1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16*ec818d7fSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorize.h"
17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
18f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
19f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
20f2ec16ccSHideki Saito 
21f2ec16ccSHideki Saito using namespace llvm;
22f2ec16ccSHideki Saito 
23f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
24f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
25f2ec16ccSHideki Saito 
264e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication;
274e4ecae0SHideki Saito 
28f2ec16ccSHideki Saito static cl::opt<bool>
29f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
30f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
31f2ec16ccSHideki Saito 
32f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
33f2ec16ccSHideki Saito     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
34f2ec16ccSHideki Saito     cl::desc("The maximum allowed number of runtime memory checks with a "
35f2ec16ccSHideki Saito              "vectorize(enable) pragma."));
36f2ec16ccSHideki Saito 
37f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
38f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
39f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
40f2ec16ccSHideki Saito 
41f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
42f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
43f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
44f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
45f2ec16ccSHideki Saito 
46f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
47f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
48f2ec16ccSHideki Saito 
49f2ec16ccSHideki Saito namespace llvm {
50f2ec16ccSHideki Saito 
51f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
52f2ec16ccSHideki Saito   switch (Kind) {
53f2ec16ccSHideki Saito   case HK_WIDTH:
54f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
55f2ec16ccSHideki Saito   case HK_UNROLL:
56f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
57f2ec16ccSHideki Saito   case HK_FORCE:
58f2ec16ccSHideki Saito     return (Val <= 1);
59f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
6020b198ecSSjoerd Meijer   case HK_PREDICATE:
61f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
62f2ec16ccSHideki Saito   }
63f2ec16ccSHideki Saito   return false;
64f2ec16ccSHideki Saito }
65f2ec16ccSHideki Saito 
66d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
67d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
68f2ec16ccSHideki Saito                                        OptimizationRemarkEmitter &ORE)
69f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
70d4eb13c8SMichael Kruse       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
71f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
7220b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
7320b198ecSSjoerd Meijer       Predicate("vectorize.predicate.enable", 0, HK_PREDICATE), TheLoop(L),
7420b198ecSSjoerd Meijer       ORE(ORE) {
75f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
76f2ec16ccSHideki Saito   getHintsFromMetadata();
77f2ec16ccSHideki Saito 
78f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
79f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
80f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
81f2ec16ccSHideki Saito 
82f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
83f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
84f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
85f2ec16ccSHideki Saito     // nothing more that we can do.
86f2ec16ccSHideki Saito     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
87d4eb13c8SMichael Kruse   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
88f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
89f2ec16ccSHideki Saito }
90f2ec16ccSHideki Saito 
9177a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
9277a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
9377a614a6SMichael Kruse 
9477a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
9577a614a6SMichael Kruse       Context,
9677a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
9777a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
9877a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
9977a614a6SMichael Kruse   MDNode *NewLoopID =
10077a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
10177a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
10277a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
10377a614a6SMichael Kruse                                      {IsVectorizedMD});
10477a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
10577a614a6SMichael Kruse 
10677a614a6SMichael Kruse   // Update internal cache.
10777a614a6SMichael Kruse   IsVectorized.Value = 1;
10877a614a6SMichael Kruse }
10977a614a6SMichael Kruse 
110d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
111d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
112f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
113d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
114f2ec16ccSHideki Saito     emitRemarkWithHints();
115f2ec16ccSHideki Saito     return false;
116f2ec16ccSHideki Saito   }
117f2ec16ccSHideki Saito 
118d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
119d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
120f2ec16ccSHideki Saito     emitRemarkWithHints();
121f2ec16ccSHideki Saito     return false;
122f2ec16ccSHideki Saito   }
123f2ec16ccSHideki Saito 
124f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
125d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
126f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
127f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
128f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
129f2ec16ccSHideki Saito     ORE.emit([&]() {
130f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
131f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
132f2ec16ccSHideki Saito                                         L->getHeader())
133f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
134f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
135f2ec16ccSHideki Saito                 "vectorized";
136f2ec16ccSHideki Saito     });
137f2ec16ccSHideki Saito     return false;
138f2ec16ccSHideki Saito   }
139f2ec16ccSHideki Saito 
140f2ec16ccSHideki Saito   return true;
141f2ec16ccSHideki Saito }
142f2ec16ccSHideki Saito 
143f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
144f2ec16ccSHideki Saito   using namespace ore;
145f2ec16ccSHideki Saito 
146f2ec16ccSHideki Saito   ORE.emit([&]() {
147f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
148f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
149f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
150f2ec16ccSHideki Saito                                       TheLoop->getHeader())
151f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
152f2ec16ccSHideki Saito     else {
153f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
154f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
155f2ec16ccSHideki Saito       R << "loop not vectorized";
156f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
157f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
158f2ec16ccSHideki Saito         if (Width.Value != 0)
159f2ec16ccSHideki Saito           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
160f2ec16ccSHideki Saito         if (Interleave.Value != 0)
161f2ec16ccSHideki Saito           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
162f2ec16ccSHideki Saito         R << ")";
163f2ec16ccSHideki Saito       }
164f2ec16ccSHideki Saito       return R;
165f2ec16ccSHideki Saito     }
166f2ec16ccSHideki Saito   });
167f2ec16ccSHideki Saito }
168f2ec16ccSHideki Saito 
169f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
170f2ec16ccSHideki Saito   if (getWidth() == 1)
171f2ec16ccSHideki Saito     return LV_NAME;
172f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
173f2ec16ccSHideki Saito     return LV_NAME;
174f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
175f2ec16ccSHideki Saito     return LV_NAME;
176f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
177f2ec16ccSHideki Saito }
178f2ec16ccSHideki Saito 
179f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
180f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
181f2ec16ccSHideki Saito   if (!LoopID)
182f2ec16ccSHideki Saito     return;
183f2ec16ccSHideki Saito 
184f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
185f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
186f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
187f2ec16ccSHideki Saito 
188f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
189f2ec16ccSHideki Saito     const MDString *S = nullptr;
190f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
191f2ec16ccSHideki Saito 
192f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
193f2ec16ccSHideki Saito     // operand a MDString.
