1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f2ec16ccSHideki Saito // 7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 8f2ec16ccSHideki Saito // 9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 11f2ec16ccSHideki Saito // 12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 15f2ec16ccSHideki Saito // 16cc529285SSimon Pilgrim 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 187403569bSPhilip Reames #include "llvm/Analysis/Loads.h" 19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h" 20cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h" 217403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h" 22f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 23f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 2423c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h" 257bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h" 2623c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27f2ec16ccSHideki Saito 28f2ec16ccSHideki Saito using namespace llvm; 2923c11380SFlorian Hahn using namespace PatternMatch; 30f2ec16ccSHideki Saito 31f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 32f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 33f2ec16ccSHideki Saito 344e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication; 354e4ecae0SHideki Saito 36f2ec16ccSHideki Saito static cl::opt<bool> 37f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 39f2ec16ccSHideki Saito 40f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold( 41f2ec16ccSHideki Saito "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden, 42f2ec16ccSHideki Saito cl::desc("The maximum allowed number of runtime memory checks with a " 43f2ec16ccSHideki Saito "vectorize(enable) pragma.")); 44f2ec16ccSHideki Saito 45f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 46f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 47f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 48f2ec16ccSHideki Saito 49f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 50f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 51f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 52f2ec16ccSHideki Saito "vectorize(enable) pragma")); 53f2ec16ccSHideki Saito 54f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 55f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 56f2ec16ccSHideki Saito 57f2ec16ccSHideki Saito namespace llvm { 58f2ec16ccSHideki Saito 59f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 60f2ec16ccSHideki Saito switch (Kind) { 61f2ec16ccSHideki Saito case HK_WIDTH: 62f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 63f2ec16ccSHideki Saito case HK_UNROLL: 64f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 65f2ec16ccSHideki Saito case HK_FORCE: 66f2ec16ccSHideki Saito return (Val <= 1); 67f2ec16ccSHideki Saito case HK_ISVECTORIZED: 6820b198ecSSjoerd Meijer case HK_PREDICATE: 69*71bd59f0SDavid Sherwood case HK_SCALABLE: 70f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 71f2ec16ccSHideki Saito } 72f2ec16ccSHideki Saito return false; 73f2ec16ccSHideki Saito } 74f2ec16ccSHideki Saito 75d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 76d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 77f2ec16ccSHideki Saito OptimizationRemarkEmitter &ORE) 78f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 79d4eb13c8SMichael Kruse Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL), 80f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 8120b198ecSSjoerd Meijer IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 82*71bd59f0SDavid Sherwood Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 83*71bd59f0SDavid Sherwood Scalable("vectorize.scalable.enable", false, HK_SCALABLE), TheLoop(L), 8420b198ecSSjoerd Meijer ORE(ORE) { 85f2ec16ccSHideki Saito // Populate values with existing loop metadata. 86f2ec16ccSHideki Saito getHintsFromMetadata(); 87f2ec16ccSHideki Saito 88f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 89f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 90f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 91f2ec16ccSHideki Saito 92f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 93f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 94f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 95f2ec16ccSHideki Saito // nothing more that we can do. 96*71bd59f0SDavid Sherwood IsVectorized.Value = 97*71bd59f0SDavid Sherwood getWidth() == ElementCount::getFixed(1) && Interleave.Value == 1; 98d4eb13c8SMichael Kruse LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs() 99f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 100f2ec16ccSHideki Saito } 101f2ec16ccSHideki Saito 10277a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() { 10377a614a6SMichael Kruse LLVMContext &Context = TheLoop->getHeader()->getContext(); 10477a614a6SMichael Kruse 10577a614a6SMichael Kruse MDNode *IsVectorizedMD = MDNode::get( 10677a614a6SMichael Kruse Context, 10777a614a6SMichael Kruse {MDString::get(Context, "llvm.loop.isvectorized"), 10877a614a6SMichael Kruse ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 10977a614a6SMichael Kruse MDNode *LoopID = TheLoop->getLoopID(); 11077a614a6SMichael Kruse MDNode *NewLoopID = 11177a614a6SMichael Kruse makePostTransformationMetadata(Context, LoopID, 11277a614a6SMichael Kruse {Twine(Prefix(), "vectorize.").str(), 11377a614a6SMichael Kruse Twine(Prefix(), "interleave.").str()}, 11477a614a6SMichael Kruse {IsVectorizedMD}); 11577a614a6SMichael Kruse TheLoop->setLoopID(NewLoopID); 11677a614a6SMichael Kruse 11777a614a6SMichael Kruse // Update internal cache. 11877a614a6SMichael Kruse IsVectorized.Value = 1; 11977a614a6SMichael Kruse } 12077a614a6SMichael Kruse 121d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 122d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 123f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 124d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 125f2ec16ccSHideki Saito emitRemarkWithHints(); 126f2ec16ccSHideki Saito return false; 127f2ec16ccSHideki Saito } 128f2ec16ccSHideki Saito 129d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 130d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 131f2ec16ccSHideki Saito emitRemarkWithHints(); 132f2ec16ccSHideki Saito return false; 133f2ec16ccSHideki Saito } 134f2ec16ccSHideki Saito 135f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 136d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 137f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 138f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 139f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 140f2ec16ccSHideki Saito ORE.emit([&]() { 141f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 142f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 143f2ec16ccSHideki Saito L->getHeader()) 144f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 145f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 146f2ec16ccSHideki Saito "vectorized"; 147f2ec16ccSHideki Saito }); 148f2ec16ccSHideki Saito return false; 149f2ec16ccSHideki Saito } 150f2ec16ccSHideki Saito 151f2ec16ccSHideki Saito return true; 152f2ec16ccSHideki Saito } 153f2ec16ccSHideki Saito 154f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 155f2ec16ccSHideki Saito using namespace ore; 156f2ec16ccSHideki Saito 157f2ec16ccSHideki Saito ORE.emit([&]() { 158f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 159f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 160f2ec16ccSHideki Saito TheLoop->getStartLoc(), 161f2ec16ccSHideki Saito TheLoop->getHeader()) 162f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 163f2ec16ccSHideki Saito else { 164f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 165f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 166f2ec16ccSHideki Saito R << "loop not vectorized"; 167f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 168f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 169f2ec16ccSHideki Saito if (Width.Value != 0) 170*71bd59f0SDavid Sherwood R << ", Vector Width=" << NV("VectorWidth", getWidth()); 171f2ec16ccSHideki Saito if (Interleave.Value != 0) 172f2ec16ccSHideki