Found unvectorizable intrinsic", 798 "intrinsic instruction cannot be vectorized", 799 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 800 return false; 801 } 802 } 803 } 804 805 // Check that the instruction return type is vectorizable. 806 // Also, we can't vectorize extractelement instructions. 807 if ((!VectorType::isValidElementType(I.getType()) && 808 !I.getType()->isVoidTy()) || 809 isa<ExtractElementInst>(I)) { 810 reportVectorizationFailure("Found unvectorizable type", 811 "instruction return type cannot be vectorized", 812 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 813 return false; 814 } 815 816 // Check that the stored type is vectorizable. 817 if (auto *ST = dyn_cast<StoreInst>(&I)) { 818 Type *T = ST->getValueOperand()->getType(); 819 if (!VectorType::isValidElementType(T)) { 820 reportVectorizationFailure("Store instruction cannot be vectorized", 821 "store instruction cannot be vectorized", 822 "CantVectorizeStore", ORE, TheLoop, ST); 823 return false; 824 } 825 826 // For nontemporal stores, check that a nontemporal vector version is 827 // supported on the target. 828 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 829 // Arbitrarily try a vector of 2 elements. 830 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 831 assert(VecTy && "did not find vectorized version of stored type"); 832 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 833 reportVectorizationFailure( 834 "nontemporal store instruction cannot be vectorized", 835 "nontemporal store instruction cannot be vectorized", 836 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 837 return false; 838 } 839 } 840 841 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 842 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 843 // For nontemporal loads, check that a nontemporal vector version is 844 // supported on the target (arbitrarily try a vector of 2 elements). 845 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 846 assert(VecTy && "did not find vectorized version of load type"); 847 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 848 reportVectorizationFailure( 849 "nontemporal load instruction cannot be vectorized", 850 "nontemporal load instruction cannot be vectorized", 851 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 852 return false; 853 } 854 } 855 856 // FP instructions can allow unsafe algebra, thus vectorizable by 857 // non-IEEE-754 compliant SIMD units. 858 // This applies to floating-point math operations and calls, not memory 859 // operations, shuffles, or casts, as they don't change precision or 860 // semantics. 861 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 862 !I.isFast()) { 863 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 864 Hints->setPotentiallyUnsafe(); 865 } 866 867 // Reduction instructions are allowed to have exit users. 868 // All other instructions must not have external users. 869 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 870 // We can safely vectorize loops where instructions within the loop are 871 // used outside the loop only if the SCEV predicates within the loop is 872 // same as outside the loop. Allowing the exit means reusing the SCEV 873 // outside the loop. 874 if (PSE.getPredicate().isAlwaysTrue()) { 875 AllowedExit.insert(&I); 876 continue; 877 } 878 reportVectorizationFailure("Value cannot be used outside the loop", 879 "value cannot be used outside the loop", 880 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 881 return false; 882 } 883 } // next instr. 884 } 885 886 if (!PrimaryInduction) { 887 if (Inductions.empty()) { 888 reportVectorizationFailure("Did not find one integer induction var", 889 "loop induction variable could not be identified", 890 "NoInductionVariable", ORE, TheLoop); 891 return false; 892 } else if (!WidestIndTy) { 893 reportVectorizationFailure("Did not find one integer induction var", 894 "integer loop induction variable could not be identified", 895 "NoIntegerInductionVariable", ORE, TheLoop); 896 return false; 897 } else { 898 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 899 } 900 } 901 902 // For first order recurrences, we use the previous value (incoming value from 903 // the latch) to check if it dominates all users of the recurrence. Bail out 904 // if we have to sink such an instruction for another recurrence, as the 905 // dominance requirement may not hold after sinking. 906 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 907 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 908 Instruction *V = 909 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 910 return SinkAfter.find(V) != SinkAfter.end(); 911 })) 912 return false; 913 914 // Now we know the widest induction type, check if our found induction 915 // is the same size. If it's not, unset it here and InnerLoopVectorizer 916 // will create another. 