1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 3f2ec16ccSHideki Saito // The LLVM Compiler Infrastructure 4f2ec16ccSHideki Saito // 5f2ec16ccSHideki Saito // This file is distributed under the University of Illinois Open Source 6f2ec16ccSHideki Saito // License. See LICENSE.TXT for details. 7f2ec16ccSHideki Saito // 8f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 9f2ec16ccSHideki Saito // 10f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 11f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 12f2ec16ccSHideki Saito // 13f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 14f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 15f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 16f2ec16ccSHideki Saito // 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 18f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 19f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 20f2ec16ccSHideki Saito 21f2ec16ccSHideki Saito using namespace llvm; 22f2ec16ccSHideki Saito 23f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 24f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 25f2ec16ccSHideki Saito 26f2ec16ccSHideki Saito static cl::opt<bool> 27f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 28f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 29f2ec16ccSHideki Saito 30f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 31f2ec16ccSHideki Saito "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 32f2ec16ccSHideki Saito cl::desc("The maximum allowed number of runtime memory checks with a " 33f2ec16ccSHideki Saito "vectorize(enable) pragma.")); 34f2ec16ccSHideki Saito 35f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 36f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 37f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 38f2ec16ccSHideki Saito 39f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 40f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 41f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 42f2ec16ccSHideki Saito "vectorize(enable) pragma")); 43f2ec16ccSHideki Saito 44f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 45f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 46f2ec16ccSHideki Saito 47f2ec16ccSHideki Saito namespace llvm { 48f2ec16ccSHideki Saito 49f2ec16ccSHideki Saito OptimizationRemarkAnalysis createLVMissedAnalysis(const char *PassName, 50f2ec16ccSHideki Saito StringRef RemarkName, 51f2ec16ccSHideki Saito Loop *TheLoop, 52f2ec16ccSHideki Saito Instruction *I) { 53f2ec16ccSHideki Saito Value *CodeRegion = TheLoop->getHeader(); 54f2ec16ccSHideki Saito DebugLoc DL = TheLoop->getStartLoc(); 55f2ec16ccSHideki Saito 56f2ec16ccSHideki Saito if (I) { 57f2ec16ccSHideki Saito CodeRegion = I->getParent(); 58f2ec16ccSHideki Saito // If there is no debug location attached to the instruction, revert back to 59f2ec16ccSHideki Saito // using the loop's. 60f2ec16ccSHideki Saito if (I->getDebugLoc()) 61f2ec16ccSHideki Saito DL = I->getDebugLoc(); 62f2ec16ccSHideki Saito } 63f2ec16ccSHideki Saito 64f2ec16ccSHideki Saito OptimizationRemarkAnalysis R(PassName, RemarkName, DL, CodeRegion); 65f2ec16ccSHideki Saito R << "loop not vectorized: "; 66f2ec16ccSHideki Saito return R; 67f2ec16ccSHideki Saito } 68f2ec16ccSHideki Saito 69f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 70f2ec16ccSHideki Saito switch (Kind) { 71f2ec16ccSHideki Saito case HK_WIDTH: 72f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 73f2ec16ccSHideki Saito case HK_UNROLL: 74f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 75f2ec16ccSHideki Saito case HK_FORCE: 76f2ec16ccSHideki Saito return (Val <= 1); 77f2ec16ccSHideki Saito case HK_ISVECTORIZED: 78f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 79f2ec16ccSHideki Saito } 80f2ec16ccSHideki Saito return false; 81f2ec16ccSHideki Saito } 82f2ec16ccSHideki Saito 83d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 84d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 85f2ec16ccSHideki Saito OptimizationRemarkEmitter &ORE) 86f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 87d4eb13c8SMichael Kruse Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 88f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 89f2ec16ccSHideki Saito IsVectorized("isvectorized", 0, HK_ISVECTORIZED), TheLoop(L), ORE(ORE) { 90f2ec16ccSHideki Saito // Populate values with existing loop metadata. 91f2ec16ccSHideki Saito getHintsFromMetadata(); 92f2ec16ccSHideki Saito 93f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 94f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 95f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 96f2ec16ccSHideki Saito 97f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 98f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 99f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 100f2ec16ccSHideki Saito // nothing more that we can do. 101f2ec16ccSHideki Saito IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1; 102d4eb13c8SMichael Kruse LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 103f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 104f2ec16ccSHideki Saito } 105f2ec16ccSHideki Saito 106d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 107d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 108f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 109d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 110f2ec16ccSHideki Saito emitRemarkWithHints(); 111f2ec16ccSHideki Saito return false; 112f2ec16ccSHideki Saito } 113f2ec16ccSHideki Saito 114d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 115d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 116f2ec16ccSHideki Saito emitRemarkWithHints(); 117f2ec16ccSHideki Saito return false; 118f2ec16ccSHideki Saito } 119f2ec16ccSHideki Saito 120f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 121d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 122f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 123f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 124f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 125f2ec16ccSHideki Saito ORE.emit([&]() { 126f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 127f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 128f2ec16ccSHideki Saito L->getHeader()) 129f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 130f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 131f2ec16ccSHideki Saito "vectorized"; 132f2ec16ccSHideki Saito }); 133f2ec16ccSHideki Saito return false; 134f2ec16ccSHideki Saito } 135f2ec16ccSHideki Saito 136f2ec16ccSHideki Saito return true; 137f2ec16ccSHideki Saito } 138f2ec16ccSHideki Saito 139f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 140f2ec16ccSHideki Saito using namespace ore; 141f2ec16ccSHideki Saito 142f2ec16ccSHideki Saito ORE.emit([&]() { 143f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 144f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 145f2ec16ccSHideki Saito TheLoop->getStartLoc(), 146f2ec16ccSHideki Saito TheLoop->getHeader()) 147f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 148f2ec16ccSHideki Saito else { 149f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 150f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 151f2ec16ccSHideki Saito R << "loop not vectorized"; 152f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 153f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 154f2ec16ccSHideki Saito if (Width.Value != 