1 //===- LoopVectorizationLegality.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides loop vectorization legality analysis. Original code
10 // resided in LoopVectorize.cpp for a long time.
11 //
12 // At this point, it is implemented as a utility class, not as an analysis
13 // pass. It should be easy to create an analysis pass around it if there
14 // is a need (but D45420 needs to happen first).
15 //
16 #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
17 #include "llvm/Analysis/VectorUtils.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 
20 using namespace llvm;
21 
22 #define LV_NAME "loop-vectorize"
23 #define DEBUG_TYPE LV_NAME
24 
25 extern cl::opt<bool> EnableVPlanPredication;
26 
27 static cl::opt<bool>
28     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
29                        cl::desc("Enable if-conversion during vectorization."));
30 
31 static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
32     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
33     cl::desc("The maximum allowed number of runtime memory checks with a "
34              "vectorize(enable) pragma."));
35 
36 static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
37     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
38     cl::desc("The maximum number of SCEV checks allowed."));
39 
40 static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
41     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
42     cl::desc("The maximum number of SCEV checks allowed with a "
43              "vectorize(enable) pragma"));
44 
45 /// Maximum vectorization interleave count.
46 static const unsigned MaxInterleaveFactor = 16;
47 
48 namespace llvm {
49 
50 OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName,
51                                                   StringRef RemarkName,
52                                                   Loop *TheLoop,
53                                                   Instruction *I) {
54   Value *CodeRegion = TheLoop->getHeader();
55   DebugLoc DL = TheLoop->getStartLoc();
56 
57   if (I) {
58     CodeRegion = I->getParent();
59     // If there is no debug location attached to the instruction, revert back to
60     // using the loop's.
61     if (I->getDebugLoc())
62       DL = I->getDebugLoc();
63   }
64 
65   OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion);
66   R << "loop not vectorized: ";
67   return R;
68 }
69 
70 bool LoopVectorizeHints::Hint::validate(unsigned Val) {
71   switch (Kind) {
72   case HK_WIDTH:
73     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
74   case HK_UNROLL:
75     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
76   case HK_FORCE:
77     return (Val <= 1);
78   case HK_ISVECTORIZED:
79     return (Val == 0 || Val == 1);
80   }
81   return false;
82 }
83 
84 LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
85                                        bool InterleaveOnlyWhenForced,
86                                        OptimizationRemarkEmitter &ORE)
87     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
88       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
89       Force("vectorize.enable", FK_Undefined, HK_FORCE),
90       IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) {
91   // Populate values with existing loop metadata.
92   getHintsFromMetadata();
93 
94   // force-vector-interleave overrides DisableInterleaving.
95   if (VectorizerParams::isInterleaveForced())
96     Interleave.Value = VectorizerParams::VectorizationInterleave;
97 
98   if (IsVectorized.Value != 1)
99     // If the vectorization width and interleaving count are both 1 then
100     // consider the loop to have been already vectorized because there's
101     // nothing more that we can do.
102     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
103   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
104              << "LV: Interleaving disabled by the pass manager\n");
105 }
106 
107 void LoopVectorizeHints::setAlreadyVectorized() {
108   LLVMContext &Context = TheLoop->getHeader()->getContext();
109 
110   MDNode *IsVectorizedMD = MDNode::get(
111       Context,
112       {MDString::get(Context, "llvm.loop.isvectorized"),
113        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
114   MDNode *LoopID = TheLoop->getLoopID();
115   MDNode *NewLoopID =
116       makePostTransformationMetadata(Context, LoopID,
117                                      {Twine(Prefix(), "vectorize.").str(),
118                                       Twine(Prefix(), "interleave.").str()},
119                                      {IsVectorizedMD});
120   TheLoop->setLoopID(NewLoopID);
121 
122   // Update internal cache.
123   IsVectorized.Value = 1;
124 }
125 
126 bool LoopVectorizeHints::allowVectorization(
127     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
128   if (getForce() == LoopVectorizeHints::FK_Disabled) {
129     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
130     emitRemarkWithHints();
131     return false;
132   }
133 
134   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
135     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
136     emitRemarkWithHints();
137     return false;
138   }
139 
140   if (getIsVectorized() == 1) {
141     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
142     // FIXME: Add interleave.disable metadata. This will allow
143     // vectorize.disable to be used without disabling the pass and errors
144     // to differentiate between disabled vectorization and a width of 1.