Saito R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value); 173f2ec16ccSHideki Saito R << ")"; 174f2ec16ccSHideki Saito } 175f2ec16ccSHideki Saito return R; 176f2ec16ccSHideki Saito } 177f2ec16ccSHideki Saito }); 178f2ec16ccSHideki Saito } 179f2ec16ccSHideki Saito 180f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 181*71bd59f0SDavid Sherwood if (getWidth() == ElementCount::getFixed(1)) 182f2ec16ccSHideki Saito return LV_NAME; 183f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 184f2ec16ccSHideki Saito return LV_NAME; 185*71bd59f0SDavid Sherwood if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 186f2ec16ccSHideki Saito return LV_NAME; 187f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 188f2ec16ccSHideki Saito } 189f2ec16ccSHideki Saito 190f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 191f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 192f2ec16ccSHideki Saito if (!LoopID) 193f2ec16ccSHideki Saito return; 194f2ec16ccSHideki Saito 195f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 196f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 197f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 198f2ec16ccSHideki Saito 199f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 200f2ec16ccSHideki Saito const MDString *S = nullptr; 201f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 202f2ec16ccSHideki Saito 203f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 204f2ec16ccSHideki Saito // operand a MDString. 205f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 206f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 207f2ec16ccSHideki Saito continue; 208f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 209f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 210f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 211f2ec16ccSHideki Saito } else { 212f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 213f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 214f2ec16ccSHideki Saito } 215f2ec16ccSHideki Saito 216f2ec16ccSHideki Saito if (!S) 217f2ec16ccSHideki Saito continue; 218f2ec16ccSHideki Saito 219f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 220f2ec16ccSHideki Saito StringRef Name = S->getString(); 221f2ec16ccSHideki Saito if (Args.size() == 1) 222f2ec16ccSHideki Saito setHint(Name, Args[0]); 223f2ec16ccSHideki Saito } 224f2ec16ccSHideki Saito } 225f2ec16ccSHideki Saito 226f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 227f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 228f2ec16ccSHideki Saito return; 229f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 230f2ec16ccSHideki Saito 231f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 232f2ec16ccSHideki Saito if (!C) 233f2ec16ccSHideki Saito return; 234f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 235f2ec16ccSHideki Saito 236*71bd59f0SDavid Sherwood Hint *Hints[] = {&Width, &Interleave, &Force, 237*71bd59f0SDavid Sherwood &IsVectorized, &Predicate, &Scalable}; 238f2ec16ccSHideki Saito for (auto H : Hints) { 239f2ec16ccSHideki Saito if (Name == H->Name) { 240f2ec16ccSHideki Saito if (H->validate(Val)) 241f2ec16ccSHideki Saito H->Value = Val; 242f2ec16ccSHideki Saito else 243d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 244f2ec16ccSHideki Saito break; 245f2ec16ccSHideki Saito } 246f2ec16ccSHideki Saito } 247f2ec16ccSHideki Saito } 248f2ec16ccSHideki Saito 249f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet( 250f2ec16ccSHideki Saito Function *F, Loop *L, const LoopVectorizeHints &Hints) { 251f2ec16ccSHideki Saito const char *PassName = Hints.vectorizeAnalysisPassName(); 252f2ec16ccSHideki Saito bool Failed = false; 253f2ec16ccSHideki Saito if (UnsafeAlgebraInst && !Hints.allowReordering()) { 254f2ec16ccSHideki Saito ORE.emit([&]() { 255f2ec16ccSHideki Saito return OptimizationRemarkAnalysisFPCommute( 256f2ec16ccSHideki Saito PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(), 257f2ec16ccSHideki Saito UnsafeAlgebraInst->getParent()) 258f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 259f2ec16ccSHideki Saito "floating-point operations"; 260f2ec16ccSHideki Saito }); 261f2ec16ccSHideki Saito Failed = true; 262f2ec16ccSHideki Saito } 263f2ec16ccSHideki Saito 264f2ec16ccSHideki Saito // Test if runtime memcheck thresholds are exceeded. 265f2ec16ccSHideki Saito bool PragmaThresholdReached = 266f2ec16ccSHideki Saito NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold; 267f2ec16ccSHideki Saito bool ThresholdReached = 268f2ec16ccSHideki Saito NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold; 269f2ec16ccSHideki Saito if ((ThresholdReached && !Hints.allowReordering()) || 270f2ec16ccSHideki Saito PragmaThresholdReached) { 271f2ec16ccSHideki Saito ORE.emit([&]() { 272f2ec16ccSHideki Saito return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps", 273f2ec16ccSHideki Saito L->getStartLoc(), 274f2ec16ccSHideki Saito L->getHeader()) 275f2ec16ccSHideki Saito << "loop not vectorized: cannot prove it is safe to reorder " 276f2ec16ccSHideki Saito "memory operations"; 277f2ec16ccSHideki Saito }); 278d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n"); 279f2ec16ccSHideki Saito Failed = true; 280f2ec16ccSHideki Saito } 281f2ec16ccSHideki Saito 282f2ec16ccSHideki Saito return Failed; 283f2ec16ccSHideki Saito } 284f2ec16ccSHideki Saito 285f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 286f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 287f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 288f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 289f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 290f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 291f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 292f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 293f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 294f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 295f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 296f2ec16ccSHideki Saito // 297f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 298f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 299f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 300f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 301f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 302f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 303f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 304f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 305f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 306f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 307f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 308f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 309f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 310f2ec16ccSHideki Saito 311f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 312f2ec16ccSHideki Saito if (Lp == OuterLp) 313f2ec16ccSHideki Saito return true; 314f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 315f2ec16ccSHideki Saito 316f2ec16ccSHideki Saito // 1. 317f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 318f2ec16ccSHideki Saito if (!IV) { 319d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 320f2ec16ccSHideki Saito return false; 321f2ec16ccSHideki Saito } 322f2ec16ccSHideki Saito 323f2ec16ccSHideki Saito // 2. 324f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 325f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 326f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 327d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 328f2ec16ccSHideki Saito return false; 329f2ec16ccSHideki Saito } 330f2ec16ccSHideki Saito 331f2ec16ccSHideki Saito // 3. 