0) 155f2ec16ccSHideki Saito R << ", Vector Width=" << NV("VectorWidth", Width.Value); 156f2ec16ccSHideki Saito if (Interleave.Value != 0) 157f2ec16ccSHideki Saito R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 158f2ec16ccSHideki Saito R << ")"; 159f2ec16ccSHideki Saito } 160f2ec16ccSHideki Saito return R; 161f2ec16ccSHideki Saito } 162f2ec16ccSHideki Saito }); 163f2ec16ccSHideki Saito } 164f2ec16ccSHideki Saito 165f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 166f2ec16ccSHideki Saito if (getWidth() == 1) 167f2ec16ccSHideki Saito return LV_NAME; 168f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 169f2ec16ccSHideki Saito return LV_NAME; 170f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0) 171f2ec16ccSHideki Saito return LV_NAME; 172f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 173f2ec16ccSHideki Saito } 174f2ec16ccSHideki Saito 175f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 176f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 177f2ec16ccSHideki Saito if (!LoopID) 178f2ec16ccSHideki Saito return; 179f2ec16ccSHideki Saito 180f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 181f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 182f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 183f2ec16ccSHideki Saito 184f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 185f2ec16ccSHideki Saito const MDString *S = nullptr; 186f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 187f2ec16ccSHideki Saito 188f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 189f2ec16ccSHideki Saito // operand a MDString. 190f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 191f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 192f2ec16ccSHideki Saito continue; 193f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 194f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 195f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 196f2ec16ccSHideki Saito } else { 197f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 198f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 199f2ec16ccSHideki Saito } 200f2ec16ccSHideki Saito 201f2ec16ccSHideki Saito if (!S) 202f2ec16ccSHideki Saito continue; 203f2ec16ccSHideki Saito 204f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 205f2ec16ccSHideki Saito StringRef Name = S->getString(); 206f2ec16ccSHideki Saito if (Args.size() == 1) 207f2ec16ccSHideki Saito setHint(Name, Args[0]); 208f2ec16ccSHideki Saito } 209f2ec16ccSHideki Saito } 210f2ec16ccSHideki Saito 211f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 212f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 213f2ec16ccSHideki Saito return; 214f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 215f2ec16ccSHideki Saito 216f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 217f2ec16ccSHideki Saito if (!C) 218f2ec16ccSHideki Saito return; 219f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 220f2ec16ccSHideki Saito 221f2ec16ccSHideki Saito Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized}; 222f2ec16ccSHideki Saito for (auto H : Hints) { 223f2ec16ccSHideki Saito if (Name == H->Name) { 224f2ec16ccSHideki Saito if (H->validate(Val)) 225f2ec16ccSHideki Saito H->Value = Val; 226f2ec16ccSHideki Saito else 227d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 228f2ec16ccSHideki Saito break; 229f2ec16ccSHideki Saito } 230f2ec16ccSHideki Saito } 231f2ec16ccSHideki Saito } 232f2ec16ccSHideki Saito 233f2ec16ccSHideki Saito MDNode *LoopVectorizeHints::createHintMetadata(StringRef Name, 234f2ec16ccSHideki Saito unsigned V) const { 235f2ec16ccSHideki Saito LLVMContext &Context = TheLoop->getHeader()->getContext(); 236f2ec16ccSHideki Saito Metadata *MDs[] = { 237f2ec16ccSHideki Saito MDString::get(Context, Name), 238f2ec16ccSHideki Saito ConstantAsMetadata::get(ConstantInt::get(Type::getInt32Ty(Context), V))}; 239f2ec16ccSHideki Saito return MDNode::get(Context, MDs); 240f2ec16ccSHideki Saito } 241f2ec16ccSHideki Saito 242f2ec16ccSHideki Saito bool LoopVectorizeHints::matchesHintMetadataName(MDNode *Node, 243f2ec16ccSHideki Saito ArrayRef<Hint> HintTypes) { 244f2ec16ccSHideki Saito MDString *Name = dyn_cast<MDString>(Node->getOperand(0)); 245f2ec16ccSHideki Saito if (!Name) 246f2ec16ccSHideki Saito return false; 247f2ec16ccSHideki Saito 248f2ec16ccSHideki Saito for (auto H : HintTypes) 249f2ec16ccSHideki Saito if (Name->getString().endswith(H.Name)) 250f2ec16ccSHideki Saito return true; 251f2ec16ccSHideki Saito return false; 252f2ec16ccSHideki Saito } 253f2ec16ccSHideki Saito 254f2ec16ccSHideki Saito void LoopVectorizeHints::writeHintsToMetadata(ArrayRef<Hint> HintTypes) { 255f2ec16ccSHideki Saito if (HintTypes.empty()) 256f2ec16ccSHideki Saito return; 257f2ec16ccSHideki Saito 258f2ec16ccSHideki Saito // Reserve the first element to LoopID (see below). 259f2ec16ccSHideki Saito SmallVector<Metadata *, 4> MDs(1); 260f2ec16ccSHideki Saito // If the loop already has metadata, then ignore the existing operands. 261f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 262f2ec16ccSHideki Saito if (LoopID) { 263f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 264f2ec16ccSHideki Saito MDNode *Node = cast<MDNode>(LoopID->getOperand(i)); 265f2ec16ccSHideki Saito // If node in update list, ignore old value. 266f2ec16ccSHideki Saito if (!matchesHintMetadataName(Node, HintTypes)) 267f2ec16ccSHideki Saito MDs.push_back(Node); 268f2ec16ccSHideki Saito } 269f2ec16ccSHideki Saito } 270f2ec16ccSHideki Saito 271f2ec16ccSHideki Saito // Now, add the missing hints. 272f2ec16ccSHideki Saito for (auto H : HintTypes) 273f2ec16ccSHideki Saito MDs.push_back(createHintMetadata(Twine(Prefix(), H.Name).str(), H.Value)); 274f2ec16ccSHideki Saito 275f2ec16ccSHideki Saito // Replace current metadata node with new one. 276f2ec16ccSHideki Saito LLVMContext &Context = TheLoop->getHeader()->getContext(); 277f2ec16ccSHideki Saito MDNode *NewLoopID = MDNode::get(Context, MDs); 278f2ec16ccSHideki Saito // Set operand 0 to refer to the loop id itself. 279f2ec16ccSHideki Saito NewLoopID->replaceOperandWith(0, NewLoopID); 280f2ec16ccSHideki Saito 281f2ec16ccSHideki Saito TheLoop->setLoopID(NewLoopID); 282f2ec16ccSHideki Saito } 283f2ec16ccSHideki Saito 284f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet( 285f2ec16ccSHideki Saito Function *F, Loop *L, const LoopVectorizeHints &Hints) { 286f2ec16ccSHideki Saito const char *PassName = Hints.vectorizeAnalysisPassName(); 287f2ec16ccSHideki Saito bool Failed = false; 288f2ec16ccSHideki Saito if (UnsafeAlgebraInst && !Hints.allowReordering()) { 289f2ec16ccSHideki Saito ORE.emit([&]() { 290f2ec16ccSHideki Saito return OptimizationRemarkAnalysisFPCommute( 291f2ec16ccSHideki Saito PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 292f2ec16ccSHideki Saito UnsafeAlgebraInst->getParent()) 293f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 294f2ec16ccSHideki Saito "floating-point operations"; 295f2ec16ccSHideki Saito }); 296f2ec16ccSHideki Saito Failed = true; 297f2ec16ccSHideki Saito } 298f2ec16ccSHideki Saito 299f2ec16ccSHideki Saito // Test if runtime memcheck thresholds are exceeded. 