194f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
195f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
196f2ec16ccSHideki Saito         continue;
197f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
198f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
199f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
200f2ec16ccSHideki Saito     } else {
201f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
202f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
203f2ec16ccSHideki Saito     }
204f2ec16ccSHideki Saito 
205f2ec16ccSHideki Saito     if (!S)
206f2ec16ccSHideki Saito       continue;
207f2ec16ccSHideki Saito 
208f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
209f2ec16ccSHideki Saito     StringRef Name = S->getString();
210f2ec16ccSHideki Saito     if (Args.size() == 1)
211f2ec16ccSHideki Saito       setHint(Name, Args[0]);
212f2ec16ccSHideki Saito   }
213f2ec16ccSHideki Saito }
214f2ec16ccSHideki Saito 
215f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
216f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
217f2ec16ccSHideki Saito     return;
218f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
219f2ec16ccSHideki Saito 
220f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
221f2ec16ccSHideki Saito   if (!C)
222f2ec16ccSHideki Saito     return;
223f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
224f2ec16ccSHideki Saito 
22520b198ecSSjoerd Meijer   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
226f2ec16ccSHideki Saito   for (auto H : Hints) {
227f2ec16ccSHideki Saito     if (Name == H->Name) {
228f2ec16ccSHideki Saito       if (H->validate(Val))
229f2ec16ccSHideki Saito         H->Value = Val;
230f2ec16ccSHideki Saito       else
231d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
232f2ec16ccSHideki Saito       break;
233f2ec16ccSHideki Saito     }
234f2ec16ccSHideki Saito   }
235f2ec16ccSHideki Saito }
236f2ec16ccSHideki Saito 
237f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet(
238f2ec16ccSHideki Saito     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
239f2ec16ccSHideki Saito   const char *PassName = Hints.vectorizeAnalysisPassName();
240f2ec16ccSHideki Saito   bool Failed = false;
241f2ec16ccSHideki Saito   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
242f2ec16ccSHideki Saito     ORE.emit([&]() {
243f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisFPCommute(
244f2ec16ccSHideki Saito                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
245f2ec16ccSHideki Saito                  UnsafeAlgebraInst->getParent())
246f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
247f2ec16ccSHideki Saito                 "floating-point operations";
248f2ec16ccSHideki Saito     });
249f2ec16ccSHideki Saito     Failed = true;
250f2ec16ccSHideki Saito   }
251f2ec16ccSHideki Saito 
252f2ec16ccSHideki Saito   // Test if runtime memcheck thresholds are exceeded.
253f2ec16ccSHideki Saito   bool PragmaThresholdReached =
254f2ec16ccSHideki Saito       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
255f2ec16ccSHideki Saito   bool ThresholdReached =
256f2ec16ccSHideki Saito       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
257f2ec16ccSHideki Saito   if ((ThresholdReached && !Hints.allowReordering()) ||
258f2ec16ccSHideki Saito       PragmaThresholdReached) {
259f2ec16ccSHideki Saito     ORE.emit([&]() {
260f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
261f2ec16ccSHideki Saito                                                 L->getStartLoc(),
262f2ec16ccSHideki Saito                                                 L->getHeader())
263f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
264f2ec16ccSHideki Saito                 "memory operations";
265f2ec16ccSHideki Saito     });
266d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
267f2ec16ccSHideki Saito     Failed = true;
268f2ec16ccSHideki Saito   }
269f2ec16ccSHideki Saito 
270f2ec16ccSHideki Saito   return Failed;
271f2ec16ccSHideki Saito }
272f2ec16ccSHideki Saito 
273f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
274f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
275f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
276f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
277f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
278f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
279f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
280f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
281f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
282f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
283f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
284f2ec16ccSHideki Saito //
285f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
286f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
287f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
288f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
289f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
290f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
291f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
292f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
293f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
294f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
295f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
296f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
297f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
298f2ec16ccSHideki Saito 
299f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
300f2ec16ccSHideki Saito   if (Lp == OuterLp)
301f2ec16ccSHideki Saito     return true;
302f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
303f2ec16ccSHideki Saito 
304f2ec16ccSHideki Saito   // 1.
305f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
306f2ec16ccSHideki Saito   if (!IV) {
307d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
308f2ec16ccSHideki Saito     return false;
309f2ec16ccSHideki Saito   }
310f2ec16ccSHideki Saito 
311f2ec16ccSHideki Saito   // 2.
312f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
313f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
314f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
315d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
316f2ec16ccSHideki Saito     return false;
317f2ec16ccSHideki Saito   }
318f2ec16ccSHideki Saito 
319f2ec16ccSHideki Saito   // 3.