332f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 333f2ec16ccSHideki Saito if (!LatchCmp) { 334d34e60caSNicola Zaghen LLVM_DEBUG( 335d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 336f2ec16ccSHideki Saito return false; 337f2ec16ccSHideki Saito } 338f2ec16ccSHideki Saito 339f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 340f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 341f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 342f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 343f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 344d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 345f2ec16ccSHideki Saito return false; 346f2ec16ccSHideki Saito } 347f2ec16ccSHideki Saito 348f2ec16ccSHideki Saito return true; 349f2ec16ccSHideki Saito } 350f2ec16ccSHideki Saito 351f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 352f2ec16ccSHideki Saito // OuterLp. 353f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 354f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 355f2ec16ccSHideki Saito return false; 356f2ec16ccSHideki Saito 357f2ec16ccSHideki Saito // Check if nested loops are uniform. 358f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 359f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 360f2ec16ccSHideki Saito return false; 361f2ec16ccSHideki Saito 362f2ec16ccSHideki Saito return true; 363f2ec16ccSHideki Saito } 364f2ec16ccSHideki Saito 3655f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 366f2ec16ccSHideki Saito /// 367f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 368f2ec16ccSHideki Saito /// convert. 369f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 370f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 371f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 372f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 373f2ec16ccSHideki Saito if (C->canTrap()) 374f2ec16ccSHideki Saito return false; 375f2ec16ccSHideki Saito } 376f2ec16ccSHideki Saito return true; 377f2ec16ccSHideki Saito } 378f2ec16ccSHideki Saito 379f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 380f2ec16ccSHideki Saito if (Ty->isPointerTy()) 381f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 382f2ec16ccSHideki Saito 383f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 384f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 385f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 386f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 387f2ec16ccSHideki Saito 388f2ec16ccSHideki Saito return Ty; 389f2ec16ccSHideki Saito } 390f2ec16ccSHideki Saito 391f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 392f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 393f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 394f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 395f2ec16ccSHideki Saito return Ty0; 396f2ec16ccSHideki Saito return Ty1; 397f2ec16ccSHideki Saito } 398f2ec16ccSHideki Saito 3995f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 400f2ec16ccSHideki Saito /// identified reduction variable. 401f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 402f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 40360a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 404f2ec16ccSHideki Saito // other instructions must not have external users. 405f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 406f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 407f2ec16ccSHideki Saito for (User *U : Inst->users()) { 408f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 409f2ec16ccSHideki Saito // This user may be a reduction exit value. 410f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 411d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 412f2ec16ccSHideki Saito return true; 413f2ec16ccSHideki Saito } 414f2ec16ccSHideki Saito } 415f2ec16ccSHideki Saito return false; 416f2ec16ccSHideki Saito } 417f2ec16ccSHideki Saito 418f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) { 419f2ec16ccSHideki Saito const ValueToValueMap &Strides = 420f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 421f2ec16ccSHideki Saito 4227bedae7dSHiroshi Yamauchi Function *F = TheLoop->getHeader()->getParent(); 4237bedae7dSHiroshi Yamauchi bool OptForSize = F->hasOptSize() || 4247bedae7dSHiroshi Yamauchi llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 4257bedae7dSHiroshi Yamauchi PGSOQueryType::IRPass); 4267bedae7dSHiroshi Yamauchi bool CanAddPredicate = !OptForSize; 427d1170dbeSSjoerd Meijer int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false); 428f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 429f2ec16ccSHideki Saito return Stride; 430f2ec16ccSHideki Saito return 0; 431f2ec16ccSHideki Saito } 432f2ec16ccSHideki Saito 433f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 434f2ec16ccSHideki Saito return LAI->isUniform(V); 435f2ec16ccSHideki Saito } 436f2ec16ccSHideki Saito 437f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 43889c1e35fSStefanos Baziotis assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 439f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 440f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 441f2ec16ccSHideki Saito bool Result = true; 442f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 443f2ec16ccSHideki Saito 444f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 445f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 446f2ec16ccSHideki Saito // not supported yet. 447f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 448f2ec16ccSHideki Saito if (!Br) { 4499e97caf5SRenato Golin reportVectorizationFailure("Unsupported basic block terminator", 4509e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 451ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 452f2ec16ccSHideki Saito if (DoExtraAnalysis) 453f2ec16ccSHideki Saito Result = false; 454f2ec16ccSHideki Saito else 455f2ec16ccSHideki Saito return false; 456f2ec16ccSHideki Saito } 457f2ec16ccSHideki Saito 458f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 459f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 460f2ec16ccSHideki Saito // backedges are supported. 4614e4ecae0SHideki Saito // FIXME: We skip these checks when VPlan predication is enabled as we 4624e4ecae0SHideki Saito // want to allow divergent branches. This whole check will be removed 4634e4ecae0SHideki Saito // once VPlan predication is on by default. 4644e4ecae0SHideki Saito if (!EnableVPlanPredication && Br && Br->isConditional() && 465f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 466f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 467f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 4689e97caf5SRenato Golin reportVectorizationFailure("Unsupported conditional branch", 4699e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 470ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 471f2ec16ccSHideki Saito if (DoExtraAnalysis) 472f2ec16ccSHideki Saito Result = false; 473f2ec16ccSHideki Saito else 474f2ec16ccSHideki Saito return false; 475f2ec16ccSHideki Saito } 476f2ec16ccSHideki Saito } 477f2ec16ccSHideki Saito 478f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 479f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 480f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 481f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 4829e97caf5SRenato Golin reportVectorizationFailure("Outer loop contains divergent loops", 4839e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 484ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 485f2ec16ccSHideki Saito if (DoExtraAnalysis) 486f2ec16ccSHideki Saito Result = false; 487f2ec16ccSHideki Saito else 488f2ec16ccSHideki Saito return false; 489f2ec16ccSHideki Saito } 490f2ec16ccSHideki Saito 491ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 492ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 4939e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop Phi(s)", 4949e97caf5SRenato Golin "Unsupported outer loop Phi(s)", 495ec818d7fSHideki Saito "UnsupportedPhi", ORE, TheLoop); 496ea7f3035SHideki Saito if (DoExtraAnalysis) 497ea7f3035SHideki Saito Result = false; 498ea7f3035SHideki Saito else 499ea7f3035SHideki Saito return false; 500ea7f3035SHideki Saito } 501ea7f3035SHideki Saito 502f2ec16ccSHideki Saito return Result; 503f2ec16ccSHideki Saito } 504f2ec16ccSHideki Saito 505f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 506f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 507f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 508f2ec16ccSHideki Saito Inductions[Phi] = ID; 509f2ec16ccSHideki