300f2ec16ccSHideki Saito bool PragmaThresholdReached = 301f2ec16ccSHideki Saito NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 302f2ec16ccSHideki Saito bool ThresholdReached = 303f2ec16ccSHideki Saito NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 304f2ec16ccSHideki Saito if ((ThresholdReached && !Hints.allowReordering()) || 305f2ec16ccSHideki Saito PragmaThresholdReached) { 306f2ec16ccSHideki Saito ORE.emit([&]() { 307f2ec16ccSHideki Saito return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 308f2ec16ccSHideki Saito L->getStartLoc(), 309f2ec16ccSHideki Saito L->getHeader()) 310f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 311f2ec16ccSHideki Saito "memory operations"; 312f2ec16ccSHideki Saito }); 313d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 314f2ec16ccSHideki Saito Failed = true; 315f2ec16ccSHideki Saito } 316f2ec16ccSHideki Saito 317f2ec16ccSHideki Saito return Failed; 318f2ec16ccSHideki Saito } 319f2ec16ccSHideki Saito 320f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 321f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 322f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 323f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 324f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 325f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 326f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 327f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 328f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 329f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 330f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 331f2ec16ccSHideki Saito // 332f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 333f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 334f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 335f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 336f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 337f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 338f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 339f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 340f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 341f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 342f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 343f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 344f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 345f2ec16ccSHideki Saito 346f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 347f2ec16ccSHideki Saito if (Lp == OuterLp) 348f2ec16ccSHideki Saito return true; 349f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 350f2ec16ccSHideki Saito 351f2ec16ccSHideki Saito // 1. 352f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 353f2ec16ccSHideki Saito if (!IV) { 354d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 355f2ec16ccSHideki Saito return false; 356f2ec16ccSHideki Saito } 357f2ec16ccSHideki Saito 358f2ec16ccSHideki Saito // 2. 359f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 360f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 361f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 362d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 363f2ec16ccSHideki Saito return false; 364f2ec16ccSHideki Saito } 365f2ec16ccSHideki Saito 366f2ec16ccSHideki Saito // 3. 367f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 368f2ec16ccSHideki Saito if (!LatchCmp) { 369d34e60caSNicola Zaghen LLVM_DEBUG( 370d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 371f2ec16ccSHideki Saito return false; 372f2ec16ccSHideki Saito } 373f2ec16ccSHideki Saito 374f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 375f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 376f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 377f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 378f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 379d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 380f2ec16ccSHideki Saito return false; 381f2ec16ccSHideki Saito } 382f2ec16ccSHideki Saito 383f2ec16ccSHideki Saito return true; 384f2ec16ccSHideki Saito } 385f2ec16ccSHideki Saito 386f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 387f2ec16ccSHideki Saito // OuterLp. 388f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 389f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 390f2ec16ccSHideki Saito return false; 391f2ec16ccSHideki Saito 392f2ec16ccSHideki Saito // Check if nested loops are uniform. 393f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 394f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 395f2ec16ccSHideki Saito return false; 396f2ec16ccSHideki Saito 397f2ec16ccSHideki Saito return true; 398f2ec16ccSHideki Saito } 399f2ec16ccSHideki Saito 4005f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 401f2ec16ccSHideki Saito /// 402f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 403f2ec16ccSHideki Saito /// convert. 404f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 405f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 406f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 407f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 408f2ec16ccSHideki Saito if (C->canTrap()) 409f2ec16ccSHideki Saito return false; 410f2ec16ccSHideki Saito } 411f2ec16ccSHideki Saito return true; 412f2ec16ccSHideki Saito } 413f2ec16ccSHideki Saito 414f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 415f2ec16ccSHideki Saito if (Ty->isPointerTy()) 416f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 417f2ec16ccSHideki Saito 418f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 419f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 420f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 421f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 422f2ec16ccSHideki Saito 423f2ec16ccSHideki Saito return Ty; 424f2ec16ccSHideki Saito } 425f2ec16ccSHideki Saito 426f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 427f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 428f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 429f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 430f2ec16ccSHideki Saito return Ty0; 431f2ec16ccSHideki Saito return Ty1; 432f2ec16ccSHideki Saito } 433f2ec16ccSHideki Saito 4345f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 435f2ec16ccSHideki Saito /// identified reduction variable. 436f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 437f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 43860a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 439f2ec16ccSHideki Saito // other instructions must not have external users. 440f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 441f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 442f2ec16ccSHideki Saito for (User *U : Inst->users()) { 443f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 444f2ec16ccSHideki Saito // This user may be a reduction exit value. 445f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 446d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 447f2ec16ccSHideki Saito return true; 448f2ec16ccSHideki Saito } 449f2ec16ccSHideki Saito } 450f2ec16ccSHideki Saito return false; 451f2ec16ccSHideki Saito } 452f2ec16ccSHideki Saito 453f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 454f2ec16ccSHideki Saito const ValueToValueMap &Strides = 455f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 456f2ec16ccSHideki Saito 457f2ec16ccSHideki Saito int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, true, false); 458f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 459f2ec16ccSHideki Saito return Stride; 460f2ec16ccSHideki Saito return 0; 461f2ec16ccSHideki Saito } 462f2ec16ccSHideki Saito 463f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 464f2ec16ccSHideki Saito return LAI->isUniform(V); 465f2ec16ccSHideki Saito } 466f2ec16ccSHideki Saito 467f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 468f2ec16ccSHideki Saito assert(!TheLoop->empty() && "We are not vectorizing an outer loop."); 469f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 470f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 471f2ec16ccSHideki Saito bool Result = true; 472f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 473f2ec16ccSHideki Saito 474f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 475f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 476f2ec16ccSHideki Saito // not supported yet. 477f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 478f2ec16ccSHideki Saito if (!Br) { 479d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported basic block terminator.