1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f2ec16ccSHideki Saito // 7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 8f2ec16ccSHideki Saito // 9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 11f2ec16ccSHideki Saito // 12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 15f2ec16ccSHideki Saito // 16*ec818d7fSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorize.h" 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 19f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 20f2ec16ccSHideki Saito 21f2ec16ccSHideki Saito using namespace llvm; 22f2ec16ccSHideki Saito 23f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 24f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 25f2ec16ccSHideki Saito 264e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication; 274e4ecae0SHideki Saito 28f2ec16ccSHideki Saito static cl::opt<bool> 29f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 30f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 31f2ec16ccSHideki Saito 32f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 33f2ec16ccSHideki Saito "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 34f2ec16ccSHideki Saito cl::desc("The maximum allowed number of runtime memory checks with a " 35f2ec16ccSHideki Saito "vectorize(enable) pragma.")); 36f2ec16ccSHideki Saito 37f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 38f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 39f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 40f2ec16ccSHideki Saito 41f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 42f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 43f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 44f2ec16ccSHideki Saito "vectorize(enable) pragma")); 45f2ec16ccSHideki Saito 46f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 47f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 48f2ec16ccSHideki Saito 49f2ec16ccSHideki Saito namespace llvm { 50f2ec16ccSHideki Saito 51f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 52f2ec16ccSHideki Saito switch (Kind) { 53f2ec16ccSHideki Saito case HK_WIDTH: 54f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 55f2ec16ccSHideki Saito case HK_UNROLL: 56f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 57f2ec16ccSHideki Saito case HK_FORCE: 58f2ec16ccSHideki Saito return (Val <= 1); 59f2ec16ccSHideki Saito case HK_ISVECTORIZED: 6020b198ecSSjoerd Meijer case HK_PREDICATE: 61f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 62f2ec16ccSHideki Saito } 63f2ec16ccSHideki Saito return false; 64f2ec16ccSHideki Saito } 65f2ec16ccSHideki Saito 66d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 67d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 68f2ec16ccSHideki Saito OptimizationRemarkEmitter &ORE) 69f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 70d4eb13c8SMichael Kruse Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 71f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 7220b198ecSSjoerd Meijer IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 7320b198ecSSjoerd Meijer Predicate("vectorize.predicate.enable", 0, HK_PREDICATE), TheLoop(L), 7420b198ecSSjoerd Meijer ORE(ORE) { 75f2ec16ccSHideki Saito // Populate values with existing loop metadata. 76f2ec16ccSHideki Saito getHintsFromMetadata(); 77f2ec16ccSHideki Saito 78f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 79f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 80f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 81f2ec16ccSHideki Saito 82f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 83f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 84f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 85f2ec16ccSHideki Saito // nothing more that we can do. 86f2ec16ccSHideki Saito IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 87d4eb13c8SMichael Kruse LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 88f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 89f2ec16ccSHideki Saito } 90f2ec16ccSHideki Saito 9177a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() { 9277a614a6SMichael Kruse LLVMContext &Context = TheLoop->getHeader()->getContext(); 9377a614a6SMichael Kruse 9477a614a6SMichael Kruse MDNode *IsVectorizedMD = MDNode::get( 9577a614a6SMichael Kruse Context, 9677a614a6SMichael Kruse {MDString::get(Context, "llvm.loop.isvectorized"), 9777a614a6SMichael Kruse ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 9877a614a6SMichael Kruse MDNode *LoopID = TheLoop->getLoopID(); 9977a614a6SMichael Kruse MDNode *NewLoopID = 10077a614a6SMichael Kruse makePostTransformationMetadata(Context, LoopID, 10177a614a6SMichael Kruse {Twine(Prefix(), "vectorize.").str(), 10277a614a6SMichael Kruse Twine(Prefix(), "interleave.").str()}, 10377a614a6SMichael Kruse {IsVectorizedMD}); 10477a614a6SMichael Kruse TheLoop->setLoopID(NewLoopID); 10577a614a6SMichael Kruse 10677a614a6SMichael Kruse // Update internal cache. 10777a614a6SMichael Kruse IsVectorized.Value = 1; 10877a614a6SMichael Kruse } 10977a614a6SMichael Kruse 110d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 111d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 112f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 113d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 114f2ec16ccSHideki Saito emitRemarkWithHints(); 115f2ec16ccSHideki Saito return false; 116f2ec16ccSHideki Saito } 117f2ec16ccSHideki Saito 118d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 119d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 120f2ec16ccSHideki Saito emitRemarkWithHints(); 121f2ec16ccSHideki Saito return false; 122f2ec16ccSHideki Saito } 123f2ec16ccSHideki Saito 124f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 125d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 126f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 127f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 128f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 129f2ec16ccSHideki Saito ORE.emit([&]() { 130f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 131f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 132f2ec16ccSHideki Saito L->getHeader()) 133f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 134f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 135f2ec16ccSHideki Saito "vectorized"; 136f2ec16ccSHideki Saito }); 137f2ec16ccSHideki Saito return false; 138f2ec16ccSHideki Saito } 139f2ec16ccSHideki Saito 140f2ec16ccSHideki Saito return true; 141f2ec16ccSHideki Saito } 142f2ec16ccSHideki Saito 143f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 144f2ec16ccSHideki Saito using namespace ore; 145f2ec16ccSHideki Saito 146f2ec16ccSHideki Saito ORE.emit([&]() { 147f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 148f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 149f2ec16ccSHideki Saito TheLoop->getStartLoc(), 150f2ec16ccSHideki Saito TheLoop->getHeader()) 151f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 152f2ec16ccSHideki Saito else { 153f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 154f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 155f2ec16ccSHideki Saito R << "loop not vectorized"; 156f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 157f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 158f2ec16ccSHideki Saito if (Width.Value != 0) 159f2ec16ccSHideki Saito R << ", Vector Width=" << NV("VectorWidth", Width.Value); 160f2ec16ccSHideki Saito if (Interleave.Value != 0) 