320f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
321f2ec16ccSHideki Saito   if (!LatchCmp) {
322d34e60caSNicola Zaghen     LLVM_DEBUG(
323d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
324f2ec16ccSHideki Saito     return false;
325f2ec16ccSHideki Saito   }
326f2ec16ccSHideki Saito 
327f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
328f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
329f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
330f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
331f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
332d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
333f2ec16ccSHideki Saito     return false;
334f2ec16ccSHideki Saito   }
335f2ec16ccSHideki Saito 
336f2ec16ccSHideki Saito   return true;
337f2ec16ccSHideki Saito }
338f2ec16ccSHideki Saito 
339f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
340f2ec16ccSHideki Saito // OuterLp.
341f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
342f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
343f2ec16ccSHideki Saito     return false;
344f2ec16ccSHideki Saito 
345f2ec16ccSHideki Saito   // Check if nested loops are uniform.
346f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
347f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
348f2ec16ccSHideki Saito       return false;
349f2ec16ccSHideki Saito 
350f2ec16ccSHideki Saito   return true;
351f2ec16ccSHideki Saito }
352f2ec16ccSHideki Saito 
3535f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node.
354f2ec16ccSHideki Saito ///
355f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if
356f2ec16ccSHideki Saito /// convert.
357f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) {
358f2ec16ccSHideki Saito   for (PHINode &Phi : BB->phis()) {
359f2ec16ccSHideki Saito     for (Value *V : Phi.incoming_values())
360f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(V))
361f2ec16ccSHideki Saito         if (C->canTrap())
362f2ec16ccSHideki Saito           return false;
363f2ec16ccSHideki Saito   }
364f2ec16ccSHideki Saito   return true;
365f2ec16ccSHideki Saito }
366f2ec16ccSHideki Saito 
367f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
368f2ec16ccSHideki Saito   if (Ty->isPointerTy())
369f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
370f2ec16ccSHideki Saito 
371f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
372f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
373f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
374f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
375f2ec16ccSHideki Saito 
376f2ec16ccSHideki Saito   return Ty;
377f2ec16ccSHideki Saito }
378f2ec16ccSHideki Saito 
379f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
380f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
381f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
382f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
383f2ec16ccSHideki Saito     return Ty0;
384f2ec16ccSHideki Saito   return Ty1;
385f2ec16ccSHideki Saito }
386f2ec16ccSHideki Saito 
3875f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
388f2ec16ccSHideki Saito /// identified reduction variable.
389f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
390f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
39160a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
392f2ec16ccSHideki Saito   // other instructions must not have external users.
393f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
394f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
395f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
396f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
397f2ec16ccSHideki Saito       // This user may be a reduction exit value.
398f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
399d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
400f2ec16ccSHideki Saito         return true;
401f2ec16ccSHideki Saito       }
402f2ec16ccSHideki Saito     }
403f2ec16ccSHideki Saito   return false;
404f2ec16ccSHideki Saito }
405f2ec16ccSHideki Saito 
406f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
407f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
408f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
409f2ec16ccSHideki Saito 
410f2ec16ccSHideki Saito   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false);
411f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
412f2ec16ccSHideki Saito     return Stride;
413f2ec16ccSHideki Saito   return 0;
414f2ec16ccSHideki Saito }
415f2ec16ccSHideki Saito 
416f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
417f2ec16ccSHideki Saito   return LAI->isUniform(V);
418f2ec16ccSHideki Saito }
419f2ec16ccSHideki Saito 
420f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
421f2ec16ccSHideki Saito   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
422f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
423f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
424f2ec16ccSHideki Saito   bool Result = true;
425f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
426f2ec16ccSHideki Saito 
427f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
428f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
429f2ec16ccSHideki Saito     // not supported yet.
430f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
431f2ec16ccSHideki Saito     if (!Br) {
4329e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4339e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
434*ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
435f2ec16ccSHideki Saito       if (DoExtraAnalysis)
436f2ec16ccSHideki Saito         Result = false;
437f2ec16ccSHideki Saito       else
438f2ec16ccSHideki Saito         return false;
439f2ec16ccSHideki Saito     }
440f2ec16ccSHideki Saito 
441f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
442f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
443f2ec16ccSHideki Saito     // backedges are supported.
4444e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
4454e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
4464e4ecae0SHideki Saito     // once VPlan predication is on by default.
4474e4ecae0SHideki Saito     if (!EnableVPlanPredication && Br && Br->isConditional() &&
448f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
449f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
450f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
4519e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
4529e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
453*ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
454f2ec16ccSHideki Saito       if (DoExtraAnalysis)
455f2ec16ccSHideki Saito         Result = false;
456f2ec16ccSHideki Saito       else
457f2ec16ccSHideki Saito         return false;
458f2ec16ccSHideki Saito     }
459f2ec16ccSHideki Saito   }
460f2ec16ccSHideki Saito 
461f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
462f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
463f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
464f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
4659e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
4669e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
467*ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
468f2ec16ccSHideki Saito     if (DoExtraAnalysis)
469f2ec16ccSHideki Saito       Result = false;
470f2ec16ccSHideki Saito     else
471f2ec16ccSHideki Saito       return false;
472f2ec16ccSHideki Saito   }
473f2ec16ccSHideki Saito 
474ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
475ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
4769e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
4779e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
478*ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
479ea7f3035SHideki Saito     if (DoExtraAnalysis)
480ea7f3035SHideki Saito       Result = false;
481ea7f3035SHideki Saito     else
482ea7f3035SHideki Saito       return false;
483ea7f3035SHideki Saito   }
484ea7f3035SHideki Saito 
485f2ec16ccSHideki Saito   return Result;
486f2ec16ccSHideki Saito }
487f2ec16ccSHideki Saito 
488f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
489f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
490f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
491f2ec16ccSHideki Saito   Inductions[Phi] = ID;
492f2ec16ccSHideki Saito 
493f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
494f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
495f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
496f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
497f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
498f2ec16ccSHideki Saito   if (!Casts.empty())
499f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
500f2ec16ccSHideki Saito 
501f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
502f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
503f2ec16ccSHideki Saito 
504f2ec16ccSHideki Saito   // Get the widest type.