\n"); 480f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 481f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 482f2ec16ccSHideki Saito if (DoExtraAnalysis) 483f2ec16ccSHideki Saito Result = false; 484f2ec16ccSHideki Saito else 485f2ec16ccSHideki Saito return false; 486f2ec16ccSHideki Saito } 487f2ec16ccSHideki Saito 488f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 489f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 490f2ec16ccSHideki Saito // backedges are supported. 491f2ec16ccSHideki Saito if (Br && Br->isConditional() && 492f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 493f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 494f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 495d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported conditional branch.\n"); 496f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 497f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 498f2ec16ccSHideki Saito if (DoExtraAnalysis) 499f2ec16ccSHideki Saito Result = false; 500f2ec16ccSHideki Saito else 501f2ec16ccSHideki Saito return false; 502f2ec16ccSHideki Saito } 503f2ec16ccSHideki Saito } 504f2ec16ccSHideki Saito 505f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 506f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 507f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 508f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 509d34e60caSNicola Zaghen LLVM_DEBUG( 510d34e60caSNicola Zaghen dbgs() 511f2ec16ccSHideki Saito << "LV: Not vectorizing: Outer loop contains divergent loops.\n"); 512f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 513f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 514f2ec16ccSHideki Saito if (DoExtraAnalysis) 515f2ec16ccSHideki Saito Result = false; 516f2ec16ccSHideki Saito else 517f2ec16ccSHideki Saito return false; 518f2ec16ccSHideki Saito } 519f2ec16ccSHideki Saito 520ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 521ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 522ea7f3035SHideki Saito LLVM_DEBUG( 523ea7f3035SHideki Saito dbgs() << "LV: Not vectorizing: Unsupported outer loop Phi(s).\n"); 524ea7f3035SHideki Saito ORE->emit(createMissedAnalysis("UnsupportedPhi") 525ea7f3035SHideki Saito << "Unsupported outer loop Phi(s)"); 526ea7f3035SHideki Saito if (DoExtraAnalysis) 527ea7f3035SHideki Saito Result = false; 528ea7f3035SHideki Saito else 529ea7f3035SHideki Saito return false; 530ea7f3035SHideki Saito } 531ea7f3035SHideki Saito 532f2ec16ccSHideki Saito return Result; 533f2ec16ccSHideki Saito } 534f2ec16ccSHideki Saito 535f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 536f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 537f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 538f2ec16ccSHideki Saito Inductions[Phi] = ID; 539f2ec16ccSHideki Saito 540f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 541f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 542f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 543f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 544f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 545f2ec16ccSHideki Saito if (!Casts.empty()) 546f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 547f2ec16ccSHideki Saito 548f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 549f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 550f2ec16ccSHideki Saito 551f2ec16ccSHideki Saito // Get the widest type. 552f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 553f2ec16ccSHideki Saito if (!WidestIndTy) 554f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 555f2ec16ccSHideki Saito else 556f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 557f2ec16ccSHideki Saito } 558f2ec16ccSHideki Saito 559f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 560f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 561f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 562f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 563f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 564f2ec16ccSHideki Saito 565f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 566f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 567f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 568f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 569f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 570f2ec16ccSHideki Saito PrimaryInduction = Phi; 571f2ec16ccSHideki Saito } 572f2ec16ccSHideki Saito 573f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 574f2ec16ccSHideki Saito // back into the PHI node may have external users. 575f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 576f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5776a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5786a1dd77fSAnna Thomas // details). 579f2ec16ccSHideki Saito if (PSE.getUnionPredicate().isAlwaysTrue()) { 580f2ec16ccSHideki Saito AllowedExit.insert(Phi); 581f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 582f2ec16ccSHideki Saito } 583f2ec16ccSHideki Saito 584d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 585f2ec16ccSHideki Saito } 586f2ec16ccSHideki Saito 587ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 588ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 589ea7f3035SHideki Saito 590ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 591ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 592ea7f3035SHideki Saito InductionDescriptor ID; 593ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 594ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 595ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 596ea7f3035SHideki Saito return true; 597ea7f3035SHideki Saito } else { 598ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 599ea7f3035SHideki Saito // induction. 600ea7f3035SHideki Saito LLVM_DEBUG( 601ea7f3035SHideki Saito dbgs() 602ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 603ea7f3035SHideki Saito return false; 604ea7f3035SHideki Saito } 605ea7f3035SHideki Saito }; 606ea7f3035SHideki Saito 607ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 608ea7f3035SHideki Saito return true; 609ea7f3035SHideki Saito else 610ea7f3035SHideki Saito return false; 611ea7f3035SHideki Saito } 612ea7f3035SHideki Saito 613f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 614f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 615f2ec16ccSHideki Saito 616f2ec16ccSHideki Saito // Look for the attribute signaling the absence of NaNs. 617f2ec16ccSHideki Saito Function &F = *Header->getParent(); 618f2ec16ccSHideki Saito HasFunNoNaNAttr = 619f2ec16ccSHideki Saito F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 620f2ec16ccSHideki Saito 621f2ec16ccSHideki Saito // For each block in the loop. 622f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 623f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 624f2ec16ccSHideki Saito for (Instruction &I : *BB) { 625f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 626f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 627f2ec16ccSHideki Saito // Check that this PHI type is allowed. 