1 //===- LoopVectorizationLegality.cpp --------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file provides loop vectorization legality analysis. Original code 10 // resided in LoopVectorize.cpp for a long time. 11 // 12 // At this point, it is implemented as a utility class, not as an analysis 13 // pass. It should be easy to create an analysis pass around it if there 14 // is a need (but D45420 needs to happen first). 15 // 16 17 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetLibraryInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/SizeOpts.h" 26 #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define LV_NAME "loop-vectorize" 32 #define DEBUG_TYPE LV_NAME 33 34 extern cl::opt<bool> EnableVPlanPredication; 35 36 static cl::opt<bool> 37 EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38 cl::desc("Enable if-conversion during vectorization.")); 39 40 // TODO: Move size-based thresholds out of legality checking, make cost based 41 // decisions instead of hard thresholds. 42 static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 43 "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 44 cl::desc("The maximum number of SCEV checks allowed.")); 45 46 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 47 "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 48 cl::desc("The maximum number of SCEV checks allowed with a " 49 "vectorize(enable) pragma")); 50 51 // FIXME: When scalable vectorization is stable enough, change the default 52 // to SK_PreferFixedWidth. 53 static cl::opt<LoopVectorizeHints::ScalableForceKind> ScalableVectorization( 54 "scalable-vectorization", cl::init(LoopVectorizeHints::SK_FixedWidthOnly), 55 cl::Hidden, 56 cl::desc("Control whether the compiler can use scalable vectors to " 57 "vectorize a loop"), 58 cl::values( 59 clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 60 "Scalable vectorization is disabled."), 61 clEnumValN(LoopVectorizeHints::SK_PreferFixedWidth, "on", 62 "Scalable vectorization is available, but favor fixed-width " 63 "vectorization when the cost is inconclusive."), 64 clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred", 65 "Scalable vectorization is available and favored when the " 66 "cost is inconclusive."))); 67 68 /// Maximum vectorization interleave count. 69 static const unsigned MaxInterleaveFactor = 16; 70 71 namespace llvm { 72 73 bool LoopVectorizeHints::Hint::validate(unsigned Val) { 74 switch (Kind) { 75 case HK_WIDTH: 76 return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 77 case HK_INTERLEAVE: 78 return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 79 case HK_FORCE: 80 return (Val <= 1); 81 case HK_ISVECTORIZED: 82 case HK_PREDICATE: 83 case HK_SCALABLE: 84 return (Val == 0 || Val == 1); 85 } 86 return false; 87 } 88 89 LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 90 bool InterleaveOnlyWhenForced, 91 OptimizationRemarkEmitter &ORE) 92 : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 93 Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 94 Force("vectorize.enable", FK_Undefined, HK_FORCE), 95 IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 96 Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 97 Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 98 TheLoop(L), ORE(ORE) { 99 // Populate values with existing loop metadata. 100 getHintsFromMetadata(); 101 102 // force-vector-interleave overrides DisableInterleaving. 103 if (VectorizerParams::isInterleaveForced()) 104 Interleave.Value = VectorizerParams::VectorizationInterleave; 105 106 if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 107 // If the width is set, but the metadata says nothing about the scalable 108 // property, then assume it concerns only a fixed-width UserVF. 109 // If width is not set, the flag takes precedence. 110 Scalable.Value = Width.Value ? SK_FixedWidthOnly : ScalableVectorization; 111 else if (ScalableVectorization == SK_FixedWidthOnly) 112 // If the flag is set to disable any use of scalable vectors, override the 113 // loop hint. 114 Scalable.Value = SK_FixedWidthOnly; 115 116 if (IsVectorized.Value != 1) 117 // If the vectorization width and interleaving count are both 1 then 118 // consider the loop to have been already vectorized because there's 119 // nothing more that we can do. 120 IsVectorized.Value = 121 getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 122 LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 123 << "LV: Interleaving disabled by the pass manager\n"); 124 } 125 126 void LoopVectorizeHints::setAlreadyVectorized() { 127 LLVMContext &Context = TheLoop->getHeader()->getContext(); 128 129 MDNode *IsVectorizedMD = MDNode::get( 130 Context, 131 {MDString::get(Context, "llvm.loop.isvectorized"), 132 ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 133 MDNode *LoopID = TheLoop->getLoopID(); 134 MDNode *NewLoopID = 135 makePostTransformationMetadata(Context, LoopID, 136 {Twine(Prefix(), "vectorize.").str(), 137 Twine(Prefix(), "interleave.").str()}, 138 {IsVectorizedMD}); 139 TheLoop->setLoopID(NewLoopID); 140 141 // Update internal cache. 142 IsVectorized.Value = 1; 143 } 144 145 bool LoopVectorizeHints::allowVectorization( 146 Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 147 if (getForce() == LoopVectorizeHints::FK_Disabled) { 148 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 149 emitRemarkWithHints(); 150 return false; 151 } 152 153 if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 154 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 155 emitRemarkWithHints(); 156 return false; 157 } 158 159 if (getIsVectorized() == 1) { 160 LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 161 // FIXME: Add interleave.disable metadata. This will allow 162 // vectorize.disable to be used without disabling the pass and errors 163 // to differentiate between disabled vectorization and a width of 1. 