1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16cc529285SSimon Pilgrim 
17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
187403569bSPhilip Reames #include "llvm/Analysis/Loads.h"
19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h"
20cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h"
217403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h"
22f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
23f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
2423c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h"
257bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h"
2623c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h"
27f2ec16ccSHideki Saito 
28f2ec16ccSHideki Saito using namespace llvm;
2923c11380SFlorian Hahn using namespace PatternMatch;
30f2ec16ccSHideki Saito 
31f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
32f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
33f2ec16ccSHideki Saito 
344e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication;
354e4ecae0SHideki Saito 
36f2ec16ccSHideki Saito static cl::opt<bool>
37f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
39f2ec16ccSHideki Saito 
40*c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based
41*c773d0f9SFlorian Hahn // decisions instead of hard thresholds.
42f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
43f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
44f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
45f2ec16ccSHideki Saito 
46f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
47f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
48f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
49f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
50f2ec16ccSHideki Saito 
51f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
52f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
53f2ec16ccSHideki Saito 
54f2ec16ccSHideki Saito namespace llvm {
55f2ec16ccSHideki Saito 
56f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
57f2ec16ccSHideki Saito   switch (Kind) {
58f2ec16ccSHideki Saito   case HK_WIDTH:
59f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
60f2ec16ccSHideki Saito   case HK_UNROLL:
61f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
62f2ec16ccSHideki Saito   case HK_FORCE:
63f2ec16ccSHideki Saito     return (Val <= 1);
64f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
6520b198ecSSjoerd Meijer   case HK_PREDICATE:
6671bd59f0SDavid Sherwood   case HK_SCALABLE:
67f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
68f2ec16ccSHideki Saito   }
69f2ec16ccSHideki Saito   return false;
70f2ec16ccSHideki Saito }
71f2ec16ccSHideki Saito 
72d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
73d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
74f2ec16ccSHideki Saito                                        OptimizationRemarkEmitter &ORE)
75f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
76d4eb13c8SMichael Kruse       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
77f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
7820b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
7971bd59f0SDavid Sherwood       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
8071bd59f0SDavid Sherwood       Scalable("vectorize.scalable.enable", false, HK_SCALABLE), TheLoop(L),
8120b198ecSSjoerd Meijer       ORE(ORE) {
82f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
83f2ec16ccSHideki Saito   getHintsFromMetadata();
84f2ec16ccSHideki Saito 
85f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
86f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
87f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
88f2ec16ccSHideki Saito 
89f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
90f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
91f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
92f2ec16ccSHideki Saito     // nothing more that we can do.
9371bd59f0SDavid Sherwood     IsVectorized.Value =
9471bd59f0SDavid Sherwood         getWidth() == ElementCount::getFixed(1) && Interleave.Value == 1;
95d4eb13c8SMichael Kruse   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
96f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
97f2ec16ccSHideki Saito }
98f2ec16ccSHideki Saito 
9977a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
10077a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
10177a614a6SMichael Kruse 
10277a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
10377a614a6SMichael Kruse       Context,
10477a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
10577a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
10677a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
10777a614a6SMichael Kruse   MDNode *NewLoopID =
10877a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
10977a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
11077a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
11177a614a6SMichael Kruse                                      {IsVectorizedMD});
11277a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
11377a614a6SMichael Kruse 
11477a614a6SMichael Kruse   // Update internal cache.
11577a614a6SMichael Kruse   IsVectorized.Value = 1;
11677a614a6SMichael Kruse }
11777a614a6SMichael Kruse 
118d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
119d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
120f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
121d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
122f2ec16ccSHideki Saito     emitRemarkWithHints();
123f2ec16ccSHideki Saito     return false;
124f2ec16ccSHideki Saito   }
125f2ec16ccSHideki Saito 
126d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
127d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
128f2ec16ccSHideki Saito     emitRemarkWithHints();
129f2ec16ccSHideki Saito     return false;
130f2ec16ccSHideki Saito   }
131f2ec16ccSHideki Saito 
132f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
133d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
134f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
135f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
136f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
137f2ec16ccSHideki Saito     ORE.emit([&]() {
138f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
139f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
140f2ec16ccSHideki Saito                                         L->getHeader())
141f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
142f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
143f2ec16ccSHideki Saito                 "vectorized";
144f2ec16ccSHideki Saito     });
145f2ec16ccSHideki Saito     return false;
146f2ec16ccSHideki Saito   }
147f2ec16ccSHideki Saito 
148f2ec16ccSHideki Saito   return true;
149f2ec16ccSHideki Saito }
150f2ec16ccSHideki Saito 
151f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
152f2ec16ccSHideki Saito   using namespace ore;
153f2ec16ccSHideki Saito 
154f2ec16ccSHideki Saito   ORE.emit([&]() {
155f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
156f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
157f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
158f2ec16ccSHideki Saito                                       TheLoop->getHeader())
159f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
160f2ec16ccSHideki Saito     else {
161f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
162f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
163f2ec16ccSHideki Saito       R << "loop not vectorized";
164f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
165f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
166f2ec16ccSHideki Saito         if (Width.Value != 0)
16771bd59f0SDavid Sherwood           R << ", Vector Width=" << NV("VectorWidth", getWidth());
168f2ec16ccSHideki Saito         if (Interleave.Value != 0)
169f2ec16ccSHideki Saito           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
170f2ec16ccSHideki Saito         R << ")";
171f2ec16ccSHideki Saito       }
172f2ec16ccSHideki Saito       return R;
173f2ec16ccSHideki Saito     }
174f2ec16ccSHideki Saito   });
175f2ec16ccSHideki Saito }
176f2ec16ccSHideki Saito 
177f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
17871bd59f0SDavid Sherwood   if (getWidth() == ElementCount::getFixed(1))
179f2ec16ccSHideki Saito     return LV_NAME;
180f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
181f2ec16ccSHideki Saito     return LV_NAME;
18271bd59f0SDavid Sherwood   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
183f2ec16ccSHideki Saito     return LV_NAME;
184f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
185f2ec16ccSHideki Saito }
186f2ec16ccSHideki Saito 
187f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
188f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
189f2ec16ccSHideki Saito   if (!LoopID)
190f2ec16ccSHideki Saito     return;
191f2ec16ccSHideki Saito 
192f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
193f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
194f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
195f2ec16ccSHideki Saito 
196f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
197f2ec16ccSHideki Saito     const MDString *S = nullptr;
198f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
199f2ec16ccSHideki Saito 
200f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
201f2ec16ccSHideki Saito     // operand a MDString.