145     ORE.emit([&]() {
146       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
147                                         "AllDisabled", L->getStartLoc(),
148                                         L->getHeader())
149              << "loop not vectorized: vectorization and interleaving are "
150                 "explicitly disabled, or the loop has already been "
151                 "vectorized";
152     });
153     return false;
154   }
155 
156   return true;
157 }
158 
159 void LoopVectorizeHints::emitRemarkWithHints() const {
160   using namespace ore;
161 
162   ORE.emit([&]() {
163     if (Force.Value == LoopVectorizeHints::FK_Disabled)
164       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
165                                       TheLoop->getStartLoc(),
166                                       TheLoop->getHeader())
167              << "loop not vectorized: vectorization is explicitly disabled";
168     else {
169       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
170                                  TheLoop->getStartLoc(), TheLoop->getHeader());
171       R << "loop not vectorized";
172       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
173         R << " (Force=" << NV("Force", true);
174         if (Width.Value != 0)
175           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
176         if (Interleave.Value != 0)
177           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
178         R << ")";
179       }
180       return R;
181     }
182   });
183 }
184 
185 const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
186   if (getWidth() == 1)
187     return LV_NAME;
188   if (getForce() == LoopVectorizeHints::FK_Disabled)
189     return LV_NAME;
190   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
191     return LV_NAME;
192   return OptimizationRemarkAnalysis::AlwaysPrint;
193 }
194 
195 void LoopVectorizeHints::getHintsFromMetadata() {
196   MDNode *LoopID = TheLoop->getLoopID();
197   if (!LoopID)
198     return;
199 
200   // First operand should refer to the loop id itself.
201   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
202   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
203 
204   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
205     const MDString *S = nullptr;
206     SmallVector<Metadata *, 4> Args;
207 
208     // The expected hint is either a MDString or a MDNode with the first
209     // operand a MDString.
210     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
211       if (!MD || MD->getNumOperands() == 0)
212         continue;
213       S = dyn_cast<MDString>(MD->getOperand(0));
214       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
215         Args.push_back(MD->getOperand(i));
216     } else {
217       S = dyn_cast<MDString>(LoopID->getOperand(i));
218       assert(Args.size() == 0 && "too many arguments for MDString");
219     }
220 
221     if (!S)
222       continue;
223 
224     // Check if the hint starts with the loop metadata prefix.
225     StringRef Name = S->getString();
226     if (Args.size() == 1)
227       setHint(Name, Args[0]);
228   }
229 }
230 
231 void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
232   if (!Name.startswith(Prefix()))
233     return;
234   Name = Name.substr(Prefix().size(), StringRef::npos);
235 
236   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
237   if (!C)
238     return;
239   unsigned Val = C->getZExtValue();
240 
241   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized};
242   for (auto H : Hints) {
243     if (Name == H->Name) {
244       if (H->validate(Val))
245         H->Value = Val;
246       else
247         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
248       break;
249     }
250   }
251 }
252 
253 bool LoopVectorizationRequirements::doesNotMeet(
254     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
255   const char *PassName = Hints.vectorizeAnalysisPassName();
256   bool Failed = false;
257   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
258     ORE.emit([&]() {
259       return OptimizationRemarkAnalysisFPCommute(
260                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
261                  UnsafeAlgebraInst->getParent())
262              << "loop not vectorized: cannot prove it is safe to reorder "
263                 "floating-point operations";
264     });
265     Failed = true;
266   }
267 
268   // Test if runtime memcheck thresholds are exceeded.
269   bool PragmaThresholdReached =
270       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
271   bool ThresholdReached =
272       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
273   if ((ThresholdReached && !Hints.allowReordering()) ||
274       PragmaThresholdReached) {
275     ORE.emit([&]() {
276       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
277                                                 L->getStartLoc(),
278                                                 L->getHeader())
279              << "loop not vectorized: cannot prove it is safe to reorder "
280                 "memory operations";
281     });
282     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
283     Failed = true;
284   }
285 
286   return Failed;
287 }
288 
289 // Return true if the inner loop \p Lp is uniform with regard to the outer loop
290 // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
291 // executing the inner loop will execute the same iterations). This check is
292 // very constrained for now but it will be relaxed in the future. \p Lp is
293 // considered uniform if it meets all the following conditions:
294 //   1) it has a canonical IV (starting from 0 and with stride 1),
295 //   2) its latch terminator is a conditional branch and,
296 //   3) its latch condition is a compare instruction whose operands are the
297 //      canonical IV and an OuterLp invariant.
298 // This check doesn't take into account the uniformity of other conditions not
299 // related to the loop latch because they don't affect the loop uniformity.