161f2ec16ccSHideki Saito R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 162f2ec16ccSHideki Saito R << ")"; 163f2ec16ccSHideki Saito } 164f2ec16ccSHideki Saito return R; 165f2ec16ccSHideki Saito } 166f2ec16ccSHideki Saito }); 167f2ec16ccSHideki Saito } 168f2ec16ccSHideki Saito 169f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 170f2ec16ccSHideki Saito if (getWidth() == 1) 171f2ec16ccSHideki Saito return LV_NAME; 172f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 173f2ec16ccSHideki Saito return LV_NAME; 174f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 175f2ec16ccSHideki Saito return LV_NAME; 176f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 177f2ec16ccSHideki Saito } 178f2ec16ccSHideki Saito 179f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 180f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 181f2ec16ccSHideki Saito if (!LoopID) 182f2ec16ccSHideki Saito return; 183f2ec16ccSHideki Saito 184f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 185f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 186f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 187f2ec16ccSHideki Saito 188f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 189f2ec16ccSHideki Saito const MDString *S = nullptr; 190f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 191f2ec16ccSHideki Saito 192f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 193f2ec16ccSHideki Saito // operand a MDString. 194f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 195f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 196f2ec16ccSHideki Saito continue; 197f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 198f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 199f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 200f2ec16ccSHideki Saito } else { 201f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 202f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 203f2ec16ccSHideki Saito } 204f2ec16ccSHideki Saito 205f2ec16ccSHideki Saito if (!S) 206f2ec16ccSHideki Saito continue; 207f2ec16ccSHideki Saito 208f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 209f2ec16ccSHideki Saito StringRef Name = S->getString(); 210f2ec16ccSHideki Saito if (Args.size() == 1) 211f2ec16ccSHideki Saito setHint(Name, Args[0]); 212f2ec16ccSHideki Saito } 213f2ec16ccSHideki Saito } 214f2ec16ccSHideki Saito 215f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 216f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 217f2ec16ccSHideki Saito return; 218f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 219f2ec16ccSHideki Saito 220f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 221f2ec16ccSHideki Saito if (!C) 222f2ec16ccSHideki Saito return; 223f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 224f2ec16ccSHideki Saito 22520b198ecSSjoerd Meijer Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate}; 226f2ec16ccSHideki Saito for (auto H : Hints) { 227f2ec16ccSHideki Saito if (Name == H->Name) { 228f2ec16ccSHideki Saito if (H->validate(Val)) 229f2ec16ccSHideki Saito H->Value = Val; 230f2ec16ccSHideki Saito else 231d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 232f2ec16ccSHideki Saito break; 233f2ec16ccSHideki Saito } 234f2ec16ccSHideki Saito } 235f2ec16ccSHideki Saito } 236f2ec16ccSHideki Saito 237f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet( 238f2ec16ccSHideki Saito Function *F, Loop *L, const LoopVectorizeHints &Hints) { 239f2ec16ccSHideki Saito const char *PassName = Hints.vectorizeAnalysisPassName(); 240f2ec16ccSHideki Saito bool Failed = false; 241f2ec16ccSHideki Saito if (UnsafeAlgebraInst && !Hints.allowReordering()) { 242f2ec16ccSHideki Saito ORE.emit([&]() { 243f2ec16ccSHideki Saito return OptimizationRemarkAnalysisFPCommute( 244f2ec16ccSHideki Saito PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 245f2ec16ccSHideki Saito UnsafeAlgebraInst->getParent()) 246f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 247f2ec16ccSHideki Saito "floating-point operations"; 248f2ec16ccSHideki Saito }); 249f2ec16ccSHideki Saito Failed = true; 250f2ec16ccSHideki Saito } 251f2ec16ccSHideki Saito 252f2ec16ccSHideki Saito // Test if runtime memcheck thresholds are exceeded. 253f2ec16ccSHideki Saito bool PragmaThresholdReached = 254f2ec16ccSHideki Saito NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 255f2ec16ccSHideki Saito bool ThresholdReached = 256f2ec16ccSHideki Saito NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 257f2ec16ccSHideki Saito if ((ThresholdReached && !Hints.allowReordering()) || 258f2ec16ccSHideki Saito PragmaThresholdReached) { 259f2ec16ccSHideki Saito ORE.emit([&]() { 260f2ec16ccSHideki Saito return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 261f2ec16ccSHideki Saito L->getStartLoc(), 262f2ec16ccSHideki Saito L->getHeader()) 263f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 264f2ec16ccSHideki Saito "memory operations"; 265f2ec16ccSHideki Saito }); 266d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 267f2ec16ccSHideki Saito Failed = true; 268f2ec16ccSHideki Saito } 269f2ec16ccSHideki Saito 270f2ec16ccSHideki Saito return Failed; 271f2ec16ccSHideki Saito } 272f2ec16ccSHideki Saito 273f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 274f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 275f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 276f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 277f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 278f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 279f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 280f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 281f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 282f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 283f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 284f2ec16ccSHideki Saito // 285f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 286f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 287f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 288f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 289f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 290f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 291f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 292f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 293f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 294f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 295f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 296f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 297f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 298f2ec16ccSHideki Saito 299f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 300f2ec16ccSHideki Saito if (Lp == OuterLp) 301f2ec16ccSHideki Saito return true; 302f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 303f2ec16ccSHideki Saito 304f2ec16ccSHideki Saito // 1. 305f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 306f2ec16ccSHideki Saito if (!IV) { 307d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 308f2ec16ccSHideki Saito return false; 309f2ec16ccSHideki Saito } 310f2ec16ccSHideki Saito 311f2ec16ccSHideki Saito // 2. 312f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 313f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 314f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 315d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 316f2ec16ccSHideki Saito return false; 317f2ec16ccSHideki Saito } 318f2ec16ccSHideki Saito 319f2ec16ccSHideki Saito // 3. 