917 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 918 PrimaryInduction = nullptr; 919 920 return true; 921 } 922 923 bool LoopVectorizationLegality::canVectorizeMemory() { 924 LAI = &(*GetLAA)(*TheLoop); 925 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 926 if (LAR) { 927 ORE->emit([&]() { 928 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 929 "loop not vectorized: ", *LAR); 930 }); 931 } 932 933 if (!LAI->canVectorizeMemory()) 934 return false; 935 936 // We can vectorize stores to invariant address when final reduction value is 937 // guaranteed to be stored at the end of the loop. Also, if decision to 938 // vectorize loop is made, runtime checks are added so as to make sure that 939 // invariant address won't alias with any other objects. 940 if (!LAI->getStoresToInvariantAddresses().empty()) { 941 // For each invariant address, check its last stored value is unconditional. 942 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 943 if (isInvariantStoreOfReduction(SI) && 944 blockNeedsPredication(SI->getParent())) { 945 reportVectorizationFailure( 946 "We don't allow storing to uniform addresses", 947 "write of conditional recurring variant value to a loop " 948 "invariant address could not be vectorized", 949 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 950 return false; 951 } 952 } 953 954 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 955 // For each invariant address, check its last stored value is the result 956 // of one of our reductions. 957 // 958 // We do not check if dependence with loads exists because they are 959 // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this 960 // behaviour changes we have to modify this code. 961 ScalarEvolution *SE = PSE.getSE(); 962 SmallVector<StoreInst *, 4> UnhandledStores; 963 for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 964 if (isInvariantStoreOfReduction(SI)) { 965 // Earlier stores to this address are effectively deadcode. 966 // With opaque pointers it is possible for one pointer to be used with 967 // different sizes of stored values: 968 // store i32 0, ptr %x 969 // store i8 0, ptr %x 970 // The latest store doesn't complitely overwrite the first one in the 971 // example. That is why we have to make sure that types of stored 972 // values are same. 973 // TODO: Check that bitwidth of unhandled store is smaller then the 974 // one that overwrites it and add a test. 975 erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 976 return storeToSameAddress(SE, SI, I) && 977 I->getValueOperand()->getType() == 978 SI->getValueOperand()->getType(); 979 }); 980 continue; 981 } 982 UnhandledStores.push_back(SI); 983 } 984 985 bool IsOK = UnhandledStores.empty(); 986 // TODO: we should also validate against InvariantMemSets. 987 if (!IsOK) { 988 reportVectorizationFailure( 989 "We don't allow storing to uniform addresses", 990 "write to a loop invariant address could not " 991 "be vectorized", 992 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 993 return false; 994 } 995 } 996 } 997 998 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 999 PSE.addPredicate(LAI->getPSE().getPredicate()); 1000 return true; 1001 } 1002 1003 bool LoopVectorizationLegality::canVectorizeFPMath( 1004 bool EnableStrictReductions) { 1005 1006 // First check if there is any ExactFP math or if we allow reassociations 1007 if (!Requirements->getExactFPInst() || Hints->allowReordering()) 1008 return true; 1009 1010 // If the above is false, we have ExactFPMath & do not allow reordering. 1011 // If the EnableStrictReductions flag is set, first check if we have any 1012 // Exact FP induction vars, which we cannot vectorize. 1013 if (!EnableStrictReductions || 1014 any_of(getInductionVars(), [&](auto &Induction) -> bool { 1015 InductionDescriptor IndDesc = Induction.second; 1016 return IndDesc.getExactFPMathInst(); 1017 })) 1018 return false; 1019 1020 // We can now only vectorize if all reductions with Exact FP math also 1021 // have the isOrdered flag set, which indicates that we can move the 1022 // reduction operations in-loop, and do not have intermediate store. 