300 //
301 // NOTE: We decided to keep all these checks and its associated documentation
302 // together so that we can easily have a picture of the current supported loop
303 // nests. However, some of the current checks don't depend on \p OuterLp and
304 // would be redundantly executed for each \p Lp if we invoked this function for
305 // different candidate outer loops. This is not the case for now because we
306 // don't currently have the infrastructure to evaluate multiple candidate outer
307 // loops and \p OuterLp will be a fixed parameter while we only support explicit
308 // outer loop vectorization. It's also very likely that these checks go away
309 // before introducing the aforementioned infrastructure. However, if this is not
310 // the case, we should move the \p OuterLp independent checks to a separate
311 // function that is only executed once for each \p Lp.
312 static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
313   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
314 
315   // If Lp is the outer loop, it's uniform by definition.
316   if (Lp == OuterLp)
317     return true;
318   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
319 
320   // 1.
321   PHINode *IV = Lp->getCanonicalInductionVariable();
322   if (!IV) {
323     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
324     return false;
325   }
326 
327   // 2.
328   BasicBlock *Latch = Lp->getLoopLatch();
329   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
330   if (!LatchBr || LatchBr->isUnconditional()) {
331     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
332     return false;
333   }
334 
335   // 3.
336   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
337   if (!LatchCmp) {
338     LLVM_DEBUG(
339         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
340     return false;
341   }
342 
343   Value *CondOp0 = LatchCmp->getOperand(0);
344   Value *CondOp1 = LatchCmp->getOperand(1);
345   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
346   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
347       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
348     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
349     return false;
350   }
351 
352   return true;
353 }
354 
355 // Return true if \p Lp and all its nested loops are uniform with regard to \p
356 // OuterLp.
357 static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
358   if (!isUniformLoop(Lp, OuterLp))
359     return false;
360 
361   // Check if nested loops are uniform.
362   for (Loop *SubLp : *Lp)
363     if (!isUniformLoopNest(SubLp, OuterLp))
364       return false;
365 
366   return true;
367 }
368 
369 /// Check whether it is safe to if-convert this phi node.
370 ///
371 /// Phi nodes with constant expressions that can trap are not safe to if
372 /// convert.
373 static bool canIfConvertPHINodes(BasicBlock *BB) {
374   for (PHINode &Phi : BB->phis()) {
375     for (Value *V : Phi.incoming_values())
376       if (auto *C = dyn_cast<Constant>(V))
377         if (C->canTrap())
378           return false;
379   }
380   return true;
381 }
382 
383 static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
384   if (Ty->isPointerTy())
385     return DL.getIntPtrType(Ty);
386 
387   // It is possible that char's or short's overflow when we ask for the loop's
388   // trip count, work around this by changing the type size.
389   if (Ty->getScalarSizeInBits() < 32)
390     return Type::getInt32Ty(Ty->getContext());
391 
392   return Ty;
393 }
394 
395 static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
396   Ty0 = convertPointerToIntegerType(DL, Ty0);
397   Ty1 = convertPointerToIntegerType(DL, Ty1);
398   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
399     return Ty0;
400   return Ty1;
401 }
402 
403 /// Check that the instruction has outside loop users and is not an
404 /// identified reduction variable.
405 static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
406                                SmallPtrSetImpl<Value *> &AllowedExit) {
407   // Reductions, Inductions and non-header phis are allowed to have exit users. All
408   // other instructions must not have external users.
409   if (!AllowedExit.count(Inst))
410     // Check that all of the users of the loop are inside the BB.
411     for (User *U : Inst->users()) {
412       Instruction *UI = cast<Instruction>(U);
413       // This user may be a reduction exit value.
414       if (!TheLoop->contains(UI)) {
415         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
416         return true;
417       }
418     }
419   return false;
420 }
421 
422 int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
423   const ValueToValueMap &Strides =
424       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
425 
426   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
427   if (Stride == 1 || Stride == -1)
428     return Stride;
429   return 0;
430 }
431 
432 bool LoopVectorizationLegality::isUniform(Value *V) {
433   return LAI->isUniform(V);
434 }
435 
436 bool LoopVectorizationLegality::canVectorizeOuterLoop() {
437   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
438   // Store the result and return it at the end instead of exiting early, in case
439   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
440   bool Result = true;
441   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
442 
443   for (BasicBlock *BB : TheLoop->blocks()) {
444     // Check whether the BB terminator is a BranchInst. Any other terminator is
445     // not supported yet.
446     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
447     if (!Br) {
448       LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n");
449       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
450                 << "loop control flow is not understood by vectorizer");
451       if (DoExtraAnalysis)
452         Result = false;
453       else
454         return false;
455     }
456 
457     // Check whether the BranchInst is a supported one. Only unconditional
458     // branches, conditional branches with an outer loop invariant condition or
459     // backedges are supported.