202f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
203f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
204f2ec16ccSHideki Saito         continue;
205f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
206f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
207f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
208f2ec16ccSHideki Saito     } else {
209f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
210f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
211f2ec16ccSHideki Saito     }
212f2ec16ccSHideki Saito 
213f2ec16ccSHideki Saito     if (!S)
214f2ec16ccSHideki Saito       continue;
215f2ec16ccSHideki Saito 
216f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
217f2ec16ccSHideki Saito     StringRef Name = S->getString();
218f2ec16ccSHideki Saito     if (Args.size() == 1)
219f2ec16ccSHideki Saito       setHint(Name, Args[0]);
220f2ec16ccSHideki Saito   }
221f2ec16ccSHideki Saito }
222f2ec16ccSHideki Saito 
223f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
224f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
225f2ec16ccSHideki Saito     return;
226f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
227f2ec16ccSHideki Saito 
228f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
229f2ec16ccSHideki Saito   if (!C)
230f2ec16ccSHideki Saito     return;
231f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
232f2ec16ccSHideki Saito 
23371bd59f0SDavid Sherwood   Hint *Hints[] = {&Width,        &Interleave, &Force,
23471bd59f0SDavid Sherwood                    &IsVectorized, &Predicate,  &Scalable};
235f2ec16ccSHideki Saito   for (auto H : Hints) {
236f2ec16ccSHideki Saito     if (Name == H->Name) {
237f2ec16ccSHideki Saito       if (H->validate(Val))
238f2ec16ccSHideki Saito         H->Value = Val;
239f2ec16ccSHideki Saito       else
240d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
241f2ec16ccSHideki Saito       break;
242f2ec16ccSHideki Saito     }
243f2ec16ccSHideki Saito   }
244f2ec16ccSHideki Saito }
245f2ec16ccSHideki Saito 
246f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
247f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
248f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
249f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
250f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
251f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
252f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
253f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
254f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
255f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
256f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
257f2ec16ccSHideki Saito //
258f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
259f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
260f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
261f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
262f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
263f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
264f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
265f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
266f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
267f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
268f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
269f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
270f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
271f2ec16ccSHideki Saito 
272f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
273f2ec16ccSHideki Saito   if (Lp == OuterLp)
274f2ec16ccSHideki Saito     return true;
275f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
276f2ec16ccSHideki Saito 
277f2ec16ccSHideki Saito   // 1.
278f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
279f2ec16ccSHideki Saito   if (!IV) {
280d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
281f2ec16ccSHideki Saito     return false;
282f2ec16ccSHideki Saito   }
283f2ec16ccSHideki Saito 
284f2ec16ccSHideki Saito   // 2.
285f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
286f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
287f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
288d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
289f2ec16ccSHideki Saito     return false;
290f2ec16ccSHideki Saito   }
291f2ec16ccSHideki Saito 
292f2ec16ccSHideki Saito   // 3.
293f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
294f2ec16ccSHideki Saito   if (!LatchCmp) {
295d34e60caSNicola Zaghen     LLVM_DEBUG(
296d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
297f2ec16ccSHideki Saito     return false;
298f2ec16ccSHideki Saito   }
299f2ec16ccSHideki Saito 
300f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
301f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
302f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
303f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
304f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
305d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
306f2ec16ccSHideki Saito     return false;
307f2ec16ccSHideki Saito   }
308f2ec16ccSHideki Saito 
309f2ec16ccSHideki Saito   return true;
310f2ec16ccSHideki Saito }
311f2ec16ccSHideki Saito 
312f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
313f2ec16ccSHideki Saito // OuterLp.
314f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
315f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
316f2ec16ccSHideki Saito     return false;
317f2ec16ccSHideki Saito 
318f2ec16ccSHideki Saito   // Check if nested loops are uniform.
319f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
320f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
321f2ec16ccSHideki Saito       return false;
322f2ec16ccSHideki Saito 
323f2ec16ccSHideki Saito   return true;
324f2ec16ccSHideki Saito }
325f2ec16ccSHideki Saito 
3265f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node.
327f2ec16ccSHideki Saito ///
328f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if
329f2ec16ccSHideki Saito /// convert.
330f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) {
331f2ec16ccSHideki Saito   for (PHINode &Phi : BB->phis()) {
332f2ec16ccSHideki Saito     for (Value *V : Phi.incoming_values())
333f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(V))
334f2ec16ccSHideki Saito         if (C->canTrap())
335f2ec16ccSHideki Saito           return false;
336f2ec16ccSHideki Saito   }
337f2ec16ccSHideki Saito   return true;
338f2ec16ccSHideki Saito }
339f2ec16ccSHideki Saito 
340f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
341f2ec16ccSHideki Saito   if (Ty->isPointerTy())
342f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
343f2ec16ccSHideki Saito 
344f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
345f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
346f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
347f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
348f2ec16ccSHideki Saito 
349f2ec16ccSHideki Saito   return Ty;
350f2ec16ccSHideki Saito }
351f2ec16ccSHideki Saito 
352f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
353f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
354f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
355f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
356f2ec16ccSHideki Saito     return Ty0;
357f2ec16ccSHideki Saito   return Ty1;
358f2ec16ccSHideki Saito }
359f2ec16ccSHideki Saito 
3605f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
361f2ec16ccSHideki Saito /// identified reduction variable.
