1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f2ec16ccSHideki Saito // 7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 8f2ec16ccSHideki Saito // 9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 11f2ec16ccSHideki Saito // 12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 15f2ec16ccSHideki Saito // 16cc529285SSimon Pilgrim 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 187403569bSPhilip Reames #include "llvm/Analysis/Loads.h" 19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h" 20cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h" 217403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h" 22f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 23f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 2423c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h" 257bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h" 2623c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h" 27f2ec16ccSHideki Saito 28f2ec16ccSHideki Saito using namespace llvm; 2923c11380SFlorian Hahn using namespace PatternMatch; 30f2ec16ccSHideki Saito 31f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 32f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 33f2ec16ccSHideki Saito 344e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication; 354e4ecae0SHideki Saito 36f2ec16ccSHideki Saito static cl::opt<bool> 37f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 38f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 39f2ec16ccSHideki Saito 409f76a852SKerry McLaughlin namespace llvm { 419f76a852SKerry McLaughlin cl::opt<bool> 429f76a852SKerry McLaughlin HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 439f76a852SKerry McLaughlin cl::desc("Allow enabling loop hints to reorder " 449f76a852SKerry McLaughlin "FP operations during vectorization.")); 459f76a852SKerry McLaughlin } 469f76a852SKerry McLaughlin 47c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based 48c773d0f9SFlorian Hahn // decisions instead of hard thresholds. 49f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 50f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 51f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 52f2ec16ccSHideki Saito 53f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 54f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 55f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 56f2ec16ccSHideki Saito "vectorize(enable) pragma")); 57f2ec16ccSHideki Saito 584f86aa65SSander de Smalen // FIXME: When scalable vectorization is stable enough, change the default 594f86aa65SSander de Smalen // to SK_PreferFixedWidth. 604f86aa65SSander de Smalen static cl::opt<LoopVectorizeHints::ScalableForceKind> ScalableVectorization( 614f86aa65SSander de Smalen "scalable-vectorization", cl::init(LoopVectorizeHints::SK_FixedWidthOnly), 624f86aa65SSander de Smalen cl::Hidden, 634f86aa65SSander de Smalen cl::desc("Control whether the compiler can use scalable vectors to " 644f86aa65SSander de Smalen "vectorize a loop"), 654f86aa65SSander de Smalen cl::values( 664f86aa65SSander de Smalen clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 674f86aa65SSander de Smalen "Scalable vectorization is disabled."), 684f86aa65SSander de Smalen clEnumValN(LoopVectorizeHints::SK_PreferFixedWidth, "on", 694f86aa65SSander de Smalen "Scalable vectorization is available, but favor fixed-width " 704f86aa65SSander de Smalen "vectorization when the cost is inconclusive."), 714f86aa65SSander de Smalen clEnumValN(LoopVectorizeHints::SK_PreferScalable, "preferred", 724f86aa65SSander de Smalen "Scalable vectorization is available and favored when the " 734f86aa65SSander de Smalen "cost is inconclusive."))); 744f86aa65SSander de Smalen 75f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 76f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 77f2ec16ccSHideki Saito 78f2ec16ccSHideki Saito namespace llvm { 79f2ec16ccSHideki Saito 80f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 81f2ec16ccSHideki Saito switch (Kind) { 82f2ec16ccSHideki Saito case HK_WIDTH: 83f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 84ddb3b26aSBardia Mahjour case HK_INTERLEAVE: 85f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 86f2ec16ccSHideki Saito case HK_FORCE: 87f2ec16ccSHideki Saito return (Val <= 1); 88f2ec16ccSHideki Saito case HK_ISVECTORIZED: 8920b198ecSSjoerd Meijer case HK_PREDICATE: 9071bd59f0SDavid Sherwood case HK_SCALABLE: 91f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 92f2ec16ccSHideki Saito } 93f2ec16ccSHideki Saito return false; 94f2ec16ccSHideki Saito } 95f2ec16ccSHideki Saito 96d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 97d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 98f2ec16ccSHideki Saito OptimizationRemarkEmitter &ORE) 99f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 100ddb3b26aSBardia Mahjour Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 101f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 10220b198ecSSjoerd Meijer IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 10371bd59f0SDavid Sherwood Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 1044f86aa65SSander de Smalen Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 1054f86aa65SSander de Smalen TheLoop(L), ORE(ORE) { 106f2ec16ccSHideki Saito // Populate values with existing loop metadata. 