320f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 321f2ec16ccSHideki Saito if (!LatchCmp) { 322d34e60caSNicola Zaghen LLVM_DEBUG( 323d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 324f2ec16ccSHideki Saito return false; 325f2ec16ccSHideki Saito } 326f2ec16ccSHideki Saito 327f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 328f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 329f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 330f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 331f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 332d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 333f2ec16ccSHideki Saito return false; 334f2ec16ccSHideki Saito } 335f2ec16ccSHideki Saito 336f2ec16ccSHideki Saito return true; 337f2ec16ccSHideki Saito } 338f2ec16ccSHideki Saito 339f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 340f2ec16ccSHideki Saito // OuterLp. 341f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 342f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 343f2ec16ccSHideki Saito return false; 344f2ec16ccSHideki Saito 345f2ec16ccSHideki Saito // Check if nested loops are uniform. 346f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 347f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 348f2ec16ccSHideki Saito return false; 349f2ec16ccSHideki Saito 350f2ec16ccSHideki Saito return true; 351f2ec16ccSHideki Saito } 352f2ec16ccSHideki Saito 3535f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 354f2ec16ccSHideki Saito /// 355f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 356f2ec16ccSHideki Saito /// convert. 357f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 358f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 359f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 360f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 361f2ec16ccSHideki Saito if (C->canTrap()) 362f2ec16ccSHideki Saito return false; 363f2ec16ccSHideki Saito } 364f2ec16ccSHideki Saito return true; 365f2ec16ccSHideki Saito } 366f2ec16ccSHideki Saito 367f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 368f2ec16ccSHideki Saito if (Ty->isPointerTy()) 369f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 370f2ec16ccSHideki Saito 371f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 372f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 373f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 374f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 375f2ec16ccSHideki Saito 376f2ec16ccSHideki Saito return Ty; 377f2ec16ccSHideki Saito } 378f2ec16ccSHideki Saito 379f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 380f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 381f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 382f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 383f2ec16ccSHideki Saito return Ty0; 384f2ec16ccSHideki Saito return Ty1; 385f2ec16ccSHideki Saito } 386f2ec16ccSHideki Saito 3875f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 388f2ec16ccSHideki Saito /// identified reduction variable. 389f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 390f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 39160a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 392f2ec16ccSHideki Saito // other instructions must not have external users. 393f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 394f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 395f2ec16ccSHideki Saito for (User *U : Inst->users()) { 396f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 397f2ec16ccSHideki Saito // This user may be a reduction exit value. 398f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 399d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 400f2ec16ccSHideki Saito return true; 401f2ec16ccSHideki Saito } 402f2ec16ccSHideki Saito } 403f2ec16ccSHideki Saito return false; 404f2ec16ccSHideki Saito } 405f2ec16ccSHideki Saito 406f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 407f2ec16ccSHideki Saito const ValueToValueMap &Strides = 408f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 409f2ec16ccSHideki Saito 410f2ec16ccSHideki Saito int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 411f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 412f2ec16ccSHideki Saito return Stride; 413f2ec16ccSHideki Saito return 0; 414f2ec16ccSHideki Saito } 415f2ec16ccSHideki Saito 416f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 417f2ec16ccSHideki Saito return LAI->isUniform(V); 418f2ec16ccSHideki Saito } 419f2ec16ccSHideki Saito 420f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 421f2ec16ccSHideki Saito assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 422f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 423f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 424f2ec16ccSHideki Saito bool Result = true; 425f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 426f2ec16ccSHideki Saito 427f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 428f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 429f2ec16ccSHideki Saito // not supported yet. 430f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 431f2ec16ccSHideki Saito if (!Br) { 4329e97caf5SRenato Golin reportVectorizationFailure("Unsupported basic block terminator", 4339e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 434*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 435f2ec16ccSHideki Saito if (DoExtraAnalysis) 436f2ec16ccSHideki Saito Result = false; 437f2ec16ccSHideki Saito else 438f2ec16ccSHideki Saito return false; 439f2ec16ccSHideki Saito } 440f2ec16ccSHideki Saito 441f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 442f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 443f2ec16ccSHideki Saito // backedges are supported. 4444e4ecae0SHideki Saito // FIXME: We skip these checks when VPlan predication is enabled as we 4454e4ecae0SHideki Saito // want to allow divergent branches. This whole check will be removed 4464e4ecae0SHideki Saito // once VPlan predication is on by default. 4474e4ecae0SHideki Saito if (!EnableVPlanPredication && Br && Br->isConditional() && 448f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 449f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 450f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 4519e97caf5SRenato Golin reportVectorizationFailure("Unsupported conditional branch", 4529e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 453*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 454f2ec16ccSHideki Saito if (DoExtraAnalysis) 455f2ec16ccSHideki Saito Result = false; 456f2ec16ccSHideki Saito else 457f2ec16ccSHideki Saito return false; 458f2ec16ccSHideki Saito } 459f2ec16ccSHideki Saito } 460f2ec16ccSHideki Saito 461f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 462f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 463f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 464f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 4659e97caf5SRenato Golin reportVectorizationFailure("Outer loop contains divergent loops", 4669e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 467*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 468f2ec16ccSHideki Saito if (DoExtraAnalysis) 469f2ec16ccSHideki Saito Result = false; 470f2ec16ccSHideki Saito else 471f2ec16ccSHideki Saito return false; 472f2ec16ccSHideki Saito } 473f2ec16ccSHideki Saito 474ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 475ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 4769e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop Phi(s)", 4779e97caf5SRenato Golin "Unsupported outer loop Phi(s)", 478*ec818d7fSHideki Saito "UnsupportedPhi", ORE, TheLoop); 479ea7f3035SHideki Saito if (DoExtraAnalysis) 480ea7f3035SHideki Saito Result = false; 481ea7f3035SHideki Saito else 482ea7f3035SHideki Saito return false; 483ea7f3035SHideki Saito } 484ea7f3035SHideki Saito 485f2ec16ccSHideki Saito return Result; 486f2ec16ccSHideki Saito } 487f2ec16ccSHideki Saito 488f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 489f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 490f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 491f2ec16ccSHideki Saito Inductions[Phi] = ID; 492f2ec16ccSHideki Saito 493f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 494f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 495f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 496f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 497f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 498f2ec16ccSHideki Saito if (!Casts.empty()) 499f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 500f2ec16ccSHideki Saito 501f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 502f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 503f2ec16ccSHideki Saito 504f2ec16ccSHideki Saito // Get the widest type. 505f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 506f2ec16ccSHideki Saito if (!WidestIndTy) 507f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 508f2ec16ccSHideki Saito else 509f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 510f2ec16ccSHideki Saito } 511f2ec16ccSHideki Saito 512f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 513f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 514f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 515f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 516f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 517f2ec16ccSHideki Saito 518f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 519f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 520f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 521f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 522f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 523f2ec16ccSHideki Saito PrimaryInduction = Phi; 524f2ec16ccSHideki Saito } 525f2ec16ccSHideki Saito 526f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 527f2ec16ccSHideki Saito // back into the PHI node may have external users. 528f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 529f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5306a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5316a1dd77fSAnna Thomas // details). 532f2ec16ccSHideki Saito if (PSE.getUnionPredicate().isAlwaysTrue()) { 533f2ec16ccSHideki Saito AllowedExit.insert(Phi); 534f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 535f2ec16ccSHideki Saito } 536f2ec16ccSHideki Saito 537d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 538f2ec16ccSHideki Saito } 539f2ec16ccSHideki Saito 540ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 541ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 542ea7f3035SHideki Saito 543ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 544ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 545ea7f3035SHideki Saito InductionDescriptor ID; 546ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 547ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 548ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 549ea7f3035SHideki Saito return true; 550ea7f3035SHideki Saito } else { 551ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 552ea7f3035SHideki Saito // induction. 553ea7f3035SHideki Saito LLVM_DEBUG( 554ea7f3035SHideki Saito dbgs() 555ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 556ea7f3035SHideki Saito return false; 557ea7f3035SHideki Saito } 558ea7f3035SHideki Saito }; 559ea7f3035SHideki Saito 560ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 561ea7f3035SHideki Saito return true; 562ea7f3035SHideki Saito else 563ea7f3035SHideki Saito return false; 564ea7f3035SHideki Saito } 565ea7f3035SHideki Saito 566f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 567f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 568f2ec16ccSHideki Saito 569f2ec16ccSHideki Saito // Look for the attribute signaling the absence of NaNs. 570f2ec16ccSHideki Saito Function &F = *Header->getParent(); 571f2ec16ccSHideki Saito HasFunNoNaNAttr = 572f2ec16ccSHideki Saito F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 573f2ec16ccSHideki Saito 574f2ec16ccSHideki Saito // For each block in the loop. 575f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 576f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 577f2ec16ccSHideki Saito for (Instruction &I : *BB) { 578f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 579f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 580f2ec16ccSHideki Saito // Check that this PHI type is allowed. 581f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 582f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 5839e97caf5SRenato Golin reportVectorizationFailure("Found a non-int non-pointer PHI", 5849e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 585*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 586f2ec16ccSHideki Saito return false; 587f2ec16ccSHideki Saito } 588f2ec16ccSHideki Saito 589f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 590f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 591f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 592f2ec16ccSHideki Saito if (BB != Header) { 59360a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 59460a1e4ddSAnna Thomas // them to the list of allowed exits. 59560a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 59660a1e4ddSAnna Thomas // legalization for reduction, induction and first order 59760a1e4ddSAnna Thomas // recurrences. 598f2ec16ccSHideki Saito continue; 599f2ec16ccSHideki Saito } 600f2ec16ccSHideki Saito 601f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 602f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 6039e97caf5SRenato Golin reportVectorizationFailure("Found an invalid PHI", 6049e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 605*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop, Phi); 606f2ec16ccSHideki Saito return false; 607f2ec16ccSHideki Saito } 608f2ec16ccSHideki Saito 609f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 610f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 611f2ec16ccSHideki Saito DT)) { 612f2ec16ccSHideki Saito if (RedDes.hasUnsafeAlgebra()) 613f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 614f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 615f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 616f2ec16ccSHideki Saito continue; 617f2ec16ccSHideki Saito } 618f2ec16ccSHideki Saito 619b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 620b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 621b02b0ad8SAnna Thomas // limited to): 622b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 623b02b0ad8SAnna Thomas // is not available when vectorized 624b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 625b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 626b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 627b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 628b02b0ad8SAnna Thomas // handling below 629b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 630b02b0ad8SAnna Thomas // extraction. 