505f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
506f2ec16ccSHideki Saito     if (!WidestIndTy)
507f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
508f2ec16ccSHideki Saito     else
509f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
510f2ec16ccSHideki Saito   }
511f2ec16ccSHideki Saito 
512f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
513f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
514f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
515f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
516f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
517f2ec16ccSHideki Saito 
518f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
519f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
520f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
521f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
522f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
523f2ec16ccSHideki Saito       PrimaryInduction = Phi;
524f2ec16ccSHideki Saito   }
525f2ec16ccSHideki Saito 
526f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
527f2ec16ccSHideki Saito   // back into the PHI node may have external users.
528f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
529f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5306a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5316a1dd77fSAnna Thomas   // details).
532f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().isAlwaysTrue()) {
533f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
534f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
535f2ec16ccSHideki Saito   }
536f2ec16ccSHideki Saito 
537d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
538f2ec16ccSHideki Saito }
539f2ec16ccSHideki Saito 
540ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
541ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
542ea7f3035SHideki Saito 
543ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
544ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
545ea7f3035SHideki Saito     InductionDescriptor ID;
546ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
547ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
548ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
549ea7f3035SHideki Saito       return true;
550ea7f3035SHideki Saito     } else {
551ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
552ea7f3035SHideki Saito       // induction.
553ea7f3035SHideki Saito       LLVM_DEBUG(
554ea7f3035SHideki Saito           dbgs()
555ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
556ea7f3035SHideki Saito       return false;
557ea7f3035SHideki Saito     }
558ea7f3035SHideki Saito   };
559ea7f3035SHideki Saito 
560ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
561ea7f3035SHideki Saito     return true;
562ea7f3035SHideki Saito   else
563ea7f3035SHideki Saito     return false;
564ea7f3035SHideki Saito }
565ea7f3035SHideki Saito 
566f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
567f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
568f2ec16ccSHideki Saito 
569f2ec16ccSHideki Saito   // Look for the attribute signaling the absence of NaNs.
570f2ec16ccSHideki Saito   Function &F = *Header->getParent();
571f2ec16ccSHideki Saito   HasFunNoNaNAttr =
572f2ec16ccSHideki Saito       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
573f2ec16ccSHideki Saito 
574f2ec16ccSHideki Saito   // For each block in the loop.
575f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
576f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
577f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
578f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
579f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
580f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
581f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
582f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
5839e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
5849e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
585*ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
586f2ec16ccSHideki Saito           return false;
587f2ec16ccSHideki Saito         }
588f2ec16ccSHideki Saito 
589f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
590f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
591f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
592f2ec16ccSHideki Saito         if (BB != Header) {
59360a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
59460a1e4ddSAnna Thomas           // them to the list of allowed exits.
59560a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
59660a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
59760a1e4ddSAnna Thomas           // recurrences.
598f2ec16ccSHideki Saito           continue;
599f2ec16ccSHideki Saito         }
600f2ec16ccSHideki Saito 
601f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
602f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6039e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6049e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
605*ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
606f2ec16ccSHideki Saito           return false;
607f2ec16ccSHideki Saito         }
608f2ec16ccSHideki Saito 
609f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
610f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
611f2ec16ccSHideki Saito                                                  DT)) {
612f2ec16ccSHideki Saito           if (RedDes.hasUnsafeAlgebra())
613f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
614f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
615f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
616f2ec16ccSHideki Saito           continue;
617f2ec16ccSHideki Saito         }
618f2ec16ccSHideki Saito 
619b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
620b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
621b02b0ad8SAnna Thomas         // limited to):
622b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
623b02b0ad8SAnna Thomas         // is not available when vectorized
624b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
625b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
626b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
627b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
628b02b0ad8SAnna Thomas         // handling below
629b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
630b02b0ad8SAnna Thomas         // extraction.
631b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
632b02b0ad8SAnna Thomas         // of these NotAllowedExit.
633f2ec16ccSHideki Saito         InductionDescriptor ID;
634f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
635f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
636f2ec16ccSHideki Saito           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
637f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
638f2ec16ccSHideki Saito           continue;
639f2ec16ccSHideki Saito         }
640f2ec16ccSHideki Saito 
641f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
642f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
643f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
644f2ec16ccSHideki Saito           continue;
645f2ec16ccSHideki Saito         }
646f2ec16ccSHideki Saito 
647f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
648f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
649f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
650f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
651f2ec16ccSHideki Saito           continue;
652f2ec16ccSHideki Saito         }
653f2ec16ccSHideki Saito 
6549e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
6559e97caf5SRenato Golin             "value that could not be identified as "
6569e97caf5SRenato Golin             "reduction is used outside the loop",
657*ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
658f2ec16ccSHideki Saito         return false;
659f2ec16ccSHideki Saito       } // end of PHI handling
660f2ec16ccSHideki Saito 
661f2ec16ccSHideki Saito       // We handle calls that:
662f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
663f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
664f2ec16ccSHideki Saito       //   * Have a vector version available.