164 ORE.emit([&]() { 165 return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 166 "AllDisabled", L->getStartLoc(), 167 L->getHeader()) 168 << "loop not vectorized: vectorization and interleaving are " 169 "explicitly disabled, or the loop has already been " 170 "vectorized"; 171 }); 172 return false; 173 } 174 175 return true; 176 } 177 178 void LoopVectorizeHints::emitRemarkWithHints() const { 179 using namespace ore; 180 181 ORE.emit([&]() { 182 if (Force.Value == LoopVectorizeHints::FK_Disabled) 183 return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 184 TheLoop->getStartLoc(), 185 TheLoop->getHeader()) 186 << "loop not vectorized: vectorization is explicitly disabled"; 187 else { 188 OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 189 TheLoop->getStartLoc(), TheLoop->getHeader()); 190 R << "loop not vectorized"; 191 if (Force.Value == LoopVectorizeHints::FK_Enabled) { 192 R << " (Force=" << NV("Force", true); 193 if (Width.Value != 0) 194 R << ", Vector Width=" << NV("VectorWidth", getWidth()); 195 if (getInterleave() != 0) 196 R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 197 R << ")"; 198 } 199 return R; 200 } 201 }); 202 } 203 204 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 205 if (getWidth() == ElementCount::getFixed(1)) 206 return LV_NAME; 207 if (getForce() == LoopVectorizeHints::FK_Disabled) 208 return LV_NAME; 209 if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 210 return LV_NAME; 211 return OptimizationRemarkAnalysis::AlwaysPrint; 212 } 213 214 void LoopVectorizeHints::getHintsFromMetadata() { 215 MDNode *LoopID = TheLoop->getLoopID(); 216 if (!LoopID) 217 return; 218 219 // First operand should refer to the loop id itself. 220 assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 221 assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 222 223 for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 224 const MDString *S = nullptr; 225 SmallVector<Metadata *, 4> Args; 226 227 // The expected hint is either a MDString or a MDNode with the first 228 // operand a MDString. 229 if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 230 if (!MD || MD->getNumOperands() == 0) 231 continue; 232 S = dyn_cast<MDString>(MD->getOperand(0)); 233 for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 234 Args.push_back(MD->getOperand(i)); 235 } else { 236 S = dyn_cast<MDString>(LoopID->getOperand(i)); 237 assert(Args.size() == 0 && "too many arguments for MDString"); 238 } 239 240 if (!S) 241 continue; 242 243 // Check if the hint starts with the loop metadata prefix. 244 StringRef Name = S->getString(); 245 if (Args.size() == 1) 246 setHint(Name, Args[0]); 247 } 248 } 249 250 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 251 if (!Name.startswith(Prefix())) 252 return; 253 Name = Name.substr(Prefix().size(), StringRef::npos); 254 255 const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 256 if (!C) 257 return; 258 unsigned Val = C->getZExtValue(); 259 260 Hint *Hints[] = {&Width, &Interleave, &Force, 261 &IsVectorized, &Predicate, &Scalable}; 262 for (auto H : Hints) { 263 if (Name == H->Name) { 264 if (H->validate(Val)) 265 H->Value = Val; 266 else 267 LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 268 break; 269 } 270 } 271 } 272 273 // Return true if the inner loop \p Lp is uniform with regard to the outer loop 274 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 275 // executing the inner loop will execute the same iterations). This check is 276 // very constrained for now but it will be relaxed in the future. \p Lp is 277 // considered uniform if it meets all the following conditions: 278 // 1) it has a canonical IV (starting from 0 and with stride 1), 279 // 2) its latch terminator is a conditional branch and, 280 // 3) its latch condition is a compare instruction whose operands are the 281 // canonical IV and an OuterLp invariant. 282 // This check doesn't take into account the uniformity of other conditions not 283 // related to the loop latch because they don't affect the loop uniformity. 284 // 285 // NOTE: We decided to keep all these checks and its associated documentation 286 // together so that we can easily have a picture of the current supported loop 287 // nests. However, some of the current checks don't depend on \p OuterLp and 288 // would be redundantly executed for each \p Lp if we invoked this function for 289 // different candidate outer loops. This is not the case for now because we 290 // don't currently have the infrastructure to evaluate multiple candidate outer 291 // loops and \p OuterLp will be a fixed parameter while we only support explicit 292 // outer loop vectorization. It's also very likely that these checks go away 293 // before introducing the aforementioned infrastructure. However, if this is not 294 // the case, we should move the \p OuterLp independent checks to a separate 295 // function that is only executed once for each \p Lp. 296 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 297 assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 298 299 // If Lp is the outer loop, it's uniform by definition. 300 if (Lp == OuterLp) 301 return true; 302 assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 303 304 // 1. 305 PHINode *IV = Lp->getCanonicalInductionVariable(); 306 if (!IV) { 307 LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 308 return false; 309 } 310 311 // 2. 312 BasicBlock *Latch = Lp->getLoopLatch(); 313 auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 314 if (!LatchBr || LatchBr->isUnconditional()) { 315 LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 316 return false; 317 } 318 319 // 3. 