1023 return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 1024 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1025 return !RdxDesc.hasExactFPMath() || 1026 (RdxDesc.isOrdered() && !RdxDesc.IntermediateStore); 1027 })); 1028 } 1029 1030 bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1031 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1032 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1033 return RdxDesc.IntermediateStore == SI; 1034 }); 1035 } 1036 1037 bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1038 return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1039 const RecurrenceDescriptor &RdxDesc = Reduction.second; 1040 if (!RdxDesc.IntermediateStore) 1041 return false; 1042 1043 ScalarEvolution *SE = PSE.getSE(); 1044 Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1045 return V == InvariantAddress || 1046 SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1047 }); 1048 } 1049 1050 bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1051 Value *In0 = const_cast<Value *>(V); 1052 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1053 if (!PN) 1054 return false; 1055 1056 return Inductions.count(PN); 1057 } 1058 1059 const InductionDescriptor * 1060 LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1061 if (!isInductionPhi(Phi)) 1062 return nullptr; 1063 auto &ID = getInductionVars().find(Phi)->second; 1064 if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1065 ID.getKind() == InductionDescriptor::IK_FpInduction) 1066 return &ID; 1067 return nullptr; 1068 } 1069 1070 const InductionDescriptor * 1071 LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 1072 if (!isInductionPhi(Phi)) 1073 return nullptr; 1074 auto &ID = getInductionVars().find(Phi)->second; 1075 if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 1076 return &ID; 1077 return nullptr; 1078 } 1079 1080 bool LoopVectorizationLegality::isCastedInductionVariable( 1081 const Value *V) const { 1082 auto *Inst = dyn_cast<Instruction>(V); 1083 return (Inst && InductionCastsToIgnore.count(Inst)); 1084 } 1085 1086 bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1087 return isInductionPhi(V) || isCastedInductionVariable(V); 1088 } 1089 1090 bool LoopVectorizationLegality::isFirstOrderRecurrence( 1091 const PHINode *Phi) const { 1092 return FirstOrderRecurrences.count(Phi); 1093 } 1094 1095 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1096 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1097 } 1098 1099 bool LoopVectorizationLegality::blockCanBePredicated( 1100 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1101 SmallPtrSetImpl<const Instruction *> &MaskedOp, 1102 SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 1103 for (Instruction &I : *BB) { 1104 // Check that we don't have a constant expression that can trap as operand. 1105 for (Value *Operand : I.operands()) { 1106 if (auto *C = dyn_cast<Constant>(Operand)) 1107 if (C->canTrap()) 1108 return false; 1109 } 1110 1111 // We can predicate blocks with calls to assume, as long as we drop them in 1112 // case we flatten the CFG via predication. 1113 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 1114 ConditionalAssumes.insert(&I); 1115 continue; 1116 } 1117 1118 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1119 // TODO: there might be cases that it should block the vectorization. Let's 1120 // ignore those for now. 1121 if (isa<NoAliasScopeDeclInst>(&I)) 1122 continue; 1123 1124 // We might be able to hoist the load. 1125 if (I.mayReadFromMemory()) { 1126 auto *LI = dyn_cast<LoadInst>(&I); 1127 if (!LI) 1128 return false; 1129 if (!SafePtrs.count(LI->getPointerOperand())) { 1130 MaskedOp.insert(LI); 1131 continue; 1132 } 1133 } 1134 1135 if (I.mayWriteToMemory()) { 1136 auto *SI = dyn_cast<StoreInst>(&I); 1137 if (!SI) 1138 return false; 1139 // Predicated store requires some form of masking: 1140 // 1) masked store HW instruction, 1141 // 2) emulation via load-blend-store (only if safe and legal to do so, 1142 // be aware on the race conditions), or 1143 // 3) element-by-element predicate check and scalar store. 1144 MaskedOp.insert(SI); 1145 continue; 1146 } 1147 if (I.mayThrow()) 1148 return false; 1149 } 1150 1151 return true; 1152 } 1153 1154 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1155 if (!EnableIfConversion) { 1156 reportVectorizationFailure("If-conversion is disabled", 1157 "if-conversion is disabled", 1158 "IfConversionDisabled", 1159 ORE, TheLoop); 1160 return false; 1161 } 1162 1163 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1164 1165 // A list of pointers which are known to be dereferenceable within scope of 1166 // the loop body for each iteration of the loop which executes. That is, 1167 // the memory pointed to can be dereferenced (with the access size implied by 1168 // the value's type) unconditionally within the loop header without 1169 // introducing a new fault. 1170 SmallPtrSet<Value *, 8> SafePointers; 1171 1172 // Collect safe addresses. 