107f2ec16ccSHideki Saito getHintsFromMetadata(); 108f2ec16ccSHideki Saito 109f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 110f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 111f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 112f2ec16ccSHideki Saito 1134f86aa65SSander de Smalen if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 1144f86aa65SSander de Smalen // If the width is set, but the metadata says nothing about the scalable 1154f86aa65SSander de Smalen // property, then assume it concerns only a fixed-width UserVF. 1164f86aa65SSander de Smalen // If width is not set, the flag takes precedence. 1174f86aa65SSander de Smalen Scalable.Value = Width.Value ? SK_FixedWidthOnly : ScalableVectorization; 1184f86aa65SSander de Smalen else if (ScalableVectorization == SK_FixedWidthOnly) 1194f86aa65SSander de Smalen // If the flag is set to disable any use of scalable vectors, override the 1204f86aa65SSander de Smalen // loop hint. 1214f86aa65SSander de Smalen Scalable.Value = SK_FixedWidthOnly; 1224f86aa65SSander de Smalen 123f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 124f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 125f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 126f2ec16ccSHideki Saito // nothing more that we can do. 12771bd59f0SDavid Sherwood IsVectorized.Value = 128ddb3b26aSBardia Mahjour getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 129ddb3b26aSBardia Mahjour LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 130f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 131f2ec16ccSHideki Saito } 132f2ec16ccSHideki Saito 13377a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() { 13477a614a6SMichael Kruse LLVMContext &Context = TheLoop->getHeader()->getContext(); 13577a614a6SMichael Kruse 13677a614a6SMichael Kruse MDNode *IsVectorizedMD = MDNode::get( 13777a614a6SMichael Kruse Context, 13877a614a6SMichael Kruse {MDString::get(Context, "llvm.loop.isvectorized"), 13977a614a6SMichael Kruse ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 14077a614a6SMichael Kruse MDNode *LoopID = TheLoop->getLoopID(); 14177a614a6SMichael Kruse MDNode *NewLoopID = 14277a614a6SMichael Kruse makePostTransformationMetadata(Context, LoopID, 14377a614a6SMichael Kruse {Twine(Prefix(), "vectorize.").str(), 14477a614a6SMichael Kruse Twine(Prefix(), "interleave.").str()}, 14577a614a6SMichael Kruse {IsVectorizedMD}); 14677a614a6SMichael Kruse TheLoop->setLoopID(NewLoopID); 14777a614a6SMichael Kruse 14877a614a6SMichael Kruse // Update internal cache. 14977a614a6SMichael Kruse IsVectorized.Value = 1; 15077a614a6SMichael Kruse } 15177a614a6SMichael Kruse 152d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 153d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 154f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 155d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 156f2ec16ccSHideki Saito emitRemarkWithHints(); 157f2ec16ccSHideki Saito return false; 158f2ec16ccSHideki Saito } 159f2ec16ccSHideki Saito 160d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 161d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 162f2ec16ccSHideki Saito emitRemarkWithHints(); 163f2ec16ccSHideki Saito return false; 164f2ec16ccSHideki Saito } 165f2ec16ccSHideki Saito 166f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 167d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 168f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 169f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 170f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 171f2ec16ccSHideki Saito ORE.emit([&]() { 172f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 173f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 174f2ec16ccSHideki Saito L->getHeader()) 175f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 176f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 177f2ec16ccSHideki Saito "vectorized"; 178f2ec16ccSHideki Saito }); 179f2ec16ccSHideki Saito return false; 180f2ec16ccSHideki Saito } 181f2ec16ccSHideki Saito 182f2ec16ccSHideki Saito return true; 183f2ec16ccSHideki Saito } 184f2ec16ccSHideki Saito 185f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 186f2ec16ccSHideki Saito using namespace ore; 187f2ec16ccSHideki Saito 188f2ec16ccSHideki Saito ORE.emit([&]() { 189f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 190f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 191f2ec16ccSHideki Saito TheLoop->getStartLoc(), 192f2ec16ccSHideki Saito TheLoop->getHeader()) 193f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 194f2ec16ccSHideki Saito else { 195f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 196f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 197f2ec16ccSHideki Saito R << "loop not vectorized"; 198f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 199f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 200f2ec16ccSHideki Saito if (Width.Value != 0) 20171bd59f0SDavid Sherwood R << ", Vector Width=" << NV("VectorWidth", getWidth()); 202ddb3b26aSBardia Mahjour if (getInterleave() != 0) 203ddb3b26aSBardia Mahjour R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 204f2ec16ccSHideki Saito R << ")"; 205f2ec16ccSHideki Saito } 206f2ec16ccSHideki Saito return R; 207f2ec16ccSHideki Saito } 208f2ec16ccSHideki Saito }); 209f2ec16ccSHideki Saito } 210f2ec16ccSHideki Saito 211f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 21271bd59f0SDavid Sherwood if (getWidth() == ElementCount::getFixed(1)) 213f2ec16ccSHideki Saito return LV_NAME; 214f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 215f2ec16ccSHideki Saito return LV_NAME; 21671bd59f0SDavid Sherwood if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 217f2ec16ccSHideki Saito return LV_NAME; 