Saito 510f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 511f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 512f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 513f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 514f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 515f2ec16ccSHideki Saito if (!Casts.empty()) 516f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 517f2ec16ccSHideki Saito 518f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 519f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 520f2ec16ccSHideki Saito 521f2ec16ccSHideki Saito // Get the widest type. 522f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 523f2ec16ccSHideki Saito if (!WidestIndTy) 524f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 525f2ec16ccSHideki Saito else 526f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 527f2ec16ccSHideki Saito } 528f2ec16ccSHideki Saito 529f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 530f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 531f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 532f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 533f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 534f2ec16ccSHideki Saito 535f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 536f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 537f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 538f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 539f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 540f2ec16ccSHideki Saito PrimaryInduction = Phi; 541f2ec16ccSHideki Saito } 542f2ec16ccSHideki Saito 543f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 544f2ec16ccSHideki Saito // back into the PHI node may have external users. 545f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 546f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5476a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5486a1dd77fSAnna Thomas // details). 549f2ec16ccSHideki Saito if (PSE.getUnionPredicate().isAlwaysTrue()) { 550f2ec16ccSHideki Saito AllowedExit.insert(Phi); 551f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 552f2ec16ccSHideki Saito } 553f2ec16ccSHideki Saito 554d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 555f2ec16ccSHideki Saito } 556f2ec16ccSHideki Saito 557ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 558ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 559ea7f3035SHideki Saito 560ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 561ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 562ea7f3035SHideki Saito InductionDescriptor ID; 563ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 564ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 565ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 566ea7f3035SHideki Saito return true; 567ea7f3035SHideki Saito } else { 568ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 569ea7f3035SHideki Saito // induction. 570ea7f3035SHideki Saito LLVM_DEBUG( 571ea7f3035SHideki Saito dbgs() 572ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 573ea7f3035SHideki Saito return false; 574ea7f3035SHideki Saito } 575ea7f3035SHideki Saito }; 576ea7f3035SHideki Saito 577ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 578ea7f3035SHideki Saito return true; 579ea7f3035SHideki Saito else 580ea7f3035SHideki Saito return false; 581ea7f3035SHideki Saito } 582ea7f3035SHideki Saito 58366c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in 58466c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in 58566c120f0SFrancesco Petrogalli /// multiple scalarcalls. This is represented in the 58666c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the 58766c120f0SFrancesco Petrogalli /// following example: 58866c120f0SFrancesco Petrogalli /// 58966c120f0SFrancesco Petrogalli /// const VecDesc VecIntrinsics[] = { 59066c120f0SFrancesco Petrogalli /// {"llvm.phx.abs.i32", "", 4} 59166c120f0SFrancesco Petrogalli /// }; 59266c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 59366c120f0SFrancesco Petrogalli const StringRef ScalarName = CI.getCalledFunction()->getName(); 59466c120f0SFrancesco Petrogalli bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 59566c120f0SFrancesco Petrogalli // Check that all known VFs are not associated to a vector 59666c120f0SFrancesco Petrogalli // function, i.e. the vector name is emty. 59766c120f0SFrancesco Petrogalli if (Scalarize) 59866c120f0SFrancesco Petrogalli for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName); 59966c120f0SFrancesco Petrogalli VF <= WidestVF; VF *= 2) { 60066c120f0SFrancesco Petrogalli Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 60166c120f0SFrancesco Petrogalli } 60266c120f0SFrancesco Petrogalli return Scalarize; 60366c120f0SFrancesco Petrogalli } 60466c120f0SFrancesco Petrogalli 605f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 606f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 607f2ec16ccSHideki Saito 608f2ec16ccSHideki Saito // Look for the attribute signaling the absence of NaNs. 609f2ec16ccSHideki Saito Function &F = *Header->getParent(); 610f2ec16ccSHideki Saito HasFunNoNaNAttr = 611f2ec16ccSHideki Saito F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; 612f2ec16ccSHideki Saito 613f2ec16ccSHideki Saito // For each block in the loop. 614f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 615f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 616f2ec16ccSHideki Saito for (Instruction &I : *BB) { 617f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 618f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 619f2ec16ccSHideki Saito // Check that this PHI type is allowed. 620f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 621f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 6229e97caf5SRenato Golin reportVectorizationFailure("Found a non-int non-pointer PHI", 6239e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 624ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 625f2ec16ccSHideki Saito return false; 626f2ec16ccSHideki Saito } 627f2ec16ccSHideki Saito 628f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 629f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 630f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 631f2ec16ccSHideki Saito if (BB != Header) { 63260a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 63360a1e4ddSAnna Thomas // them to the list of allowed exits. 63460a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 63560a1e4ddSAnna Thomas // legalization for reduction, induction and first order 63660a1e4ddSAnna Thomas // recurrences. 637dd18ce45SBjorn Pettersson AllowedExit.insert(&I); 638f2ec16ccSHideki Saito continue; 639f2ec16ccSHideki Saito } 640f2ec16ccSHideki Saito 641f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 642f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 6439e97caf5SRenato Golin reportVectorizationFailure("Found an invalid PHI", 6449e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 645ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop, Phi); 646f2ec16ccSHideki Saito return false; 647f2ec16ccSHideki Saito } 648f2ec16ccSHideki Saito 649f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 650f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 651f2ec16ccSHideki Saito DT)) { 652f2ec16ccSHideki Saito if (RedDes.hasUnsafeAlgebra()) 653f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst()); 654f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 655f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 656f2ec16ccSHideki Saito continue; 657f2ec16ccSHideki Saito } 658f2ec16ccSHideki Saito 659b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 660b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 661b02b0ad8SAnna Thomas // limited to): 662b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 663b02b0ad8SAnna Thomas // is not available when vectorized 664b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 665b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 666b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 667b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 668b02b0ad8SAnna Thomas // handling below 669b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 670b02b0ad8SAnna Thomas // extraction. 