1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f2ec16ccSHideki Saito // 7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 8f2ec16ccSHideki Saito // 9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 11f2ec16ccSHideki Saito // 12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 15f2ec16ccSHideki Saito // 16cc529285SSimon Pilgrim 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 187403569bSPhilip Reames #include "llvm/Analysis/Loads.h" 19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h" 20ed98c1b3Sserge-sans-paille #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h" 22ed98c1b3Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h" 237403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h" 24f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 25f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 2623c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h" 277bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h" 2823c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h" 29f2ec16ccSHideki Saito 30f2ec16ccSHideki Saito using namespace llvm; 3123c11380SFlorian Hahn using namespace PatternMatch; 32f2ec16ccSHideki Saito 33f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 34f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 35f2ec16ccSHideki Saito 36f2ec16ccSHideki Saito static cl::opt<bool> 37f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 39f2ec16ccSHideki Saito 409f76a852SKerry McLaughlin namespace llvm { 419f76a852SKerry McLaughlin cl::opt<bool> 429f76a852SKerry McLaughlin HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 439f76a852SKerry McLaughlin cl::desc("Allow enabling loop hints to reorder " 449f76a852SKerry McLaughlin "FP operations during vectorization.")); 459f76a852SKerry McLaughlin } 469f76a852SKerry McLaughlin 47c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based 48c773d0f9SFlorian Hahn // decisions instead of hard thresholds. 49f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 50f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 51f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 52f2ec16ccSHideki Saito 53f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 54f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 55f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 56f2ec16ccSHideki Saito "vectorize(enable) pragma")); 57f2ec16ccSHideki Saito 58b1ff20fdSSander de Smalen static cl::opt<LoopVectorizeHints::ScalableForceKind> 59b1ff20fdSSander de Smalen ForceScalableVectorization( 60b1ff20fdSSander de Smalen "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 614f86aa65SSander de Smalen cl::Hidden, 624f86aa65SSander de Smalen cl::desc("Control whether the compiler can use scalable vectors to " 634f86aa65SSander de Smalen "vectorize a loop"), 644f86aa65SSander de Smalen cl::values( 654f86aa65SSander de Smalen clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 664f86aa65SSander de Smalen "Scalable vectorization is disabled."), 67b1ff20fdSSander de Smalen clEnumValN( 687c68ed88SPaul Walker LoopVectorizeHints::SK_PreferScalable, "preferred", 697c68ed88SPaul Walker "Scalable vectorization is available and favored when the " 707c68ed88SPaul Walker "cost is inconclusive."), 717c68ed88SPaul Walker clEnumValN( 72b1ff20fdSSander de Smalen LoopVectorizeHints::SK_PreferScalable, "on", 734f86aa65SSander de Smalen "Scalable vectorization is available and favored when the " 744f86aa65SSander de Smalen "cost is inconclusive."))); 754f86aa65SSander de Smalen 76f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 77f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 78f2ec16ccSHideki Saito 79f2ec16ccSHideki Saito namespace llvm { 80f2ec16ccSHideki Saito 81f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 82f2ec16ccSHideki Saito switch (Kind) { 83f2ec16ccSHideki Saito case HK_WIDTH: 84f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 85ddb3b26aSBardia Mahjour case HK_INTERLEAVE: 86f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 87f2ec16ccSHideki Saito case HK_FORCE: 88f2ec16ccSHideki Saito return (Val <= 1); 89f2ec16ccSHideki Saito case HK_ISVECTORIZED: 9020b198ecSSjoerd Meijer case HK_PREDICATE: 9171bd59f0SDavid Sherwood case HK_SCALABLE: 92f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 93f2ec16ccSHideki Saito } 94f2ec16ccSHideki Saito return false; 95f2ec16ccSHideki Saito } 96f2ec16ccSHideki Saito 97d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 98d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 99b1ff20fdSSander de Smalen OptimizationRemarkEmitter &ORE, 100b1ff20fdSSander de Smalen const TargetTransformInfo *TTI) 101f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 102ddb3b26aSBardia Mahjour Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 103f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 10420b198ecSSjoerd Meijer IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 10571bd59f0SDavid Sherwood Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 1064f86aa65SSander de Smalen Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 1074f86aa65SSander de Smalen TheLoop(L), ORE(ORE) { 108f2ec16ccSHideki Saito // Populate values with existing loop metadata. 109f2ec16ccSHideki Saito getHintsFromMetadata(); 110f2ec16ccSHideki Saito 111f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 112f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 113f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 114f2ec16ccSHideki Saito 115b1ff20fdSSander de Smalen // If the metadata doesn't explicitly specify whether to enable scalable 116b1ff20fdSSander de Smalen // vectorization, then decide based on the following criteria (increasing 117b1ff20fdSSander de Smalen // level of priority): 118b1ff20fdSSander de Smalen // - Target default 119b1ff20fdSSander de Smalen // - Metadata width 120b1ff20fdSSander de Smalen // - Force option (always overrides) 121b1ff20fdSSander de Smalen if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 122b1ff20fdSSander de Smalen if (TTI) 123b1ff20fdSSander de Smalen Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 124b1ff20fdSSander de Smalen : SK_FixedWidthOnly; 125b1ff20fdSSander de Smalen 126b1ff20fdSSander de Smalen if (Width.Value) 1274f86aa65SSander de Smalen // If the width is set, but the metadata says nothing about the scalable 1284f86aa65SSander de Smalen // property, then assume it concerns only a fixed-width UserVF. 1294f86aa65SSander de Smalen // If width is not set, the flag takes precedence. 130b1ff20fdSSander de Smalen Scalable.Value = SK_FixedWidthOnly; 131b1ff20fdSSander de Smalen } 132b1ff20fdSSander de Smalen 133b1ff20fdSSander de Smalen // If the flag is set to force any use of scalable vectors, override the loop 134b1ff20fdSSander de Smalen // hints. 135b1ff20fdSSander de Smalen if (ForceScalableVectorization.getValue() != 136b1ff20fdSSander de Smalen LoopVectorizeHints::SK_Unspecified) 137b1ff20fdSSander de Smalen Scalable.Value = ForceScalableVectorization.getValue(); 138b1ff20fdSSander de Smalen 139b1ff20fdSSander de Smalen // Scalable vectorization is disabled if no preference is specified. 140b1ff20fdSSander de Smalen if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 1414f86aa65SSander de Smalen Scalable.Value = SK_FixedWidthOnly; 1424f86aa65SSander de Smalen 143f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 144f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 145f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 146f2ec16ccSHideki Saito // nothing more that we can do. 14771bd59f0SDavid Sherwood IsVectorized.Value = 148ddb3b26aSBardia Mahjour getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 149ddb3b26aSBardia Mahjour LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 150f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 151f2ec16ccSHideki Saito } 152f2ec16ccSHideki Saito 15377a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() { 15477a614a6SMichael Kruse LLVMContext &Context = TheLoop->getHeader()->getContext(); 15577a614a6SMichael Kruse 15677a614a6SMichael Kruse MDNode *IsVectorizedMD = MDNode::get( 15777a614a6SMichael Kruse Context, 15877a614a6SMichael Kruse {MDString::get(Context, "llvm.loop.isvectorized"), 15977a614a6SMichael Kruse ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 16077a614a6SMichael Kruse MDNode *LoopID = TheLoop->getLoopID(); 16177a614a6SMichael Kruse MDNode *NewLoopID = 16277a614a6SMichael Kruse makePostTransformationMetadata(Context, LoopID, 16377a614a6SMichael Kruse {Twine(Prefix(), "vectorize.").str(), 16477a614a6SMichael Kruse Twine(Prefix(), "interleave.").str()}, 16577a614a6SMichael Kruse {IsVectorizedMD}); 16677a614a6SMichael Kruse TheLoop->setLoopID(NewLoopID); 16777a614a6SMichael Kruse 16877a614a6SMichael Kruse // Update internal cache. 