320 auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 321 if (!LatchCmp) { 322 LLVM_DEBUG( 323 dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 324 return false; 325 } 326 327 Value *CondOp0 = LatchCmp->getOperand(0); 328 Value *CondOp1 = LatchCmp->getOperand(1); 329 Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 330 if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 331 !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 332 LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 333 return false; 334 } 335 336 return true; 337 } 338 339 // Return true if \p Lp and all its nested loops are uniform with regard to \p 340 // OuterLp. 341 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 342 if (!isUniformLoop(Lp, OuterLp)) 343 return false; 344 345 // Check if nested loops are uniform. 346 for (Loop *SubLp : *Lp) 347 if (!isUniformLoopNest(SubLp, OuterLp)) 348 return false; 349 350 return true; 351 } 352 353 /// Check whether it is safe to if-convert this phi node. 354 /// 355 /// Phi nodes with constant expressions that can trap are not safe to if 356 /// convert. 357 static bool canIfConvertPHINodes(BasicBlock *BB) { 358 for (PHINode &Phi : BB->phis()) { 359 for (Value *V : Phi.incoming_values()) 360 if (auto *C = dyn_cast<Constant>(V)) 361 if (C->canTrap()) 362 return false; 363 } 364 return true; 365 } 366 367 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 368 if (Ty->isPointerTy()) 369 return DL.getIntPtrType(Ty); 370 371 // It is possible that char's or short's overflow when we ask for the loop's 372 // trip count, work around this by changing the type size. 373 if (Ty->getScalarSizeInBits() < 32) 374 return Type::getInt32Ty(Ty->getContext()); 375 376 return Ty; 377 } 378 379 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 380 Ty0 = convertPointerToIntegerType(DL, Ty0); 381 Ty1 = convertPointerToIntegerType(DL, Ty1); 382 if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 383 return Ty0; 384 return Ty1; 385 } 386 387 /// Check that the instruction has outside loop users and is not an 388 /// identified reduction variable. 389 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 390 SmallPtrSetImpl<Value *> &AllowedExit) { 391 // Reductions, Inductions and non-header phis are allowed to have exit users. All 392 // other instructions must not have external users. 393 if (!AllowedExit.count(Inst)) 394 // Check that all of the users of the loop are inside the BB. 395 for (User *U : Inst->users()) { 396 Instruction *UI = cast<Instruction>(U); 397 // This user may be a reduction exit value. 398 if (!TheLoop->contains(UI)) { 399 LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 400 return true; 401 } 402 } 403 return false; 404 } 405 406 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) const { 407 const ValueToValueMap &Strides = 408 getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 409 410 Function *F = TheLoop->getHeader()->getParent(); 411 bool OptForSize = F->hasOptSize() || 412 llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 413 PGSOQueryType::IRPass); 414 bool CanAddPredicate = !OptForSize; 415 int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false); 416 if (Stride == 1 || Stride == -1) 417 return Stride; 418 return 0; 419 } 420 421 bool LoopVectorizationLegality::isUniform(Value *V) { 422 return LAI->isUniform(V); 423 } 424 425 bool LoopVectorizationLegality::canVectorizeOuterLoop() { 426 assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 427 // Store the result and return it at the end instead of exiting early, in case 428 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 429 bool Result = true; 430 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 431 432 for (BasicBlock *BB : TheLoop->blocks()) { 433 // Check whether the BB terminator is a BranchInst. Any other terminator is 434 // not supported yet. 435 auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 436 if (!Br) { 437 reportVectorizationFailure("Unsupported basic block terminator", 438 "loop control flow is not understood by vectorizer", 439 "CFGNotUnderstood", ORE, TheLoop); 440 if (DoExtraAnalysis) 441 Result = false; 442 else 443 return false; 444 } 445 446 // Check whether the BranchInst is a supported one. Only unconditional 447 // branches, conditional branches with an outer loop invariant condition or 448 // backedges are supported. 449 // FIXME: We skip these checks when VPlan predication is enabled as we 450 // want to allow divergent branches. This whole check will be removed 451 // once VPlan predication is on by default. 452 if (!EnableVPlanPredication && Br && Br->isConditional() && 453 !TheLoop->isLoopInvariant(Br->getCondition()) && 454 !LI->isLoopHeader(Br->getSuccessor(0)) && 455 !LI->isLoopHeader(Br->getSuccessor(1))) { 456 reportVectorizationFailure("Unsupported conditional branch", 457 "loop control flow is not understood by vectorizer", 458 "CFGNotUnderstood", ORE, TheLoop); 459 if (DoExtraAnalysis) 460 Result = false; 461 else 462 return false; 463 } 464 } 465 466 // Check whether inner loops are uniform. At this point, we only support 467 // simple outer loops scenarios with uniform nested loops. 468 if (!isUniformLoopNest(TheLoop /*loop nest*/, 469 TheLoop /*context outer loop*/)) { 470 reportVectorizationFailure("Outer loop contains divergent loops", 471 "loop control flow is not understood by vectorizer", 472 "CFGNotUnderstood", ORE, TheLoop); 473 if (DoExtraAnalysis) 474 Result = false; 475 else 476 return false; 477 } 478 479 // Check whether we are able to set up outer loop induction. 