460     // FIXME: We skip these checks when VPlan predication is enabled as we
461     // want to allow divergent branches. This whole check will be removed
462     // once VPlan predication is on by default.
463     if (!EnableVPlanPredication && Br && Br->isConditional() &&
464         !TheLoop->isLoopInvariant(Br->getCondition()) &&
465         !LI->isLoopHeader(Br->getSuccessor(0)) &&
466         !LI->isLoopHeader(Br->getSuccessor(1))) {
467       LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n");
468       ORE->emit(createMissedAnalysis("CFGNotUnderstood")
469                 << "loop control flow is not understood by vectorizer");
470       if (DoExtraAnalysis)
471         Result = false;
472       else
473         return false;
474     }
475   }
476 
477   // Check whether inner loops are uniform. At this point, we only support
478   // simple outer loops scenarios with uniform nested loops.
479   if (!isUniformLoopNest(TheLoop /*loop nest*/,
480                          TheLoop /*context outer loop*/)) {
481     LLVM_DEBUG(
482         dbgs()
483         << "LV: Not vectorizing: Outer loop contains divergent loops.\n");
484     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
485               << "loop control flow is not understood by vectorizer");
486     if (DoExtraAnalysis)
487       Result = false;
488     else
489       return false;
490   }
491 
492   // Check whether we are able to set up outer loop induction.
493   if (!setupOuterLoopInductions()) {
494     LLVM_DEBUG(
495         dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n");
496     ORE->emit(createMissedAnalysis("UnsupportedPhi")
497               << "Unsupported outer loop Phi(s)");
498     if (DoExtraAnalysis)
499       Result = false;
500     else
501       return false;
502   }
503 
504   return Result;
505 }
506 
507 void LoopVectorizationLegality::addInductionPhi(
508     PHINode *Phi, const InductionDescriptor &ID,
509     SmallPtrSetImpl<Value *> &AllowedExit) {
510   Inductions[Phi] = ID;
511 
512   // In case this induction also comes with casts that we know we can ignore
513   // in the vectorized loop body, record them here. All casts could be recorded
514   // here for ignoring, but suffices to record only the first (as it is the
515   // only one that may bw used outside the cast sequence).
516   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
517   if (!Casts.empty())
518     InductionCastsToIgnore.insert(*Casts.begin());
519 
520   Type *PhiTy = Phi->getType();
521   const DataLayout &DL = Phi->getModule()->getDataLayout();
522 
523   // Get the widest type.
524   if (!PhiTy->isFloatingPointTy()) {
525     if (!WidestIndTy)
526       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
527     else
528       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
529   }
530 
531   // Int inductions are special because we only allow one IV.
532   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
533       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
534       isa<Constant>(ID.getStartValue()) &&
535       cast<Constant>(ID.getStartValue())->isNullValue()) {
536 
537     // Use the phi node with the widest type as induction. Use the last
538     // one if there are multiple (no good reason for doing this other
539     // than it is expedient). We've checked that it begins at zero and
540     // steps by one, so this is a canonical induction variable.
541     if (!PrimaryInduction || PhiTy == WidestIndTy)
542       PrimaryInduction = Phi;
543   }
544 
545   // Both the PHI node itself, and the "post-increment" value feeding
546   // back into the PHI node may have external users.
547   // We can allow those uses, except if the SCEVs we have for them rely
548   // on predicates that only hold within the loop, since allowing the exit
549   // currently means re-using this SCEV outside the loop (see PR33706 for more
550   // details).
551   if (PSE.getUnionPredicate().isAlwaysTrue()) {
552     AllowedExit.insert(Phi);
553     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
554   }
555 
556   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
557 }
558 
559 bool LoopVectorizationLegality::setupOuterLoopInductions() {
560   BasicBlock *Header = TheLoop->getHeader();
561 
562   // Returns true if a given Phi is a supported induction.
563   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
564     InductionDescriptor ID;
565     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
566         ID.getKind() == InductionDescriptor::IK_IntInduction) {
567       addInductionPhi(&Phi, ID, AllowedExit);
568       return true;
569     } else {
570       // Bail out for any Phi in the outer loop header that is not a supported
571       // induction.
572       LLVM_DEBUG(
573           dbgs()
574           << "LV: Found unsupported PHI for outer loop vectorization.\n");
575       return false;
576     }
577   };
578 
579   if (llvm::all_of(Header->phis(), isSupportedPhi))
580     return true;
581   else
582     return false;
583 }
584 
585 bool LoopVectorizationLegality::canVectorizeInstrs() {
586   BasicBlock *Header = TheLoop->getHeader();
587 
588   // Look for the attribute signaling the absence of NaNs.