362f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
363f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
36460a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
365f2ec16ccSHideki Saito   // other instructions must not have external users.
366f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
367f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
368f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
369f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
370f2ec16ccSHideki Saito       // This user may be a reduction exit value.
371f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
372d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
373f2ec16ccSHideki Saito         return true;
374f2ec16ccSHideki Saito       }
375f2ec16ccSHideki Saito     }
376f2ec16ccSHideki Saito   return false;
377f2ec16ccSHideki Saito }
378f2ec16ccSHideki Saito 
379f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
380f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
381f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
382f2ec16ccSHideki Saito 
3837bedae7dSHiroshi Yamauchi   Function *F = TheLoop->getHeader()->getParent();
3847bedae7dSHiroshi Yamauchi   bool OptForSize = F->hasOptSize() ||
3857bedae7dSHiroshi Yamauchi                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
3867bedae7dSHiroshi Yamauchi                                                 PGSOQueryType::IRPass);
3877bedae7dSHiroshi Yamauchi   bool CanAddPredicate = !OptForSize;
388d1170dbeSSjoerd Meijer   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
389f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
390f2ec16ccSHideki Saito     return Stride;
391f2ec16ccSHideki Saito   return 0;
392f2ec16ccSHideki Saito }
393f2ec16ccSHideki Saito 
394f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
395f2ec16ccSHideki Saito   return LAI->isUniform(V);
396f2ec16ccSHideki Saito }
397f2ec16ccSHideki Saito 
398f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
39989c1e35fSStefanos Baziotis   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
400f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
401f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
402f2ec16ccSHideki Saito   bool Result = true;
403f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
404f2ec16ccSHideki Saito 
405f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
406f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
407f2ec16ccSHideki Saito     // not supported yet.
408f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
409f2ec16ccSHideki Saito     if (!Br) {
4109e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4119e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
412ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
413f2ec16ccSHideki Saito       if (DoExtraAnalysis)
414f2ec16ccSHideki Saito         Result = false;
415f2ec16ccSHideki Saito       else
416f2ec16ccSHideki Saito         return false;
417f2ec16ccSHideki Saito     }
418f2ec16ccSHideki Saito 
419f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
420f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
421f2ec16ccSHideki Saito     // backedges are supported.
4224e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
4234e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
4244e4ecae0SHideki Saito     // once VPlan predication is on by default.
4254e4ecae0SHideki Saito     if (!EnableVPlanPredication && Br && Br->isConditional() &&
426f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
427f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
428f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
4299e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
4309e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
431ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
432f2ec16ccSHideki Saito       if (DoExtraAnalysis)
433f2ec16ccSHideki Saito         Result = false;
434f2ec16ccSHideki Saito       else
435f2ec16ccSHideki Saito         return false;
436f2ec16ccSHideki Saito     }
437f2ec16ccSHideki Saito   }
438f2ec16ccSHideki Saito 
439f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
440f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
441f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
442f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
4439e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
4449e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
445ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
446f2ec16ccSHideki Saito     if (DoExtraAnalysis)
447f2ec16ccSHideki Saito       Result = false;
448f2ec16ccSHideki Saito     else
449f2ec16ccSHideki Saito       return false;
450f2ec16ccSHideki Saito   }
451f2ec16ccSHideki Saito 
452ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
453ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
4549e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
4559e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
456ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
457ea7f3035SHideki Saito     if (DoExtraAnalysis)
458ea7f3035SHideki Saito       Result = false;
459ea7f3035SHideki Saito     else
460ea7f3035SHideki Saito       return false;
461ea7f3035SHideki Saito   }
462ea7f3035SHideki Saito 
463f2ec16ccSHideki Saito   return Result;
464f2ec16ccSHideki Saito }
465f2ec16ccSHideki Saito 
466f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
467f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
468f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
469f2ec16ccSHideki Saito   Inductions[Phi] = ID;
470f2ec16ccSHideki Saito 
471f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
472f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
473f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
474f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
475f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
476f2ec16ccSHideki Saito   if (!Casts.empty())
477f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
478f2ec16ccSHideki Saito 
479f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
480f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
481f2ec16ccSHideki Saito 
482f2ec16ccSHideki Saito   // Get the widest type.
483f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
484f2ec16ccSHideki Saito     if (!WidestIndTy)
485f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
486f2ec16ccSHideki Saito     else
487f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
488f2ec16ccSHideki Saito   }
489f2ec16ccSHideki Saito 
490f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
491f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
492f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
493f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
494f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
495f2ec16ccSHideki Saito 
496f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
497f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
498f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
499f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
500f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
501f2ec16ccSHideki Saito       PrimaryInduction = Phi;
502f2ec16ccSHideki Saito   }
503f2ec16ccSHideki Saito 
504f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
505f2ec16ccSHideki Saito   // back into the PHI node may have external users.
506f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
507f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5086a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5096a1dd77fSAnna Thomas   // details).
510f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().isAlwaysTrue()) {
511f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
512f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
513f2ec16ccSHideki Saito   }
514f2ec16ccSHideki Saito 
515d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
516f2ec16ccSHideki Saito }
517f2ec16ccSHideki Saito 
518ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
519ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
520ea7f3035SHideki Saito 
521ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
522ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
523ea7f3035SHideki Saito     InductionDescriptor ID;
524ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
525ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
526ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
527ea7f3035SHideki Saito       return true;
528ea7f3035SHideki Saito     } else {
529ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
530ea7f3035SHideki Saito       // induction.