671b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 672b02b0ad8SAnna Thomas // of these NotAllowedExit. 673f2ec16ccSHideki Saito InductionDescriptor ID; 674f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 675f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 676f2ec16ccSHideki Saito if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr) 677f2ec16ccSHideki Saito Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst()); 678f2ec16ccSHideki Saito continue; 679f2ec16ccSHideki Saito } 680f2ec16ccSHideki Saito 681f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 682f2ec16ccSHideki Saito SinkAfter, DT)) { 6838e0c5f72SAyal Zaks AllowedExit.insert(Phi); 684f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 685f2ec16ccSHideki Saito continue; 686f2ec16ccSHideki Saito } 687f2ec16ccSHideki Saito 688f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 689f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 690f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 691f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 692f2ec16ccSHideki Saito continue; 693f2ec16ccSHideki Saito } 694f2ec16ccSHideki Saito 6959e97caf5SRenato Golin reportVectorizationFailure("Found an unidentified PHI", 6969e97caf5SRenato Golin "value that could not be identified as " 6979e97caf5SRenato Golin "reduction is used outside the loop", 698ec818d7fSHideki Saito "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 699f2ec16ccSHideki Saito return false; 700f2ec16ccSHideki Saito } // end of PHI handling 701f2ec16ccSHideki Saito 702f2ec16ccSHideki Saito // We handle calls that: 703f2ec16ccSHideki Saito // * Are debug info intrinsics. 704f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 705f2ec16ccSHideki Saito // * Have a vector version available. 706f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 70766c120f0SFrancesco Petrogalli 708f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 709f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 710f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 71166c120f0SFrancesco Petrogalli (!VFDatabase::getMappings(*CI).empty() || 71266c120f0SFrancesco Petrogalli isTLIScalarize(*TLI, *CI)))) { 7137d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 7147d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 7157d65fe5cSSanjay Patel LibFunc Func; 7167d65fe5cSSanjay Patel bool IsMathLibCall = 7177d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 7187d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 7197d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 7207d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 7217d65fe5cSSanjay Patel 7227d65fe5cSSanjay Patel if (IsMathLibCall) { 7237d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 7247d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 7257d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 7267d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 72766c120f0SFrancesco Petrogalli reportVectorizationFailure( 72866c120f0SFrancesco Petrogalli "Found a non-intrinsic callsite", 7299e97caf5SRenato Golin "library call cannot be vectorized. " 7307d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 7319e97caf5SRenato Golin "or similar flags", 732ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7337d65fe5cSSanjay Patel } else { 7349e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 7359e97caf5SRenato Golin "call instruction cannot be vectorized", 736ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7377d65fe5cSSanjay Patel } 738f2ec16ccSHideki Saito return false; 739f2ec16ccSHideki Saito } 740f2ec16ccSHideki Saito 741a066f1f9SSimon Pilgrim // Some intrinsics have scalar arguments and should be same in order for 742a066f1f9SSimon Pilgrim // them to be vectorized (i.e. loop invariant). 743a066f1f9SSimon Pilgrim if (CI) { 744f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 745a066f1f9SSimon Pilgrim Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 746a066f1f9SSimon Pilgrim for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 747a066f1f9SSimon Pilgrim if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 748a066f1f9SSimon Pilgrim if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 7499e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable intrinsic", 7509e97caf5SRenato Golin "intrinsic instruction cannot be vectorized", 751ec818d7fSHideki Saito "CantVectorizeIntrinsic", ORE, TheLoop, CI); 752f2ec16ccSHideki Saito return false; 753f2ec16ccSHideki Saito } 754f2ec16ccSHideki Saito } 755a066f1f9SSimon Pilgrim } 756f2ec16ccSHideki Saito 757f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 758f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 759f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 760f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 761f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 7629e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable type", 7639e97caf5SRenato Golin "instruction return type cannot be vectorized", 764ec818d7fSHideki Saito "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 765f2ec16ccSHideki Saito return false; 766f2ec16ccSHideki Saito } 767f2ec16ccSHideki Saito 768f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 769f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 770f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 771f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 7729e97caf5SRenato Golin reportVectorizationFailure("Store instruction cannot be vectorized", 7739e97caf5SRenato Golin "store instruction cannot be vectorized", 774ec818d7fSHideki Saito "CantVectorizeStore", ORE, TheLoop, ST); 775f2ec16ccSHideki Saito return false; 776f2ec16ccSHideki Saito } 777f2ec16ccSHideki Saito 7786452bdd2SWarren Ristow // For nontemporal stores, check that a nontemporal vector version is 7796452bdd2SWarren Ristow // supported on the target. 7806452bdd2SWarren Ristow if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 7816452bdd2SWarren Ristow // Arbitrarily try a vector of 2 elements. 7826913812aSFangrui Song auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 7836452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of stored type"); 78452e98f62SNikita Popov if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 7856452bdd2SWarren Ristow reportVectorizationFailure( 7866452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 7876452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 788ec818d7fSHideki Saito "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 7896452bdd2SWarren Ristow return false; 7906452bdd2SWarren Ristow } 7916452bdd2SWarren Ristow } 7926452bdd2SWarren Ristow 7936452bdd2SWarren Ristow } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 7946452bdd2SWarren Ristow if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 7956452bdd2SWarren Ristow // For nontemporal loads, check that a nontemporal vector version is 7966452bdd2SWarren Ristow // supported on the target (arbitrarily try a vector of 2 elements). 7976913812aSFangrui Song auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 7986452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of load type"); 79952e98f62SNikita Popov if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 8006452bdd2SWarren Ristow reportVectorizationFailure( 8016452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 8026452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 803ec818d7fSHideki Saito "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 8046452bdd2SWarren Ristow return false; 8056452bdd2SWarren Ristow } 8066452bdd2SWarren Ristow } 8076452bdd2SWarren Ristow 808f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 809f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 810f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 811f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 812f2ec16ccSHideki Saito // semantics. 