218f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 219f2ec16ccSHideki Saito } 220f2ec16ccSHideki Saito 2219f76a852SKerry McLaughlin bool LoopVectorizeHints::allowReordering() const { 2229f76a852SKerry McLaughlin // Allow the vectorizer to change the order of operations if enabling 2239f76a852SKerry McLaughlin // loop hints are provided 2249f76a852SKerry McLaughlin ElementCount EC = getWidth(); 2259f76a852SKerry McLaughlin return HintsAllowReordering && 2269f76a852SKerry McLaughlin (getForce() == LoopVectorizeHints::FK_Enabled || 2279f76a852SKerry McLaughlin EC.getKnownMinValue() > 1); 2289f76a852SKerry McLaughlin } 2299f76a852SKerry McLaughlin 230f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 231f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 232f2ec16ccSHideki Saito if (!LoopID) 233f2ec16ccSHideki Saito return; 234f2ec16ccSHideki Saito 235f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 236f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 237f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 238f2ec16ccSHideki Saito 239f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 240f2ec16ccSHideki Saito const MDString *S = nullptr; 241f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 242f2ec16ccSHideki Saito 243f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 244f2ec16ccSHideki Saito // operand a MDString. 245f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 246f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 247f2ec16ccSHideki Saito continue; 248f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 249f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 250f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 251f2ec16ccSHideki Saito } else { 252f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 253f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 254f2ec16ccSHideki Saito } 255f2ec16ccSHideki Saito 256f2ec16ccSHideki Saito if (!S) 257f2ec16ccSHideki Saito continue; 258f2ec16ccSHideki Saito 259f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 260f2ec16ccSHideki Saito StringRef Name = S->getString(); 261f2ec16ccSHideki Saito if (Args.size() == 1) 262f2ec16ccSHideki Saito setHint(Name, Args[0]); 263f2ec16ccSHideki Saito } 264f2ec16ccSHideki Saito } 265f2ec16ccSHideki Saito 266f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 267f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 268f2ec16ccSHideki Saito return; 269f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 270f2ec16ccSHideki Saito 271f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 272f2ec16ccSHideki Saito if (!C) 273f2ec16ccSHideki Saito return; 274f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 275f2ec16ccSHideki Saito 27671bd59f0SDavid Sherwood Hint *Hints[] = {&Width, &Interleave, &Force, 27771bd59f0SDavid Sherwood &IsVectorized, &Predicate, &Scalable}; 278f2ec16ccSHideki Saito for (auto H : Hints) { 279f2ec16ccSHideki Saito if (Name == H->Name) { 280f2ec16ccSHideki Saito if (H->validate(Val)) 281f2ec16ccSHideki Saito H->Value = Val; 282f2ec16ccSHideki Saito else 283d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 284f2ec16ccSHideki Saito break; 285f2ec16ccSHideki Saito } 286f2ec16ccSHideki Saito } 287f2ec16ccSHideki Saito } 288f2ec16ccSHideki Saito 289f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 290f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 291f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 292f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 293f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 294f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 295f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 296f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 297f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 298f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 299f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 300f2ec16ccSHideki Saito // 301f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 302f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 303f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 304f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 305f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 306f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 307f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 308f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 309f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 310f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 311f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 312f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 313f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 314f2ec16ccSHideki Saito 315f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 316f2ec16ccSHideki Saito if (Lp == OuterLp) 317f2ec16ccSHideki Saito return true; 318f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 319f2ec16ccSHideki Saito 320f2ec16ccSHideki Saito // 1. 321f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 322f2ec16ccSHideki Saito if (!IV) { 323d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 324f2ec16ccSHideki Saito return false; 325f2ec16ccSHideki Saito } 326f2ec16ccSHideki Saito 327f2ec16ccSHideki Saito // 2. 328f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 329f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 330f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 331d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 332f2ec16ccSHideki Saito return false; 333f2ec16ccSHideki Saito } 334f2ec16ccSHideki Saito 335f2ec16ccSHideki Saito // 3. 