16977a614a6SMichael Kruse IsVectorized.Value = 1; 17077a614a6SMichael Kruse } 17177a614a6SMichael Kruse 172d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 173d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 174f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 175d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 176f2ec16ccSHideki Saito emitRemarkWithHints(); 177f2ec16ccSHideki Saito return false; 178f2ec16ccSHideki Saito } 179f2ec16ccSHideki Saito 180d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 181d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 182f2ec16ccSHideki Saito emitRemarkWithHints(); 183f2ec16ccSHideki Saito return false; 184f2ec16ccSHideki Saito } 185f2ec16ccSHideki Saito 186f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 187d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 188f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 189f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 190f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 191f2ec16ccSHideki Saito ORE.emit([&]() { 192f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 193f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 194f2ec16ccSHideki Saito L->getHeader()) 195f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 196f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 197f2ec16ccSHideki Saito "vectorized"; 198f2ec16ccSHideki Saito }); 199f2ec16ccSHideki Saito return false; 200f2ec16ccSHideki Saito } 201f2ec16ccSHideki Saito 202f2ec16ccSHideki Saito return true; 203f2ec16ccSHideki Saito } 204f2ec16ccSHideki Saito 205f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 206f2ec16ccSHideki Saito using namespace ore; 207f2ec16ccSHideki Saito 208f2ec16ccSHideki Saito ORE.emit([&]() { 209f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 210f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 211f2ec16ccSHideki Saito TheLoop->getStartLoc(), 212f2ec16ccSHideki Saito TheLoop->getHeader()) 213f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 214f2ec16ccSHideki Saito else { 215f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 216f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 217f2ec16ccSHideki Saito R << "loop not vectorized"; 218f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 219f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 220f2ec16ccSHideki Saito if (Width.Value != 0) 22171bd59f0SDavid Sherwood R << ", Vector Width=" << NV("VectorWidth", getWidth()); 222ddb3b26aSBardia Mahjour if (getInterleave() != 0) 223ddb3b26aSBardia Mahjour R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 224f2ec16ccSHideki Saito R << ")"; 225f2ec16ccSHideki Saito } 226f2ec16ccSHideki Saito return R; 227f2ec16ccSHideki Saito } 228f2ec16ccSHideki Saito }); 229f2ec16ccSHideki Saito } 230f2ec16ccSHideki Saito 231f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 23271bd59f0SDavid Sherwood if (getWidth() == ElementCount::getFixed(1)) 233f2ec16ccSHideki Saito return LV_NAME; 234f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 235f2ec16ccSHideki Saito return LV_NAME; 23671bd59f0SDavid Sherwood if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 237f2ec16ccSHideki Saito return LV_NAME; 238f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 239f2ec16ccSHideki Saito } 240f2ec16ccSHideki Saito 2419f76a852SKerry McLaughlin bool LoopVectorizeHints::allowReordering() const { 2429f76a852SKerry McLaughlin // Allow the vectorizer to change the order of operations if enabling 2439f76a852SKerry McLaughlin // loop hints are provided 2449f76a852SKerry McLaughlin ElementCount EC = getWidth(); 2459f76a852SKerry McLaughlin return HintsAllowReordering && 2469f76a852SKerry McLaughlin (getForce() == LoopVectorizeHints::FK_Enabled || 2479f76a852SKerry McLaughlin EC.getKnownMinValue() > 1); 2489f76a852SKerry McLaughlin } 2499f76a852SKerry McLaughlin 250f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 251f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 252f2ec16ccSHideki Saito if (!LoopID) 253f2ec16ccSHideki Saito return; 254f2ec16ccSHideki Saito 255f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 256f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 257f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 258f2ec16ccSHideki Saito 259f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 260f2ec16ccSHideki Saito const MDString *S = nullptr; 261f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 262f2ec16ccSHideki Saito 263f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 264f2ec16ccSHideki Saito // operand a MDString. 265f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 266f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 267f2ec16ccSHideki Saito continue; 268f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 269f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 270f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 271f2ec16ccSHideki Saito } else { 272f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 273f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 274f2ec16ccSHideki Saito } 275f2ec16ccSHideki Saito 276f2ec16ccSHideki Saito if (!S) 277f2ec16ccSHideki Saito continue; 278f2ec16ccSHideki Saito 279f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 280f2ec16ccSHideki Saito StringRef Name = S->getString(); 281f2ec16ccSHideki Saito if (Args.size() == 1) 282f2ec16ccSHideki Saito setHint(Name, Args[0]); 283f2ec16ccSHideki Saito } 284f2ec16ccSHideki Saito } 285f2ec16ccSHideki Saito 286f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 287f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 288f2ec16ccSHideki Saito return; 289f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 290f2ec16ccSHideki Saito 291f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 292f2ec16ccSHideki Saito if (!C) 293f2ec16ccSHideki Saito return; 294f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 295f2ec16ccSHideki Saito 29671bd59f0SDavid Sherwood Hint *Hints[] = {&Width, &Interleave, &Force, 29771bd59f0SDavid Sherwood &IsVectorized, &Predicate, &Scalable}; 298f2ec16ccSHideki Saito for (auto H : Hints) { 299f2ec16ccSHideki Saito if (Name == H->Name) { 300f2ec16ccSHideki Saito if (H->validate(Val)) 301f2ec16ccSHideki Saito H->Value = Val; 302f2ec16ccSHideki Saito else 303d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 304f2ec16ccSHideki Saito break; 305f2ec16ccSHideki Saito } 306f2ec16ccSHideki Saito } 307f2ec16ccSHideki Saito } 308f2ec16ccSHideki Saito 309f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 310f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 311f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 312f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 313f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 314f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 315f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 316f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 317f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 318f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 319f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 320f2ec16ccSHideki Saito // 321f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 322f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 323f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 324f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 325f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 326f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 327f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 328f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 329f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 330f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 331f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 332f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 333f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 334f2ec16ccSHideki Saito 335f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 336f2ec16ccSHideki Saito if (Lp == OuterLp) 337f2ec16ccSHideki Saito return true; 338f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 339f2ec16ccSHideki Saito 340f2ec16ccSHideki Saito // 1. 341f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 342f2ec16ccSHideki Saito if (!IV) { 343d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 344f2ec16ccSHideki Saito return false; 345f2ec16ccSHideki Saito } 346f2ec16ccSHideki Saito 347f2ec16ccSHideki Saito // 2. 348f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 349f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 350f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 351d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 352f2ec16ccSHideki Saito return false; 353f2ec16ccSHideki Saito } 354f2ec16ccSHideki Saito 355f2ec16ccSHideki Saito // 3. 356f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 357f2ec16ccSHideki Saito if (!LatchCmp) { 358d34e60caSNicola Zaghen LLVM_DEBUG( 359d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 360f2ec16ccSHideki Saito return false; 361f2ec16ccSHideki Saito } 362f2ec16ccSHideki Saito 363f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 364f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 365f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 366f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 367f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 368d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 369f2ec16ccSHideki Saito return false; 370f2ec16ccSHideki Saito } 371f2ec16ccSHideki Saito 372f2ec16ccSHideki Saito return true; 373f2ec16ccSHideki Saito } 374f2ec16ccSHideki Saito 375f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 376f2ec16ccSHideki Saito // OuterLp. 