1173 for (BasicBlock *BB : TheLoop->blocks()) { 1174 if (!blockNeedsPredication(BB)) { 1175 for (Instruction &I : *BB) 1176 if (auto *Ptr = getLoadStorePointerOperand(&I)) 1177 SafePointers.insert(Ptr); 1178 continue; 1179 } 1180 1181 // For a block which requires predication, a address may be safe to access 1182 // in the loop w/o predication if we can prove dereferenceability facts 1183 // sufficient to ensure it'll never fault within the loop. For the moment, 1184 // we restrict this to loads; stores are more complicated due to 1185 // concurrency restrictions. 1186 ScalarEvolution &SE = *PSE.getSE(); 1187 for (Instruction &I : *BB) { 1188 LoadInst *LI = dyn_cast<LoadInst>(&I); 1189 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1190 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1191 SafePointers.insert(LI->getPointerOperand()); 1192 } 1193 } 1194 1195 // Collect the blocks that need predication. 1196 BasicBlock *Header = TheLoop->getHeader(); 1197 for (BasicBlock *BB : TheLoop->blocks()) { 1198 // We don't support switch statements inside loops. 1199 if (!isa<BranchInst>(BB->getTerminator())) { 1200 reportVectorizationFailure("Loop contains a switch statement", 1201 "loop contains a switch statement", 1202 "LoopContainsSwitch", ORE, TheLoop, 1203 BB->getTerminator()); 1204 return false; 1205 } 1206 1207 // We must be able to predicate all blocks that need to be predicated. 1208 if (blockNeedsPredication(BB)) { 1209 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1210 ConditionalAssumes)) { 1211 reportVectorizationFailure( 1212 "Control flow cannot be substituted for a select", 1213 "control flow cannot be substituted for a select", 1214 "NoCFGForSelect", ORE, TheLoop, 1215 BB->getTerminator()); 1216 return false; 1217 } 1218 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1219 reportVectorizationFailure( 1220 "Control flow cannot be substituted for a select", 1221 "control flow cannot be substituted for a select", 1222 "NoCFGForSelect", ORE, TheLoop, 1223 BB->getTerminator()); 1224 return false; 1225 } 1226 } 1227 1228 // We can if-convert this loop. 1229 return true; 1230 } 1231 1232 // Helper function to canVectorizeLoopNestCFG. 1233 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1234 bool UseVPlanNativePath) { 1235 assert((UseVPlanNativePath || Lp->isInnermost()) && 1236 "VPlan-native path is not enabled."); 1237 1238 // TODO: ORE should be improved to show more accurate information when an 1239 // outer loop can't be vectorized because a nested loop is not understood or 1240 // legal. Something like: "outer_loop_location: loop not vectorized: 1241 // (inner_loop_location) loop control flow is not understood by vectorizer". 1242 1243 // Store the result and return it at the end instead of exiting early, in case 1244 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1245 bool Result = true; 1246 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1247 1248 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1249 // be canonicalized. 1250 if (!Lp->getLoopPreheader()) { 1251 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1252 "loop control flow is not understood by vectorizer", 1253 "CFGNotUnderstood", ORE, TheLoop); 1254 if (DoExtraAnalysis) 1255 Result = false; 1256 else 1257 return false; 1258 } 1259 1260 // We must have a single backedge. 1261 if (Lp->getNumBackEdges() != 1) { 1262 reportVectorizationFailure("The loop must have a single backedge", 1263 "loop control flow is not understood by vectorizer", 1264 "CFGNotUnderstood", ORE, TheLoop); 1265 if (DoExtraAnalysis) 1266 Result = false; 1267 else 1268 return false; 1269 } 1270 1271 return Result; 1272 } 1273 1274 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1275 Loop *Lp, bool UseVPlanNativePath) { 1276 // Store the result and return it at the end instead of exiting early, in case 1277 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1278 bool Result = true; 1279 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1280 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1281 if (DoExtraAnalysis) 1282 Result = false; 1283 else 1284 return false; 1285 } 1286 1287 // Recursively check whether the loop control flow of nested loops is 1288 // understood. 1289 for (Loop *SubLp : *Lp) 1290 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1291 if (DoExtraAnalysis) 1292 Result = false; 1293 else 1294 return false; 1295 } 1296 1297 return Result; 1298 } 1299 1300 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1301 // Store the result and return it at the end instead of exiting early, in case 1302 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1303 bool Result = true; 1304 1305 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1306 // Check whether the loop-related control flow in the loop nest is expected by 1307 // vectorizer. 