631b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 632b02b0ad8SAnna Thomas // of these NotAllowedExit. 633f2ec16ccSHideki Saito InductionDescriptor ID; 634f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 635f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 636f2ec16ccSHideki Saito if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 637f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 638f2ec16ccSHideki Saito continue; 639f2ec16ccSHideki Saito } 640f2ec16ccSHideki Saito 641f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 642f2ec16ccSHideki Saito SinkAfter, DT)) { 643f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 644f2ec16ccSHideki Saito continue; 645f2ec16ccSHideki Saito } 646f2ec16ccSHideki Saito 647f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 648f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 649f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 650f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 651f2ec16ccSHideki Saito continue; 652f2ec16ccSHideki Saito } 653f2ec16ccSHideki Saito 6549e97caf5SRenato Golin reportVectorizationFailure("Found an unidentified PHI", 6559e97caf5SRenato Golin "value that could not be identified as " 6569e97caf5SRenato Golin "reduction is used outside the loop", 657*ec818d7fSHideki Saito "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 658f2ec16ccSHideki Saito return false; 659f2ec16ccSHideki Saito } // end of PHI handling 660f2ec16ccSHideki Saito 661f2ec16ccSHideki Saito // We handle calls that: 662f2ec16ccSHideki Saito // * Are debug info intrinsics. 663f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 664f2ec16ccSHideki Saito // * Have a vector version available. 665f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 666f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 667f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 668f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 669f2ec16ccSHideki Saito TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 6707d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 6717d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 6727d65fe5cSSanjay Patel LibFunc Func; 6737d65fe5cSSanjay Patel bool IsMathLibCall = 6747d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 6757d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 6767d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 6777d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 6787d65fe5cSSanjay Patel 6797d65fe5cSSanjay Patel if (IsMathLibCall) { 6807d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 6817d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 6827d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 6837d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 6849e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 6859e97caf5SRenato Golin "library call cannot be vectorized. " 6867d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 6879e97caf5SRenato Golin "or similar flags", 688*ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 6897d65fe5cSSanjay Patel } else { 6909e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 6919e97caf5SRenato Golin "call instruction cannot be vectorized", 692*ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 6937d65fe5cSSanjay Patel } 694f2ec16ccSHideki Saito return false; 695f2ec16ccSHideki Saito } 696f2ec16ccSHideki Saito 697a066f1f9SSimon Pilgrim // Some intrinsics have scalar arguments and should be same in order for 698a066f1f9SSimon Pilgrim // them to be vectorized (i.e. loop invariant). 699a066f1f9SSimon Pilgrim if (CI) { 700f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 701a066f1f9SSimon Pilgrim Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 702a066f1f9SSimon Pilgrim for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 703a066f1f9SSimon Pilgrim if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 704a066f1f9SSimon Pilgrim if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 7059e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable intrinsic", 7069e97caf5SRenato Golin "intrinsic instruction cannot be vectorized", 707*ec818d7fSHideki Saito "CantVectorizeIntrinsic", ORE, TheLoop, CI); 708f2ec16ccSHideki Saito return false; 709f2ec16ccSHideki Saito } 710f2ec16ccSHideki Saito } 711a066f1f9SSimon Pilgrim } 712f2ec16ccSHideki Saito 713f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 714f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 715f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 716f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 717f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 7189e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable type", 7199e97caf5SRenato Golin "instruction return type cannot be vectorized", 720*ec818d7fSHideki Saito "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 721f2ec16ccSHideki Saito return false; 722f2ec16ccSHideki Saito } 723f2ec16ccSHideki Saito 724f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 725f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 726f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 727f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 7289e97caf5SRenato Golin reportVectorizationFailure("Store instruction cannot be vectorized", 7299e97caf5SRenato Golin "store instruction cannot be vectorized", 730*ec818d7fSHideki Saito "CantVectorizeStore", ORE, TheLoop, ST); 731f2ec16ccSHideki Saito return false; 732f2ec16ccSHideki Saito } 733f2ec16ccSHideki Saito 7346452bdd2SWarren Ristow // For nontemporal stores, check that a nontemporal vector version is 7356452bdd2SWarren Ristow // supported on the target. 7366452bdd2SWarren Ristow if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 7376452bdd2SWarren Ristow // Arbitrarily try a vector of 2 elements. 7386452bdd2SWarren Ristow Type *VecTy = VectorType::get(T, /*NumElements=*/2); 7396452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of stored type"); 7406452bdd2SWarren Ristow unsigned Alignment = getLoadStoreAlignment(ST); 7416452bdd2SWarren Ristow if (!TTI->isLegalNTStore(VecTy, Alignment)) { 7426452bdd2SWarren Ristow reportVectorizationFailure( 7436452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 7446452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 745*ec818d7fSHideki Saito "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 7466452bdd2SWarren Ristow return false; 7476452bdd2SWarren Ristow } 7486452bdd2SWarren Ristow } 7496452bdd2SWarren Ristow 7506452bdd2SWarren Ristow } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 7516452bdd2SWarren Ristow if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 7526452bdd2SWarren Ristow // For nontemporal loads, check that a nontemporal vector version is 7536452bdd2SWarren Ristow // supported on the target (arbitrarily try a vector of 2 elements). 7546452bdd2SWarren Ristow Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2); 7556452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of load type"); 7566452bdd2SWarren Ristow unsigned Alignment = getLoadStoreAlignment(LD); 7576452bdd2SWarren Ristow if (!TTI->isLegalNTLoad(VecTy, Alignment)) { 7586452bdd2SWarren Ristow reportVectorizationFailure( 7596452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 7606452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 761*ec818d7fSHideki Saito "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 7626452bdd2SWarren Ristow return false; 7636452bdd2SWarren Ristow } 7646452bdd2SWarren Ristow } 7656452bdd2SWarren Ristow 766f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 767f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 768f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 769f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 770f2ec16ccSHideki Saito // semantics. 