531ea7f3035SHideki Saito       LLVM_DEBUG(
532ea7f3035SHideki Saito           dbgs()
533ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
534ea7f3035SHideki Saito       return false;
535ea7f3035SHideki Saito     }
536ea7f3035SHideki Saito   };
537ea7f3035SHideki Saito 
538ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
539ea7f3035SHideki Saito     return true;
540ea7f3035SHideki Saito   else
541ea7f3035SHideki Saito     return false;
542ea7f3035SHideki Saito }
543ea7f3035SHideki Saito 
54466c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in
54566c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in
54666c120f0SFrancesco Petrogalli /// multiple scalarcalls. This is represented in the
54766c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the
54866c120f0SFrancesco Petrogalli /// following example:
54966c120f0SFrancesco Petrogalli ///
55066c120f0SFrancesco Petrogalli ///    const VecDesc VecIntrinsics[] = {
55166c120f0SFrancesco Petrogalli ///      {"llvm.phx.abs.i32", "", 4}
55266c120f0SFrancesco Petrogalli ///    };
55366c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
55466c120f0SFrancesco Petrogalli   const StringRef ScalarName = CI.getCalledFunction()->getName();
55566c120f0SFrancesco Petrogalli   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
55666c120f0SFrancesco Petrogalli   // Check that all known VFs are not associated to a vector
55766c120f0SFrancesco Petrogalli   // function, i.e. the vector name is emty.
55801b87444SDavid Sherwood   if (Scalarize) {
55901b87444SDavid Sherwood     ElementCount WidestFixedVF, WidestScalableVF;
56001b87444SDavid Sherwood     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
56101b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getFixed(2);
56201b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
56366c120f0SFrancesco Petrogalli       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
56401b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getScalable(1);
56501b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
56601b87444SDavid Sherwood       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
56701b87444SDavid Sherwood     assert((WidestScalableVF.isZero() || !Scalarize) &&
56801b87444SDavid Sherwood            "Caller may decide to scalarize a variant using a scalable VF");
56966c120f0SFrancesco Petrogalli   }
57066c120f0SFrancesco Petrogalli   return Scalarize;
57166c120f0SFrancesco Petrogalli }
57266c120f0SFrancesco Petrogalli 
573f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
574f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
575f2ec16ccSHideki Saito 
576f2ec16ccSHideki Saito   // For each block in the loop.
577f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
578f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
579f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
580f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
581f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
582f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
583f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
584f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
5859e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
5869e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
587ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
588f2ec16ccSHideki Saito           return false;
589f2ec16ccSHideki Saito         }
590f2ec16ccSHideki Saito 
591f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
592f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
593f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
594f2ec16ccSHideki Saito         if (BB != Header) {
59560a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
59660a1e4ddSAnna Thomas           // them to the list of allowed exits.
59760a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
59860a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
59960a1e4ddSAnna Thomas           // recurrences.
600dd18ce45SBjorn Pettersson           AllowedExit.insert(&I);
601f2ec16ccSHideki Saito           continue;
602f2ec16ccSHideki Saito         }
603f2ec16ccSHideki Saito 
604f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
605f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6069e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6079e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
608ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
609f2ec16ccSHideki Saito           return false;
610f2ec16ccSHideki Saito         }
611f2ec16ccSHideki Saito 
612f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
613f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
614f2ec16ccSHideki Saito                                                  DT)) {
615b3a33553SSanjay Patel           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
616f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
617f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
618f2ec16ccSHideki Saito           continue;
619f2ec16ccSHideki Saito         }
620f2ec16ccSHideki Saito 
621b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
622b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
623b02b0ad8SAnna Thomas         // limited to):
624b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
625b02b0ad8SAnna Thomas         // is not available when vectorized
626b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
627b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
628b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
629b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
630b02b0ad8SAnna Thomas         // handling below
631b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
632b02b0ad8SAnna Thomas         // extraction.
633b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
634b02b0ad8SAnna Thomas         // of these NotAllowedExit.
635f2ec16ccSHideki Saito         InductionDescriptor ID;
636f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
637f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
63836a489d1SSanjay Patel           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
639f2ec16ccSHideki Saito           continue;
640f2ec16ccSHideki Saito         }
641f2ec16ccSHideki Saito 
642f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
643f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
6448e0c5f72SAyal Zaks           AllowedExit.insert(Phi);
645f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
646f2ec16ccSHideki Saito           continue;
647f2ec16ccSHideki Saito         }
648f2ec16ccSHideki Saito 
649f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
650f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
651f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
652f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
653f2ec16ccSHideki Saito           continue;
654f2ec16ccSHideki Saito         }
655f2ec16ccSHideki Saito 
6569e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
6579e97caf5SRenato Golin             "value that could not be identified as "
6589e97caf5SRenato Golin             "reduction is used outside the loop",
659ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
660f2ec16ccSHideki Saito         return false;
661f2ec16ccSHideki Saito       } // end of PHI handling
662f2ec16ccSHideki Saito 
663f2ec16ccSHideki Saito       // We handle calls that:
664f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
665f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
666f2ec16ccSHideki Saito       //   * Have a vector version available.