665f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
666f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
667f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
668f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
669f2ec16ccSHideki Saito             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
6707d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
6717d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
6727d65fe5cSSanjay Patel         LibFunc Func;
6737d65fe5cSSanjay Patel         bool IsMathLibCall =
6747d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
6757d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
6767d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
6777d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
6787d65fe5cSSanjay Patel 
6797d65fe5cSSanjay Patel         if (IsMathLibCall) {
6807d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
6817d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
6827d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
6837d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
6849e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
6859e97caf5SRenato Golin               "library call cannot be vectorized. "
6867d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
6879e97caf5SRenato Golin               "or similar flags",
688*ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
6897d65fe5cSSanjay Patel         } else {
6909e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
6919e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
692*ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
6937d65fe5cSSanjay Patel         }
694f2ec16ccSHideki Saito         return false;
695f2ec16ccSHideki Saito       }
696f2ec16ccSHideki Saito 
697a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
698a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
699a066f1f9SSimon Pilgrim       if (CI) {
700f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
701a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
702a066f1f9SSimon Pilgrim         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
703a066f1f9SSimon Pilgrim           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
704a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7059e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7069e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
707*ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
708f2ec16ccSHideki Saito               return false;
709f2ec16ccSHideki Saito             }
710f2ec16ccSHideki Saito           }
711a066f1f9SSimon Pilgrim       }
712f2ec16ccSHideki Saito 
713f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
714f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
715f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
716f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
717f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
7189e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
7199e97caf5SRenato Golin             "instruction return type cannot be vectorized",
720*ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
721f2ec16ccSHideki Saito         return false;
722f2ec16ccSHideki Saito       }
723f2ec16ccSHideki Saito 
724f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
725f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
726f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
727f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
7289e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
7299e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
730*ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
731f2ec16ccSHideki Saito           return false;
732f2ec16ccSHideki Saito         }
733f2ec16ccSHideki Saito 
7346452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
7356452bdd2SWarren Ristow         // supported on the target.
7366452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
7376452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
7386452bdd2SWarren Ristow           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
7396452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
7406452bdd2SWarren Ristow           unsigned Alignment = getLoadStoreAlignment(ST);
7416452bdd2SWarren Ristow           if (!TTI->isLegalNTStore(VecTy, Alignment)) {
7426452bdd2SWarren Ristow             reportVectorizationFailure(
7436452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
7446452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
745*ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
7466452bdd2SWarren Ristow             return false;
7476452bdd2SWarren Ristow           }
7486452bdd2SWarren Ristow         }
7496452bdd2SWarren Ristow 
7506452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
7516452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
7526452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
7536452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
7546452bdd2SWarren Ristow           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
7556452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
7566452bdd2SWarren Ristow           unsigned Alignment = getLoadStoreAlignment(LD);
7576452bdd2SWarren Ristow           if (!TTI->isLegalNTLoad(VecTy, Alignment)) {
7586452bdd2SWarren Ristow             reportVectorizationFailure(
7596452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
7606452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
761*ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
7626452bdd2SWarren Ristow             return false;
7636452bdd2SWarren Ristow           }
7646452bdd2SWarren Ristow         }
7656452bdd2SWarren Ristow 
766f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
767f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
768f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
769f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
770f2ec16ccSHideki Saito         // semantics.
771f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
772f2ec16ccSHideki Saito                  !I.isFast()) {
773d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
774f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
775f2ec16ccSHideki Saito       }
776f2ec16ccSHideki Saito 
777f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
778f2ec16ccSHideki Saito       // All other instructions must not have external users.
779f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
780b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
781b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
782b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
783b02b0ad8SAnna Thomas         // outside the loop.
784b02b0ad8SAnna Thomas         if (PSE.getUnionPredicate().isAlwaysTrue()) {
785b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
786b02b0ad8SAnna Thomas           continue;
787b02b0ad8SAnna Thomas         }
7889e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
7899e97caf5SRenato Golin                                    "value cannot be used outside the loop",
790*ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
791f2ec16ccSHideki Saito         return false;
792f2ec16ccSHideki Saito       }
793f2ec16ccSHideki Saito     } // next instr.
794f2ec16ccSHideki Saito   }
795f2ec16ccSHideki Saito 
796f2ec16ccSHideki Saito   if (!PrimaryInduction) {
797f2ec16ccSHideki Saito     if (Inductions.empty()) {
7989e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
7999e97caf5SRenato Golin           "loop induction variable could not be identified",
800*ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
801f2ec16ccSHideki Saito       return false;
8024f27730eSWarren Ristow     } else if (!WidestIndTy) {
8039e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8049e97caf5SRenato Golin           "integer loop induction variable could not be identified",
805*ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8064f27730eSWarren Ristow       return false;
8079e97caf5SRenato Golin     } else {
8089e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
809f2ec16ccSHideki Saito     }
810f2ec16ccSHideki Saito   }
811f2ec16ccSHideki Saito 
812f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
813f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
814f2ec16ccSHideki Saito   // will create another.