589   Function &F = *Header->getParent();
590   HasFunNoNaNAttr =
591       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
592 
593   // For each block in the loop.
594   for (BasicBlock *BB : TheLoop->blocks()) {
595     // Scan the instructions in the block and look for hazards.
596     for (Instruction &I : *BB) {
597       if (auto *Phi = dyn_cast<PHINode>(&I)) {
598         Type *PhiTy = Phi->getType();
599         // Check that this PHI type is allowed.
600         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
601             !PhiTy->isPointerTy()) {
602           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
603                     << "loop control flow is not understood by vectorizer");
604           LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n");
605           return false;
606         }
607 
608         // If this PHINode is not in the header block, then we know that we
609         // can convert it to select during if-conversion. No need to check if
610         // the PHIs in this block are induction or reduction variables.
611         if (BB != Header) {
612           // Non-header phi nodes that have outside uses can be vectorized. Add
613           // them to the list of allowed exits.
614           // Unsafe cyclic dependencies with header phis are identified during
615           // legalization for reduction, induction and first order
616           // recurrences.
617           continue;
618         }
619 
620         // We only allow if-converted PHIs with exactly two incoming values.
621         if (Phi->getNumIncomingValues() != 2) {
622           ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi)
623                     << "control flow not understood by vectorizer");
624           LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n");
625           return false;
626         }
627 
628         RecurrenceDescriptor RedDes;
629         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
630                                                  DT)) {
631           if (RedDes.hasUnsafeAlgebra())
632             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
633           AllowedExit.insert(RedDes.getLoopExitInstr());
634           Reductions[Phi] = RedDes;
635           continue;
636         }
637 
638         // TODO: Instead of recording the AllowedExit, it would be good to record the
639         // complementary set: NotAllowedExit. These include (but may not be
640         // limited to):
641         // 1. Reduction phis as they represent the one-before-last value, which
642         // is not available when vectorized
643         // 2. Induction phis and increment when SCEV predicates cannot be used
644         // outside the loop - see addInductionPhi
645         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
646         // outside the loop - see call to hasOutsideLoopUser in the non-phi
647         // handling below
648         // 4. FirstOrderRecurrence phis that can possibly be handled by
649         // extraction.
650         // By recording these, we can then reason about ways to vectorize each
651         // of these NotAllowedExit.
652         InductionDescriptor ID;
653         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
654           addInductionPhi(Phi, ID, AllowedExit);
655           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
656             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
657           continue;
658         }
659 
660         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
661                                                          SinkAfter, DT)) {
662           FirstOrderRecurrences.insert(Phi);
663           continue;
664         }
665 
666         // As a last resort, coerce the PHI to a AddRec expression
667         // and re-try classifying it a an induction PHI.
668         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
669           addInductionPhi(Phi, ID, AllowedExit);
670           continue;
671         }
672 
673         ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi)
674                   << "value that could not be identified as "
675                      "reduction is used outside the loop");
676         LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n");
677         return false;
678       } // end of PHI handling
679 
680       // We handle calls that:
681       //   * Are debug info intrinsics.
682       //   * Have a mapping to an IR intrinsic.
683       //   * Have a vector version available.
684       auto *CI = dyn_cast<CallInst>(&I);
685       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
686           !isa<DbgInfoIntrinsic>(CI) &&
687           !(CI->getCalledFunction() && TLI &&
688             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
689         // If the call is a recognized math libary call, it is likely that
690         // we can vectorize it given loosened floating-point constraints.
691         LibFunc Func;
692         bool IsMathLibCall =
693             TLI && CI->getCalledFunction() &&
694             CI->getType()->isFloatingPointTy() &&
695             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
696             TLI->hasOptimizedCodeGen(Func);
697 
698         if (IsMathLibCall) {
699           // TODO: Ideally, we should not use clang-specific language here,
700           // but it's hard to provide meaningful yet generic advice.
701           // Also, should this be guarded by allowExtraAnalysis() and/or be part
702           // of the returned info from isFunctionVectorizable()?
703           ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI)
704               << "library call cannot be vectorized. "
705                  "Try compiling with -fno-math-errno, -ffast-math, "
706                  "or similar flags");
707         } else {
708           ORE->emit(createMissedAnalysis("CantVectorizeCall", CI)
709                     << "call instruction cannot be vectorized");
710         }
711         LLVM_DEBUG(
712             dbgs() << "LV: Found a non-intrinsic callsite.\n");
713         return false;
714       }
715 
716       // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the
717       // second argument is the same (i.e. loop invariant)
718       if (CI && hasVectorInstrinsicScalarOpd(
719                     getVectorIntrinsicIDForCall(CI, TLI), 1)) {
720         auto *SE = PSE.getSE();
721         if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) {
722           ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI)
723                     << "intrinsic instruction cannot be vectorized");
724           LLVM_DEBUG(dbgs()
725                      << "LV: Found unvectorizable intrinsic " << *CI << "\n");
726           return false;
727         }
728       }
729 
730       // Check that the instruction return type is vectorizable.