667f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
66866c120f0SFrancesco Petrogalli 
669f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
670f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
671f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
67266c120f0SFrancesco Petrogalli             (!VFDatabase::getMappings(*CI).empty() ||
67366c120f0SFrancesco Petrogalli              isTLIScalarize(*TLI, *CI)))) {
6747d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
6757d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
6767d65fe5cSSanjay Patel         LibFunc Func;
6777d65fe5cSSanjay Patel         bool IsMathLibCall =
6787d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
6797d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
6807d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
6817d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
6827d65fe5cSSanjay Patel 
6837d65fe5cSSanjay Patel         if (IsMathLibCall) {
6847d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
6857d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
6867d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
6877d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
68866c120f0SFrancesco Petrogalli           reportVectorizationFailure(
68966c120f0SFrancesco Petrogalli               "Found a non-intrinsic callsite",
6909e97caf5SRenato Golin               "library call cannot be vectorized. "
6917d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
6929e97caf5SRenato Golin               "or similar flags",
693ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
6947d65fe5cSSanjay Patel         } else {
6959e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
6969e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
697ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
6987d65fe5cSSanjay Patel         }
699f2ec16ccSHideki Saito         return false;
700f2ec16ccSHideki Saito       }
701f2ec16ccSHideki Saito 
702a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
703a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
704a066f1f9SSimon Pilgrim       if (CI) {
705f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
706a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
707a066f1f9SSimon Pilgrim         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
708a066f1f9SSimon Pilgrim           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
709a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7109e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7119e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
712ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
713f2ec16ccSHideki Saito               return false;
714f2ec16ccSHideki Saito             }
715f2ec16ccSHideki Saito           }
716a066f1f9SSimon Pilgrim       }
717f2ec16ccSHideki Saito 
718f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
719f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
720f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
721f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
722f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
7239e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
7249e97caf5SRenato Golin             "instruction return type cannot be vectorized",
725ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
726f2ec16ccSHideki Saito         return false;
727f2ec16ccSHideki Saito       }
728f2ec16ccSHideki Saito 
729f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
730f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
731f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
732f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
7339e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
7349e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
735ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
736f2ec16ccSHideki Saito           return false;
737f2ec16ccSHideki Saito         }
738f2ec16ccSHideki Saito 
7396452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
7406452bdd2SWarren Ristow         // supported on the target.
7416452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
7426452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
7436913812aSFangrui Song           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
7446452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
74552e98f62SNikita Popov           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
7466452bdd2SWarren Ristow             reportVectorizationFailure(
7476452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
7486452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
749ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
7506452bdd2SWarren Ristow             return false;
7516452bdd2SWarren Ristow           }
7526452bdd2SWarren Ristow         }
7536452bdd2SWarren Ristow 
7546452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
7556452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
7566452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
7576452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
7586913812aSFangrui Song           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
7596452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
76052e98f62SNikita Popov           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
7616452bdd2SWarren Ristow             reportVectorizationFailure(
7626452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
7636452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
764ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
7656452bdd2SWarren Ristow             return false;
7666452bdd2SWarren Ristow           }
7676452bdd2SWarren Ristow         }
7686452bdd2SWarren Ristow 
769f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
770f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
771f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
772f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
773f2ec16ccSHideki Saito         // semantics.
774f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
775f2ec16ccSHideki Saito                  !I.isFast()) {
776d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
777f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
778f2ec16ccSHideki Saito       }
779f2ec16ccSHideki Saito 
780f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
781f2ec16ccSHideki Saito       // All other instructions must not have external users.
782f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
783b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
784b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
785b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
786b02b0ad8SAnna Thomas         // outside the loop.
787b02b0ad8SAnna Thomas         if (PSE.getUnionPredicate().isAlwaysTrue()) {
788b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
789b02b0ad8SAnna Thomas           continue;
790b02b0ad8SAnna Thomas         }
7919e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
7929e97caf5SRenato Golin                                    "value cannot be used outside the loop",
793ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
794f2ec16ccSHideki Saito         return false;
795f2ec16ccSHideki Saito       }
796f2ec16ccSHideki Saito     } // next instr.
797f2ec16ccSHideki Saito   }
798f2ec16ccSHideki Saito 
799f2ec16ccSHideki Saito   if (!PrimaryInduction) {
800f2ec16ccSHideki Saito     if (Inductions.empty()) {
8019e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8029e97caf5SRenato Golin           "loop induction variable could not be identified",
803ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
804f2ec16ccSHideki Saito       return false;
8054f27730eSWarren Ristow     } else if (!WidestIndTy) {
8069e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8079e97caf5SRenato Golin           "integer loop induction variable could not be identified",
808ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8094f27730eSWarren Ristow       return false;
8109e97caf5SRenato Golin     } else {
8119e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
812f2ec16ccSHideki Saito     }
813f2ec16ccSHideki Saito   }
814f2ec16ccSHideki Saito 
8159d24933fSFlorian Hahn   // For first order recurrences, we use the previous value (incoming value from
8169d24933fSFlorian Hahn   // the latch) to check if it dominates all users of the recurrence. Bail out
8179d24933fSFlorian Hahn   // if we have to sink such an instruction for another recurrence, as the
8189d24933fSFlorian Hahn   // dominance requirement may not hold after sinking.
8199d24933fSFlorian Hahn   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
8209d24933fSFlorian Hahn   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
8219d24933fSFlorian Hahn         Instruction *V =
8229d24933fSFlorian Hahn             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
8239d24933fSFlorian Hahn         return SinkAfter.find(V) != SinkAfter.end();
8249d24933fSFlorian Hahn       }))
8259d24933fSFlorian Hahn     return false;
8269d24933fSFlorian Hahn 
827f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
828f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
829f2ec16ccSHideki Saito   // will create another.