480 if (!setupOuterLoopInductions()) { 481 reportVectorizationFailure("Unsupported outer loop Phi(s)", 482 "Unsupported outer loop Phi(s)", 483 "UnsupportedPhi", ORE, TheLoop); 484 if (DoExtraAnalysis) 485 Result = false; 486 else 487 return false; 488 } 489 490 return Result; 491 } 492 493 void LoopVectorizationLegality::addInductionPhi( 494 PHINode *Phi, const InductionDescriptor &ID, 495 SmallPtrSetImpl<Value *> &AllowedExit) { 496 Inductions[Phi] = ID; 497 498 // In case this induction also comes with casts that we know we can ignore 499 // in the vectorized loop body, record them here. All casts could be recorded 500 // here for ignoring, but suffices to record only the first (as it is the 501 // only one that may bw used outside the cast sequence). 502 const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 503 if (!Casts.empty()) 504 InductionCastsToIgnore.insert(*Casts.begin()); 505 506 Type *PhiTy = Phi->getType(); 507 const DataLayout &DL = Phi->getModule()->getDataLayout(); 508 509 // Get the widest type. 510 if (!PhiTy->isFloatingPointTy()) { 511 if (!WidestIndTy) 512 WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 513 else 514 WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 515 } 516 517 // Int inductions are special because we only allow one IV. 518 if (ID.getKind() == InductionDescriptor::IK_IntInduction && 519 ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 520 isa<Constant>(ID.getStartValue()) && 521 cast<Constant>(ID.getStartValue())->isNullValue()) { 522 523 // Use the phi node with the widest type as induction. Use the last 524 // one if there are multiple (no good reason for doing this other 525 // than it is expedient). We've checked that it begins at zero and 526 // steps by one, so this is a canonical induction variable. 527 if (!PrimaryInduction || PhiTy == WidestIndTy) 528 PrimaryInduction = Phi; 529 } 530 531 // Both the PHI node itself, and the "post-increment" value feeding 532 // back into the PHI node may have external users. 533 // We can allow those uses, except if the SCEVs we have for them rely 534 // on predicates that only hold within the loop, since allowing the exit 535 // currently means re-using this SCEV outside the loop (see PR33706 for more 536 // details). 537 if (PSE.getUnionPredicate().isAlwaysTrue()) { 538 AllowedExit.insert(Phi); 539 AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 540 } 541 542 LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 543 } 544 545 bool LoopVectorizationLegality::setupOuterLoopInductions() { 546 BasicBlock *Header = TheLoop->getHeader(); 547 548 // Returns true if a given Phi is a supported induction. 549 auto isSupportedPhi = [&](PHINode &Phi) -> bool { 550 InductionDescriptor ID; 551 if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 552 ID.getKind() == InductionDescriptor::IK_IntInduction) { 553 addInductionPhi(&Phi, ID, AllowedExit); 554 return true; 555 } else { 556 // Bail out for any Phi in the outer loop header that is not a supported 557 // induction. 558 LLVM_DEBUG( 559 dbgs() 560 << "LV: Found unsupported PHI for outer loop vectorization.\n"); 561 return false; 562 } 563 }; 564 565 if (llvm::all_of(Header->phis(), isSupportedPhi)) 566 return true; 567 else 568 return false; 569 } 570 571 /// Checks if a function is scalarizable according to the TLI, in 572 /// the sense that it should be vectorized and then expanded in 573 /// multiple scalarcalls. This is represented in the 574 /// TLI via mappings that do not specify a vector name, as in the 575 /// following example: 576 /// 577 /// const VecDesc VecIntrinsics[] = { 578 /// {"llvm.phx.abs.i32", "", 4} 579 /// }; 580 static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 581 const StringRef ScalarName = CI.getCalledFunction()->getName(); 582 bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 583 // Check that all known VFs are not associated to a vector 584 // function, i.e. the vector name is emty. 585 if (Scalarize) { 586 ElementCount WidestFixedVF, WidestScalableVF; 587 TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 588 for (ElementCount VF = ElementCount::getFixed(2); 589 ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 590 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 591 for (ElementCount VF = ElementCount::getScalable(1); 592 ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 593 Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 594 assert((WidestScalableVF.isZero() || !Scalarize) && 595 "Caller may decide to scalarize a variant using a scalable VF"); 596 } 597 return Scalarize; 598 } 599 600 bool LoopVectorizationLegality::canVectorizeInstrs() { 601 BasicBlock *Header = TheLoop->getHeader(); 602 603 // For each block in the loop. 604 for (BasicBlock *BB : TheLoop->blocks()) { 605 // Scan the instructions in the block and look for hazards. 606 for (Instruction &I : *BB) { 607 if (auto *Phi = dyn_cast<PHINode>(&I)) { 608 Type *PhiTy = Phi->getType(); 609 // Check that this PHI type is allowed. 610 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 611 !PhiTy->isPointerTy()) { 612 reportVectorizationFailure("Found a non-int non-pointer PHI", 613 "loop control flow is not understood by vectorizer", 614 "CFGNotUnderstood", ORE, TheLoop); 615 return false; 616 } 617 618 // If this PHINode is not in the header block, then we know that we 619 // can convert it to select during if-conversion. No need to check if 620 // the PHIs in this block are induction or reduction variables. 621 if (BB != Header) { 622 // Non-header phi nodes that have outside uses can be vectorized. Add 623 // them to the list of allowed exits. 624 // Unsafe cyclic dependencies with header phis are identified during 625 // legalization for reduction, induction and first order 626 // recurrences. 627 AllowedExit.insert(&I); 628 continue; 629 } 630 631 // We only allow if-converted PHIs with exactly two incoming values. 