813f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 814f2ec16ccSHideki Saito !I.isFast()) { 815d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 816f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 817f2ec16ccSHideki Saito } 818f2ec16ccSHideki Saito 819f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 820f2ec16ccSHideki Saito // All other instructions must not have external users. 821f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 822b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 823b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 824b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 825b02b0ad8SAnna Thomas // outside the loop. 826b02b0ad8SAnna Thomas if (PSE.getUnionPredicate().isAlwaysTrue()) { 827b02b0ad8SAnna Thomas AllowedExit.insert(&I); 828b02b0ad8SAnna Thomas continue; 829b02b0ad8SAnna Thomas } 8309e97caf5SRenato Golin reportVectorizationFailure("Value cannot be used outside the loop", 8319e97caf5SRenato Golin "value cannot be used outside the loop", 832ec818d7fSHideki Saito "ValueUsedOutsideLoop", ORE, TheLoop, &I); 833f2ec16ccSHideki Saito return false; 834f2ec16ccSHideki Saito } 835f2ec16ccSHideki Saito } // next instr. 836f2ec16ccSHideki Saito } 837f2ec16ccSHideki Saito 838f2ec16ccSHideki Saito if (!PrimaryInduction) { 839f2ec16ccSHideki Saito if (Inductions.empty()) { 8409e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8419e97caf5SRenato Golin "loop induction variable could not be identified", 842ec818d7fSHideki Saito "NoInductionVariable", ORE, TheLoop); 843f2ec16ccSHideki Saito return false; 8444f27730eSWarren Ristow } else if (!WidestIndTy) { 8459e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8469e97caf5SRenato Golin "integer loop induction variable could not be identified", 847ec818d7fSHideki Saito "NoIntegerInductionVariable", ORE, TheLoop); 8484f27730eSWarren Ristow return false; 8499e97caf5SRenato Golin } else { 8509e97caf5SRenato Golin LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 851f2ec16ccSHideki Saito } 852f2ec16ccSHideki Saito } 853f2ec16ccSHideki Saito 8549d24933fSFlorian Hahn // For first order recurrences, we use the previous value (incoming value from 8559d24933fSFlorian Hahn // the latch) to check if it dominates all users of the recurrence. Bail out 8569d24933fSFlorian Hahn // if we have to sink such an instruction for another recurrence, as the 8579d24933fSFlorian Hahn // dominance requirement may not hold after sinking. 8589d24933fSFlorian Hahn BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 8599d24933fSFlorian Hahn if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 8609d24933fSFlorian Hahn Instruction *V = 8619d24933fSFlorian Hahn cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 8629d24933fSFlorian Hahn return SinkAfter.find(V) != SinkAfter.end(); 8639d24933fSFlorian Hahn })) 8649d24933fSFlorian Hahn return false; 8659d24933fSFlorian Hahn 866f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 867f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 868f2ec16ccSHideki Saito // will create another. 869f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 870f2ec16ccSHideki Saito PrimaryInduction = nullptr; 871f2ec16ccSHideki Saito 872f2ec16ccSHideki Saito return true; 873f2ec16ccSHideki Saito } 874f2ec16ccSHideki Saito 875f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 876f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 877f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 878f2ec16ccSHideki Saito if (LAR) { 879f2ec16ccSHideki Saito ORE->emit([&]() { 880f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 881f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 882f2ec16ccSHideki Saito }); 883f2ec16ccSHideki Saito } 884f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 885f2ec16ccSHideki Saito return false; 886f2ec16ccSHideki Saito 8875e9215f0SAnna Thomas if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 8889e97caf5SRenato Golin reportVectorizationFailure("Stores to a uniform address", 8899e97caf5SRenato Golin "write to a loop invariant address could not be vectorized", 890ec818d7fSHideki Saito "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 891f2ec16ccSHideki Saito return false; 892f2ec16ccSHideki Saito } 893f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 894f2ec16ccSHideki Saito PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 895f2ec16ccSHideki Saito 896f2ec16ccSHideki Saito return true; 897f2ec16ccSHideki Saito } 898f2ec16ccSHideki Saito 899f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 900f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 901f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 902f2ec16ccSHideki Saito if (!PN) 903f2ec16ccSHideki Saito return false; 904f2ec16ccSHideki Saito 905f2ec16ccSHideki Saito return Inductions.count(PN); 906f2ec16ccSHideki Saito } 907f2ec16ccSHideki Saito 908f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 909f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 910f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 911f2ec16ccSHideki Saito } 912f2ec16ccSHideki Saito 913f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 914f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 915f2ec16ccSHideki Saito } 916f2ec16ccSHideki Saito 917f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 918f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 919f2ec16ccSHideki Saito } 920f2ec16ccSHideki Saito 921f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) { 922f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 923f2ec16ccSHideki Saito } 924f2ec16ccSHideki Saito 925f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 926bda8fbe2SSjoerd Meijer BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 927bda8fbe2SSjoerd Meijer SmallPtrSetImpl<const Instruction *> &MaskedOp, 928bda8fbe2SSjoerd Meijer SmallPtrSetImpl<Instruction *> &ConditionalAssumes, 929bda8fbe2SSjoerd Meijer bool PreserveGuards) const { 930f2ec16ccSHideki Saito const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 931f2ec16ccSHideki Saito 932f2ec16ccSHideki Saito for (Instruction &I : *BB) { 933f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 934f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 935f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 936f2ec16ccSHideki Saito if (C->canTrap()) 937f2ec16ccSHideki Saito return false; 938f2ec16ccSHideki Saito } 93923c11380SFlorian Hahn 94023c11380SFlorian Hahn // We can predicate blocks with calls to assume, as long as we drop them in 94123c11380SFlorian Hahn // case we flatten the CFG via predication. 94223c11380SFlorian Hahn if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 94323c11380SFlorian Hahn ConditionalAssumes.insert(&I); 94423c11380SFlorian Hahn continue; 94523c11380SFlorian Hahn } 94623c11380SFlorian Hahn 947f2ec16ccSHideki Saito // We might be able to hoist the load. 948f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 949f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 950f2ec16ccSHideki Saito if (!LI) 951f2ec16ccSHideki Saito return false; 952f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 953f2ec16ccSHideki Saito // !llvm.mem.parallel_loop_access implies if-conversion safety. 954f2ec16ccSHideki Saito // Otherwise, record that the load needs (real or emulated) masking 955f2ec16ccSHideki Saito // and let the cost model decide. 