830f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
831f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
832f2ec16ccSHideki Saito 
833f2ec16ccSHideki Saito   return true;
834f2ec16ccSHideki Saito }
835f2ec16ccSHideki Saito 
836f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
837f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
838f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
839f2ec16ccSHideki Saito   if (LAR) {
840f2ec16ccSHideki Saito     ORE->emit([&]() {
841f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
842f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
843f2ec16ccSHideki Saito     });
844f2ec16ccSHideki Saito   }
845f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
846f2ec16ccSHideki Saito     return false;
847f2ec16ccSHideki Saito 
8485e9215f0SAnna Thomas   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
8499e97caf5SRenato Golin     reportVectorizationFailure("Stores to a uniform address",
8509e97caf5SRenato Golin         "write to a loop invariant address could not be vectorized",
851ec818d7fSHideki Saito         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
852f2ec16ccSHideki Saito     return false;
853f2ec16ccSHideki Saito   }
854f2ec16ccSHideki Saito   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
855f2ec16ccSHideki Saito   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
856f2ec16ccSHideki Saito 
857f2ec16ccSHideki Saito   return true;
858f2ec16ccSHideki Saito }
859f2ec16ccSHideki Saito 
860f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
861f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
862f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
863f2ec16ccSHideki Saito   if (!PN)
864f2ec16ccSHideki Saito     return false;
865f2ec16ccSHideki Saito 
866f2ec16ccSHideki Saito   return Inductions.count(PN);
867f2ec16ccSHideki Saito }
868f2ec16ccSHideki Saito 
869f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
870f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
871f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
872f2ec16ccSHideki Saito }
873f2ec16ccSHideki Saito 
874f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
875f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
876f2ec16ccSHideki Saito }
877f2ec16ccSHideki Saito 
878f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
879f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
880f2ec16ccSHideki Saito }
881f2ec16ccSHideki Saito 
882f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
883f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
884f2ec16ccSHideki Saito }
885f2ec16ccSHideki Saito 
886f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
887bda8fbe2SSjoerd Meijer     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
888bda8fbe2SSjoerd Meijer     SmallPtrSetImpl<const Instruction *> &MaskedOp,
889bda8fbe2SSjoerd Meijer     SmallPtrSetImpl<Instruction *> &ConditionalAssumes,
890bda8fbe2SSjoerd Meijer     bool PreserveGuards) const {
891f2ec16ccSHideki Saito   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
892f2ec16ccSHideki Saito 
893f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
894f2ec16ccSHideki Saito     // Check that we don't have a constant expression that can trap as operand.
895f2ec16ccSHideki Saito     for (Value *Operand : I.operands()) {
896f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(Operand))
897f2ec16ccSHideki Saito         if (C->canTrap())
898f2ec16ccSHideki Saito           return false;
899f2ec16ccSHideki Saito     }
90023c11380SFlorian Hahn 
90123c11380SFlorian Hahn     // We can predicate blocks with calls to assume, as long as we drop them in
90223c11380SFlorian Hahn     // case we flatten the CFG via predication.
90323c11380SFlorian Hahn     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
90423c11380SFlorian Hahn       ConditionalAssumes.insert(&I);
90523c11380SFlorian Hahn       continue;
90623c11380SFlorian Hahn     }
90723c11380SFlorian Hahn 
908121cac01SJeroen Dobbelaere     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
909121cac01SJeroen Dobbelaere     // TODO: there might be cases that it should block the vectorization. Let's
910121cac01SJeroen Dobbelaere     // ignore those for now.
911c83cff45SNikita Popov     if (isa<NoAliasScopeDeclInst>(&I))
912121cac01SJeroen Dobbelaere       continue;
913121cac01SJeroen Dobbelaere 
914f2ec16ccSHideki Saito     // We might be able to hoist the load.
915f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
916f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
917f2ec16ccSHideki Saito       if (!LI)
918f2ec16ccSHideki Saito         return false;
919f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
920f2ec16ccSHideki Saito         // !llvm.mem.parallel_loop_access implies if-conversion safety.
921f2ec16ccSHideki Saito         // Otherwise, record that the load needs (real or emulated) masking
922f2ec16ccSHideki Saito         // and let the cost model decide.
923d57d73daSDorit Nuzman         if (!IsAnnotatedParallel || PreserveGuards)
924f2ec16ccSHideki Saito           MaskedOp.insert(LI);
925f2ec16ccSHideki Saito         continue;
926f2ec16ccSHideki Saito       }
927f2ec16ccSHideki Saito     }
928f2ec16ccSHideki Saito 
929f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
930f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
931f2ec16ccSHideki Saito       if (!SI)
932f2ec16ccSHideki Saito         return false;
933f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
934f2ec16ccSHideki Saito       // 1) masked store HW instruction,
935f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
936f2ec16ccSHideki Saito       //    be aware on the race conditions), or
937f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
938f2ec16ccSHideki Saito       MaskedOp.insert(SI);
939f2ec16ccSHideki Saito       continue;
940f2ec16ccSHideki Saito     }
941f2ec16ccSHideki Saito     if (I.mayThrow())
942f2ec16ccSHideki Saito       return false;
943f2ec16ccSHideki Saito   }
944f2ec16ccSHideki Saito 
945f2ec16ccSHideki Saito   return true;
946f2ec16ccSHideki Saito }
947f2ec16ccSHideki Saito 
948f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
949f2ec16ccSHideki Saito   if (!EnableIfConversion) {
9509e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
9519e97caf5SRenato Golin                                "if-conversion is disabled",
952ec818d7fSHideki Saito                                "IfConversionDisabled",
953ec818d7fSHideki Saito                                ORE, TheLoop);
954f2ec16ccSHideki Saito     return false;
955f2ec16ccSHideki Saito   }
956f2ec16ccSHideki Saito 
957f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
958f2ec16ccSHideki Saito 
959cf3b5559SPhilip Reames   // A list of pointers which are known to be dereferenceable within scope of
960cf3b5559SPhilip Reames   // the loop body for each iteration of the loop which executes.  That is,
961cf3b5559SPhilip Reames   // the memory pointed to can be dereferenced (with the access size implied by
962cf3b5559SPhilip Reames   // the value's type) unconditionally within the loop header without
963cf3b5559SPhilip Reames   // introducing a new fault.
9643bbc71d6SSjoerd Meijer   SmallPtrSet<Value *, 8> SafePointers;
965f2ec16ccSHideki Saito 
966f2ec16ccSHideki Saito   // Collect safe addresses.