336f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 337f2ec16ccSHideki Saito if (!LatchCmp) { 338d34e60caSNicola Zaghen LLVM_DEBUG( 339d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 340f2ec16ccSHideki Saito return false; 341f2ec16ccSHideki Saito } 342f2ec16ccSHideki Saito 343f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 344f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 345f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 346f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 347f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 348d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 349f2ec16ccSHideki Saito return false; 350f2ec16ccSHideki Saito } 351f2ec16ccSHideki Saito 352f2ec16ccSHideki Saito return true; 353f2ec16ccSHideki Saito } 354f2ec16ccSHideki Saito 355f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 356f2ec16ccSHideki Saito // OuterLp. 357f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 358f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 359f2ec16ccSHideki Saito return false; 360f2ec16ccSHideki Saito 361f2ec16ccSHideki Saito // Check if nested loops are uniform. 362f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 363f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 364f2ec16ccSHideki Saito return false; 365f2ec16ccSHideki Saito 366f2ec16ccSHideki Saito return true; 367f2ec16ccSHideki Saito } 368f2ec16ccSHideki Saito 3695f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 370f2ec16ccSHideki Saito /// 371f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 372f2ec16ccSHideki Saito /// convert. 373f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 374f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 375f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 376f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 377f2ec16ccSHideki Saito if (C->canTrap()) 378f2ec16ccSHideki Saito return false; 379f2ec16ccSHideki Saito } 380f2ec16ccSHideki Saito return true; 381f2ec16ccSHideki Saito } 382f2ec16ccSHideki Saito 383f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 384f2ec16ccSHideki Saito if (Ty->isPointerTy()) 385f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 386f2ec16ccSHideki Saito 387f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 388f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 389f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 390f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 391f2ec16ccSHideki Saito 392f2ec16ccSHideki Saito return Ty; 393f2ec16ccSHideki Saito } 394f2ec16ccSHideki Saito 395f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 396f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 397f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 398f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 399f2ec16ccSHideki Saito return Ty0; 400f2ec16ccSHideki Saito return Ty1; 401f2ec16ccSHideki Saito } 402f2ec16ccSHideki Saito 4035f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 404f2ec16ccSHideki Saito /// identified reduction variable. 405f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 406f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 40760a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 408f2ec16ccSHideki Saito // other instructions must not have external users. 409f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 410f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 411f2ec16ccSHideki Saito for (User *U : Inst->users()) { 412f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 413f2ec16ccSHideki Saito // This user may be a reduction exit value. 414f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 415d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 416f2ec16ccSHideki Saito return true; 417f2ec16ccSHideki Saito } 418f2ec16ccSHideki Saito } 419f2ec16ccSHideki Saito return false; 420f2ec16ccSHideki Saito } 421f2ec16ccSHideki Saito 422f82966d1SSander de Smalen int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) const { 423f2ec16ccSHideki Saito const ValueToValueMap &Strides = 424f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 425f2ec16ccSHideki Saito 4267bedae7dSHiroshi Yamauchi Function *F = TheLoop->getHeader()->getParent(); 4277bedae7dSHiroshi Yamauchi bool OptForSize = F->hasOptSize() || 4287bedae7dSHiroshi Yamauchi llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 4297bedae7dSHiroshi Yamauchi PGSOQueryType::IRPass); 4307bedae7dSHiroshi Yamauchi bool CanAddPredicate = !OptForSize; 431d1170dbeSSjoerd Meijer int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false); 432f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 433f2ec16ccSHideki Saito return Stride; 434f2ec16ccSHideki Saito return 0; 435f2ec16ccSHideki Saito } 436f2ec16ccSHideki Saito 437f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 438f2ec16ccSHideki Saito return LAI->isUniform(V); 439f2ec16ccSHideki Saito } 440f2ec16ccSHideki Saito 441f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 44289c1e35fSStefanos Baziotis assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 443f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 444f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 445f2ec16ccSHideki Saito bool Result = true; 446f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 447f2ec16ccSHideki Saito 448f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 449f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 450f2ec16ccSHideki Saito // not supported yet. 451f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 452f2ec16ccSHideki Saito if (!Br) { 4539e97caf5SRenato Golin reportVectorizationFailure("Unsupported basic block terminator", 4549e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 455ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 456f2ec16ccSHideki Saito if (DoExtraAnalysis) 457f2ec16ccSHideki Saito Result = false; 458f2ec16ccSHideki Saito else 459f2ec16ccSHideki Saito return false; 460f2ec16ccSHideki Saito } 461f2ec16ccSHideki Saito 462f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 463f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 464f2ec16ccSHideki Saito // backedges are supported. 