377f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 378f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 379f2ec16ccSHideki Saito return false; 380f2ec16ccSHideki Saito 381f2ec16ccSHideki Saito // Check if nested loops are uniform. 382f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 383f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 384f2ec16ccSHideki Saito return false; 385f2ec16ccSHideki Saito 386f2ec16ccSHideki Saito return true; 387f2ec16ccSHideki Saito } 388f2ec16ccSHideki Saito 3895f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 390f2ec16ccSHideki Saito /// 391f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 392f2ec16ccSHideki Saito /// convert. 393f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 394f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 395f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 396f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 397f2ec16ccSHideki Saito if (C->canTrap()) 398f2ec16ccSHideki Saito return false; 399f2ec16ccSHideki Saito } 400f2ec16ccSHideki Saito return true; 401f2ec16ccSHideki Saito } 402f2ec16ccSHideki Saito 403f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 404f2ec16ccSHideki Saito if (Ty->isPointerTy()) 405f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 406f2ec16ccSHideki Saito 407f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 408f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 409f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 410f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 411f2ec16ccSHideki Saito 412f2ec16ccSHideki Saito return Ty; 413f2ec16ccSHideki Saito } 414f2ec16ccSHideki Saito 415f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 416f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 417f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 418f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 419f2ec16ccSHideki Saito return Ty0; 420f2ec16ccSHideki Saito return Ty1; 421f2ec16ccSHideki Saito } 422f2ec16ccSHideki Saito 4235f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 424f2ec16ccSHideki Saito /// identified reduction variable. 425f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 426f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 42760a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 428f2ec16ccSHideki Saito // other instructions must not have external users. 429f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 430f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 431f2ec16ccSHideki Saito for (User *U : Inst->users()) { 432f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 433f2ec16ccSHideki Saito // This user may be a reduction exit value. 434f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 435d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 436f2ec16ccSHideki Saito return true; 437f2ec16ccSHideki Saito } 438f2ec16ccSHideki Saito } 439f2ec16ccSHideki Saito return false; 440f2ec16ccSHideki Saito } 441f2ec16ccSHideki Saito 4424e5e042dSIgor Kirillov /// Returns true if A and B have same pointer operands or same SCEVs addresses 4434e5e042dSIgor Kirillov static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 4444e5e042dSIgor Kirillov StoreInst *B) { 4454e5e042dSIgor Kirillov // Compare store 4464e5e042dSIgor Kirillov if (A == B) 4474e5e042dSIgor Kirillov return true; 4484e5e042dSIgor Kirillov 4494e5e042dSIgor Kirillov // Otherwise Compare pointers 4504e5e042dSIgor Kirillov Value *APtr = A->getPointerOperand(); 4514e5e042dSIgor Kirillov Value *BPtr = B->getPointerOperand(); 4524e5e042dSIgor Kirillov if (APtr == BPtr) 4534e5e042dSIgor Kirillov return true; 4544e5e042dSIgor Kirillov 4554e5e042dSIgor Kirillov // Otherwise compare address SCEVs 4564e5e042dSIgor Kirillov if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) 4574e5e042dSIgor Kirillov return true; 4584e5e042dSIgor Kirillov 4594e5e042dSIgor Kirillov return false; 4604e5e042dSIgor Kirillov } 4614e5e042dSIgor Kirillov 46245c46734SNikita Popov int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 46345c46734SNikita Popov Value *Ptr) const { 464f2ec16ccSHideki Saito const ValueToValueMap &Strides = 465f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 466f2ec16ccSHideki Saito 4677bedae7dSHiroshi Yamauchi Function *F = TheLoop->getHeader()->getParent(); 4687bedae7dSHiroshi Yamauchi bool OptForSize = F->hasOptSize() || 4697bedae7dSHiroshi Yamauchi llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 4707bedae7dSHiroshi Yamauchi PGSOQueryType::IRPass); 4717bedae7dSHiroshi Yamauchi bool CanAddPredicate = !OptForSize; 47245c46734SNikita Popov int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 47345c46734SNikita Popov CanAddPredicate, false); 474f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 475f2ec16ccSHideki Saito return Stride; 476f2ec16ccSHideki Saito return 0; 477f2ec16ccSHideki Saito } 478f2ec16ccSHideki Saito 479f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 480f2ec16ccSHideki Saito return LAI->isUniform(V); 481f2ec16ccSHideki Saito } 482f2ec16ccSHideki Saito 483f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 48489c1e35fSStefanos Baziotis assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 485f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 486f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 487f2ec16ccSHideki Saito bool Result = true; 488f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 489f2ec16ccSHideki Saito 490f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 491f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 492f2ec16ccSHideki Saito // not supported yet. 493f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 494f2ec16ccSHideki Saito if (!Br) { 4959e97caf5SRenato Golin reportVectorizationFailure("Unsupported basic block terminator", 4969e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 497ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 498f2ec16ccSHideki Saito if (DoExtraAnalysis) 499f2ec16ccSHideki Saito Result = false; 500f2ec16ccSHideki Saito else 501f2ec16ccSHideki Saito return false; 502f2ec16ccSHideki Saito } 503f2ec16ccSHideki Saito 504f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 505f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 506f2ec16ccSHideki Saito // backedges are supported. 5074e4ecae0SHideki Saito // FIXME: We skip these checks when VPlan predication is enabled as we 5084e4ecae0SHideki Saito // want to allow divergent branches. This whole check will be removed 5094e4ecae0SHideki Saito // once VPlan predication is on by default. 510d1570194SFlorian Hahn if (Br && Br->isConditional() && 511f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 512f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 513f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 5149e97caf5SRenato Golin reportVectorizationFailure("Unsupported conditional branch", 5159e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 516ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 517f2ec16ccSHideki Saito if (DoExtraAnalysis) 518f2ec16ccSHideki Saito Result = false; 519f2ec16ccSHideki Saito else 520f2ec16ccSHideki Saito return false; 521f2ec16ccSHideki Saito } 522f2ec16ccSHideki Saito } 523f2ec16ccSHideki Saito 524f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 525f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 526f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 527f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 5289e97caf5SRenato Golin reportVectorizationFailure("Outer loop contains divergent loops", 5299e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 530ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 531f2ec16ccSHideki Saito if (DoExtraAnalysis) 532f2ec16ccSHideki Saito Result = false; 533f2ec16ccSHideki Saito else 534f2ec16ccSHideki Saito return false; 535f2ec16ccSHideki Saito } 536f2ec16ccSHideki Saito 537ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 538ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 5399e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop Phi(s)", 5409e97caf5SRenato Golin "Unsupported outer loop Phi(s)", 541ec818d7fSHideki Saito "UnsupportedPhi", ORE, TheLoop); 542ea7f3035SHideki Saito if (DoExtraAnalysis) 543ea7f3035SHideki Saito Result = false; 544ea7f3035SHideki Saito else 545ea7f3035SHideki Saito return false; 546ea7f3035SHideki Saito } 547ea7f3035SHideki Saito 548f2ec16ccSHideki Saito return Result; 549f2ec16ccSHideki Saito } 550f2ec16ccSHideki Saito 551f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 552f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 553f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 554f2ec16ccSHideki Saito Inductions[Phi] = ID; 555f2ec16ccSHideki Saito 556f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 557f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 558f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 559f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 560f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 561f2ec16ccSHideki Saito if (!Casts.empty()) 562f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 563f2ec16ccSHideki Saito 564f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 565f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 566f2ec16ccSHideki Saito 567f2ec16ccSHideki Saito // Get the widest type. 568f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 569f2ec16ccSHideki Saito if (!WidestIndTy) 570f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 571f2ec16ccSHideki Saito else 572f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 573f2ec16ccSHideki Saito } 574f2ec16ccSHideki Saito 575f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 576f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 577f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 578f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 579f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 580f2ec16ccSHideki Saito 581f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 582f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 583f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 584f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 585f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 586f2ec16ccSHideki Saito PrimaryInduction = Phi; 587f2ec16ccSHideki Saito } 588f2ec16ccSHideki Saito 589f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 590f2ec16ccSHideki Saito // back into the PHI node may have external users. 