967f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
9687403569bSPhilip Reames     if (!blockNeedsPredication(BB)) {
969f2ec16ccSHideki Saito       for (Instruction &I : *BB)
970f2ec16ccSHideki Saito         if (auto *Ptr = getLoadStorePointerOperand(&I))
9713bbc71d6SSjoerd Meijer           SafePointers.insert(Ptr);
9727403569bSPhilip Reames       continue;
9737403569bSPhilip Reames     }
9747403569bSPhilip Reames 
9757403569bSPhilip Reames     // For a block which requires predication, a address may be safe to access
9767403569bSPhilip Reames     // in the loop w/o predication if we can prove dereferenceability facts
9777403569bSPhilip Reames     // sufficient to ensure it'll never fault within the loop. For the moment,
9787403569bSPhilip Reames     // we restrict this to loads; stores are more complicated due to
9797403569bSPhilip Reames     // concurrency restrictions.
9807403569bSPhilip Reames     ScalarEvolution &SE = *PSE.getSE();
9817403569bSPhilip Reames     for (Instruction &I : *BB) {
9827403569bSPhilip Reames       LoadInst *LI = dyn_cast<LoadInst>(&I);
983467e5cf4SJoe Ellis       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
9847403569bSPhilip Reames           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
9853bbc71d6SSjoerd Meijer         SafePointers.insert(LI->getPointerOperand());
9867403569bSPhilip Reames     }
987f2ec16ccSHideki Saito   }
988f2ec16ccSHideki Saito 
989f2ec16ccSHideki Saito   // Collect the blocks that need predication.
990f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
991f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
992f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
993f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
9949e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
9959e97caf5SRenato Golin                                  "loop contains a switch statement",
996ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
997ec818d7fSHideki Saito                                  BB->getTerminator());
998f2ec16ccSHideki Saito       return false;
999f2ec16ccSHideki Saito     }
1000f2ec16ccSHideki Saito 
1001f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
1002f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
1003bda8fbe2SSjoerd Meijer       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1004bda8fbe2SSjoerd Meijer                                 ConditionalAssumes)) {
10059e97caf5SRenato Golin         reportVectorizationFailure(
10069e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
10079e97caf5SRenato Golin             "control flow cannot be substituted for a select",
1008ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
1009ec818d7fSHideki Saito             BB->getTerminator());
1010f2ec16ccSHideki Saito         return false;
1011f2ec16ccSHideki Saito       }
1012f2ec16ccSHideki Saito     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
10139e97caf5SRenato Golin       reportVectorizationFailure(
10149e97caf5SRenato Golin           "Control flow cannot be substituted for a select",
10159e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1016ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1017ec818d7fSHideki Saito           BB->getTerminator());
1018f2ec16ccSHideki Saito       return false;
1019f2ec16ccSHideki Saito     }
1020f2ec16ccSHideki Saito   }
1021f2ec16ccSHideki Saito 
1022f2ec16ccSHideki Saito   // We can if-convert this loop.
1023f2ec16ccSHideki Saito   return true;
1024f2ec16ccSHideki Saito }
1025f2ec16ccSHideki Saito 
1026f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
1027f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1028f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
102989c1e35fSStefanos Baziotis   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1030f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
1031f2ec16ccSHideki Saito 
1032f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
1033f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
1034f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
1035f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
1036f2ec16ccSHideki Saito 
1037f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1038f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1039f2ec16ccSHideki Saito   bool Result = true;
1040f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1041f2ec16ccSHideki Saito 
1042f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1043f2ec16ccSHideki Saito   // be canonicalized.
1044f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
10459e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
10469e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1047ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1048f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1049f2ec16ccSHideki Saito       Result = false;
1050f2ec16ccSHideki Saito     else
1051f2ec16ccSHideki Saito       return false;
1052f2ec16ccSHideki Saito   }
1053f2ec16ccSHideki Saito 
1054f2ec16ccSHideki Saito   // We must have a single backedge.
1055f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
10569e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
10579e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1058ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1059f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1060f2ec16ccSHideki Saito       Result = false;
1061f2ec16ccSHideki Saito     else
1062f2ec16ccSHideki Saito       return false;
1063f2ec16ccSHideki Saito   }
1064f2ec16ccSHideki Saito 
10654b33b238SPhilip Reames   // We currently must have a single "exit block" after the loop. Note that
10664b33b238SPhilip Reames   // multiple "exiting blocks" inside the loop are allowed, provided they all
10674b33b238SPhilip Reames   // reach the single exit block.
10684b33b238SPhilip Reames   // TODO: This restriction can be relaxed in the near future, it's here solely
10694b33b238SPhilip Reames   // to allow separation of changes for review. We need to generalize the phi
10704b33b238SPhilip Reames   // update logic in a number of places.
10719f61fbd7SPhilip Reames   if (!Lp->getUniqueExitBlock()) {
10724b33b238SPhilip Reames     reportVectorizationFailure("The loop must have a unique exit block",
10739e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1074ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1075f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1076f2ec16ccSHideki Saito       Result = false;
1077f2ec16ccSHideki Saito     else
1078f2ec16ccSHideki Saito       return false;
1079f2ec16ccSHideki Saito   }
1080f2ec16ccSHideki Saito   return Result;
1081f2ec16ccSHideki Saito }
1082f2ec16ccSHideki Saito 
1083f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1084f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1085f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1086f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1087f2ec16ccSHideki Saito   bool Result = true;
1088f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1089f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1090f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1091f2ec16ccSHideki Saito       Result = false;
1092f2ec16ccSHideki Saito     else
1093f2ec16ccSHideki Saito       return false;
1094f2ec16ccSHideki Saito   }
1095f2ec16ccSHideki Saito 
1096f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1097f2ec16ccSHideki Saito   // understood.
1098f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1099f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1100f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1101f2ec16ccSHideki Saito         Result = false;
1102f2ec16ccSHideki Saito       else
1103f2ec16ccSHideki Saito         return false;
1104f2ec16ccSHideki Saito     }
1105f2ec16ccSHideki Saito 
1106f2ec16ccSHideki Saito   return Result;
1107f2ec16ccSHideki Saito }
1108f2ec16ccSHideki Saito 
1109f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1110f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1111f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1112f2ec16ccSHideki Saito   bool Result = true;
1113f2ec16ccSHideki Saito 
1114f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1115f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1116f2ec16ccSHideki Saito   // vectorizer.