771f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 772f2ec16ccSHideki Saito !I.isFast()) { 773d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 774f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 775f2ec16ccSHideki Saito } 776f2ec16ccSHideki Saito 777f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 778f2ec16ccSHideki Saito // All other instructions must not have external users. 779f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 780b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 781b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 782b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 783b02b0ad8SAnna Thomas // outside the loop. 784b02b0ad8SAnna Thomas if (PSE.getUnionPredicate().isAlwaysTrue()) { 785b02b0ad8SAnna Thomas AllowedExit.insert(&I); 786b02b0ad8SAnna Thomas continue; 787b02b0ad8SAnna Thomas } 7889e97caf5SRenato Golin reportVectorizationFailure("Value cannot be used outside the loop", 7899e97caf5SRenato Golin "value cannot be used outside the loop", 790*ec818d7fSHideki Saito "ValueUsedOutsideLoop", ORE, TheLoop, &I); 791f2ec16ccSHideki Saito return false; 792f2ec16ccSHideki Saito } 793f2ec16ccSHideki Saito } // next instr. 794f2ec16ccSHideki Saito } 795f2ec16ccSHideki Saito 796f2ec16ccSHideki Saito if (!PrimaryInduction) { 797f2ec16ccSHideki Saito if (Inductions.empty()) { 7989e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 7999e97caf5SRenato Golin "loop induction variable could not be identified", 800*ec818d7fSHideki Saito "NoInductionVariable", ORE, TheLoop); 801f2ec16ccSHideki Saito return false; 8024f27730eSWarren Ristow } else if (!WidestIndTy) { 8039e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8049e97caf5SRenato Golin "integer loop induction variable could not be identified", 805*ec818d7fSHideki Saito "NoIntegerInductionVariable", ORE, TheLoop); 8064f27730eSWarren Ristow return false; 8079e97caf5SRenato Golin } else { 8089e97caf5SRenato Golin LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 809f2ec16ccSHideki Saito } 810f2ec16ccSHideki Saito } 811f2ec16ccSHideki Saito 812f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 813f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 814f2ec16ccSHideki Saito // will create another. 815f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 816f2ec16ccSHideki Saito PrimaryInduction = nullptr; 817f2ec16ccSHideki Saito 818f2ec16ccSHideki Saito return true; 819f2ec16ccSHideki Saito } 820f2ec16ccSHideki Saito 821f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 822f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 823f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 824f2ec16ccSHideki Saito if (LAR) { 825f2ec16ccSHideki Saito ORE->emit([&]() { 826f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 827f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 828f2ec16ccSHideki Saito }); 829f2ec16ccSHideki Saito } 830f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 831f2ec16ccSHideki Saito return false; 832f2ec16ccSHideki Saito 8335e9215f0SAnna Thomas if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 8349e97caf5SRenato Golin reportVectorizationFailure("Stores to a uniform address", 8359e97caf5SRenato Golin "write to a loop invariant address could not be vectorized", 836*ec818d7fSHideki Saito "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 837f2ec16ccSHideki Saito return false; 838f2ec16ccSHideki Saito } 839f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 840f2ec16ccSHideki Saito PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 841f2ec16ccSHideki Saito 842f2ec16ccSHideki Saito return true; 843f2ec16ccSHideki Saito } 844f2ec16ccSHideki Saito 845f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 846f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 847f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 848f2ec16ccSHideki Saito if (!PN) 849f2ec16ccSHideki Saito return false; 850f2ec16ccSHideki Saito 851f2ec16ccSHideki Saito return Inductions.count(PN); 852f2ec16ccSHideki Saito } 853f2ec16ccSHideki Saito 854f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 855f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 856f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 857f2ec16ccSHideki Saito } 858f2ec16ccSHideki Saito 859f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 860f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 861f2ec16ccSHideki Saito } 862f2ec16ccSHideki Saito 863f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 864f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 865f2ec16ccSHideki Saito } 866f2ec16ccSHideki Saito 867f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 868f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 869f2ec16ccSHideki Saito } 870f2ec16ccSHideki Saito 871f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 872f2ec16ccSHideki Saito BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 873f2ec16ccSHideki Saito const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 874f2ec16ccSHideki Saito 875f2ec16ccSHideki Saito for (Instruction &I : *BB) { 876f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 877f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 878f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 879f2ec16ccSHideki Saito if (C->canTrap()) 880f2ec16ccSHideki Saito return false; 881f2ec16ccSHideki Saito } 882f2ec16ccSHideki Saito // We might be able to hoist the load. 883f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 884f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 885f2ec16ccSHideki Saito if (!LI) 886f2ec16ccSHideki Saito return false; 887f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 888f2ec16ccSHideki Saito // !llvm.mem.parallel_loop_access implies if-conversion safety. 889f2ec16ccSHideki Saito // Otherwise, record that the load needs (real or emulated) masking 890f2ec16ccSHideki Saito // and let the cost model decide. 891f2ec16ccSHideki Saito if (!IsAnnotatedParallel) 892f2ec16ccSHideki Saito MaskedOp.insert(LI); 893f2ec16ccSHideki Saito continue; 894f2ec16ccSHideki Saito } 895f2ec16ccSHideki Saito } 896f2ec16ccSHideki Saito 897f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 898f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 899f2ec16ccSHideki Saito if (!SI) 900f2ec16ccSHideki Saito return false; 901f2ec16ccSHideki Saito // Predicated store requires some form of masking: 902f2ec16ccSHideki Saito // 1) masked store HW instruction, 903f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 904f2ec16ccSHideki Saito // be aware on the race conditions), or 905f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 906f2ec16ccSHideki Saito MaskedOp.insert(SI); 907f2ec16ccSHideki Saito continue; 908f2ec16ccSHideki Saito } 909f2ec16ccSHideki Saito if (I.mayThrow()) 910f2ec16ccSHideki Saito return false; 911f2ec16ccSHideki Saito } 912f2ec16ccSHideki Saito 913f2ec16ccSHideki Saito return true; 914f2ec16ccSHideki Saito } 915f2ec16ccSHideki Saito 916f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 917f2ec16ccSHideki Saito if (!EnableIfConversion) { 9189e97caf5SRenato Golin reportVectorizationFailure("If-conversion is disabled", 9199e97caf5SRenato Golin "if-conversion is disabled", 920*ec818d7fSHideki Saito "IfConversionDisabled", 921*ec818d7fSHideki Saito ORE, TheLoop); 922f2ec16ccSHideki Saito return false; 923f2ec16ccSHideki Saito } 924f2ec16ccSHideki Saito 925f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 926f2ec16ccSHideki Saito 927f2ec16ccSHideki Saito // A list of pointers that we can safely read and write to. 928f2ec16ccSHideki Saito SmallPtrSet<Value *, 8> SafePointes; 929f2ec16ccSHideki Saito 930f2ec16ccSHideki Saito // Collect safe addresses. 