591f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 592f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5936a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5946a1dd77fSAnna Thomas // details). 5955ba11503SPhilip Reames if (PSE.getPredicate().isAlwaysTrue()) { 596f2ec16ccSHideki Saito AllowedExit.insert(Phi); 597f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 598f2ec16ccSHideki Saito } 599f2ec16ccSHideki Saito 600d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 601f2ec16ccSHideki Saito } 602f2ec16ccSHideki Saito 603ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 604ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 605ea7f3035SHideki Saito 606ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 607ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 608ea7f3035SHideki Saito InductionDescriptor ID; 609ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 610ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 611ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 612ea7f3035SHideki Saito return true; 613ea7f3035SHideki Saito } else { 614ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 615ea7f3035SHideki Saito // induction. 616ea7f3035SHideki Saito LLVM_DEBUG( 617ea7f3035SHideki Saito dbgs() 618ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 619ea7f3035SHideki Saito return false; 620ea7f3035SHideki Saito } 621ea7f3035SHideki Saito }; 622ea7f3035SHideki Saito 623ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 624ea7f3035SHideki Saito return true; 625ea7f3035SHideki Saito else 626ea7f3035SHideki Saito return false; 627ea7f3035SHideki Saito } 628ea7f3035SHideki Saito 62966c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in 63066c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in 63166c120f0SFrancesco Petrogalli /// multiple scalar calls. This is represented in the 63266c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the 63366c120f0SFrancesco Petrogalli /// following example: 63466c120f0SFrancesco Petrogalli /// 63566c120f0SFrancesco Petrogalli /// const VecDesc VecIntrinsics[] = { 63666c120f0SFrancesco Petrogalli /// {"llvm.phx.abs.i32", "", 4} 63766c120f0SFrancesco Petrogalli /// }; 63866c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 63966c120f0SFrancesco Petrogalli const StringRef ScalarName = CI.getCalledFunction()->getName(); 64066c120f0SFrancesco Petrogalli bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 64166c120f0SFrancesco Petrogalli // Check that all known VFs are not associated to a vector 64266c120f0SFrancesco Petrogalli // function, i.e. the vector name is emty. 64301b87444SDavid Sherwood if (Scalarize) { 64401b87444SDavid Sherwood ElementCount WidestFixedVF, WidestScalableVF; 64501b87444SDavid Sherwood TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 64601b87444SDavid Sherwood for (ElementCount VF = ElementCount::getFixed(2); 64701b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 64866c120f0SFrancesco Petrogalli Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 64901b87444SDavid Sherwood for (ElementCount VF = ElementCount::getScalable(1); 65001b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 65101b87444SDavid Sherwood Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 65201b87444SDavid Sherwood assert((WidestScalableVF.isZero() || !Scalarize) && 65301b87444SDavid Sherwood "Caller may decide to scalarize a variant using a scalable VF"); 65466c120f0SFrancesco Petrogalli } 65566c120f0SFrancesco Petrogalli return Scalarize; 65666c120f0SFrancesco Petrogalli } 65766c120f0SFrancesco Petrogalli 658f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 659f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 660f2ec16ccSHideki Saito 661f2ec16ccSHideki Saito // For each block in the loop. 662f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 663f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 664f2ec16ccSHideki Saito for (Instruction &I : *BB) { 665f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 666f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 667f2ec16ccSHideki Saito // Check that this PHI type is allowed. 668f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 669f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 6709e97caf5SRenato Golin reportVectorizationFailure("Found a non-int non-pointer PHI", 6719e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 672ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 673f2ec16ccSHideki Saito return false; 674f2ec16ccSHideki Saito } 675f2ec16ccSHideki Saito 676f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 677f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 678f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 679f2ec16ccSHideki Saito if (BB != Header) { 68060a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 68160a1e4ddSAnna Thomas // them to the list of allowed exits. 68260a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 68360a1e4ddSAnna Thomas // legalization for reduction, induction and first order 68460a1e4ddSAnna Thomas // recurrences. 685dd18ce45SBjorn Pettersson AllowedExit.insert(&I); 686f2ec16ccSHideki Saito continue; 687f2ec16ccSHideki Saito } 688f2ec16ccSHideki Saito 689f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 690f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 6919e97caf5SRenato Golin reportVectorizationFailure("Found an invalid PHI", 6929e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 693ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop, Phi); 694f2ec16ccSHideki Saito return false; 695f2ec16ccSHideki Saito } 696f2ec16ccSHideki Saito 697f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 698f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 6994e5e042dSIgor Kirillov DT, PSE.getSE())) { 700b3a33553SSanjay Patel Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 701f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 702f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 703f2ec16ccSHideki Saito continue; 704f2ec16ccSHideki Saito } 705f2ec16ccSHideki Saito 706b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 707b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 708b02b0ad8SAnna Thomas // limited to): 709b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 710b02b0ad8SAnna Thomas // is not available when vectorized 711b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 712b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 713b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 714b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 715b02b0ad8SAnna Thomas // handling below 716b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 717b02b0ad8SAnna Thomas // extraction. 718b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 719b02b0ad8SAnna Thomas // of these NotAllowedExit. 720f2ec16ccSHideki Saito InductionDescriptor ID; 721f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 722f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 72336a489d1SSanjay Patel Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 724f2ec16ccSHideki Saito continue; 725f2ec16ccSHideki Saito } 726f2ec16ccSHideki Saito 727f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 728f2ec16ccSHideki Saito SinkAfter, DT)) { 7298e0c5f72SAyal Zaks AllowedExit.insert(Phi); 730f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 731f2ec16ccSHideki Saito continue; 732f2ec16ccSHideki Saito } 733f2ec16ccSHideki Saito 734f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 735f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 736f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 737f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 738f2ec16ccSHideki Saito continue; 739f2ec16ccSHideki Saito } 740f2ec16ccSHideki Saito 7419e97caf5SRenato Golin reportVectorizationFailure("Found an unidentified PHI", 7429e97caf5SRenato Golin "value that could not be identified as " 7439e97caf5SRenato Golin "reduction is used outside the loop", 744ec818d7fSHideki Saito "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 745f2ec16ccSHideki Saito return false; 746f2ec16ccSHideki Saito } // end of PHI handling 747f2ec16ccSHideki Saito 748f2ec16ccSHideki Saito // We handle calls that: 749f2ec16ccSHideki Saito // * Are debug info intrinsics. 