632 if (Phi->getNumIncomingValues() != 2) { 633 reportVectorizationFailure("Found an invalid PHI", 634 "loop control flow is not understood by vectorizer", 635 "CFGNotUnderstood", ORE, TheLoop, Phi); 636 return false; 637 } 638 639 RecurrenceDescriptor RedDes; 640 if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 641 DT)) { 642 Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 643 AllowedExit.insert(RedDes.getLoopExitInstr()); 644 Reductions[Phi] = RedDes; 645 continue; 646 } 647 648 // TODO: Instead of recording the AllowedExit, it would be good to record the 649 // complementary set: NotAllowedExit. These include (but may not be 650 // limited to): 651 // 1. Reduction phis as they represent the one-before-last value, which 652 // is not available when vectorized 653 // 2. Induction phis and increment when SCEV predicates cannot be used 654 // outside the loop - see addInductionPhi 655 // 3. Non-Phis with outside uses when SCEV predicates cannot be used 656 // outside the loop - see call to hasOutsideLoopUser in the non-phi 657 // handling below 658 // 4. FirstOrderRecurrence phis that can possibly be handled by 659 // extraction. 660 // By recording these, we can then reason about ways to vectorize each 661 // of these NotAllowedExit. 662 InductionDescriptor ID; 663 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 664 addInductionPhi(Phi, ID, AllowedExit); 665 Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 666 continue; 667 } 668 669 if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 670 SinkAfter, DT)) { 671 AllowedExit.insert(Phi); 672 FirstOrderRecurrences.insert(Phi); 673 continue; 674 } 675 676 // As a last resort, coerce the PHI to a AddRec expression 677 // and re-try classifying it a an induction PHI. 678 if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 679 addInductionPhi(Phi, ID, AllowedExit); 680 continue; 681 } 682 683 reportVectorizationFailure("Found an unidentified PHI", 684 "value that could not be identified as " 685 "reduction is used outside the loop", 686 "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 687 return false; 688 } // end of PHI handling 689 690 // We handle calls that: 691 // * Are debug info intrinsics. 692 // * Have a mapping to an IR intrinsic. 693 // * Have a vector version available. 694 auto *CI = dyn_cast<CallInst>(&I); 695 696 if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 697 !isa<DbgInfoIntrinsic>(CI) && 698 !(CI->getCalledFunction() && TLI && 699 (!VFDatabase::getMappings(*CI).empty() || 700 isTLIScalarize(*TLI, *CI)))) { 701 // If the call is a recognized math libary call, it is likely that 702 // we can vectorize it given loosened floating-point constraints. 703 LibFunc Func; 704 bool IsMathLibCall = 705 TLI && CI->getCalledFunction() && 706 CI->getType()->isFloatingPointTy() && 707 TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 708 TLI->hasOptimizedCodeGen(Func); 709 710 if (IsMathLibCall) { 711 // TODO: Ideally, we should not use clang-specific language here, 712 // but it's hard to provide meaningful yet generic advice. 713 // Also, should this be guarded by allowExtraAnalysis() and/or be part 714 // of the returned info from isFunctionVectorizable()? 715 reportVectorizationFailure( 716 "Found a non-intrinsic callsite", 717 "library call cannot be vectorized. " 718 "Try compiling with -fno-math-errno, -ffast-math, " 719 "or similar flags", 720 "CantVectorizeLibcall", ORE, TheLoop, CI); 721 } else { 722 reportVectorizationFailure("Found a non-intrinsic callsite", 723 "call instruction cannot be vectorized", 724 "CantVectorizeLibcall", ORE, TheLoop, CI); 725 } 726 return false; 727 } 728 729 // Some intrinsics have scalar arguments and should be same in order for 730 // them to be vectorized (i.e. loop invariant). 731 if (CI) { 732 auto *SE = PSE.getSE(); 733 Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 734 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 735 if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 736 if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 737 reportVectorizationFailure("Found unvectorizable intrinsic", 738 "intrinsic instruction cannot be vectorized", 739 "CantVectorizeIntrinsic", ORE, TheLoop, CI); 740 return false; 741 } 742 } 743 } 744 745 // Check that the instruction return type is vectorizable. 746 // Also, we can't vectorize extractelement instructions. 747 if ((!VectorType::isValidElementType(I.getType()) && 748 !I.getType()->isVoidTy()) || 749 isa<ExtractElementInst>(I)) { 750 reportVectorizationFailure("Found unvectorizable type", 751 "instruction return type cannot be vectorized", 752 "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 753 return false; 754 } 755 756 // Check that the stored type is vectorizable. 757 if (auto *ST = dyn_cast<StoreInst>(&I)) { 758 Type *T = ST->getValueOperand()->getType(); 759 if (!VectorType::isValidElementType(T)) { 760 reportVectorizationFailure("Store instruction cannot be vectorized", 761 "store instruction cannot be vectorized", 762 "CantVectorizeStore", ORE, TheLoop, ST); 763 return false; 764 } 765 766 // For nontemporal stores, check that a nontemporal vector version is 767 // supported on the target. 768 if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 769 // Arbitrarily try a vector of 2 elements. 770 auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 771 assert(VecTy && "did not find vectorized version of stored type"); 772 if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 773 reportVectorizationFailure( 774 "nontemporal store instruction cannot be vectorized", 775 "nontemporal store instruction cannot be vectorized", 776 "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 777 return false; 778 } 779 } 780 781 } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 782 if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 783 // For nontemporal loads, check that a nontemporal vector version is 784 // supported on the target (arbitrarily try a vector of 2 elements). 