931f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 932f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) 933f2ec16ccSHideki Saito continue; 934f2ec16ccSHideki Saito 935f2ec16ccSHideki Saito for (Instruction &I : *BB) 936f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 937f2ec16ccSHideki Saito SafePointes.insert(Ptr); 938f2ec16ccSHideki Saito } 939f2ec16ccSHideki Saito 940f2ec16ccSHideki Saito // Collect the blocks that need predication. 941f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 942f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 943f2ec16ccSHideki Saito // We don't support switch statements inside loops. 944f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 9459e97caf5SRenato Golin reportVectorizationFailure("Loop contains a switch statement", 9469e97caf5SRenato Golin "loop contains a switch statement", 947*ec818d7fSHideki Saito "LoopContainsSwitch", ORE, TheLoop, 948*ec818d7fSHideki Saito BB->getTerminator()); 949f2ec16ccSHideki Saito return false; 950f2ec16ccSHideki Saito } 951f2ec16ccSHideki Saito 952f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 953f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 954f2ec16ccSHideki Saito if (!blockCanBePredicated(BB, SafePointes)) { 9559e97caf5SRenato Golin reportVectorizationFailure( 9569e97caf5SRenato Golin "Control flow cannot be substituted for a select", 9579e97caf5SRenato Golin "control flow cannot be substituted for a select", 958*ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 959*ec818d7fSHideki Saito BB->getTerminator()); 960f2ec16ccSHideki Saito return false; 961f2ec16ccSHideki Saito } 962f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 9639e97caf5SRenato Golin reportVectorizationFailure( 9649e97caf5SRenato Golin "Control flow cannot be substituted for a select", 9659e97caf5SRenato Golin "control flow cannot be substituted for a select", 966*ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 967*ec818d7fSHideki Saito BB->getTerminator()); 968f2ec16ccSHideki Saito return false; 969f2ec16ccSHideki Saito } 970f2ec16ccSHideki Saito } 971f2ec16ccSHideki Saito 972f2ec16ccSHideki Saito // We can if-convert this loop. 973f2ec16ccSHideki Saito return true; 974f2ec16ccSHideki Saito } 975f2ec16ccSHideki Saito 976f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 977f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 978f2ec16ccSHideki Saito bool UseVPlanNativePath) { 979f2ec16ccSHideki Saito assert((UseVPlanNativePath || Lp->empty()) && 980f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 981f2ec16ccSHideki Saito 982f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 983f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 984f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 985f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 986f2ec16ccSHideki Saito 987f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 988f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 989f2ec16ccSHideki Saito bool Result = true; 990f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 991f2ec16ccSHideki Saito 992f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 993f2ec16ccSHideki Saito // be canonicalized. 994f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 9959e97caf5SRenato Golin reportVectorizationFailure("Loop doesn't have a legal pre-header", 9969e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 997*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 998f2ec16ccSHideki Saito if (DoExtraAnalysis) 999f2ec16ccSHideki Saito Result = false; 1000f2ec16ccSHideki Saito else 1001f2ec16ccSHideki Saito return false; 1002f2ec16ccSHideki Saito } 1003f2ec16ccSHideki Saito 1004f2ec16ccSHideki Saito // We must have a single backedge. 1005f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 10069e97caf5SRenato Golin reportVectorizationFailure("The loop must have a single backedge", 10079e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1008*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1009f2ec16ccSHideki Saito if (DoExtraAnalysis) 1010f2ec16ccSHideki Saito Result = false; 1011f2ec16ccSHideki Saito else 1012f2ec16ccSHideki Saito return false; 1013f2ec16ccSHideki Saito } 1014f2ec16ccSHideki Saito 1015f2ec16ccSHideki Saito // We must have a single exiting block. 1016f2ec16ccSHideki Saito if (!Lp->getExitingBlock()) { 10179e97caf5SRenato Golin reportVectorizationFailure("The loop must have an exiting block", 10189e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1019*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1020f2ec16ccSHideki Saito if (DoExtraAnalysis) 1021f2ec16ccSHideki Saito Result = false; 1022f2ec16ccSHideki Saito else 1023f2ec16ccSHideki Saito return false; 1024f2ec16ccSHideki Saito } 1025f2ec16ccSHideki Saito 1026f2ec16ccSHideki Saito // We only handle bottom-tested loops, i.e. loop in which the condition is 1027f2ec16ccSHideki Saito // checked at the end of each iteration. With that we can assume that all 1028f2ec16ccSHideki Saito // instructions in the loop are executed the same number of times. 1029f2ec16ccSHideki Saito if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 10309e97caf5SRenato Golin reportVectorizationFailure("The exiting block is not the loop latch", 10319e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1032*ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1033f2ec16ccSHideki Saito if (DoExtraAnalysis) 1034f2ec16ccSHideki Saito Result = false; 1035f2ec16ccSHideki Saito else 1036f2ec16ccSHideki Saito return false; 1037f2ec16ccSHideki Saito } 1038f2ec16ccSHideki Saito 1039f2ec16ccSHideki Saito return Result; 1040f2ec16ccSHideki Saito } 1041f2ec16ccSHideki Saito 1042f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1043f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1044f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1045f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1046f2ec16ccSHideki Saito bool Result = true; 1047f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1048f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1049f2ec16ccSHideki Saito if (DoExtraAnalysis) 1050f2ec16ccSHideki Saito Result = false; 1051f2ec16ccSHideki Saito else 1052f2ec16ccSHideki Saito return false; 1053f2ec16ccSHideki Saito } 1054f2ec16ccSHideki Saito 1055f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1056f2ec16ccSHideki Saito // understood. 