731       // Also, we can't vectorize extractelement instructions.
732       if ((!VectorType::isValidElementType(I.getType()) &&
733            !I.getType()->isVoidTy()) ||
734           isa<ExtractElementInst>(I)) {
735         ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I)
736                   << "instruction return type cannot be vectorized");
737         LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n");
738         return false;
739       }
740 
741       // Check that the stored type is vectorizable.
742       if (auto *ST = dyn_cast<StoreInst>(&I)) {
743         Type *T = ST->getValueOperand()->getType();
744         if (!VectorType::isValidElementType(T)) {
745           ORE->emit(createMissedAnalysis("CantVectorizeStore", ST)
746                     << "store instruction cannot be vectorized");
747           return false;
748         }
749 
750         // FP instructions can allow unsafe algebra, thus vectorizable by
751         // non-IEEE-754 compliant SIMD units.
752         // This applies to floating-point math operations and calls, not memory
753         // operations, shuffles, or casts, as they don't change precision or
754         // semantics.
755       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
756                  !I.isFast()) {
757         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
758         Hints->setPotentiallyUnsafe();
759       }
760 
761       // Reduction instructions are allowed to have exit users.
762       // All other instructions must not have external users.
763       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
764         // We can safely vectorize loops where instructions within the loop are
765         // used outside the loop only if the SCEV predicates within the loop is
766         // same as outside the loop. Allowing the exit means reusing the SCEV
767         // outside the loop.
768         if (PSE.getUnionPredicate().isAlwaysTrue()) {
769           AllowedExit.insert(&I);
770           continue;
771         }
772         ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I)
773                   << "value cannot be used outside the loop");
774         return false;
775       }
776     } // next instr.
777   }
778 
779   if (!PrimaryInduction) {
780     LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
781     if (Inductions.empty()) {
782       ORE->emit(createMissedAnalysis("NoInductionVariable")
783                 << "loop induction variable could not be identified");
784       return false;
785     } else if (!WidestIndTy) {
786       ORE->emit(createMissedAnalysis("NoIntegerInductionVariable")
787                 << "integer loop induction variable could not be identified");
788       return false;
789     }
790   }
791 
792   // Now we know the widest induction type, check if our found induction
793   // is the same size. If it's not, unset it here and InnerLoopVectorizer
794   // will create another.
795   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
796     PrimaryInduction = nullptr;
797 
798   return true;
799 }
800 
801 bool LoopVectorizationLegality::canVectorizeMemory() {
802   LAI = &(*GetLAA)(*TheLoop);
803   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
804   if (LAR) {
805     ORE->emit([&]() {
806       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
807                                         "loop not vectorized: ", *LAR);
808     });
809   }
810   if (!LAI->canVectorizeMemory())
811     return false;
812 
813   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
814     ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress")
815               << "write to a loop invariant address could not "
816                  "be vectorized");
817     LLVM_DEBUG(
818         dbgs() << "LV: Non vectorizable stores to a uniform address\n");
819     return false;
820   }
821   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
822   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
823 
824   return true;
825 }
826 
827 bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
828   Value *In0 = const_cast<Value *>(V);
829   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
830   if (!PN)
831     return false;
832 
833   return Inductions.count(PN);
834 }
835 
836 bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
837   auto *Inst = dyn_cast<Instruction>(V);
838   return (Inst && InductionCastsToIgnore.count(Inst));
839 }
840 
841 bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
842   return isInductionPhi(V) || isCastedInductionVariable(V);
843 }
844 
845 bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
846   return FirstOrderRecurrences.count(Phi);
847 }
848 
849 bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
850   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
851 }
852 
853 bool LoopVectorizationLegality::blockCanBePredicated(
854     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
855   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
856 
857   for (Instruction &I : *BB) {
858     // Check that we don't have a constant expression that can trap as operand.
859     for (Value *Operand : I.operands()) {
860       if (auto *C = dyn_cast<Constant>(Operand))
861         if (C->canTrap())
862           return false;
863     }
864     // We might be able to hoist the load.