785 auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 786 assert(VecTy && "did not find vectorized version of load type"); 787 if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 788 reportVectorizationFailure( 789 "nontemporal load instruction cannot be vectorized", 790 "nontemporal load instruction cannot be vectorized", 791 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 792 return false; 793 } 794 } 795 796 // FP instructions can allow unsafe algebra, thus vectorizable by 797 // non-IEEE-754 compliant SIMD units. 798 // This applies to floating-point math operations and calls, not memory 799 // operations, shuffles, or casts, as they don't change precision or 800 // semantics. 801 } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 802 !I.isFast()) { 803 LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 804 Hints->setPotentiallyUnsafe(); 805 } 806 807 // Reduction instructions are allowed to have exit users. 808 // All other instructions must not have external users. 809 if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 810 // We can safely vectorize loops where instructions within the loop are 811 // used outside the loop only if the SCEV predicates within the loop is 812 // same as outside the loop. Allowing the exit means reusing the SCEV 813 // outside the loop. 814 if (PSE.getUnionPredicate().isAlwaysTrue()) { 815 AllowedExit.insert(&I); 816 continue; 817 } 818 reportVectorizationFailure("Value cannot be used outside the loop", 819 "value cannot be used outside the loop", 820 "ValueUsedOutsideLoop", ORE, TheLoop, &I); 821 return false; 822 } 823 } // next instr. 824 } 825 826 if (!PrimaryInduction) { 827 if (Inductions.empty()) { 828 reportVectorizationFailure("Did not find one integer induction var", 829 "loop induction variable could not be identified", 830 "NoInductionVariable", ORE, TheLoop); 831 return false; 832 } else if (!WidestIndTy) { 833 reportVectorizationFailure("Did not find one integer induction var", 834 "integer loop induction variable could not be identified", 835 "NoIntegerInductionVariable", ORE, TheLoop); 836 return false; 837 } else { 838 LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 839 } 840 } 841 842 // For first order recurrences, we use the previous value (incoming value from 843 // the latch) to check if it dominates all users of the recurrence. Bail out 844 // if we have to sink such an instruction for another recurrence, as the 845 // dominance requirement may not hold after sinking. 846 BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 847 if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 848 Instruction *V = 849 cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 850 return SinkAfter.find(V) != SinkAfter.end(); 851 })) 852 return false; 853 854 // Now we know the widest induction type, check if our found induction 855 // is the same size. If it's not, unset it here and InnerLoopVectorizer 856 // will create another. 857 if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 858 PrimaryInduction = nullptr; 859 860 return true; 861 } 862 863 bool LoopVectorizationLegality::canVectorizeMemory() { 864 LAI = &(*GetLAA)(*TheLoop); 865 const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 866 if (LAR) { 867 ORE->emit([&]() { 868 return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 869 "loop not vectorized: ", *LAR); 870 }); 871 } 872 if (!LAI->canVectorizeMemory()) 873 return false; 874 875 if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 876 reportVectorizationFailure("Stores to a uniform address", 877 "write to a loop invariant address could not be vectorized", 878 "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 879 return false; 880 } 881 Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 882 PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 883 884 return true; 885 } 886 887 bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 888 Value *In0 = const_cast<Value *>(V); 889 PHINode *PN = dyn_cast_or_null<PHINode>(In0); 890 if (!PN) 891 return false; 892 893 return Inductions.count(PN); 894 } 895 896 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 897 auto *Inst = dyn_cast<Instruction>(V); 898 return (Inst && InductionCastsToIgnore.count(Inst)); 899 } 900 901 bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 902 return isInductionPhi(V) || isCastedInductionVariable(V); 903 } 904 905 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 906 return FirstOrderRecurrences.count(Phi); 907 } 908 909 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 910 return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 911 } 912 913 bool LoopVectorizationLegality::blockCanBePredicated( 914 BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 915 SmallPtrSetImpl<const Instruction *> &MaskedOp, 916 SmallPtrSetImpl<Instruction *> &ConditionalAssumes, 917 bool PreserveGuards) const { 918 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 919 920 for (Instruction &I : *BB) { 921 // Check that we don't have a constant expression that can trap as operand. 922 for (Value *Operand : I.operands()) { 923 if (auto *C = dyn_cast<Constant>(Operand)) 924 if (C->canTrap()) 925 return false; 926 } 927 928 // We can predicate blocks with calls to assume, as long as we drop them in 929 // case we flatten the CFG via predication. 930 if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 931 ConditionalAssumes.insert(&I); 932 continue; 933 } 934 935 // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 936 // TODO: there might be cases that it should block the vectorization. Let's 937 // ignore those for now. 938 if (isa<NoAliasScopeDeclInst>(&I)) 939 continue; 940 941 // We might be able to hoist the load. 942 if (I.mayReadFromMemory()) { 943 auto *LI = dyn_cast<LoadInst>(&I); 944 if (!LI) 945 return false; 946 if (!SafePtrs.count(LI->getPointerOperand())) { 947 // !llvm.mem.parallel_loop_access implies if-conversion safety. 