628f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 629f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 630f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 631f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 632d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an non-int non-pointer PHI.\n"); 633f2ec16ccSHideki Saito return false; 634f2ec16ccSHideki Saito } 635f2ec16ccSHideki Saito 636f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 637f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 638f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 639f2ec16ccSHideki Saito if (BB != Header) { 64060a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 64160a1e4ddSAnna Thomas // them to the list of allowed exits. 64260a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 64360a1e4ddSAnna Thomas // legalization for reduction, induction and first order 64460a1e4ddSAnna Thomas // recurrences. 645f2ec16ccSHideki Saito continue; 646f2ec16ccSHideki Saito } 647f2ec16ccSHideki Saito 648f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 649f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 650f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood", Phi) 651f2ec16ccSHideki Saito << "control flow not understood by vectorizer"); 652d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an invalid PHI.\n"); 653f2ec16ccSHideki Saito return false; 654f2ec16ccSHideki Saito } 655f2ec16ccSHideki Saito 656f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 657f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 658f2ec16ccSHideki Saito DT)) { 659f2ec16ccSHideki Saito if (RedDes.hasUnsafeAlgebra()) 660f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 661f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 662f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 663f2ec16ccSHideki Saito continue; 664f2ec16ccSHideki Saito } 665f2ec16ccSHideki Saito 666b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 667b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 668b02b0ad8SAnna Thomas // limited to): 669b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 670b02b0ad8SAnna Thomas // is not available when vectorized 671b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 672b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 673b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 674b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 675b02b0ad8SAnna Thomas // handling below 676b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 677b02b0ad8SAnna Thomas // extraction. 678b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 679b02b0ad8SAnna Thomas // of these NotAllowedExit. 680f2ec16ccSHideki Saito InductionDescriptor ID; 681f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 682f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 683f2ec16ccSHideki Saito if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 684f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 685f2ec16ccSHideki Saito continue; 686f2ec16ccSHideki Saito } 687f2ec16ccSHideki Saito 688f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 689f2ec16ccSHideki Saito SinkAfter, DT)) { 690f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 691f2ec16ccSHideki Saito continue; 692f2ec16ccSHideki Saito } 693f2ec16ccSHideki Saito 694f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 695f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 696f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 697f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 698f2ec16ccSHideki Saito continue; 699f2ec16ccSHideki Saito } 700f2ec16ccSHideki Saito 701f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("NonReductionValueUsedOutsideLoop", Phi) 702f2ec16ccSHideki Saito << "value that could not be identified as " 703f2ec16ccSHideki Saito "reduction is used outside the loop"); 704d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an unidentified PHI." << *Phi << "\n"); 705f2ec16ccSHideki Saito return false; 706f2ec16ccSHideki Saito } // end of PHI handling 707f2ec16ccSHideki Saito 708f2ec16ccSHideki Saito // We handle calls that: 709f2ec16ccSHideki Saito // * Are debug info intrinsics. 710f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 711f2ec16ccSHideki Saito // * Have a vector version available. 712f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 713f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 714f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 715f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 716f2ec16ccSHideki Saito TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) { 717*7d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 718*7d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 719*7d65fe5cSSanjay Patel LibFunc Func; 720*7d65fe5cSSanjay Patel bool IsMathLibCall = 721*7d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 722*7d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 723*7d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 724*7d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 725*7d65fe5cSSanjay Patel 726*7d65fe5cSSanjay Patel if (IsMathLibCall) { 727*7d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 728*7d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 729*7d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 730*7d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 731*7d65fe5cSSanjay Patel ORE->emit(createMissedAnalysis("CantVectorizeLibcall", CI) 732*7d65fe5cSSanjay Patel << "library call cannot be vectorized. " 733*7d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 734*7d65fe5cSSanjay Patel "or similar flags"); 735*7d65fe5cSSanjay Patel } else { 736f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CantVectorizeCall", CI) 737f2ec16ccSHideki Saito << "call instruction cannot be vectorized"); 738*7d65fe5cSSanjay Patel } 739d34e60caSNicola Zaghen LLVM_DEBUG( 740*7d65fe5cSSanjay Patel dbgs() << "LV: Found a non-intrinsic callsite.\n"); 741f2ec16ccSHideki Saito return false; 742f2ec16ccSHideki Saito } 743f2ec16ccSHideki Saito 744f2ec16ccSHideki Saito // Intrinsics such as powi,cttz and ctlz are legal to vectorize if the 745f2ec16ccSHideki Saito // second argument is the same (i.e. loop invariant) 746f2ec16ccSHideki Saito if (CI && hasVectorInstrinsicScalarOpd( 747f2ec16ccSHideki Saito getVectorIntrinsicIDForCall(CI, TLI), 1)) { 748f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 749f2ec16ccSHideki Saito if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(1)), TheLoop)) { 750f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CantVectorizeIntrinsic", CI) 751f2ec16ccSHideki Saito << "intrinsic instruction cannot be vectorized"); 752d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() 753d34e60caSNicola Zaghen << "LV: Found unvectorizable intrinsic " << *CI << "\n"); 754f2ec16ccSHideki Saito return false; 755f2ec16ccSHideki Saito } 756f2ec16ccSHideki Saito } 757f2ec16ccSHideki Saito 758f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 759f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 760f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 761f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 762f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 763f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CantVectorizeInstructionReturnType", &I) 764f2ec16ccSHideki Saito << "instruction return type cannot be vectorized"); 765d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found unvectorizable type.