750f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 751f2ec16ccSHideki Saito // * Have a vector version available. 752f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 75366c120f0SFrancesco Petrogalli 754f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 755f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 756f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 75766c120f0SFrancesco Petrogalli (!VFDatabase::getMappings(*CI).empty() || 75866c120f0SFrancesco Petrogalli isTLIScalarize(*TLI, *CI)))) { 7597d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 7607d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 7617d65fe5cSSanjay Patel LibFunc Func; 7627d65fe5cSSanjay Patel bool IsMathLibCall = 7637d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 7647d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 7657d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 7667d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 7677d65fe5cSSanjay Patel 7687d65fe5cSSanjay Patel if (IsMathLibCall) { 7697d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 7707d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 7717d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 7727d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 77366c120f0SFrancesco Petrogalli reportVectorizationFailure( 77466c120f0SFrancesco Petrogalli "Found a non-intrinsic callsite", 7759e97caf5SRenato Golin "library call cannot be vectorized. " 7767d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 7779e97caf5SRenato Golin "or similar flags", 778ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7797d65fe5cSSanjay Patel } else { 7809e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 7819e97caf5SRenato Golin "call instruction cannot be vectorized", 782ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7837d65fe5cSSanjay Patel } 784f2ec16ccSHideki Saito return false; 785f2ec16ccSHideki Saito } 786f2ec16ccSHideki Saito 787a066f1f9SSimon Pilgrim // Some intrinsics have scalar arguments and should be same in order for 788a066f1f9SSimon Pilgrim // them to be vectorized (i.e. loop invariant). 789a066f1f9SSimon Pilgrim if (CI) { 790f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 791a066f1f9SSimon Pilgrim Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 7924f0225f6SKazu Hirata for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 7936f81903eSDavid Green if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { 794a066f1f9SSimon Pilgrim if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 7959e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable intrinsic", 7969e97caf5SRenato Golin "intrinsic instruction cannot be vectorized", 797ec818d7fSHideki Saito "CantVectorizeIntrinsic", ORE, TheLoop, CI); 798f2ec16ccSHideki Saito return false; 799f2ec16ccSHideki Saito } 800f2ec16ccSHideki Saito } 801a066f1f9SSimon Pilgrim } 802f2ec16ccSHideki Saito 803f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 804f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 805f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 806f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 807f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 8089e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable type", 8099e97caf5SRenato Golin "instruction return type cannot be vectorized", 810ec818d7fSHideki Saito "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 811f2ec16ccSHideki Saito return false; 812f2ec16ccSHideki Saito } 813f2ec16ccSHideki Saito 814f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 815f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 816f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 817f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 8189e97caf5SRenato Golin reportVectorizationFailure("Store instruction cannot be vectorized", 8199e97caf5SRenato Golin "store instruction cannot be vectorized", 820ec818d7fSHideki Saito "CantVectorizeStore", ORE, TheLoop, ST); 821f2ec16ccSHideki Saito return false; 822f2ec16ccSHideki Saito } 823f2ec16ccSHideki Saito 8246452bdd2SWarren Ristow // For nontemporal stores, check that a nontemporal vector version is 8256452bdd2SWarren Ristow // supported on the target. 8266452bdd2SWarren Ristow if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 8276452bdd2SWarren Ristow // Arbitrarily try a vector of 2 elements. 8286913812aSFangrui Song auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 8296452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of stored type"); 83052e98f62SNikita Popov if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 8316452bdd2SWarren Ristow reportVectorizationFailure( 8326452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 8336452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 834ec818d7fSHideki Saito "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 8356452bdd2SWarren Ristow return false; 8366452bdd2SWarren Ristow } 8376452bdd2SWarren Ristow } 8386452bdd2SWarren Ristow 8396452bdd2SWarren Ristow } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 8406452bdd2SWarren Ristow if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 8416452bdd2SWarren Ristow // For nontemporal loads, check that a nontemporal vector version is 8426452bdd2SWarren Ristow // supported on the target (arbitrarily try a vector of 2 elements). 8436913812aSFangrui Song auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 8446452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of load type"); 84552e98f62SNikita Popov if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 8466452bdd2SWarren Ristow reportVectorizationFailure( 8476452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 8486452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 849ec818d7fSHideki Saito "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 8506452bdd2SWarren Ristow return false; 8516452bdd2SWarren Ristow } 8526452bdd2SWarren Ristow } 8536452bdd2SWarren Ristow 854f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 855f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 856f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 857f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 858f2ec16ccSHideki Saito // semantics. 859f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 860f2ec16ccSHideki Saito !I.isFast()) { 861d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 862f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 863f2ec16ccSHideki Saito } 864f2ec16ccSHideki Saito 865f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 866f2ec16ccSHideki Saito // All other instructions must not have external users. 867f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 868b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 869b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 870b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 871b02b0ad8SAnna Thomas // outside the loop. 8725ba11503SPhilip Reames if (PSE.getPredicate().isAlwaysTrue()) { 873b02b0ad8SAnna Thomas AllowedExit.insert(&I); 874b02b0ad8SAnna Thomas continue; 875b02b0ad8SAnna Thomas } 8769e97caf5SRenato Golin reportVectorizationFailure("Value cannot be used outside the loop", 8779e97caf5SRenato Golin "value cannot be used outside the loop", 878ec818d7fSHideki Saito "ValueUsedOutsideLoop", ORE, TheLoop, &I); 879f2ec16ccSHideki Saito return false; 880f2ec16ccSHideki Saito } 881f2ec16ccSHideki Saito } // next instr. 882f2ec16ccSHideki Saito } 883f2ec16ccSHideki Saito 884f2ec16ccSHideki Saito if (!PrimaryInduction) { 885f2ec16ccSHideki Saito if (Inductions.empty()) { 8869e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8879e97caf5SRenato Golin "loop induction variable could not be identified", 888ec818d7fSHideki Saito "NoInductionVariable", ORE, TheLoop); 889f2ec16ccSHideki Saito return false; 8904f27730eSWarren Ristow } else if (!WidestIndTy) { 8919e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8929e97caf5SRenato Golin "integer loop induction variable could not be identified", 893ec818d7fSHideki Saito "NoIntegerInductionVariable", ORE, TheLoop); 8944f27730eSWarren Ristow return false; 8959e97caf5SRenato Golin } else { 8969e97caf5SRenato Golin LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 897f2ec16ccSHideki Saito } 898f2ec16ccSHideki Saito } 899f2ec16ccSHideki Saito 9009d24933fSFlorian Hahn // For first order recurrences, we use the previous value (incoming value from 9019d24933fSFlorian Hahn // the latch) to check if it dominates all users of the recurrence. Bail out 9029d24933fSFlorian Hahn // if we have to sink such an instruction for another recurrence, as the 9039d24933fSFlorian Hahn // dominance requirement may not hold after sinking. 9049d24933fSFlorian Hahn BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 9059d24933fSFlorian Hahn if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 9069d24933fSFlorian Hahn Instruction *V = 9079d24933fSFlorian Hahn cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 9089d24933fSFlorian Hahn return SinkAfter.find(V) != SinkAfter.end(); 9099d24933fSFlorian Hahn })) 9109d24933fSFlorian Hahn return false; 9119d24933fSFlorian Hahn 912f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 913f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 914f2ec16ccSHideki Saito // will create another. 