4654e4ecae0SHideki Saito // FIXME: We skip these checks when VPlan predication is enabled as we 4664e4ecae0SHideki Saito // want to allow divergent branches. This whole check will be removed 4674e4ecae0SHideki Saito // once VPlan predication is on by default. 4684e4ecae0SHideki Saito if (!EnableVPlanPredication && Br && Br->isConditional() && 469f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 470f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 471f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 4729e97caf5SRenato Golin reportVectorizationFailure("Unsupported conditional branch", 4739e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 474ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 475f2ec16ccSHideki Saito if (DoExtraAnalysis) 476f2ec16ccSHideki Saito Result = false; 477f2ec16ccSHideki Saito else 478f2ec16ccSHideki Saito return false; 479f2ec16ccSHideki Saito } 480f2ec16ccSHideki Saito } 481f2ec16ccSHideki Saito 482f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 483f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 484f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 485f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 4869e97caf5SRenato Golin reportVectorizationFailure("Outer loop contains divergent loops", 4879e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 488ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 489f2ec16ccSHideki Saito if (DoExtraAnalysis) 490f2ec16ccSHideki Saito Result = false; 491f2ec16ccSHideki Saito else 492f2ec16ccSHideki Saito return false; 493f2ec16ccSHideki Saito } 494f2ec16ccSHideki Saito 495ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 496ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 4979e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop Phi(s)", 4989e97caf5SRenato Golin "Unsupported outer loop Phi(s)", 499ec818d7fSHideki Saito "UnsupportedPhi", ORE, TheLoop); 500ea7f3035SHideki Saito if (DoExtraAnalysis) 501ea7f3035SHideki Saito Result = false; 502ea7f3035SHideki Saito else 503ea7f3035SHideki Saito return false; 504ea7f3035SHideki Saito } 505ea7f3035SHideki Saito 506f2ec16ccSHideki Saito return Result; 507f2ec16ccSHideki Saito } 508f2ec16ccSHideki Saito 509f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 510f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 511f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 512f2ec16ccSHideki Saito Inductions[Phi] = ID; 513f2ec16ccSHideki Saito 514f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 515f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 516f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 517f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 518f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 519f2ec16ccSHideki Saito if (!Casts.empty()) 520f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 521f2ec16ccSHideki Saito 522f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 523f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 524f2ec16ccSHideki Saito 525f2ec16ccSHideki Saito // Get the widest type. 526f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 527f2ec16ccSHideki Saito if (!WidestIndTy) 528f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 529f2ec16ccSHideki Saito else 530f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 531f2ec16ccSHideki Saito } 532f2ec16ccSHideki Saito 533f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 534f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 535f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 536f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 537f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 538f2ec16ccSHideki Saito 539f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 540f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 541f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 542f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 543f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 544f2ec16ccSHideki Saito PrimaryInduction = Phi; 545f2ec16ccSHideki Saito } 546f2ec16ccSHideki Saito 547f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 548f2ec16ccSHideki Saito // back into the PHI node may have external users. 549f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 550f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5516a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5526a1dd77fSAnna Thomas // details). 553f2ec16ccSHideki Saito if (PSE.getUnionPredicate().isAlwaysTrue()) { 554f2ec16ccSHideki Saito AllowedExit.insert(Phi); 555f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 556f2ec16ccSHideki Saito } 557f2ec16ccSHideki Saito 558d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 559f2ec16ccSHideki Saito } 560f2ec16ccSHideki Saito 561ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 562ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 563ea7f3035SHideki Saito 564ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 565ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 566ea7f3035SHideki Saito InductionDescriptor ID; 567ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 568ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 569ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 570ea7f3035SHideki Saito return true; 571ea7f3035SHideki Saito } else { 572ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 573ea7f3035SHideki Saito // induction. 