815f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
816f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
817f2ec16ccSHideki Saito 
818f2ec16ccSHideki Saito   return true;
819f2ec16ccSHideki Saito }
820f2ec16ccSHideki Saito 
821f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
822f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
823f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
824f2ec16ccSHideki Saito   if (LAR) {
825f2ec16ccSHideki Saito     ORE->emit([&]() {
826f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
827f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
828f2ec16ccSHideki Saito     });
829f2ec16ccSHideki Saito   }
830f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
831f2ec16ccSHideki Saito     return false;
832f2ec16ccSHideki Saito 
8335e9215f0SAnna Thomas   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
8349e97caf5SRenato Golin     reportVectorizationFailure("Stores to a uniform address",
8359e97caf5SRenato Golin         "write to a loop invariant address could not be vectorized",
836*ec818d7fSHideki Saito         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
837f2ec16ccSHideki Saito     return false;
838f2ec16ccSHideki Saito   }
839f2ec16ccSHideki Saito   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
840f2ec16ccSHideki Saito   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
841f2ec16ccSHideki Saito 
842f2ec16ccSHideki Saito   return true;
843f2ec16ccSHideki Saito }
844f2ec16ccSHideki Saito 
845f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
846f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
847f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
848f2ec16ccSHideki Saito   if (!PN)
849f2ec16ccSHideki Saito     return false;
850f2ec16ccSHideki Saito 
851f2ec16ccSHideki Saito   return Inductions.count(PN);
852f2ec16ccSHideki Saito }
853f2ec16ccSHideki Saito 
854f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
855f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
856f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
857f2ec16ccSHideki Saito }
858f2ec16ccSHideki Saito 
859f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
860f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
861f2ec16ccSHideki Saito }
862f2ec16ccSHideki Saito 
863f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
864f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
865f2ec16ccSHideki Saito }
866f2ec16ccSHideki Saito 
867f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
868f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
869f2ec16ccSHideki Saito }
870f2ec16ccSHideki Saito 
871f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
872f2ec16ccSHideki Saito     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) {
873f2ec16ccSHideki Saito   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
874f2ec16ccSHideki Saito 
875f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
876f2ec16ccSHideki Saito     // Check that we don't have a constant expression that can trap as operand.
877f2ec16ccSHideki Saito     for (Value *Operand : I.operands()) {
878f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(Operand))
879f2ec16ccSHideki Saito         if (C->canTrap())
880f2ec16ccSHideki Saito           return false;
881f2ec16ccSHideki Saito     }
882f2ec16ccSHideki Saito     // We might be able to hoist the load.
883f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
884f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
885f2ec16ccSHideki Saito       if (!LI)
886f2ec16ccSHideki Saito         return false;
887f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
888f2ec16ccSHideki Saito         // !llvm.mem.parallel_loop_access implies if-conversion safety.
889f2ec16ccSHideki Saito         // Otherwise, record that the load needs (real or emulated) masking
890f2ec16ccSHideki Saito         // and let the cost model decide.
891f2ec16ccSHideki Saito         if (!IsAnnotatedParallel)
892f2ec16ccSHideki Saito           MaskedOp.insert(LI);
893f2ec16ccSHideki Saito         continue;
894f2ec16ccSHideki Saito       }
895f2ec16ccSHideki Saito     }
896f2ec16ccSHideki Saito 
897f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
898f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
899f2ec16ccSHideki Saito       if (!SI)
900f2ec16ccSHideki Saito         return false;
901f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
902f2ec16ccSHideki Saito       // 1) masked store HW instruction,
903f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
904f2ec16ccSHideki Saito       //    be aware on the race conditions), or
905f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
906f2ec16ccSHideki Saito       MaskedOp.insert(SI);
907f2ec16ccSHideki Saito       continue;
908f2ec16ccSHideki Saito     }
909f2ec16ccSHideki Saito     if (I.mayThrow())
910f2ec16ccSHideki Saito       return false;
911f2ec16ccSHideki Saito   }
912f2ec16ccSHideki Saito 
913f2ec16ccSHideki Saito   return true;
914f2ec16ccSHideki Saito }
915f2ec16ccSHideki Saito 
916f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
917f2ec16ccSHideki Saito   if (!EnableIfConversion) {
9189e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
9199e97caf5SRenato Golin                                "if-conversion is disabled",
920*ec818d7fSHideki Saito                                "IfConversionDisabled",
921*ec818d7fSHideki Saito                                ORE, TheLoop);
922f2ec16ccSHideki Saito     return false;
923f2ec16ccSHideki Saito   }
924f2ec16ccSHideki Saito 
925f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
926f2ec16ccSHideki Saito 
927f2ec16ccSHideki Saito   // A list of pointers that we can safely read and write to.
928f2ec16ccSHideki Saito   SmallPtrSet<Value *, 8> SafePointes;
929f2ec16ccSHideki Saito 
930f2ec16ccSHideki Saito   // Collect safe addresses.
931f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
932f2ec16ccSHideki Saito     if (blockNeedsPredication(BB))
933f2ec16ccSHideki Saito       continue;
934f2ec16ccSHideki Saito 
935f2ec16ccSHideki Saito     for (Instruction &I : *BB)
936f2ec16ccSHideki Saito       if (auto *Ptr = getLoadStorePointerOperand(&I))
937f2ec16ccSHideki Saito         SafePointes.insert(Ptr);
938f2ec16ccSHideki Saito   }
939f2ec16ccSHideki Saito 
940f2ec16ccSHideki Saito   // Collect the blocks that need predication.