915f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 916f2ec16ccSHideki Saito PrimaryInduction = nullptr; 917f2ec16ccSHideki Saito 918f2ec16ccSHideki Saito return true; 919f2ec16ccSHideki Saito } 920f2ec16ccSHideki Saito 921f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 922f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 923f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 924f2ec16ccSHideki Saito if (LAR) { 925f2ec16ccSHideki Saito ORE->emit([&]() { 926f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 927f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 928f2ec16ccSHideki Saito }); 929f2ec16ccSHideki Saito } 930287d39ddSPaul Walker 931f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 932f2ec16ccSHideki Saito return false; 933f2ec16ccSHideki Saito 9344e5e042dSIgor Kirillov // We can vectorize stores to invariant address when final reduction value is 9354e5e042dSIgor Kirillov // guaranteed to be stored at the end of the loop. Also, if decision to 9364e5e042dSIgor Kirillov // vectorize loop is made, runtime checks are added so as to make sure that 9374e5e042dSIgor Kirillov // invariant address won't alias with any other objects. 9384e5e042dSIgor Kirillov if (!LAI->getStoresToInvariantAddresses().empty()) { 9394e5e042dSIgor Kirillov // For each invariant address, check its last stored value is unconditional. 9404e5e042dSIgor Kirillov for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 9414e5e042dSIgor Kirillov if (isInvariantStoreOfReduction(SI) && 9424e5e042dSIgor Kirillov blockNeedsPredication(SI->getParent())) { 9434e5e042dSIgor Kirillov reportVectorizationFailure( 9444e5e042dSIgor Kirillov "We don't allow storing to uniform addresses", 9454e5e042dSIgor Kirillov "write of conditional recurring variant value to a loop " 9464e5e042dSIgor Kirillov "invariant address could not be vectorized", 947ec818d7fSHideki Saito "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 948f2ec16ccSHideki Saito return false; 949f2ec16ccSHideki Saito } 9504e5e042dSIgor Kirillov } 9514e5e042dSIgor Kirillov 9524e5e042dSIgor Kirillov if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 9534e5e042dSIgor Kirillov // For each invariant address, check its last stored value is the result 9544e5e042dSIgor Kirillov // of one of our reductions. 9554e5e042dSIgor Kirillov // 9564e5e042dSIgor Kirillov // We do not check if dependence with loads exists because they are 9574e5e042dSIgor Kirillov // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this 9584e5e042dSIgor Kirillov // behaviour changes we have to modify this code. 9594e5e042dSIgor Kirillov ScalarEvolution *SE = PSE.getSE(); 9604e5e042dSIgor Kirillov SmallVector<StoreInst *, 4> UnhandledStores; 9614e5e042dSIgor Kirillov for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 9624e5e042dSIgor Kirillov if (isInvariantStoreOfReduction(SI)) { 9634e5e042dSIgor Kirillov // Earlier stores to this address are effectively deadcode. 9644e5e042dSIgor Kirillov // With opaque pointers it is possible for one pointer to be used with 9654e5e042dSIgor Kirillov // different sizes of stored values: 9664e5e042dSIgor Kirillov // store i32 0, ptr %x 9674e5e042dSIgor Kirillov // store i8 0, ptr %x 9684e5e042dSIgor Kirillov // The latest store doesn't complitely overwrite the first one in the 9694e5e042dSIgor Kirillov // example. That is why we have to make sure that types of stored 9704e5e042dSIgor Kirillov // values are same. 9714e5e042dSIgor Kirillov // TODO: Check that bitwidth of unhandled store is smaller then the 9724e5e042dSIgor Kirillov // one that overwrites it and add a test. 9734e5e042dSIgor Kirillov erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 9744e5e042dSIgor Kirillov return storeToSameAddress(SE, SI, I) && 9754e5e042dSIgor Kirillov I->getValueOperand()->getType() == 9764e5e042dSIgor Kirillov SI->getValueOperand()->getType(); 9774e5e042dSIgor Kirillov }); 9784e5e042dSIgor Kirillov continue; 9794e5e042dSIgor Kirillov } 9804e5e042dSIgor Kirillov UnhandledStores.push_back(SI); 9814e5e042dSIgor Kirillov } 9824e5e042dSIgor Kirillov 9834e5e042dSIgor Kirillov bool IsOK = UnhandledStores.empty(); 9844e5e042dSIgor Kirillov // TODO: we should also validate against InvariantMemSets. 9854e5e042dSIgor Kirillov if (!IsOK) { 9864e5e042dSIgor Kirillov reportVectorizationFailure( 9874e5e042dSIgor Kirillov "We don't allow storing to uniform addresses", 9884e5e042dSIgor Kirillov "write to a loop invariant address could not " 9894e5e042dSIgor Kirillov "be vectorized", 9904e5e042dSIgor Kirillov "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 9914e5e042dSIgor Kirillov return false; 9924e5e042dSIgor Kirillov } 9934e5e042dSIgor Kirillov } 9944e5e042dSIgor Kirillov } 995287d39ddSPaul Walker 996f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 9975ba11503SPhilip Reames PSE.addPredicate(LAI->getPSE().getPredicate()); 998f2ec16ccSHideki Saito return true; 999f2ec16ccSHideki Saito } 1000f2ec16ccSHideki Saito 10019f76a852SKerry McLaughlin bool LoopVectorizationLegality::canVectorizeFPMath( 10029f76a852SKerry McLaughlin bool EnableStrictReductions) { 10039f76a852SKerry McLaughlin 10049f76a852SKerry McLaughlin // First check if there is any ExactFP math or if we allow reassociations 10059f76a852SKerry McLaughlin if (!Requirements->getExactFPInst() || Hints->allowReordering()) 10069f76a852SKerry McLaughlin return true; 10079f76a852SKerry McLaughlin 10089f76a852SKerry McLaughlin // If the above is false, we have ExactFPMath & do not allow reordering. 10099f76a852SKerry McLaughlin // If the EnableStrictReductions flag is set, first check if we have any 10109f76a852SKerry McLaughlin // Exact FP induction vars, which we cannot vectorize. 10119f76a852SKerry McLaughlin if (!EnableStrictReductions || 10129f76a852SKerry McLaughlin any_of(getInductionVars(), [&](auto &Induction) -> bool { 10139f76a852SKerry McLaughlin InductionDescriptor IndDesc = Induction.second; 10149f76a852SKerry McLaughlin return IndDesc.getExactFPMathInst(); 10159f76a852SKerry McLaughlin })) 10169f76a852SKerry McLaughlin return false; 10179f76a852SKerry McLaughlin 10189f76a852SKerry McLaughlin // We can now only vectorize if all reductions with Exact FP math also 10199f76a852SKerry McLaughlin // have the isOrdered flag set, which indicates that we can move the 1020*6bb40552SMalhar Jajoo // reduction operations in-loop. 10219f76a852SKerry McLaughlin return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 10225e6bfb66SSimon Pilgrim const RecurrenceDescriptor &RdxDesc = Reduction.second; 1023*6bb40552SMalhar Jajoo return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 10249f76a852SKerry McLaughlin })); 10259f76a852SKerry McLaughlin } 10269f76a852SKerry McLaughlin 10274e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 10284e5e042dSIgor Kirillov return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 10294e5e042dSIgor Kirillov const RecurrenceDescriptor &RdxDesc = Reduction.second; 10304e5e042dSIgor Kirillov return RdxDesc.IntermediateStore == SI; 10314e5e042dSIgor Kirillov }); 10324e5e042dSIgor Kirillov } 10334e5e042dSIgor Kirillov 10344e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 10354e5e042dSIgor Kirillov return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 10364e5e042dSIgor Kirillov const RecurrenceDescriptor &RdxDesc = Reduction.second; 10374e5e042dSIgor Kirillov if (!RdxDesc.IntermediateStore) 10384e5e042dSIgor Kirillov return false; 10394e5e042dSIgor Kirillov 10404e5e042dSIgor Kirillov ScalarEvolution *SE = PSE.getSE(); 10414e5e042dSIgor Kirillov Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 10424e5e042dSIgor Kirillov return V == InvariantAddress || 10434e5e042dSIgor Kirillov SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 10444e5e042dSIgor Kirillov }); 10454e5e042dSIgor Kirillov } 10464e5e042dSIgor Kirillov 1047d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1048f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 1049f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1050f2ec16ccSHideki Saito if (!PN) 1051f2ec16ccSHideki Saito return false; 1052f2ec16ccSHideki Saito 1053f2ec16ccSHideki Saito return Inductions.count(PN); 1054f2ec16ccSHideki Saito } 1055f2ec16ccSHideki Saito 1056978883d2SFlorian Hahn const InductionDescriptor * 1057978883d2SFlorian Hahn LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1058978883d2SFlorian Hahn if (!isInductionPhi(Phi)) 1059978883d2SFlorian Hahn return nullptr; 1060978883d2SFlorian Hahn auto &ID = getInductionVars().find(Phi)->second; 1061978883d2SFlorian Hahn if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1062978883d2SFlorian Hahn ID.getKind() == InductionDescriptor::IK_FpInduction) 1063978883d2SFlorian Hahn return &ID; 1064978883d2SFlorian Hahn return nullptr; 1065978883d2SFlorian Hahn } 1066978883d2SFlorian Hahn 106746432a00SFlorian Hahn const InductionDescriptor * 106846432a00SFlorian Hahn LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 106946432a00SFlorian Hahn if (!isInductionPhi(Phi)) 107046432a00SFlorian Hahn return nullptr; 107146432a00SFlorian Hahn auto &ID = getInductionVars().find(Phi)->second; 