956d57d73daSDorit Nuzman if (!IsAnnotatedParallel || PreserveGuards) 957f2ec16ccSHideki Saito MaskedOp.insert(LI); 958f2ec16ccSHideki Saito continue; 959f2ec16ccSHideki Saito } 960f2ec16ccSHideki Saito } 961f2ec16ccSHideki Saito 962f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 963f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 964f2ec16ccSHideki Saito if (!SI) 965f2ec16ccSHideki Saito return false; 966f2ec16ccSHideki Saito // Predicated store requires some form of masking: 967f2ec16ccSHideki Saito // 1) masked store HW instruction, 968f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 969f2ec16ccSHideki Saito // be aware on the race conditions), or 970f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 971f2ec16ccSHideki Saito MaskedOp.insert(SI); 972f2ec16ccSHideki Saito continue; 973f2ec16ccSHideki Saito } 974f2ec16ccSHideki Saito if (I.mayThrow()) 975f2ec16ccSHideki Saito return false; 976f2ec16ccSHideki Saito } 977f2ec16ccSHideki Saito 978f2ec16ccSHideki Saito return true; 979f2ec16ccSHideki Saito } 980f2ec16ccSHideki Saito 981f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 982f2ec16ccSHideki Saito if (!EnableIfConversion) { 9839e97caf5SRenato Golin reportVectorizationFailure("If-conversion is disabled", 9849e97caf5SRenato Golin "if-conversion is disabled", 985ec818d7fSHideki Saito "IfConversionDisabled", 986ec818d7fSHideki Saito ORE, TheLoop); 987f2ec16ccSHideki Saito return false; 988f2ec16ccSHideki Saito } 989f2ec16ccSHideki Saito 990f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 991f2ec16ccSHideki Saito 992cf3b5559SPhilip Reames // A list of pointers which are known to be dereferenceable within scope of 993cf3b5559SPhilip Reames // the loop body for each iteration of the loop which executes. That is, 994cf3b5559SPhilip Reames // the memory pointed to can be dereferenced (with the access size implied by 995cf3b5559SPhilip Reames // the value's type) unconditionally within the loop header without 996cf3b5559SPhilip Reames // introducing a new fault. 9973bbc71d6SSjoerd Meijer SmallPtrSet<Value *, 8> SafePointers; 998f2ec16ccSHideki Saito 999f2ec16ccSHideki Saito // Collect safe addresses. 1000f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 10017403569bSPhilip Reames if (!blockNeedsPredication(BB)) { 1002f2ec16ccSHideki Saito for (Instruction &I : *BB) 1003f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 10043bbc71d6SSjoerd Meijer SafePointers.insert(Ptr); 10057403569bSPhilip Reames continue; 10067403569bSPhilip Reames } 10077403569bSPhilip Reames 10087403569bSPhilip Reames // For a block which requires predication, a address may be safe to access 10097403569bSPhilip Reames // in the loop w/o predication if we can prove dereferenceability facts 10107403569bSPhilip Reames // sufficient to ensure it'll never fault within the loop. For the moment, 10117403569bSPhilip Reames // we restrict this to loads; stores are more complicated due to 10127403569bSPhilip Reames // concurrency restrictions. 10137403569bSPhilip Reames ScalarEvolution &SE = *PSE.getSE(); 10147403569bSPhilip Reames for (Instruction &I : *BB) { 10157403569bSPhilip Reames LoadInst *LI = dyn_cast<LoadInst>(&I); 1016467e5cf4SJoe Ellis if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 10177403569bSPhilip Reames isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 10183bbc71d6SSjoerd Meijer SafePointers.insert(LI->getPointerOperand()); 10197403569bSPhilip Reames } 1020f2ec16ccSHideki Saito } 1021f2ec16ccSHideki Saito 1022f2ec16ccSHideki Saito // Collect the blocks that need predication. 1023f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 1024f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 1025f2ec16ccSHideki Saito // We don't support switch statements inside loops. 1026f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 10279e97caf5SRenato Golin reportVectorizationFailure("Loop contains a switch statement", 10289e97caf5SRenato Golin "loop contains a switch statement", 1029ec818d7fSHideki Saito "LoopContainsSwitch", ORE, TheLoop, 1030ec818d7fSHideki Saito BB->getTerminator()); 1031f2ec16ccSHideki Saito return false; 1032f2ec16ccSHideki Saito } 1033f2ec16ccSHideki Saito 1034f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 1035f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 1036bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1037bda8fbe2SSjoerd Meijer ConditionalAssumes)) { 10389e97caf5SRenato Golin reportVectorizationFailure( 10399e97caf5SRenato Golin "Control flow cannot be substituted for a select", 10409e97caf5SRenato Golin "control flow cannot be substituted for a select", 1041ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1042ec818d7fSHideki Saito BB->getTerminator()); 1043f2ec16ccSHideki Saito return false; 1044f2ec16ccSHideki Saito } 1045f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 10469e97caf5SRenato Golin reportVectorizationFailure( 10479e97caf5SRenato Golin "Control flow cannot be substituted for a select", 10489e97caf5SRenato Golin "control flow cannot be substituted for a select", 1049ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1050ec818d7fSHideki Saito BB->getTerminator()); 1051f2ec16ccSHideki Saito return false; 1052f2ec16ccSHideki Saito } 1053f2ec16ccSHideki Saito } 1054f2ec16ccSHideki Saito 1055f2ec16ccSHideki Saito // We can if-convert this loop. 1056f2ec16ccSHideki Saito return true; 1057f2ec16ccSHideki Saito } 1058f2ec16ccSHideki Saito 1059f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 1060f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1061f2ec16ccSHideki Saito bool UseVPlanNativePath) { 106289c1e35fSStefanos Baziotis assert((UseVPlanNativePath || Lp->isInnermost()) && 1063f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 1064f2ec16ccSHideki Saito 1065f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 1066f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 1067f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 1068f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 1069f2ec16ccSHideki Saito 1070f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1071f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1072f2ec16ccSHideki Saito bool Result = true; 1073f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1074f2ec16ccSHideki Saito 1075f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 1076f2ec16ccSHideki Saito // be canonicalized. 1077f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 10789e97caf5SRenato Golin reportVectorizationFailure("Loop doesn't have a legal pre-header", 10799e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1080ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1081f2ec16ccSHideki Saito if (DoExtraAnalysis) 1082f2ec16ccSHideki Saito Result = false; 1083f2ec16ccSHideki Saito else 1084f2ec16ccSHideki Saito return false; 1085f2ec16ccSHideki Saito } 1086f2ec16ccSHideki Saito 1087f2ec16ccSHideki Saito // We must have a single backedge. 1088f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 10899e97caf5SRenato Golin reportVectorizationFailure("The loop must have a single backedge", 10909e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1091ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1092f2ec16ccSHideki Saito if (DoExtraAnalysis) 1093f2ec16ccSHideki Saito Result = false; 1094f2ec16ccSHideki Saito else 1095f2ec16ccSHideki Saito return false; 1096f2ec16ccSHideki Saito } 1097f2ec16ccSHideki Saito 1098f2ec16ccSHideki Saito // We must have a single exiting block. 1099f2ec16ccSHideki Saito if (!Lp->getExitingBlock()) { 11009e97caf5SRenato Golin reportVectorizationFailure("The loop must have an exiting block", 11019e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1102ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1103f2ec16ccSHideki Saito if (DoExtraAnalysis) 1104f2ec16ccSHideki Saito Result = false; 1105f2ec16ccSHideki Saito else 1106f2ec16ccSHideki Saito return false; 1107f2ec16ccSHideki Saito } 1108f2ec16ccSHideki Saito 1109f2ec16ccSHideki Saito // We only handle bottom-tested loops, i.e. loop in which the condition is 1110f2ec16ccSHideki Saito // checked at the end of each iteration. With that we can assume that all 1111f2ec16ccSHideki Saito // instructions in the loop are executed the same number of times. 1112f2ec16ccSHideki Saito if (Lp->getExitingBlock() != Lp->getLoopLatch()) { 11139e97caf5SRenato Golin reportVectorizationFailure("The exiting block is not the loop latch", 11149e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1115ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1116f2ec16ccSHideki Saito if (DoExtraAnalysis) 1117f2ec16ccSHideki Saito Result = false; 1118f2ec16ccSHideki Saito else 1119f2ec16ccSHideki Saito return false; 1120f2ec16ccSHideki Saito } 1121f2ec16ccSHideki Saito 1122f2ec16ccSHideki Saito return Result; 1123f2ec16ccSHideki Saito } 1124f2ec16ccSHideki Saito 1125f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1126f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1127f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1128f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1129f2ec16ccSHideki Saito bool Result = true; 1130f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1131f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1132f2ec16ccSHideki Saito if (DoExtraAnalysis) 1133f2ec16ccSHideki Saito Result = false; 1134f2ec16ccSHideki Saito else 1135f2ec16ccSHideki Saito return false; 1136f2ec16ccSHideki Saito } 1137f2ec16ccSHideki Saito 1138f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1139f2ec16ccSHideki Saito // understood. 