1057f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1058f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1059f2ec16ccSHideki Saito if (DoExtraAnalysis) 1060f2ec16ccSHideki Saito Result = false; 1061f2ec16ccSHideki Saito else 1062f2ec16ccSHideki Saito return false; 1063f2ec16ccSHideki Saito } 1064f2ec16ccSHideki Saito 1065f2ec16ccSHideki Saito return Result; 1066f2ec16ccSHideki Saito } 1067f2ec16ccSHideki Saito 1068f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1069f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1070f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1071f2ec16ccSHideki Saito bool Result = true; 1072f2ec16ccSHideki Saito 1073f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1074f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1075f2ec16ccSHideki Saito // vectorizer. 1076f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1077f2ec16ccSHideki Saito if (DoExtraAnalysis) 1078f2ec16ccSHideki Saito Result = false; 1079f2ec16ccSHideki Saito else 1080f2ec16ccSHideki Saito return false; 1081f2ec16ccSHideki Saito } 1082f2ec16ccSHideki Saito 1083f2ec16ccSHideki Saito // We need to have a loop header. 1084d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1085f2ec16ccSHideki Saito << '\n'); 1086f2ec16ccSHideki Saito 1087f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1088f2ec16ccSHideki Saito // point because they don't support outer loops. 1089f2ec16ccSHideki Saito if (!TheLoop->empty()) { 1090f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1091f2ec16ccSHideki Saito 1092f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 10939e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop", 10949e97caf5SRenato Golin "unsupported outer loop", 1095*ec818d7fSHideki Saito "UnsupportedOuterLoop", 1096*ec818d7fSHideki Saito ORE, TheLoop); 1097f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1098f2ec16ccSHideki Saito // outer loops. 1099f2ec16ccSHideki Saito return false; 1100f2ec16ccSHideki Saito } 1101f2ec16ccSHideki Saito 1102d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1103f2ec16ccSHideki Saito return Result; 1104f2ec16ccSHideki Saito } 1105f2ec16ccSHideki Saito 1106f2ec16ccSHideki Saito assert(TheLoop->empty() && "Inner loop expected."); 1107f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1108f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1109f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1110d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1111f2ec16ccSHideki Saito if (DoExtraAnalysis) 1112f2ec16ccSHideki Saito Result = false; 1113f2ec16ccSHideki Saito else 1114f2ec16ccSHideki Saito return false; 1115f2ec16ccSHideki Saito } 1116f2ec16ccSHideki Saito 1117f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1118f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1119d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1120f2ec16ccSHideki Saito if (DoExtraAnalysis) 1121f2ec16ccSHideki Saito Result = false; 1122f2ec16ccSHideki Saito else 1123f2ec16ccSHideki Saito return false; 1124f2ec16ccSHideki Saito } 1125f2ec16ccSHideki Saito 1126f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1127f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1128d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1129f2ec16ccSHideki Saito if (DoExtraAnalysis) 1130f2ec16ccSHideki Saito Result = false; 1131f2ec16ccSHideki Saito else 1132f2ec16ccSHideki Saito return false; 1133f2ec16ccSHideki Saito } 1134f2ec16ccSHideki Saito 1135d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1136f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1137f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1138f2ec16ccSHideki Saito : "") 1139f2ec16ccSHideki Saito << "!\n"); 1140f2ec16ccSHideki Saito 1141f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1142f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1143f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1144f2ec16ccSHideki Saito 1145f2ec16ccSHideki Saito if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 11469e97caf5SRenato Golin reportVectorizationFailure("Too many SCEV checks needed", 11479e97caf5SRenato Golin "Too many SCEV assumptions need to be made and checked at runtime", 1148*ec818d7fSHideki Saito "TooManySCEVRunTimeChecks", ORE, TheLoop); 1149f2ec16ccSHideki Saito if (DoExtraAnalysis) 1150f2ec16ccSHideki Saito Result = false; 1151f2ec16ccSHideki Saito else 1152f2ec16ccSHideki Saito return false; 1153f2ec16ccSHideki Saito } 1154f2ec16ccSHideki Saito 1155f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1156f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1157f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1158f2ec16ccSHideki Saito // no restrictions. 1159f2ec16ccSHideki Saito return Result; 1160f2ec16ccSHideki Saito } 1161f2ec16ccSHideki Saito 1162b0b5312eSAyal Zaks bool LoopVectorizationLegality::canFoldTailByMasking() { 1163b0b5312eSAyal Zaks 1164b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1165b0b5312eSAyal Zaks 1166b0b5312eSAyal Zaks if (!PrimaryInduction) { 11679e97caf5SRenato Golin reportVectorizationFailure( 11689e97caf5SRenato Golin "No primary induction, cannot fold tail by masking", 11699e97caf5SRenato Golin "Missing a primary induction variable in the loop, which is " 11709e97caf5SRenato Golin "needed in order to fold tail by masking as required.", 1171*ec818d7fSHideki Saito "NoPrimaryInduction", ORE, TheLoop); 1172b0b5312eSAyal Zaks return false; 1173b0b5312eSAyal Zaks } 1174b0b5312eSAyal Zaks 1175b0b5312eSAyal Zaks // TODO: handle reductions when tail is folded by masking. 1176b0b5312eSAyal Zaks if (!Reductions.empty()) { 11779e97caf5SRenato Golin reportVectorizationFailure( 11789e97caf5SRenato Golin "Loop has reductions, cannot fold tail by masking", 11799e97caf5SRenato Golin "Cannot fold tail by masking in the presence of reductions.", 1180*ec818d7fSHideki Saito "ReductionFoldingTailByMasking", ORE, TheLoop); 1181b0b5312eSAyal Zaks return false; 1182b0b5312eSAyal Zaks } 1183b0b5312eSAyal Zaks 1184b0b5312eSAyal Zaks // TODO: handle outside users when tail is folded by masking. 1185b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1186b0b5312eSAyal Zaks // Check that all users of allowed exit values are inside the loop. 1187b0b5312eSAyal Zaks for (User *U : AE->users()) { 1188b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1189b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1190b0b5312eSAyal Zaks continue; 11919e97caf5SRenato Golin reportVectorizationFailure( 11929e97caf5SRenato Golin "Cannot fold tail by masking, loop has an outside user for", 11939e97caf5SRenato Golin "Cannot fold tail by masking in the presence of live outs.", 1194*ec818d7fSHideki Saito "LiveOutFoldingTailByMasking", ORE, TheLoop, UI); 1195b0b5312eSAyal Zaks return false; 1196b0b5312eSAyal Zaks } 1197b0b5312eSAyal Zaks } 1198b0b5312eSAyal Zaks 1199b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1200b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1201b0b5312eSAyal Zaks 1202b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1203b0b5312eSAyal Zaks // do not need predication such as the header block. 1204b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1205b0b5312eSAyal Zaks if (!blockCanBePredicated(BB, SafePointers)) { 12069e97caf5SRenato Golin reportVectorizationFailure( 12079e97caf5SRenato Golin "Cannot fold tail by masking as required", 12089e97caf5SRenato Golin "control flow cannot be substituted for a select", 1209*ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1210*ec818d7fSHideki Saito BB->getTerminator()); 1211b0b5312eSAyal Zaks return false; 1212b0b5312eSAyal Zaks } 1213b0b5312eSAyal Zaks } 1214b0b5312eSAyal Zaks 1215b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1216b0b5312eSAyal Zaks return true; 1217b0b5312eSAyal Zaks } 1218b0b5312eSAyal Zaks 1219f2ec16ccSHideki Saito } // namespace llvm 1220