107246432a00SFlorian Hahn if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 107346432a00SFlorian Hahn return &ID; 107446432a00SFlorian Hahn return nullptr; 107546432a00SFlorian Hahn } 107646432a00SFlorian Hahn 1077d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isCastedInductionVariable( 1078d74a8a78SFlorian Hahn const Value *V) const { 1079f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 1080f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 1081f2ec16ccSHideki Saito } 1082f2ec16ccSHideki Saito 1083d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1084f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 1085f2ec16ccSHideki Saito } 1086f2ec16ccSHideki Saito 1087d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isFirstOrderRecurrence( 1088d74a8a78SFlorian Hahn const PHINode *Phi) const { 1089f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 1090f2ec16ccSHideki Saito } 1091f2ec16ccSHideki Saito 1092f82966d1SSander de Smalen bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1093f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1094f2ec16ccSHideki Saito } 1095f2ec16ccSHideki Saito 1096f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 1097bda8fbe2SSjoerd Meijer BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1098bda8fbe2SSjoerd Meijer SmallPtrSetImpl<const Instruction *> &MaskedOp, 10994f01122cSJoachim Meyer SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 1100f2ec16ccSHideki Saito for (Instruction &I : *BB) { 1101f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 1102f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 1103f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 1104f2ec16ccSHideki Saito if (C->canTrap()) 1105f2ec16ccSHideki Saito return false; 1106f2ec16ccSHideki Saito } 110723c11380SFlorian Hahn 110823c11380SFlorian Hahn // We can predicate blocks with calls to assume, as long as we drop them in 110923c11380SFlorian Hahn // case we flatten the CFG via predication. 111023c11380SFlorian Hahn if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 111123c11380SFlorian Hahn ConditionalAssumes.insert(&I); 111223c11380SFlorian Hahn continue; 111323c11380SFlorian Hahn } 111423c11380SFlorian Hahn 1115121cac01SJeroen Dobbelaere // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1116121cac01SJeroen Dobbelaere // TODO: there might be cases that it should block the vectorization. Let's 1117121cac01SJeroen Dobbelaere // ignore those for now. 1118c83cff45SNikita Popov if (isa<NoAliasScopeDeclInst>(&I)) 1119121cac01SJeroen Dobbelaere continue; 1120121cac01SJeroen Dobbelaere 1121f2ec16ccSHideki Saito // We might be able to hoist the load. 1122f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 1123f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 1124f2ec16ccSHideki Saito if (!LI) 1125f2ec16ccSHideki Saito return false; 1126f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 1127f2ec16ccSHideki Saito MaskedOp.insert(LI); 1128f2ec16ccSHideki Saito continue; 1129f2ec16ccSHideki Saito } 1130f2ec16ccSHideki Saito } 1131f2ec16ccSHideki Saito 1132f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 1133f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 1134f2ec16ccSHideki Saito if (!SI) 1135f2ec16ccSHideki Saito return false; 1136f2ec16ccSHideki Saito // Predicated store requires some form of masking: 1137f2ec16ccSHideki Saito // 1) masked store HW instruction, 1138f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 1139f2ec16ccSHideki Saito // be aware on the race conditions), or 1140f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 1141f2ec16ccSHideki Saito MaskedOp.insert(SI); 1142f2ec16ccSHideki Saito continue; 1143f2ec16ccSHideki Saito } 1144f2ec16ccSHideki Saito if (I.mayThrow()) 1145f2ec16ccSHideki Saito return false; 1146f2ec16ccSHideki Saito } 1147f2ec16ccSHideki Saito 1148f2ec16ccSHideki Saito return true; 1149f2ec16ccSHideki Saito } 1150f2ec16ccSHideki Saito 1151f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1152f2ec16ccSHideki Saito if (!EnableIfConversion) { 11539e97caf5SRenato Golin reportVectorizationFailure("If-conversion is disabled", 11549e97caf5SRenato Golin "if-conversion is disabled", 1155ec818d7fSHideki Saito "IfConversionDisabled", 1156ec818d7fSHideki Saito ORE, TheLoop); 1157f2ec16ccSHideki Saito return false; 1158f2ec16ccSHideki Saito } 1159f2ec16ccSHideki Saito 1160f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1161f2ec16ccSHideki Saito 1162cf3b5559SPhilip Reames // A list of pointers which are known to be dereferenceable within scope of 1163cf3b5559SPhilip Reames // the loop body for each iteration of the loop which executes. That is, 1164cf3b5559SPhilip Reames // the memory pointed to can be dereferenced (with the access size implied by 1165cf3b5559SPhilip Reames // the value's type) unconditionally within the loop header without 1166cf3b5559SPhilip Reames // introducing a new fault. 11673bbc71d6SSjoerd Meijer SmallPtrSet<Value *, 8> SafePointers; 1168f2ec16ccSHideki Saito 1169f2ec16ccSHideki Saito // Collect safe addresses. 1170f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 11717403569bSPhilip Reames if (!blockNeedsPredication(BB)) { 1172f2ec16ccSHideki Saito for (Instruction &I : *BB) 1173f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 11743bbc71d6SSjoerd Meijer SafePointers.insert(Ptr); 11757403569bSPhilip Reames continue; 11767403569bSPhilip Reames } 11777403569bSPhilip Reames 11787403569bSPhilip Reames // For a block which requires predication, a address may be safe to access 11797403569bSPhilip Reames // in the loop w/o predication if we can prove dereferenceability facts 11807403569bSPhilip Reames // sufficient to ensure it'll never fault within the loop. For the moment, 11817403569bSPhilip Reames // we restrict this to loads; stores are more complicated due to 11827403569bSPhilip Reames // concurrency restrictions. 11837403569bSPhilip Reames ScalarEvolution &SE = *PSE.getSE(); 11847403569bSPhilip Reames for (Instruction &I : *BB) { 11857403569bSPhilip Reames LoadInst *LI = dyn_cast<LoadInst>(&I); 1186467e5cf4SJoe Ellis if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 11877403569bSPhilip Reames isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 11883bbc71d6SSjoerd Meijer SafePointers.insert(LI->getPointerOperand()); 11897403569bSPhilip Reames } 1190f2ec16ccSHideki Saito } 1191f2ec16ccSHideki Saito 1192f2ec16ccSHideki Saito // Collect the blocks that need predication. 1193f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 1194f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 1195f2ec16ccSHideki Saito // We don't support switch statements inside loops. 1196f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 11979e97caf5SRenato Golin reportVectorizationFailure("Loop contains a switch statement", 11989e97caf5SRenato Golin "loop contains a switch statement", 1199ec818d7fSHideki Saito "LoopContainsSwitch", ORE, TheLoop, 1200ec818d7fSHideki Saito BB->getTerminator()); 1201f2ec16ccSHideki Saito return false; 1202f2ec16ccSHideki Saito } 1203f2ec16ccSHideki Saito 1204f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 1205f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 1206bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1207bda8fbe2SSjoerd Meijer ConditionalAssumes)) { 12089e97caf5SRenato Golin reportVectorizationFailure( 12099e97caf5SRenato Golin "Control flow cannot be substituted for a select", 12109e97caf5SRenato Golin "control flow cannot be substituted for a select", 1211ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1212ec818d7fSHideki Saito BB->getTerminator()); 1213f2ec16ccSHideki Saito return false; 1214f2ec16ccSHideki Saito } 1215f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 12169e97caf5SRenato Golin reportVectorizationFailure( 12179e97caf5SRenato Golin "Control flow cannot be substituted for a select", 12189e97caf5SRenato Golin "control flow cannot be substituted for a select", 1219ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1220ec818d7fSHideki Saito BB->getTerminator()); 1221f2ec16ccSHideki Saito return false; 1222f2ec16ccSHideki Saito } 1223f2ec16ccSHideki Saito } 1224f2ec16ccSHideki Saito 1225f2ec16ccSHideki Saito // We can if-convert this loop. 1226f2ec16ccSHideki Saito return true; 1227f2ec16ccSHideki Saito } 1228f2ec16ccSHideki Saito 1229f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 1230f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1231f2ec16ccSHideki Saito bool UseVPlanNativePath) { 123289c1e35fSStefanos Baziotis assert((UseVPlanNativePath || Lp->isInnermost()) && 1233f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 1234f2ec16ccSHideki Saito 1235f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 1236f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 1237f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 1238f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 1239f2ec16ccSHideki Saito 1240f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1241f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1242f2ec16ccSHideki Saito bool Result = true; 1243f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1244f2ec16ccSHideki Saito 1245f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 1246f2ec16ccSHideki Saito // be canonicalized. 