948 // Otherwise, record that the load needs (real or emulated) masking 949 // and let the cost model decide. 950 if (!IsAnnotatedParallel || PreserveGuards) 951 MaskedOp.insert(LI); 952 continue; 953 } 954 } 955 956 if (I.mayWriteToMemory()) { 957 auto *SI = dyn_cast<StoreInst>(&I); 958 if (!SI) 959 return false; 960 // Predicated store requires some form of masking: 961 // 1) masked store HW instruction, 962 // 2) emulation via load-blend-store (only if safe and legal to do so, 963 // be aware on the race conditions), or 964 // 3) element-by-element predicate check and scalar store. 965 MaskedOp.insert(SI); 966 continue; 967 } 968 if (I.mayThrow()) 969 return false; 970 } 971 972 return true; 973 } 974 975 bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 976 if (!EnableIfConversion) { 977 reportVectorizationFailure("If-conversion is disabled", 978 "if-conversion is disabled", 979 "IfConversionDisabled", 980 ORE, TheLoop); 981 return false; 982 } 983 984 assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 985 986 // A list of pointers which are known to be dereferenceable within scope of 987 // the loop body for each iteration of the loop which executes. That is, 988 // the memory pointed to can be dereferenced (with the access size implied by 989 // the value's type) unconditionally within the loop header without 990 // introducing a new fault. 991 SmallPtrSet<Value *, 8> SafePointers; 992 993 // Collect safe addresses. 994 for (BasicBlock *BB : TheLoop->blocks()) { 995 if (!blockNeedsPredication(BB)) { 996 for (Instruction &I : *BB) 997 if (auto *Ptr = getLoadStorePointerOperand(&I)) 998 SafePointers.insert(Ptr); 999 continue; 1000 } 1001 1002 // For a block which requires predication, a address may be safe to access 1003 // in the loop w/o predication if we can prove dereferenceability facts 1004 // sufficient to ensure it'll never fault within the loop. For the moment, 1005 // we restrict this to loads; stores are more complicated due to 1006 // concurrency restrictions. 1007 ScalarEvolution &SE = *PSE.getSE(); 1008 for (Instruction &I : *BB) { 1009 LoadInst *LI = dyn_cast<LoadInst>(&I); 1010 if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 1011 isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 1012 SafePointers.insert(LI->getPointerOperand()); 1013 } 1014 } 1015 1016 // Collect the blocks that need predication. 1017 BasicBlock *Header = TheLoop->getHeader(); 1018 for (BasicBlock *BB : TheLoop->blocks()) { 1019 // We don't support switch statements inside loops. 1020 if (!isa<BranchInst>(BB->getTerminator())) { 1021 reportVectorizationFailure("Loop contains a switch statement", 1022 "loop contains a switch statement", 1023 "LoopContainsSwitch", ORE, TheLoop, 1024 BB->getTerminator()); 1025 return false; 1026 } 1027 1028 // We must be able to predicate all blocks that need to be predicated. 1029 if (blockNeedsPredication(BB)) { 1030 if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1031 ConditionalAssumes)) { 1032 reportVectorizationFailure( 1033 "Control flow cannot be substituted for a select", 1034 "control flow cannot be substituted for a select", 1035 "NoCFGForSelect", ORE, TheLoop, 1036 BB->getTerminator()); 1037 return false; 1038 } 1039 } else if (BB != Header && !canIfConvertPHINodes(BB)) { 1040 reportVectorizationFailure( 1041 "Control flow cannot be substituted for a select", 1042 "control flow cannot be substituted for a select", 1043 "NoCFGForSelect", ORE, TheLoop, 1044 BB->getTerminator()); 1045 return false; 1046 } 1047 } 1048 1049 // We can if-convert this loop. 1050 return true; 1051 } 1052 1053 // Helper function to canVectorizeLoopNestCFG. 1054 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1055 bool UseVPlanNativePath) { 1056 assert((UseVPlanNativePath || Lp->isInnermost()) && 1057 "VPlan-native path is not enabled."); 1058 1059 // TODO: ORE should be improved to show more accurate information when an 1060 // outer loop can't be vectorized because a nested loop is not understood or 1061 // legal. Something like: "outer_loop_location: loop not vectorized: 1062 // (inner_loop_location) loop control flow is not understood by vectorizer". 1063 1064 // Store the result and return it at the end instead of exiting early, in case 1065 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1066 bool Result = true; 1067 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1068 1069 // We must have a loop in canonical form. Loops with indirectbr in them cannot 1070 // be canonicalized. 1071 if (!Lp->getLoopPreheader()) { 1072 reportVectorizationFailure("Loop doesn't have a legal pre-header", 1073 "loop control flow is not understood by vectorizer", 1074 "CFGNotUnderstood", ORE, TheLoop); 1075 if (DoExtraAnalysis) 1076 Result = false; 1077 else 1078 return false; 1079 } 1080 1081 // We must have a single backedge. 1082 if (Lp->getNumBackEdges() != 1) { 1083 reportVectorizationFailure("The loop must have a single backedge", 1084 "loop control flow is not understood by vectorizer", 1085 "CFGNotUnderstood", ORE, TheLoop); 1086 if (DoExtraAnalysis) 1087 Result = false; 1088 else 1089 return false; 1090 } 1091 1092 // We currently must have a single "exit block" after the loop. Note that 1093 // multiple "exiting blocks" inside the loop are allowed, provided they all 1094 // reach the single exit block. 1095 // TODO: This restriction can be relaxed in the near future, it's here solely 1096 // to allow separation of changes for review. We need to generalize the phi 1097 // update logic in a number of places. 