865     if (I.mayReadFromMemory()) {
866       auto *LI = dyn_cast<LoadInst>(&I);
867       if (!LI)
868         return false;
869       if (!SafePtrs.count(LI->getPointerOperand())) {
870         // !llvm.mem.parallel_loop_access implies if-conversion safety.
871         // Otherwise, record that the load needs (real or emulated) masking
872         // and let the cost model decide.
873         if (!IsAnnotatedParallel)
874           MaskedOp.insert(LI);
875         continue;
876       }
877     }
878 
879     if (I.mayWriteToMemory()) {
880       auto *SI = dyn_cast<StoreInst>(&I);
881       if (!SI)
882         return false;
883       // Predicated store requires some form of masking:
884       // 1) masked store HW instruction,
885       // 2) emulation via load-blend-store (only if safe and legal to do so,
886       //    be aware on the race conditions), or
887       // 3) element-by-element predicate check and scalar store.
888       MaskedOp.insert(SI);
889       continue;
890     }
891     if (I.mayThrow())
892       return false;
893   }
894 
895   return true;
896 }
897 
898 bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
899   if (!EnableIfConversion) {
900     ORE->emit(createMissedAnalysis("IfConversionDisabled")
901               << "if-conversion is disabled");
902     return false;
903   }
904 
905   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
906 
907   // A list of pointers that we can safely read and write to.
908   SmallPtrSet<Value *, 8> SafePointes;
909 
910   // Collect safe addresses.
911   for (BasicBlock *BB : TheLoop->blocks()) {
912     if (blockNeedsPredication(BB))
913       continue;
914 
915     for (Instruction &I : *BB)
916       if (auto *Ptr = getLoadStorePointerOperand(&I))
917         SafePointes.insert(Ptr);
918   }
919 
920   // Collect the blocks that need predication.
921   BasicBlock *Header = TheLoop->getHeader();
922   for (BasicBlock *BB : TheLoop->blocks()) {
923     // We don't support switch statements inside loops.
924     if (!isa<BranchInst>(BB->getTerminator())) {
925       ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator())
926                 << "loop contains a switch statement");
927       return false;
928     }
929 
930     // We must be able to predicate all blocks that need to be predicated.
931     if (blockNeedsPredication(BB)) {
932       if (!blockCanBePredicated(BB, SafePointes)) {
933         ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
934                   << "control flow cannot be substituted for a select");
935         return false;
936       }
937     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
938       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
939                 << "control flow cannot be substituted for a select");
940       return false;
941     }
942   }
943 
944   // We can if-convert this loop.
945   return true;
946 }
947 
948 // Helper function to canVectorizeLoopNestCFG.
949 bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
950                                                     bool UseVPlanNativePath) {
951   assert((UseVPlanNativePath || Lp->empty()) &&
952          "VPlan-native path is not enabled.");
953 
954   // TODO: ORE should be improved to show more accurate information when an
955   // outer loop can't be vectorized because a nested loop is not understood or
956   // legal. Something like: "outer_loop_location: loop not vectorized:
957   // (inner_loop_location) loop control flow is not understood by vectorizer".
958 
959   // Store the result and return it at the end instead of exiting early, in case
960   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
961   bool Result = true;
962   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
963 
964   // We must have a loop in canonical form. Loops with indirectbr in them cannot
965   // be canonicalized.
966   if (!Lp->getLoopPreheader()) {
967     LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n");
968     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
969               << "loop control flow is not understood by vectorizer");
970     if (DoExtraAnalysis)
971       Result = false;
972     else
973       return false;
974   }
975 
976   // We must have a single backedge.
977   if (Lp->getNumBackEdges() != 1) {
978     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
979               << "loop control flow is not understood by vectorizer");
980     if (DoExtraAnalysis)
981       Result = false;
982     else
983       return false;
984   }
985 
986   // We must have a single exiting block.
987   if (!Lp->getExitingBlock()) {
988     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
989               << "loop control flow is not understood by vectorizer");
990     if (DoExtraAnalysis)
991       Result = false;
992     else
993       return false;
994   }
995 
996   // We only handle bottom-tested loops, i.e. loop in which the condition is
997   // checked at the end of each iteration. With that we can assume that all
998   // instructions in the loop are executed the same number of times.
999   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
1000     ORE->emit(createMissedAnalysis("CFGNotUnderstood")
1001               << "loop control flow is not understood by vectorizer");
1002     if (DoExtraAnalysis)
1003       Result = false;
1004     else
1005       return false;
1006   }
1007 
1008   return Result;
1009 }
1010 
1011 bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1012     Loop *Lp, bool UseVPlanNativePath) {
1013   // Store the result and return it at the end instead of exiting early, in case
1014   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1015   bool Result = true;
1016   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1017   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1018     if (DoExtraAnalysis)
1019       Result = false;
1020     else
1021       return false;
1022   }
1023 
1024   // Recursively check whether the loop control flow of nested loops is
1025   // understood.