574ea7f3035SHideki Saito LLVM_DEBUG( 575ea7f3035SHideki Saito dbgs() 576ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 577ea7f3035SHideki Saito return false; 578ea7f3035SHideki Saito } 579ea7f3035SHideki Saito }; 580ea7f3035SHideki Saito 581ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 582ea7f3035SHideki Saito return true; 583ea7f3035SHideki Saito else 584ea7f3035SHideki Saito return false; 585ea7f3035SHideki Saito } 586ea7f3035SHideki Saito 58766c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in 58866c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in 58966c120f0SFrancesco Petrogalli /// multiple scalarcalls. This is represented in the 59066c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the 59166c120f0SFrancesco Petrogalli /// following example: 59266c120f0SFrancesco Petrogalli /// 59366c120f0SFrancesco Petrogalli /// const VecDesc VecIntrinsics[] = { 59466c120f0SFrancesco Petrogalli /// {"llvm.phx.abs.i32", "", 4} 59566c120f0SFrancesco Petrogalli /// }; 59666c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 59766c120f0SFrancesco Petrogalli const StringRef ScalarName = CI.getCalledFunction()->getName(); 59866c120f0SFrancesco Petrogalli bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 59966c120f0SFrancesco Petrogalli // Check that all known VFs are not associated to a vector 60066c120f0SFrancesco Petrogalli // function, i.e. the vector name is emty. 60101b87444SDavid Sherwood if (Scalarize) { 60201b87444SDavid Sherwood ElementCount WidestFixedVF, WidestScalableVF; 60301b87444SDavid Sherwood TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 60401b87444SDavid Sherwood for (ElementCount VF = ElementCount::getFixed(2); 60501b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 60666c120f0SFrancesco Petrogalli Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 60701b87444SDavid Sherwood for (ElementCount VF = ElementCount::getScalable(1); 60801b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 60901b87444SDavid Sherwood Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 61001b87444SDavid Sherwood assert((WidestScalableVF.isZero() || !Scalarize) && 61101b87444SDavid Sherwood "Caller may decide to scalarize a variant using a scalable VF"); 61266c120f0SFrancesco Petrogalli } 61366c120f0SFrancesco Petrogalli return Scalarize; 61466c120f0SFrancesco Petrogalli } 61566c120f0SFrancesco Petrogalli 616f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 617f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 618f2ec16ccSHideki Saito 619f2ec16ccSHideki Saito // For each block in the loop. 620f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 621f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 622f2ec16ccSHideki Saito for (Instruction &I : *BB) { 623f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 624f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 625f2ec16ccSHideki Saito // Check that this PHI type is allowed. 626f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 627f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 6289e97caf5SRenato Golin reportVectorizationFailure("Found a non-int non-pointer PHI", 6299e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 630ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 631f2ec16ccSHideki Saito return false; 632f2ec16ccSHideki Saito } 633f2ec16ccSHideki Saito 634f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 635f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 636f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 637f2ec16ccSHideki Saito if (BB != Header) { 63860a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 63960a1e4ddSAnna Thomas // them to the list of allowed exits. 64060a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 64160a1e4ddSAnna Thomas // legalization for reduction, induction and first order 64260a1e4ddSAnna Thomas // recurrences. 643dd18ce45SBjorn Pettersson AllowedExit.insert(&I); 644f2ec16ccSHideki Saito continue; 645f2ec16ccSHideki Saito } 646f2ec16ccSHideki Saito 647f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 648f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 6499e97caf5SRenato Golin reportVectorizationFailure("Found an invalid PHI", 6509e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 651ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop, Phi); 652f2ec16ccSHideki Saito return false; 653f2ec16ccSHideki Saito } 654f2ec16ccSHideki Saito 655f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 656f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 657f2ec16ccSHideki Saito DT)) { 658b3a33553SSanjay Patel Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 659f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 660f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 661f2ec16ccSHideki Saito continue; 662f2ec16ccSHideki Saito } 663f2ec16ccSHideki Saito 664b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 665b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 666b02b0ad8SAnna Thomas // limited to): 667b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 668b02b0ad8SAnna Thomas // is not available when vectorized 669b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 670b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 671b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 672b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 673b02b0ad8SAnna Thomas // handling below 674b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 675b02b0ad8SAnna Thomas // extraction. 