\n"); 766f2ec16ccSHideki Saito return false; 767f2ec16ccSHideki Saito } 768f2ec16ccSHideki Saito 769f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 770f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 771f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 772f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 773f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CantVectorizeStore", ST) 774f2ec16ccSHideki Saito << "store instruction cannot be vectorized"); 775f2ec16ccSHideki Saito return false; 776f2ec16ccSHideki Saito } 777f2ec16ccSHideki Saito 778f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 779f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 780f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 781f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 782f2ec16ccSHideki Saito // semantics. 783f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 784f2ec16ccSHideki Saito !I.isFast()) { 785d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 786f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 787f2ec16ccSHideki Saito } 788f2ec16ccSHideki Saito 789f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 790f2ec16ccSHideki Saito // All other instructions must not have external users. 791f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 792b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 793b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 794b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 795b02b0ad8SAnna Thomas // outside the loop. 796b02b0ad8SAnna Thomas if (PSE.getUnionPredicate().isAlwaysTrue()) { 797b02b0ad8SAnna Thomas AllowedExit.insert(&I); 798b02b0ad8SAnna Thomas continue; 799b02b0ad8SAnna Thomas } 800f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("ValueUsedOutsideLoop", &I) 801f2ec16ccSHideki Saito << "value cannot be used outside the loop"); 802f2ec16ccSHideki Saito return false; 803f2ec16ccSHideki Saito } 804f2ec16ccSHideki Saito } // next instr. 805f2ec16ccSHideki Saito } 806f2ec16ccSHideki Saito 807f2ec16ccSHideki Saito if (!PrimaryInduction) { 808d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 809f2ec16ccSHideki Saito if (Inductions.empty()) { 810f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("NoInductionVariable") 811f2ec16ccSHideki Saito << "loop induction variable could not be identified"); 812f2ec16ccSHideki Saito return false; 8134f27730eSWarren Ristow } else if (!WidestIndTy) { 8144f27730eSWarren Ristow ORE->emit(createMissedAnalysis("NoIntegerInductionVariable") 8154f27730eSWarren Ristow << "integer loop induction variable could not be identified"); 8164f27730eSWarren Ristow return false; 817f2ec16ccSHideki Saito } 818f2ec16ccSHideki Saito } 819f2ec16ccSHideki Saito 820f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 821f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 822f2ec16ccSHideki Saito // will create another. 823f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 824f2ec16ccSHideki Saito PrimaryInduction = nullptr; 825f2ec16ccSHideki Saito 826f2ec16ccSHideki Saito return true; 827f2ec16ccSHideki Saito } 828f2ec16ccSHideki Saito 829f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 830f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 831f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 832f2ec16ccSHideki Saito if (LAR) { 833f2ec16ccSHideki Saito ORE->emit([&]() { 834f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 835f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 836f2ec16ccSHideki Saito }); 837f2ec16ccSHideki Saito } 838f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 839f2ec16ccSHideki Saito return false; 840f2ec16ccSHideki Saito 8415e9215f0SAnna Thomas if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 842f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CantVectorizeStoreToLoopInvariantAddress") 8435e9215f0SAnna Thomas << "write to a loop invariant address could not " 844b1e3d453SAnna Thomas "be vectorized"); 8456f732bfbSAnna Thomas LLVM_DEBUG( 8465e9215f0SAnna Thomas dbgs() << "LV: Non vectorizable stores to a uniform address\n"); 847f2ec16ccSHideki Saito return false; 848f2ec16ccSHideki Saito } 849f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 850f2ec16ccSHideki Saito PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 851f2ec16ccSHideki Saito 852f2ec16ccSHideki Saito return true; 853f2ec16ccSHideki Saito } 854f2ec16ccSHideki Saito 855f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 856f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 857f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 858f2ec16ccSHideki Saito if (!PN) 859f2ec16ccSHideki Saito return false; 860f2ec16ccSHideki Saito 861f2ec16ccSHideki Saito return Inductions.count(PN); 862f2ec16ccSHideki Saito } 863f2ec16ccSHideki Saito 864f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 865f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 866f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 867f2ec16ccSHideki Saito } 868f2ec16ccSHideki Saito 869f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 870f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 871f2ec16ccSHideki Saito } 872f2ec16ccSHideki Saito 873f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 874f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 875f2ec16ccSHideki Saito } 876f2ec16ccSHideki Saito 877f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 878f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 879f2ec16ccSHideki Saito } 880f2ec16ccSHideki Saito 881f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 882f2ec16ccSHideki Saito BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs) { 883f2ec16ccSHideki Saito const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 884f2ec16ccSHideki Saito 885f2ec16ccSHideki Saito for (Instruction &I : *BB) { 886f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 887f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 888f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 889f2ec16ccSHideki Saito if (C->canTrap()) 890f2ec16ccSHideki Saito return false; 891f2ec16ccSHideki Saito } 892f2ec16ccSHideki Saito // We might be able to hoist the load. 893f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 894f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 895f2ec16ccSHideki Saito if (!LI) 896f2ec16ccSHideki Saito return false; 897f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 898f2ec16ccSHideki Saito // !llvm.mem.parallel_loop_access implies if-conversion safety. 899f2ec16ccSHideki Saito // Otherwise, record that the load needs (real or emulated) masking 900f2ec16ccSHideki Saito // and let the cost model decide. 