1140f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1141f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1142f2ec16ccSHideki Saito if (DoExtraAnalysis) 1143f2ec16ccSHideki Saito Result = false; 1144f2ec16ccSHideki Saito else 1145f2ec16ccSHideki Saito return false; 1146f2ec16ccSHideki Saito } 1147f2ec16ccSHideki Saito 1148f2ec16ccSHideki Saito return Result; 1149f2ec16ccSHideki Saito } 1150f2ec16ccSHideki Saito 1151f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1152f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1153f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1154f2ec16ccSHideki Saito bool Result = true; 1155f2ec16ccSHideki Saito 1156f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1157f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1158f2ec16ccSHideki Saito // vectorizer. 1159f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1160f2ec16ccSHideki Saito if (DoExtraAnalysis) 1161f2ec16ccSHideki Saito Result = false; 1162f2ec16ccSHideki Saito else 1163f2ec16ccSHideki Saito return false; 1164f2ec16ccSHideki Saito } 1165f2ec16ccSHideki Saito 1166f2ec16ccSHideki Saito // We need to have a loop header. 1167d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1168f2ec16ccSHideki Saito << '\n'); 1169f2ec16ccSHideki Saito 1170f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1171f2ec16ccSHideki Saito // point because they don't support outer loops. 117289c1e35fSStefanos Baziotis if (!TheLoop->isInnermost()) { 1173f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1174f2ec16ccSHideki Saito 1175f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 11769e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop", 11779e97caf5SRenato Golin "unsupported outer loop", 1178ec818d7fSHideki Saito "UnsupportedOuterLoop", 1179ec818d7fSHideki Saito ORE, TheLoop); 1180f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1181f2ec16ccSHideki Saito // outer loops. 1182f2ec16ccSHideki Saito return false; 1183f2ec16ccSHideki Saito } 1184f2ec16ccSHideki Saito 1185d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1186f2ec16ccSHideki Saito return Result; 1187f2ec16ccSHideki Saito } 1188f2ec16ccSHideki Saito 118989c1e35fSStefanos Baziotis assert(TheLoop->isInnermost() && "Inner loop expected."); 1190f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1191f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1192f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1193d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1194f2ec16ccSHideki Saito if (DoExtraAnalysis) 1195f2ec16ccSHideki Saito Result = false; 1196f2ec16ccSHideki Saito else 1197f2ec16ccSHideki Saito return false; 1198f2ec16ccSHideki Saito } 1199f2ec16ccSHideki Saito 1200f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1201f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1202d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1203f2ec16ccSHideki Saito if (DoExtraAnalysis) 1204f2ec16ccSHideki Saito Result = false; 1205f2ec16ccSHideki Saito else 1206f2ec16ccSHideki Saito return false; 1207f2ec16ccSHideki Saito } 1208f2ec16ccSHideki Saito 1209f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1210f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1211d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1212f2ec16ccSHideki Saito if (DoExtraAnalysis) 1213f2ec16ccSHideki Saito Result = false; 1214f2ec16ccSHideki Saito else 1215f2ec16ccSHideki Saito return false; 1216f2ec16ccSHideki Saito } 1217f2ec16ccSHideki Saito 1218d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1219f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1220f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1221f2ec16ccSHideki Saito : "") 1222f2ec16ccSHideki Saito << "!\n"); 1223f2ec16ccSHideki Saito 1224f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1225f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1226f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1227f2ec16ccSHideki Saito 1228f2ec16ccSHideki Saito if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 12299e97caf5SRenato Golin reportVectorizationFailure("Too many SCEV checks needed", 12309e97caf5SRenato Golin "Too many SCEV assumptions need to be made and checked at runtime", 1231ec818d7fSHideki Saito "TooManySCEVRunTimeChecks", ORE, TheLoop); 1232f2ec16ccSHideki Saito if (DoExtraAnalysis) 1233f2ec16ccSHideki Saito Result = false; 1234f2ec16ccSHideki Saito else 1235f2ec16ccSHideki Saito return false; 1236f2ec16ccSHideki Saito } 1237f2ec16ccSHideki Saito 1238f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1239f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1240f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1241f2ec16ccSHideki Saito // no restrictions. 1242f2ec16ccSHideki Saito return Result; 1243f2ec16ccSHideki Saito } 1244f2ec16ccSHideki Saito 1245d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1246b0b5312eSAyal Zaks 1247b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1248b0b5312eSAyal Zaks 1249d15df0edSAyal Zaks SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1250b0b5312eSAyal Zaks 1251d0d38df0SDavid Green for (auto &Reduction : getReductionVars()) 1252d15df0edSAyal Zaks ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1253d15df0edSAyal Zaks 1254d15df0edSAyal Zaks // TODO: handle non-reduction outside users when tail is folded by masking. 1255b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1256d15df0edSAyal Zaks // Check that all users of allowed exit values are inside the loop or 1257d15df0edSAyal Zaks // are the live-out of a reduction. 1258d15df0edSAyal Zaks if (ReductionLiveOuts.count(AE)) 1259d15df0edSAyal Zaks continue; 1260b0b5312eSAyal Zaks for (User *U : AE->users()) { 1261b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1262b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1263b0b5312eSAyal Zaks continue; 1264bda8fbe2SSjoerd Meijer LLVM_DEBUG( 1265bda8fbe2SSjoerd Meijer dbgs() 1266bda8fbe2SSjoerd Meijer << "LV: Cannot fold tail by masking, loop has an outside user for " 1267bda8fbe2SSjoerd Meijer << *UI << "\n"); 1268b0b5312eSAyal Zaks return false; 1269b0b5312eSAyal Zaks } 1270b0b5312eSAyal Zaks } 1271b0b5312eSAyal Zaks 1272b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1273b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1274b0b5312eSAyal Zaks 1275bda8fbe2SSjoerd Meijer SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1276bda8fbe2SSjoerd Meijer SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1277bda8fbe2SSjoerd Meijer 1278b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1279b0b5312eSAyal Zaks // do not need predication such as the header block. 1280b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1281bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 1282bda8fbe2SSjoerd Meijer TmpConditionalAssumes, 1283bda8fbe2SSjoerd Meijer /* MaskAllLoads= */ true)) { 1284bda8fbe2SSjoerd Meijer LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1285b0b5312eSAyal Zaks return false; 1286b0b5312eSAyal Zaks } 1287b0b5312eSAyal Zaks } 1288b0b5312eSAyal Zaks 1289b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1290bda8fbe2SSjoerd Meijer 1291bda8fbe2SSjoerd Meijer MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1292bda8fbe2SSjoerd Meijer ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1293bda8fbe2SSjoerd Meijer TmpConditionalAssumes.end()); 1294bda8fbe2SSjoerd Meijer 1295b0b5312eSAyal Zaks return true; 1296b0b5312eSAyal Zaks } 1297b0b5312eSAyal Zaks 1298f2ec16ccSHideki Saito } // namespace llvm 1299