1098 if (!Lp->getUniqueExitBlock()) { 1099 reportVectorizationFailure("The loop must have a unique exit block", 1100 "loop control flow is not understood by vectorizer", 1101 "CFGNotUnderstood", ORE, TheLoop); 1102 if (DoExtraAnalysis) 1103 Result = false; 1104 else 1105 return false; 1106 } 1107 return Result; 1108 } 1109 1110 bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1111 Loop *Lp, bool UseVPlanNativePath) { 1112 // Store the result and return it at the end instead of exiting early, in case 1113 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1114 bool Result = true; 1115 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1116 if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1117 if (DoExtraAnalysis) 1118 Result = false; 1119 else 1120 return false; 1121 } 1122 1123 // Recursively check whether the loop control flow of nested loops is 1124 // understood. 1125 for (Loop *SubLp : *Lp) 1126 if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1127 if (DoExtraAnalysis) 1128 Result = false; 1129 else 1130 return false; 1131 } 1132 1133 return Result; 1134 } 1135 1136 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1137 // Store the result and return it at the end instead of exiting early, in case 1138 // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1139 bool Result = true; 1140 1141 bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1142 // Check whether the loop-related control flow in the loop nest is expected by 1143 // vectorizer. 1144 if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1145 if (DoExtraAnalysis) 1146 Result = false; 1147 else 1148 return false; 1149 } 1150 1151 // We need to have a loop header. 1152 LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1153 << '\n'); 1154 1155 // Specific checks for outer loops. We skip the remaining legal checks at this 1156 // point because they don't support outer loops. 1157 if (!TheLoop->isInnermost()) { 1158 assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1159 1160 if (!canVectorizeOuterLoop()) { 1161 reportVectorizationFailure("Unsupported outer loop", 1162 "unsupported outer loop", 1163 "UnsupportedOuterLoop", 1164 ORE, TheLoop); 1165 // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1166 // outer loops. 1167 return false; 1168 } 1169 1170 LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1171 return Result; 1172 } 1173 1174 assert(TheLoop->isInnermost() && "Inner loop expected."); 1175 // Check if we can if-convert non-single-bb loops. 1176 unsigned NumBlocks = TheLoop->getNumBlocks(); 1177 if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1178 LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1179 if (DoExtraAnalysis) 1180 Result = false; 1181 else 1182 return false; 1183 } 1184 1185 // Check if we can vectorize the instructions and CFG in this loop. 1186 if (!canVectorizeInstrs()) { 1187 LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1188 if (DoExtraAnalysis) 1189 Result = false; 1190 else 1191 return false; 1192 } 1193 1194 // Go over each instruction and look at memory deps. 1195 if (!canVectorizeMemory()) { 1196 LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1197 if (DoExtraAnalysis) 1198 Result = false; 1199 else 1200 return false; 1201 } 1202 1203 LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1204 << (LAI->getRuntimePointerChecking()->Need 1205 ? " (with a runtime bound check)" 1206 : "") 1207 << "!\n"); 1208 1209 unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1210 if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1211 SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1212 1213 if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1214 reportVectorizationFailure("Too many SCEV checks needed", 1215 "Too many SCEV assumptions need to be made and checked at runtime", 1216 "TooManySCEVRunTimeChecks", ORE, TheLoop); 1217 if (DoExtraAnalysis) 1218 Result = false; 1219 else 1220 return false; 1221 } 1222 1223 // Okay! We've done all the tests. If any have failed, return false. Otherwise 1224 // we can vectorize, and at this point we don't have any other mem analysis 1225 // which may limit our maximum vectorization factor, so just return true with 1226 // no restrictions. 1227 return Result; 1228 } 1229 1230 bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1231 1232 LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1233 1234 SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1235 1236 for (auto &Reduction : getReductionVars()) 1237 ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1238 1239 // TODO: handle non-reduction outside users when tail is folded by masking. 1240 for (auto *AE : AllowedExit) { 1241 // Check that all users of allowed exit values are inside the loop or 1242 // are the live-out of a reduction. 1243 if (ReductionLiveOuts.count(AE)) 1244 continue; 1245 for (User *U : AE->users()) { 1246 Instruction *UI = cast<Instruction>(U); 1247 if (TheLoop->contains(UI)) 1248 continue; 1249 LLVM_DEBUG( 1250 dbgs() 1251 << "LV: Cannot fold tail by masking, loop has an outside user for " 1252 << *UI << "\n"); 1253 return false; 1254 } 1255 } 1256 1257 // The list of pointers that we can safely read and write to remains empty. 1258 SmallPtrSet<Value *, 8> SafePointers; 1259 1260 SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1261 SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1262 1263 // Check and mark all blocks for predication, including those that ordinarily 1264 // do not need predication such as the header block. 1265 for (BasicBlock *BB : TheLoop->blocks()) { 1266 if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1267 TmpConditionalAssumes, 1268 /* MaskAllLoads= */ true)) { 1269 LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1270 return false; 1271 } 1272 } 1273 1274 LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1275 1276 MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1277 ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1278 TmpConditionalAssumes.end()); 1279 1280 return true; 1281 } 1282 1283 } // namespace llvm 1284