941f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
942f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
943f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
944f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
9459e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
9469e97caf5SRenato Golin                                  "loop contains a switch statement",
947*ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
948*ec818d7fSHideki Saito                                  BB->getTerminator());
949f2ec16ccSHideki Saito       return false;
950f2ec16ccSHideki Saito     }
951f2ec16ccSHideki Saito 
952f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
953f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
954f2ec16ccSHideki Saito       if (!blockCanBePredicated(BB, SafePointes)) {
9559e97caf5SRenato Golin         reportVectorizationFailure(
9569e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
9579e97caf5SRenato Golin             "control flow cannot be substituted for a select",
958*ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
959*ec818d7fSHideki Saito             BB->getTerminator());
960f2ec16ccSHideki Saito         return false;
961f2ec16ccSHideki Saito       }
962f2ec16ccSHideki Saito     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
9639e97caf5SRenato Golin       reportVectorizationFailure(
9649e97caf5SRenato Golin           "Control flow cannot be substituted for a select",
9659e97caf5SRenato Golin           "control flow cannot be substituted for a select",
966*ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
967*ec818d7fSHideki Saito           BB->getTerminator());
968f2ec16ccSHideki Saito       return false;
969f2ec16ccSHideki Saito     }
970f2ec16ccSHideki Saito   }
971f2ec16ccSHideki Saito 
972f2ec16ccSHideki Saito   // We can if-convert this loop.
973f2ec16ccSHideki Saito   return true;
974f2ec16ccSHideki Saito }
975f2ec16ccSHideki Saito 
976f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
977f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
978f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
979f2ec16ccSHideki Saito   assert((UseVPlanNativePath || Lp->empty()) &&
980f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
981f2ec16ccSHideki Saito 
982f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
983f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
984f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
985f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
986f2ec16ccSHideki Saito 
987f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
988f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
989f2ec16ccSHideki Saito   bool Result = true;
990f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
991f2ec16ccSHideki Saito 
992f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
993f2ec16ccSHideki Saito   // be canonicalized.
994f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
9959e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
9969e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
997*ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
998f2ec16ccSHideki Saito     if (DoExtraAnalysis)
999f2ec16ccSHideki Saito       Result = false;
1000f2ec16ccSHideki Saito     else
1001f2ec16ccSHideki Saito       return false;
1002f2ec16ccSHideki Saito   }
1003f2ec16ccSHideki Saito 
1004f2ec16ccSHideki Saito   // We must have a single backedge.
1005f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
10069e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
10079e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1008*ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1009f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1010f2ec16ccSHideki Saito       Result = false;
1011f2ec16ccSHideki Saito     else
1012f2ec16ccSHideki Saito       return false;
1013f2ec16ccSHideki Saito   }
1014f2ec16ccSHideki Saito 
1015f2ec16ccSHideki Saito   // We must have a single exiting block.
1016f2ec16ccSHideki Saito   if (!Lp->getExitingBlock()) {
10179e97caf5SRenato Golin     reportVectorizationFailure("The loop must have an exiting block",
10189e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1019*ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1020f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1021f2ec16ccSHideki Saito       Result = false;
1022f2ec16ccSHideki Saito     else
1023f2ec16ccSHideki Saito       return false;
1024f2ec16ccSHideki Saito   }
1025f2ec16ccSHideki Saito 
1026f2ec16ccSHideki Saito   // We only handle bottom-tested loops, i.e. loop in which the condition is
1027f2ec16ccSHideki Saito   // checked at the end of each iteration. With that we can assume that all
1028f2ec16ccSHideki Saito   // instructions in the loop are executed the same number of times.
1029f2ec16ccSHideki Saito   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
10309e97caf5SRenato Golin     reportVectorizationFailure("The exiting block is not the loop latch",
10319e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1032*ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1033f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1034f2ec16ccSHideki Saito       Result = false;
1035f2ec16ccSHideki Saito     else
1036f2ec16ccSHideki Saito       return false;
1037f2ec16ccSHideki Saito   }
1038f2ec16ccSHideki Saito 
1039f2ec16ccSHideki Saito   return Result;
1040f2ec16ccSHideki Saito }
1041f2ec16ccSHideki Saito 
1042f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1043f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1044f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1045f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1046f2ec16ccSHideki Saito   bool Result = true;
1047f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1048f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1049f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1050f2ec16ccSHideki Saito       Result = false;
1051f2ec16ccSHideki Saito     else
1052f2ec16ccSHideki Saito       return false;
1053f2ec16ccSHideki Saito   }
1054f2ec16ccSHideki Saito 
1055f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1056f2ec16ccSHideki Saito   // understood.
1057f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1058f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1059f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1060f2ec16ccSHideki Saito         Result = false;
1061f2ec16ccSHideki Saito       else
1062f2ec16ccSHideki Saito         return false;
1063f2ec16ccSHideki Saito     }
1064f2ec16ccSHideki Saito 
1065f2ec16ccSHideki Saito   return Result;
1066f2ec16ccSHideki Saito }
1067f2ec16ccSHideki Saito 
1068f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1069f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1070f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1071f2ec16ccSHideki Saito   bool Result = true;
1072f2ec16ccSHideki Saito 
1073f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1074f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1075f2ec16ccSHideki Saito   // vectorizer.
1076f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1077f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1078f2ec16ccSHideki Saito       Result = false;
1079f2ec16ccSHideki Saito     else
1080f2ec16ccSHideki Saito       return false;
1081f2ec16ccSHideki Saito   }
1082f2ec16ccSHideki Saito 
1083f2ec16ccSHideki Saito   // We need to have a loop header.
1084d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1085f2ec16ccSHideki Saito                     << '\n');
1086f2ec16ccSHideki Saito 
1087f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1088f2ec16ccSHideki Saito   // point because they don't support outer loops.
1089f2ec16ccSHideki Saito   if (!TheLoop->empty()) {
1090f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1091f2ec16ccSHideki Saito 
1092f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
10939e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
10949e97caf5SRenato Golin                                  "unsupported outer loop",
1095*ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1096*ec818d7fSHideki Saito                                  ORE, TheLoop);
1097f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1098f2ec16ccSHideki Saito       // outer loops.