1117f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1118f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1119f2ec16ccSHideki Saito       Result = false;
1120f2ec16ccSHideki Saito     else
1121f2ec16ccSHideki Saito       return false;
1122f2ec16ccSHideki Saito   }
1123f2ec16ccSHideki Saito 
1124f2ec16ccSHideki Saito   // We need to have a loop header.
1125d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1126f2ec16ccSHideki Saito                     << '\n');
1127f2ec16ccSHideki Saito 
1128f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1129f2ec16ccSHideki Saito   // point because they don't support outer loops.
113089c1e35fSStefanos Baziotis   if (!TheLoop->isInnermost()) {
1131f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1132f2ec16ccSHideki Saito 
1133f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
11349e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
11359e97caf5SRenato Golin                                  "unsupported outer loop",
1136ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1137ec818d7fSHideki Saito                                  ORE, TheLoop);
1138f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1139f2ec16ccSHideki Saito       // outer loops.
1140f2ec16ccSHideki Saito       return false;
1141f2ec16ccSHideki Saito     }
1142f2ec16ccSHideki Saito 
1143d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1144f2ec16ccSHideki Saito     return Result;
1145f2ec16ccSHideki Saito   }
1146f2ec16ccSHideki Saito 
114789c1e35fSStefanos Baziotis   assert(TheLoop->isInnermost() && "Inner loop expected.");
1148f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1149f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1150f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1151d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1152f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1153f2ec16ccSHideki Saito       Result = false;
1154f2ec16ccSHideki Saito     else
1155f2ec16ccSHideki Saito       return false;
1156f2ec16ccSHideki Saito   }
1157f2ec16ccSHideki Saito 
1158f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1159f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1160d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1161f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1162f2ec16ccSHideki Saito       Result = false;
1163f2ec16ccSHideki Saito     else
1164f2ec16ccSHideki Saito       return false;
1165f2ec16ccSHideki Saito   }
1166f2ec16ccSHideki Saito 
1167f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1168f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1169d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1170f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1171f2ec16ccSHideki Saito       Result = false;
1172f2ec16ccSHideki Saito     else
1173f2ec16ccSHideki Saito       return false;
1174f2ec16ccSHideki Saito   }
1175f2ec16ccSHideki Saito 
1176d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1177f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1178f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1179f2ec16ccSHideki Saito                             : "")
1180f2ec16ccSHideki Saito                     << "!\n");
1181f2ec16ccSHideki Saito 
1182f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1183f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1184f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1185f2ec16ccSHideki Saito 
1186f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
11879e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
11889e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1189ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1190f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1191f2ec16ccSHideki Saito       Result = false;
1192f2ec16ccSHideki Saito     else
1193f2ec16ccSHideki Saito       return false;
1194f2ec16ccSHideki Saito   }
1195f2ec16ccSHideki Saito 
1196f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1197f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1198f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1199f2ec16ccSHideki Saito   // no restrictions.
1200f2ec16ccSHideki Saito   return Result;
1201f2ec16ccSHideki Saito }
1202f2ec16ccSHideki Saito 
1203d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1204b0b5312eSAyal Zaks 
1205b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1206b0b5312eSAyal Zaks 
1207d15df0edSAyal Zaks   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1208b0b5312eSAyal Zaks 
1209d0d38df0SDavid Green   for (auto &Reduction : getReductionVars())
1210d15df0edSAyal Zaks     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1211d15df0edSAyal Zaks 
1212d15df0edSAyal Zaks   // TODO: handle non-reduction outside users when tail is folded by masking.
1213b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1214d15df0edSAyal Zaks     // Check that all users of allowed exit values are inside the loop or
1215d15df0edSAyal Zaks     // are the live-out of a reduction.
1216d15df0edSAyal Zaks     if (ReductionLiveOuts.count(AE))
1217d15df0edSAyal Zaks       continue;
1218b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1219b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1220b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1221b0b5312eSAyal Zaks         continue;
1222bda8fbe2SSjoerd Meijer       LLVM_DEBUG(
1223bda8fbe2SSjoerd Meijer           dbgs()
1224bda8fbe2SSjoerd Meijer           << "LV: Cannot fold tail by masking, loop has an outside user for "
1225bda8fbe2SSjoerd Meijer           << *UI << "\n");
1226b0b5312eSAyal Zaks       return false;
1227b0b5312eSAyal Zaks     }
1228b0b5312eSAyal Zaks   }
1229b0b5312eSAyal Zaks 
1230b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1231b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1232b0b5312eSAyal Zaks 
1233bda8fbe2SSjoerd Meijer   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1234bda8fbe2SSjoerd Meijer   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1235bda8fbe2SSjoerd Meijer 
1236b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1237b0b5312eSAyal Zaks   // do not need predication such as the header block.
1238b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1239bda8fbe2SSjoerd Meijer     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
1240bda8fbe2SSjoerd Meijer                               TmpConditionalAssumes,
1241bda8fbe2SSjoerd Meijer                               /* MaskAllLoads= */ true)) {
1242bda8fbe2SSjoerd Meijer       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1243b0b5312eSAyal Zaks       return false;
1244b0b5312eSAyal Zaks     }
1245b0b5312eSAyal Zaks   }
1246b0b5312eSAyal Zaks 
1247b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1248bda8fbe2SSjoerd Meijer 
1249bda8fbe2SSjoerd Meijer   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1250bda8fbe2SSjoerd Meijer   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1251bda8fbe2SSjoerd Meijer                             TmpConditionalAssumes.end());
1252bda8fbe2SSjoerd Meijer 
1253b0b5312eSAyal Zaks   return true;
1254b0b5312eSAyal Zaks }
1255b0b5312eSAyal Zaks 
1256f2ec16ccSHideki Saito } // namespace llvm
1257