901f2ec16ccSHideki Saito if (!IsAnnotatedParallel) 902f2ec16ccSHideki Saito MaskedOp.insert(LI); 903f2ec16ccSHideki Saito continue; 904f2ec16ccSHideki Saito } 905f2ec16ccSHideki Saito } 906f2ec16ccSHideki Saito 907f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 908f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 909f2ec16ccSHideki Saito if (!SI) 910f2ec16ccSHideki Saito return false; 911f2ec16ccSHideki Saito // Predicated store requires some form of masking: 912f2ec16ccSHideki Saito // 1) masked store HW instruction, 913f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 914f2ec16ccSHideki Saito // be aware on the race conditions), or 915f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 916f2ec16ccSHideki Saito MaskedOp.insert(SI); 917f2ec16ccSHideki Saito continue; 918f2ec16ccSHideki Saito } 919f2ec16ccSHideki Saito if (I.mayThrow()) 920f2ec16ccSHideki Saito return false; 921f2ec16ccSHideki Saito } 922f2ec16ccSHideki Saito 923f2ec16ccSHideki Saito return true; 924f2ec16ccSHideki Saito } 925f2ec16ccSHideki Saito 926f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 927f2ec16ccSHideki Saito if (!EnableIfConversion) { 928f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("IfConversionDisabled") 929f2ec16ccSHideki Saito << "if-conversion is disabled"); 930f2ec16ccSHideki Saito return false; 931f2ec16ccSHideki Saito } 932f2ec16ccSHideki Saito 933f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 934f2ec16ccSHideki Saito 935f2ec16ccSHideki Saito // A list of pointers that we can safely read and write to. 936f2ec16ccSHideki Saito SmallPtrSet<Value *, 8> SafePointes; 937f2ec16ccSHideki Saito 938f2ec16ccSHideki Saito // Collect safe addresses. 939f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 940f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) 941f2ec16ccSHideki Saito continue; 942f2ec16ccSHideki Saito 943f2ec16ccSHideki Saito for (Instruction &I : *BB) 944f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 945f2ec16ccSHideki Saito SafePointes.insert(Ptr); 946f2ec16ccSHideki Saito } 947f2ec16ccSHideki Saito 948f2ec16ccSHideki Saito // Collect the blocks that need predication. 949f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 950f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 951f2ec16ccSHideki Saito // We don't support switch statements inside loops. 952f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 953f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("LoopContainsSwitch", BB->getTerminator()) 954f2ec16ccSHideki Saito << "loop contains a switch statement"); 955f2ec16ccSHideki Saito return false; 956f2ec16ccSHideki Saito } 957f2ec16ccSHideki Saito 958f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 959f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 960f2ec16ccSHideki Saito if (!blockCanBePredicated(BB, SafePointes)) { 961f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 962f2ec16ccSHideki Saito << "control flow cannot be substituted for a select"); 963f2ec16ccSHideki Saito return false; 964f2ec16ccSHideki Saito } 965f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 966f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 967f2ec16ccSHideki Saito << "control flow cannot be substituted for a select"); 968f2ec16ccSHideki Saito return false; 969f2ec16ccSHideki Saito } 970f2ec16ccSHideki Saito } 971f2ec16ccSHideki Saito 972f2ec16ccSHideki Saito // We can if-convert this loop. 973f2ec16ccSHideki Saito return true; 974f2ec16ccSHideki Saito } 975f2ec16ccSHideki Saito 976f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 977f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 978f2ec16ccSHideki Saito bool UseVPlanNativePath) { 979f2ec16ccSHideki Saito assert((UseVPlanNativePath || Lp->empty()) && 980f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 981f2ec16ccSHideki Saito 982f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 983f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 984f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 985f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 986f2ec16ccSHideki Saito 987f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 988f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 989f2ec16ccSHideki Saito bool Result = true; 990f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 991f2ec16ccSHideki Saito 992f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 993f2ec16ccSHideki Saito // be canonicalized. 994f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 995d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop doesn't have a legal pre-header.\n"); 996f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 997f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 998f2ec16ccSHideki Saito if (DoExtraAnalysis) 999f2ec16ccSHideki Saito Result = false; 1000f2ec16ccSHideki Saito else 1001f2ec16ccSHideki Saito return false; 1002f2ec16ccSHideki Saito } 1003f2ec16ccSHideki Saito 1004f2ec16ccSHideki Saito // We must have a single backedge. 1005f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 1006f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1007f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 1008f2ec16ccSHideki Saito if (DoExtraAnalysis) 1009f2ec16ccSHideki Saito Result = false; 1010f2ec16ccSHideki Saito else 1011f2ec16ccSHideki Saito return false; 1012f2ec16ccSHideki Saito } 1013f2ec16ccSHideki Saito 1014f2ec16ccSHideki Saito // We must have a single exiting block. 1015f2ec16ccSHideki Saito if (!Lp->getExitingBlock()) { 1016f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1017f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 1018f2ec16ccSHideki Saito if (DoExtraAnalysis) 1019f2ec16ccSHideki Saito Result = false; 1020f2ec16ccSHideki Saito else 1021f2ec16ccSHideki Saito return false; 1022f2ec16ccSHideki Saito } 1023f2ec16ccSHideki Saito 1024f2ec16ccSHideki Saito // We only handle bottom-tested loops, i.e. loop in which the condition is 1025f2ec16ccSHideki Saito // checked at the end of each iteration. With that we can assume that all 1026f2ec16ccSHideki Saito // instructions in the loop are executed the same number of times. 1027f2ec16ccSHideki Saito if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 1028f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("CFGNotUnderstood") 1029f2ec16ccSHideki Saito << "loop control flow is not understood by vectorizer"); 1030f2ec16ccSHideki Saito if (DoExtraAnalysis) 1031f2ec16ccSHideki Saito Result = false; 1032f2ec16ccSHideki Saito else 1033f2ec16ccSHideki Saito return false; 1034f2ec16ccSHideki Saito } 1035f2ec16ccSHideki Saito 1036f2ec16ccSHideki Saito return Result; 1037f2ec16ccSHideki Saito } 1038f2ec16ccSHideki Saito 1039f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1040f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1041f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1042f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1043f2ec16ccSHideki Saito bool Result = true; 1044f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1045f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1046f2ec16ccSHideki Saito if (DoExtraAnalysis) 1047f2ec16ccSHideki Saito Result = false; 1048f2ec16ccSHideki Saito else 1049f2ec16ccSHideki Saito return false; 1050f2ec16ccSHideki Saito } 1051f2ec16ccSHideki Saito 1052f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1053f2ec16ccSHideki Saito // understood. 