1099f2ec16ccSHideki Saito       return false;
1100f2ec16ccSHideki Saito     }
1101f2ec16ccSHideki Saito 
1102d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1103f2ec16ccSHideki Saito     return Result;
1104f2ec16ccSHideki Saito   }
1105f2ec16ccSHideki Saito 
1106f2ec16ccSHideki Saito   assert(TheLoop->empty() && "Inner loop expected.");
1107f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1108f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1109f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1110d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1111f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1112f2ec16ccSHideki Saito       Result = false;
1113f2ec16ccSHideki Saito     else
1114f2ec16ccSHideki Saito       return false;
1115f2ec16ccSHideki Saito   }
1116f2ec16ccSHideki Saito 
1117f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1118f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1119d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1120f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1121f2ec16ccSHideki Saito       Result = false;
1122f2ec16ccSHideki Saito     else
1123f2ec16ccSHideki Saito       return false;
1124f2ec16ccSHideki Saito   }
1125f2ec16ccSHideki Saito 
1126f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1127f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1128d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1129f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1130f2ec16ccSHideki Saito       Result = false;
1131f2ec16ccSHideki Saito     else
1132f2ec16ccSHideki Saito       return false;
1133f2ec16ccSHideki Saito   }
1134f2ec16ccSHideki Saito 
1135d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1136f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1137f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1138f2ec16ccSHideki Saito                             : "")
1139f2ec16ccSHideki Saito                     << "!\n");
1140f2ec16ccSHideki Saito 
1141f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1142f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1143f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1144f2ec16ccSHideki Saito 
1145f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
11469e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
11479e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1148*ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1149f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1150f2ec16ccSHideki Saito       Result = false;
1151f2ec16ccSHideki Saito     else
1152f2ec16ccSHideki Saito       return false;
1153f2ec16ccSHideki Saito   }
1154f2ec16ccSHideki Saito 
1155f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1156f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1157f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1158f2ec16ccSHideki Saito   // no restrictions.
1159f2ec16ccSHideki Saito   return Result;
1160f2ec16ccSHideki Saito }
1161f2ec16ccSHideki Saito 
1162b0b5312eSAyal Zaks bool LoopVectorizationLegality::canFoldTailByMasking() {
1163b0b5312eSAyal Zaks 
1164b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1165b0b5312eSAyal Zaks 
1166b0b5312eSAyal Zaks   if (!PrimaryInduction) {
11679e97caf5SRenato Golin     reportVectorizationFailure(
11689e97caf5SRenato Golin         "No primary induction, cannot fold tail by masking",
11699e97caf5SRenato Golin         "Missing a primary induction variable in the loop, which is "
11709e97caf5SRenato Golin         "needed in order to fold tail by masking as required.",
1171*ec818d7fSHideki Saito         "NoPrimaryInduction", ORE, TheLoop);
1172b0b5312eSAyal Zaks     return false;
1173b0b5312eSAyal Zaks   }
1174b0b5312eSAyal Zaks 
1175b0b5312eSAyal Zaks   // TODO: handle reductions when tail is folded by masking.
1176b0b5312eSAyal Zaks   if (!Reductions.empty()) {
11779e97caf5SRenato Golin     reportVectorizationFailure(
11789e97caf5SRenato Golin         "Loop has reductions, cannot fold tail by masking",
11799e97caf5SRenato Golin         "Cannot fold tail by masking in the presence of reductions.",
1180*ec818d7fSHideki Saito         "ReductionFoldingTailByMasking", ORE, TheLoop);
1181b0b5312eSAyal Zaks     return false;
1182b0b5312eSAyal Zaks   }
1183b0b5312eSAyal Zaks 
1184b0b5312eSAyal Zaks   // TODO: handle outside users when tail is folded by masking.
1185b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1186b0b5312eSAyal Zaks     // Check that all users of allowed exit values are inside the loop.
1187b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1188b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1189b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1190b0b5312eSAyal Zaks         continue;
11919e97caf5SRenato Golin       reportVectorizationFailure(
11929e97caf5SRenato Golin           "Cannot fold tail by masking, loop has an outside user for",
11939e97caf5SRenato Golin           "Cannot fold tail by masking in the presence of live outs.",
1194*ec818d7fSHideki Saito           "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
1195b0b5312eSAyal Zaks       return false;
1196b0b5312eSAyal Zaks     }
1197b0b5312eSAyal Zaks   }
1198b0b5312eSAyal Zaks 
1199b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1200b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1201b0b5312eSAyal Zaks 
1202b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1203b0b5312eSAyal Zaks   // do not need predication such as the header block.
1204b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1205b0b5312eSAyal Zaks     if (!blockCanBePredicated(BB, SafePointers)) {
12069e97caf5SRenato Golin       reportVectorizationFailure(
12079e97caf5SRenato Golin           "Cannot fold tail by masking as required",
12089e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1209*ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1210*ec818d7fSHideki Saito           BB->getTerminator());
1211b0b5312eSAyal Zaks       return false;
1212b0b5312eSAyal Zaks     }
1213b0b5312eSAyal Zaks   }
1214b0b5312eSAyal Zaks 
1215b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1216b0b5312eSAyal Zaks   return true;
1217b0b5312eSAyal Zaks }
1218b0b5312eSAyal Zaks 
1219f2ec16ccSHideki Saito } // namespace llvm
1220