676b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 677b02b0ad8SAnna Thomas // of these NotAllowedExit. 678f2ec16ccSHideki Saito InductionDescriptor ID; 679f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 680f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 68136a489d1SSanjay Patel Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 682f2ec16ccSHideki Saito continue; 683f2ec16ccSHideki Saito } 684f2ec16ccSHideki Saito 685f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 686f2ec16ccSHideki Saito SinkAfter, DT)) { 6878e0c5f72SAyal Zaks AllowedExit.insert(Phi); 688f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 689f2ec16ccSHideki Saito continue; 690f2ec16ccSHideki Saito } 691f2ec16ccSHideki Saito 692f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 693f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 694f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 695f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 696f2ec16ccSHideki Saito continue; 697f2ec16ccSHideki Saito } 698f2ec16ccSHideki Saito 6999e97caf5SRenato Golin reportVectorizationFailure("Found an unidentified PHI", 7009e97caf5SRenato Golin "value that could not be identified as " 7019e97caf5SRenato Golin "reduction is used outside the loop", 702ec818d7fSHideki Saito "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 703f2ec16ccSHideki Saito return false; 704f2ec16ccSHideki Saito } // end of PHI handling 705f2ec16ccSHideki Saito 706f2ec16ccSHideki Saito // We handle calls that: 707f2ec16ccSHideki Saito // * Are debug info intrinsics. 708f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 709f2ec16ccSHideki Saito // * Have a vector version available. 710f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 71166c120f0SFrancesco Petrogalli 712f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 713f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 714f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 71566c120f0SFrancesco Petrogalli (!VFDatabase::getMappings(*CI).empty() || 71666c120f0SFrancesco Petrogalli isTLIScalarize(*TLI, *CI)))) { 7177d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 7187d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 7197d65fe5cSSanjay Patel LibFunc Func; 7207d65fe5cSSanjay Patel bool IsMathLibCall = 7217d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 7227d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 7237d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 7247d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 7257d65fe5cSSanjay Patel 7267d65fe5cSSanjay Patel if (IsMathLibCall) { 7277d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 7287d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 7297d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 7307d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 73166c120f0SFrancesco Petrogalli reportVectorizationFailure( 73266c120f0SFrancesco Petrogalli "Found a non-intrinsic callsite", 7339e97caf5SRenato Golin "library call cannot be vectorized. " 7347d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 7359e97caf5SRenato Golin "or similar flags", 736ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7377d65fe5cSSanjay Patel } else { 7389e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 7399e97caf5SRenato Golin "call instruction cannot be vectorized", 740ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7417d65fe5cSSanjay Patel } 742f2ec16ccSHideki Saito return false; 743f2ec16ccSHideki Saito } 744f2ec16ccSHideki Saito 745a066f1f9SSimon Pilgrim // Some intrinsics have scalar arguments and should be same in order for 746a066f1f9SSimon Pilgrim // them to be vectorized (i.e. loop invariant). 747a066f1f9SSimon Pilgrim if (CI) { 748f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 749a066f1f9SSimon Pilgrim Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 750a066f1f9SSimon Pilgrim for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) 751a066f1f9SSimon Pilgrim if (hasVectorInstrinsicScalarOpd(IntrinID, i)) { 752a066f1f9SSimon Pilgrim if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 7539e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable intrinsic", 7549e97caf5SRenato Golin "intrinsic instruction cannot be vectorized", 755ec818d7fSHideki Saito "CantVectorizeIntrinsic", ORE, TheLoop, CI); 756f2ec16ccSHideki Saito return false; 757f2ec16ccSHideki Saito } 758f2ec16ccSHideki Saito } 759a066f1f9SSimon Pilgrim } 760f2ec16ccSHideki Saito 761f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 762f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 763f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 764f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 765f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 7669e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable type", 7679e97caf5SRenato Golin "instruction return type cannot be vectorized", 768ec818d7fSHideki Saito "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 769f2ec16ccSHideki Saito return false; 770f2ec16ccSHideki Saito } 771f2ec16ccSHideki Saito 772f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 773f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 774f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 775f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 7769e97caf5SRenato Golin reportVectorizationFailure("Store instruction cannot be vectorized", 7779e97caf5SRenato Golin "store instruction cannot be vectorized", 778ec818d7fSHideki Saito "CantVectorizeStore", ORE, TheLoop, ST); 779f2ec16ccSHideki Saito return false; 780f2ec16ccSHideki Saito } 781f2ec16ccSHideki Saito 7826452bdd2SWarren Ristow // For nontemporal stores, check that a nontemporal vector version is 7836452bdd2SWarren Ristow // supported on the target. 