1054f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1055f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1056f2ec16ccSHideki Saito if (DoExtraAnalysis) 1057f2ec16ccSHideki Saito Result = false; 1058f2ec16ccSHideki Saito else 1059f2ec16ccSHideki Saito return false; 1060f2ec16ccSHideki Saito } 1061f2ec16ccSHideki Saito 1062f2ec16ccSHideki Saito return Result; 1063f2ec16ccSHideki Saito } 1064f2ec16ccSHideki Saito 1065f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1066f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1067f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1068f2ec16ccSHideki Saito bool Result = true; 1069f2ec16ccSHideki Saito 1070f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1071f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1072f2ec16ccSHideki Saito // vectorizer. 1073f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1074f2ec16ccSHideki Saito if (DoExtraAnalysis) 1075f2ec16ccSHideki Saito Result = false; 1076f2ec16ccSHideki Saito else 1077f2ec16ccSHideki Saito return false; 1078f2ec16ccSHideki Saito } 1079f2ec16ccSHideki Saito 1080f2ec16ccSHideki Saito // We need to have a loop header. 1081d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1082f2ec16ccSHideki Saito << '\n'); 1083f2ec16ccSHideki Saito 1084f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1085f2ec16ccSHideki Saito // point because they don't support outer loops. 1086f2ec16ccSHideki Saito if (!TheLoop->empty()) { 1087f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1088f2ec16ccSHideki Saito 1089f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 1090d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Unsupported outer loop.\n"); 1091f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1092f2ec16ccSHideki Saito // outer loops. 1093f2ec16ccSHideki Saito return false; 1094f2ec16ccSHideki Saito } 1095f2ec16ccSHideki Saito 1096d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1097f2ec16ccSHideki Saito return Result; 1098f2ec16ccSHideki Saito } 1099f2ec16ccSHideki Saito 1100f2ec16ccSHideki Saito assert(TheLoop->empty() && "Inner loop expected."); 1101f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1102f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1103f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1104d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1105f2ec16ccSHideki Saito if (DoExtraAnalysis) 1106f2ec16ccSHideki Saito Result = false; 1107f2ec16ccSHideki Saito else 1108f2ec16ccSHideki Saito return false; 1109f2ec16ccSHideki Saito } 1110f2ec16ccSHideki Saito 1111f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1112f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1113d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1114f2ec16ccSHideki Saito if (DoExtraAnalysis) 1115f2ec16ccSHideki Saito Result = false; 1116f2ec16ccSHideki Saito else 1117f2ec16ccSHideki Saito return false; 1118f2ec16ccSHideki Saito } 1119f2ec16ccSHideki Saito 1120f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1121f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1122d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1123f2ec16ccSHideki Saito if (DoExtraAnalysis) 1124f2ec16ccSHideki Saito Result = false; 1125f2ec16ccSHideki Saito else 1126f2ec16ccSHideki Saito return false; 1127f2ec16ccSHideki Saito } 1128f2ec16ccSHideki Saito 1129d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1130f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1131f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1132f2ec16ccSHideki Saito : "") 1133f2ec16ccSHideki Saito << "!\n"); 1134f2ec16ccSHideki Saito 1135f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1136f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1137f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1138f2ec16ccSHideki Saito 1139f2ec16ccSHideki Saito if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 1140f2ec16ccSHideki Saito ORE->emit(createMissedAnalysis("TooManySCEVRunTimeChecks") 1141f2ec16ccSHideki Saito << "Too many SCEV assumptions need to be made and checked " 1142f2ec16ccSHideki Saito << "at runtime"); 1143d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Too many SCEV checks needed.\n"); 1144f2ec16ccSHideki Saito if (DoExtraAnalysis) 1145f2ec16ccSHideki Saito Result = false; 1146f2ec16ccSHideki Saito else 1147f2ec16ccSHideki Saito return false; 1148f2ec16ccSHideki Saito } 1149f2ec16ccSHideki Saito 1150f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1151f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1152f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1153f2ec16ccSHideki Saito // no restrictions. 1154f2ec16ccSHideki Saito return Result; 1155f2ec16ccSHideki Saito } 1156f2ec16ccSHideki Saito 1157b0b5312eSAyal Zaks bool LoopVectorizationLegality::canFoldTailByMasking() { 1158b0b5312eSAyal Zaks 1159b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1160b0b5312eSAyal Zaks 1161b0b5312eSAyal Zaks if (!PrimaryInduction) { 1162b0b5312eSAyal Zaks ORE->emit(createMissedAnalysis("NoPrimaryInduction") 1163b0b5312eSAyal Zaks << "Missing a primary induction variable in the loop, which is " 1164b0b5312eSAyal Zaks << "needed in order to fold tail by masking as required."); 1165b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: No primary induction, cannot fold tail by " 1166b0b5312eSAyal Zaks << "masking.\n"); 1167b0b5312eSAyal Zaks return false; 1168b0b5312eSAyal Zaks } 1169b0b5312eSAyal Zaks 1170b0b5312eSAyal Zaks // TODO: handle reductions when tail is folded by masking. 1171b0b5312eSAyal Zaks if (!Reductions.empty()) { 1172b0b5312eSAyal Zaks ORE->emit(createMissedAnalysis("ReductionFoldingTailByMasking") 1173b0b5312eSAyal Zaks << "Cannot fold tail by masking in the presence of reductions."); 1174b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: Loop has reductions, cannot fold tail by " 1175b0b5312eSAyal Zaks << "masking.\n"); 1176b0b5312eSAyal Zaks return false; 1177b0b5312eSAyal Zaks } 1178b0b5312eSAyal Zaks 1179b0b5312eSAyal Zaks // TODO: handle outside users when tail is folded by masking. 1180b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1181b0b5312eSAyal Zaks // Check that all users of allowed exit values are inside the loop. 1182b0b5312eSAyal Zaks for (User *U : AE->users()) { 1183b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1184b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1185b0b5312eSAyal Zaks continue; 1186b0b5312eSAyal Zaks ORE->emit(createMissedAnalysis("LiveOutFoldingTailByMasking") 1187b0b5312eSAyal Zaks << "Cannot fold tail by masking in the presence of live outs."); 1188b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking, loop has an " 1189b0b5312eSAyal Zaks << "outside user for : " << *UI << '\n'); 1190b0b5312eSAyal Zaks return false; 1191b0b5312eSAyal Zaks } 1192b0b5312eSAyal Zaks } 1193b0b5312eSAyal Zaks 1194b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1195b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1196b0b5312eSAyal Zaks 1197b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1198b0b5312eSAyal Zaks // do not need predication such as the header block. 1199b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1200b0b5312eSAyal Zaks if (!blockCanBePredicated(BB, SafePointers)) { 1201b0b5312eSAyal Zaks ORE->emit(createMissedAnalysis("NoCFGForSelect", BB->getTerminator()) 1202b0b5312eSAyal Zaks << "control flow cannot be substituted for a select"); 1203b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as required.\n"); 1204b0b5312eSAyal Zaks return false; 1205b0b5312eSAyal Zaks } 1206b0b5312eSAyal Zaks } 1207b0b5312eSAyal Zaks 1208b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1209b0b5312eSAyal Zaks return true; 1210b0b5312eSAyal Zaks } 1211b0b5312eSAyal Zaks 1212f2ec16ccSHideki Saito } // namespace llvm 1213