1026   for (Loop *SubLp : *Lp)
1027     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1028       if (DoExtraAnalysis)
1029         Result = false;
1030       else
1031         return false;
1032     }
1033 
1034   return Result;
1035 }
1036 
1037 bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1038   // Store the result and return it at the end instead of exiting early, in case
1039   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1040   bool Result = true;
1041 
1042   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1043   // Check whether the loop-related control flow in the loop nest is expected by
1044   // vectorizer.
1045   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1046     if (DoExtraAnalysis)
1047       Result = false;
1048     else
1049       return false;
1050   }
1051 
1052   // We need to have a loop header.
1053   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1054                     << '\n');
1055 
1056   // Specific checks for outer loops. We skip the remaining legal checks at this
1057   // point because they don't support outer loops.
1058   if (!TheLoop->empty()) {
1059     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1060 
1061     if (!canVectorizeOuterLoop()) {
1062       LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n");
1063       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1064       // outer loops.
1065       return false;
1066     }
1067 
1068     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1069     return Result;
1070   }
1071 
1072   assert(TheLoop->empty() && "Inner loop expected.");
1073   // Check if we can if-convert non-single-bb loops.
1074   unsigned NumBlocks = TheLoop->getNumBlocks();
1075   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1076     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1077     if (DoExtraAnalysis)
1078       Result = false;
1079     else
1080       return false;
1081   }
1082 
1083   // Check if we can vectorize the instructions and CFG in this loop.
1084   if (!canVectorizeInstrs()) {
1085     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1086     if (DoExtraAnalysis)
1087       Result = false;
1088     else
1089       return false;
1090   }
1091 
1092   // Go over each instruction and look at memory deps.
1093   if (!canVectorizeMemory()) {
1094     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1095     if (DoExtraAnalysis)
1096       Result = false;
1097     else
1098       return false;
1099   }
1100 
1101   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1102                     << (LAI->getRuntimePointerChecking()->Need
1103                             ? " (with a runtime bound check)"
1104                             : "")
1105                     << "!\n");
1106 
1107   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1108   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1109     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1110 
1111   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
1112     ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks")
1113               << "Too many SCEV assumptions need to be made and checked "
1114               << "at runtime");
1115     LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n");
1116     if (DoExtraAnalysis)
1117       Result = false;
1118     else
1119       return false;
1120   }
1121 
1122   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1123   // we can vectorize, and at this point we don't have any other mem analysis
1124   // which may limit our maximum vectorization factor, so just return true with
1125   // no restrictions.
1126   return Result;
1127 }
1128 
1129 bool LoopVectorizationLegality::canFoldTailByMasking() {
1130 
1131   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1132 
1133   if (!PrimaryInduction) {
1134     ORE->emit(createMissedAnalysis("NoPrimaryInduction")
1135               << "Missing a primary induction variable in the loop, which is "
1136               << "needed in order to fold tail by masking as required.");
1137     LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by "
1138                       << "masking.\n");
1139     return false;
1140   }
1141 
1142   // TODO: handle reductions when tail is folded by masking.
1143   if (!Reductions.empty()) {
1144     ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking")
1145               << "Cannot fold tail by masking in the presence of reductions.");
1146     LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by "
1147                       << "masking.\n");
1148     return false;
1149   }
1150 
1151   // TODO: handle outside users when tail is folded by masking.
1152   for (auto *AE : AllowedExit) {
1153     // Check that all users of allowed exit values are inside the loop.
1154     for (User *U : AE->users()) {
1155       Instruction *UI = cast<Instruction>(U);
1156       if (TheLoop->contains(UI))
1157         continue;
1158       ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking")
1159                 << "Cannot fold tail by masking in the presence of live outs.");
1160       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an "
1161                         << "outside user for : " << *UI << '\n');
1162       return false;
1163     }
1164   }
1165 
1166   // The list of pointers that we can safely read and write to remains empty.
1167   SmallPtrSet<Value *, 8> SafePointers;
1168 
1169   // Check and mark all blocks for predication, including those that ordinarily
1170   // do not need predication such as the header block.
1171   for (BasicBlock *BB : TheLoop->blocks()) {
1172     if (!blockCanBePredicated(BB, SafePointers)) {
1173       ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator())
1174                 << "control flow cannot be substituted for a select");
1175       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n");
1176       return false;
1177     }
1178   }
1179 
1180   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1181   return true;
1182 }
1183 
1184 } // namespace llvm
1185