1308 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1309 if (DoExtraAnalysis) 1310 Result = false; 1311 else 1312 return false; 1313 } 1314 1315 // We need to have a loop header. 1316 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1317 << '\n'); 1318 1319 // Specific checks for outer loops. We skip the remaining legal checks at this 1320 // point because they don't support outer loops. 1321 if (!TheLoop->isInnermost()) { 1322 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1323 1324 if (!canVectorizeOuterLoop()) { 1325 reportVectorizationFailure("Unsupported outer loop", 1326 "unsupported outer loop", 1327 "UnsupportedOuterLoop", 1328 ORE, TheLoop); 1329 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1330 // outer loops. 1331 return false; 1332 } 1333 1334 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1335 return Result; 1336 } 1337 1338 assert(TheLoop->isInnermost() && "Inner loop expected."); 1339 // Check if we can if-convert non-single-bb loops. 1340 unsigned NumBlocks = TheLoop->getNumBlocks(); 1341 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1342 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1343 if (DoExtraAnalysis) 1344 Result = false; 1345 else 1346 return false; 1347 } 1348 1349 // Check if we can vectorize the instructions and CFG in this loop. 1350 if (!canVectorizeInstrs()) { 1351 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1352 if (DoExtraAnalysis) 1353 Result = false; 1354 else 1355 return false; 1356 } 1357 1358 // Go over each instruction and look at memory deps. 1359 if (!canVectorizeMemory()) { 1360 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1361 if (DoExtraAnalysis) 1362 Result = false; 1363 else 1364 return false; 1365 } 1366 1367 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1368 << (LAI->getRuntimePointerChecking()->Need 1369 ? " (with a runtime bound check)" 1370 : "") 1371 << "!\n"); 1372 1373 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1374 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1375 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1376 1377 if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 1378 reportVectorizationFailure("Too many SCEV checks needed", 1379 "Too many SCEV assumptions need to be made and checked at runtime", 1380 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1381 if (DoExtraAnalysis) 1382 Result = false; 1383 else 1384 return false; 1385 } 1386 1387 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1388 // we can vectorize, and at this point we don't have any other mem analysis 1389 // which may limit our maximum vectorization factor, so just return true with 1390 // no restrictions. 1391 return Result; 1392 } 1393 1394 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1395 1396 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1397 1398 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1399 1400 for (auto &Reduction : getReductionVars()) 1401 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1402 1403 // TODO: handle non-reduction outside users when tail is folded by masking. 1404 for (auto *AE : AllowedExit) { 1405 // Check that all users of allowed exit values are inside the loop or 1406 // are the live-out of a reduction. 1407 if (ReductionLiveOuts.count(AE)) 1408 continue; 1409 for (User *U : AE->users()) { 1410 Instruction *UI = cast<Instruction>(U); 1411 if (TheLoop->contains(UI)) 1412 continue; 1413 LLVM_DEBUG( 1414 dbgs() 1415 << "LV: Cannot fold tail by masking, loop has an outside user for " 1416 << *UI << "\n"); 1417 return false; 1418 } 1419 } 1420 1421 // The list of pointers that we can safely read and write to remains empty. 1422 SmallPtrSet<Value *, 8> SafePointers; 1423 1424 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1425 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1426 1427 // Check and mark all blocks for predication, including those that ordinarily 1428 // do not need predication such as the header block. 1429 for (BasicBlock *BB : TheLoop->blocks()) { 1430 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1431 TmpConditionalAssumes)) { 1432 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1433 return false; 1434 } 1435 } 1436 1437 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1438 1439 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1440 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1441 TmpConditionalAssumes.end()); 1442 1443 return true; 1444 } 1445 1446 } // namespace llvm 1447