1247f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 12489e97caf5SRenato Golin reportVectorizationFailure("Loop doesn't have a legal pre-header", 12499e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1250ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1251f2ec16ccSHideki Saito if (DoExtraAnalysis) 1252f2ec16ccSHideki Saito Result = false; 1253f2ec16ccSHideki Saito else 1254f2ec16ccSHideki Saito return false; 1255f2ec16ccSHideki Saito } 1256f2ec16ccSHideki Saito 1257f2ec16ccSHideki Saito // We must have a single backedge. 1258f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 12599e97caf5SRenato Golin reportVectorizationFailure("The loop must have a single backedge", 12609e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1261ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1262f2ec16ccSHideki Saito if (DoExtraAnalysis) 1263f2ec16ccSHideki Saito Result = false; 1264f2ec16ccSHideki Saito else 1265f2ec16ccSHideki Saito return false; 1266f2ec16ccSHideki Saito } 1267f2ec16ccSHideki Saito 1268f2ec16ccSHideki Saito return Result; 1269f2ec16ccSHideki Saito } 1270f2ec16ccSHideki Saito 1271f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1272f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1273f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1274f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1275f2ec16ccSHideki Saito bool Result = true; 1276f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1277f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1278f2ec16ccSHideki Saito if (DoExtraAnalysis) 1279f2ec16ccSHideki Saito Result = false; 1280f2ec16ccSHideki Saito else 1281f2ec16ccSHideki Saito return false; 1282f2ec16ccSHideki Saito } 1283f2ec16ccSHideki Saito 1284f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1285f2ec16ccSHideki Saito // understood. 1286f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1287f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1288f2ec16ccSHideki Saito if (DoExtraAnalysis) 1289f2ec16ccSHideki Saito Result = false; 1290f2ec16ccSHideki Saito else 1291f2ec16ccSHideki Saito return false; 1292f2ec16ccSHideki Saito } 1293f2ec16ccSHideki Saito 1294f2ec16ccSHideki Saito return Result; 1295f2ec16ccSHideki Saito } 1296f2ec16ccSHideki Saito 1297f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1298f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1299f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1300f2ec16ccSHideki Saito bool Result = true; 1301f2ec16ccSHideki Saito 1302f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1303f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1304f2ec16ccSHideki Saito // vectorizer. 1305f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1306f2ec16ccSHideki Saito if (DoExtraAnalysis) 1307f2ec16ccSHideki Saito Result = false; 1308f2ec16ccSHideki Saito else 1309f2ec16ccSHideki Saito return false; 1310f2ec16ccSHideki Saito } 1311f2ec16ccSHideki Saito 1312f2ec16ccSHideki Saito // We need to have a loop header. 1313d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1314f2ec16ccSHideki Saito << '\n'); 1315f2ec16ccSHideki Saito 1316f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1317f2ec16ccSHideki Saito // point because they don't support outer loops. 131889c1e35fSStefanos Baziotis if (!TheLoop->isInnermost()) { 1319f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1320f2ec16ccSHideki Saito 1321f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 13229e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop", 13239e97caf5SRenato Golin "unsupported outer loop", 1324ec818d7fSHideki Saito "UnsupportedOuterLoop", 1325ec818d7fSHideki Saito ORE, TheLoop); 1326f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1327f2ec16ccSHideki Saito // outer loops. 1328f2ec16ccSHideki Saito return false; 1329f2ec16ccSHideki Saito } 1330f2ec16ccSHideki Saito 1331d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1332f2ec16ccSHideki Saito return Result; 1333f2ec16ccSHideki Saito } 1334f2ec16ccSHideki Saito 133589c1e35fSStefanos Baziotis assert(TheLoop->isInnermost() && "Inner loop expected."); 1336f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1337f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1338f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1339d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1340f2ec16ccSHideki Saito if (DoExtraAnalysis) 1341f2ec16ccSHideki Saito Result = false; 1342f2ec16ccSHideki Saito else 1343f2ec16ccSHideki Saito return false; 1344f2ec16ccSHideki Saito } 1345f2ec16ccSHideki Saito 1346f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1347f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1348d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1349f2ec16ccSHideki Saito if (DoExtraAnalysis) 1350f2ec16ccSHideki Saito Result = false; 1351f2ec16ccSHideki Saito else 1352f2ec16ccSHideki Saito return false; 1353f2ec16ccSHideki Saito } 1354f2ec16ccSHideki Saito 1355f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1356f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1357d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1358f2ec16ccSHideki Saito if (DoExtraAnalysis) 1359f2ec16ccSHideki Saito Result = false; 1360f2ec16ccSHideki Saito else 1361f2ec16ccSHideki Saito return false; 1362f2ec16ccSHideki Saito } 1363f2ec16ccSHideki Saito 1364d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1365f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1366f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1367f2ec16ccSHideki Saito : "") 1368f2ec16ccSHideki Saito << "!\n"); 1369f2ec16ccSHideki Saito 1370f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1371f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1372f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1373f2ec16ccSHideki Saito 13745ba11503SPhilip Reames if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 13759e97caf5SRenato Golin reportVectorizationFailure("Too many SCEV checks needed", 13769e97caf5SRenato Golin "Too many SCEV assumptions need to be made and checked at runtime", 1377ec818d7fSHideki Saito "TooManySCEVRunTimeChecks", ORE, TheLoop); 1378f2ec16ccSHideki Saito if (DoExtraAnalysis) 1379f2ec16ccSHideki Saito Result = false; 1380f2ec16ccSHideki Saito else 1381f2ec16ccSHideki Saito return false; 1382f2ec16ccSHideki Saito } 1383f2ec16ccSHideki Saito 1384f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1385f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1386f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1387f2ec16ccSHideki Saito // no restrictions. 1388f2ec16ccSHideki Saito return Result; 1389f2ec16ccSHideki Saito } 1390f2ec16ccSHideki Saito 1391d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1392b0b5312eSAyal Zaks 1393b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1394b0b5312eSAyal Zaks 1395d15df0edSAyal Zaks SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1396b0b5312eSAyal Zaks 1397d0d38df0SDavid Green for (auto &Reduction : getReductionVars()) 1398d15df0edSAyal Zaks ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1399d15df0edSAyal Zaks 1400d15df0edSAyal Zaks // TODO: handle non-reduction outside users when tail is folded by masking. 1401b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1402d15df0edSAyal Zaks // Check that all users of allowed exit values are inside the loop or 1403d15df0edSAyal Zaks // are the live-out of a reduction. 1404d15df0edSAyal Zaks if (ReductionLiveOuts.count(AE)) 1405d15df0edSAyal Zaks continue; 1406b0b5312eSAyal Zaks for (User *U : AE->users()) { 1407b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1408b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1409b0b5312eSAyal Zaks continue; 1410bda8fbe2SSjoerd Meijer LLVM_DEBUG( 1411bda8fbe2SSjoerd Meijer dbgs() 1412bda8fbe2SSjoerd Meijer << "LV: Cannot fold tail by masking, loop has an outside user for " 1413bda8fbe2SSjoerd Meijer << *UI << "\n"); 1414b0b5312eSAyal Zaks return false; 1415b0b5312eSAyal Zaks } 1416b0b5312eSAyal Zaks } 1417b0b5312eSAyal Zaks 1418b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1419b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1420b0b5312eSAyal Zaks 1421bda8fbe2SSjoerd Meijer SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1422bda8fbe2SSjoerd Meijer SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1423bda8fbe2SSjoerd Meijer 1424b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1425b0b5312eSAyal Zaks // do not need predication such as the header block. 1426b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1427bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 14284f01122cSJoachim Meyer TmpConditionalAssumes)) { 1429bda8fbe2SSjoerd Meijer LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1430b0b5312eSAyal Zaks return false; 1431b0b5312eSAyal Zaks } 1432b0b5312eSAyal Zaks } 1433b0b5312eSAyal Zaks 1434b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1435bda8fbe2SSjoerd Meijer 1436bda8fbe2SSjoerd Meijer MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1437bda8fbe2SSjoerd Meijer ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1438bda8fbe2SSjoerd Meijer TmpConditionalAssumes.end()); 1439bda8fbe2SSjoerd Meijer 1440b0b5312eSAyal Zaks return true; 1441b0b5312eSAyal Zaks } 1442b0b5312eSAyal Zaks 1443f2ec16ccSHideki Saito } // namespace llvm 1444