7846452bdd2SWarren Ristow if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 7856452bdd2SWarren Ristow // Arbitrarily try a vector of 2 elements. 7866913812aSFangrui Song auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 7876452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of stored type"); 78852e98f62SNikita Popov if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 7896452bdd2SWarren Ristow reportVectorizationFailure( 7906452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 7916452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 792ec818d7fSHideki Saito "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 7936452bdd2SWarren Ristow return false; 7946452bdd2SWarren Ristow } 7956452bdd2SWarren Ristow } 7966452bdd2SWarren Ristow 7976452bdd2SWarren Ristow } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 7986452bdd2SWarren Ristow if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 7996452bdd2SWarren Ristow // For nontemporal loads, check that a nontemporal vector version is 8006452bdd2SWarren Ristow // supported on the target (arbitrarily try a vector of 2 elements). 8016913812aSFangrui Song auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 8026452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of load type"); 80352e98f62SNikita Popov if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 8046452bdd2SWarren Ristow reportVectorizationFailure( 8056452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 8066452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 807ec818d7fSHideki Saito "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 8086452bdd2SWarren Ristow return false; 8096452bdd2SWarren Ristow } 8106452bdd2SWarren Ristow } 8116452bdd2SWarren Ristow 812f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 813f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 814f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 815f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 816f2ec16ccSHideki Saito // semantics. 817f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 818f2ec16ccSHideki Saito !I.isFast()) { 819d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 820f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 821f2ec16ccSHideki Saito } 822f2ec16ccSHideki Saito 823f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 824f2ec16ccSHideki Saito // All other instructions must not have external users. 825f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 826b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 827b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 828b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 829b02b0ad8SAnna Thomas // outside the loop. 830b02b0ad8SAnna Thomas if (PSE.getUnionPredicate().isAlwaysTrue()) { 831b02b0ad8SAnna Thomas AllowedExit.insert(&I); 832b02b0ad8SAnna Thomas continue; 833b02b0ad8SAnna Thomas } 8349e97caf5SRenato Golin reportVectorizationFailure("Value cannot be used outside the loop", 8359e97caf5SRenato Golin "value cannot be used outside the loop", 836ec818d7fSHideki Saito "ValueUsedOutsideLoop", ORE, TheLoop, &I); 837f2ec16ccSHideki Saito return false; 838f2ec16ccSHideki Saito } 839f2ec16ccSHideki Saito } // next instr. 840f2ec16ccSHideki Saito } 841f2ec16ccSHideki Saito 842f2ec16ccSHideki Saito if (!PrimaryInduction) { 843f2ec16ccSHideki Saito if (Inductions.empty()) { 8449e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8459e97caf5SRenato Golin "loop induction variable could not be identified", 846ec818d7fSHideki Saito "NoInductionVariable", ORE, TheLoop); 847f2ec16ccSHideki Saito return false; 8484f27730eSWarren Ristow } else if (!WidestIndTy) { 8499e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8509e97caf5SRenato Golin "integer loop induction variable could not be identified", 851ec818d7fSHideki Saito "NoIntegerInductionVariable", ORE, TheLoop); 8524f27730eSWarren Ristow return false; 8539e97caf5SRenato Golin } else { 8549e97caf5SRenato Golin LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 855f2ec16ccSHideki Saito } 856f2ec16ccSHideki Saito } 857f2ec16ccSHideki Saito 8589d24933fSFlorian Hahn // For first order recurrences, we use the previous value (incoming value from 8599d24933fSFlorian Hahn // the latch) to check if it dominates all users of the recurrence. Bail out 8609d24933fSFlorian Hahn // if we have to sink such an instruction for another recurrence, as the 8619d24933fSFlorian Hahn // dominance requirement may not hold after sinking. 8629d24933fSFlorian Hahn BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 8639d24933fSFlorian Hahn if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 8649d24933fSFlorian Hahn Instruction *V = 8659d24933fSFlorian Hahn cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 8669d24933fSFlorian Hahn return SinkAfter.find(V) != SinkAfter.end(); 8679d24933fSFlorian Hahn })) 8689d24933fSFlorian Hahn return false; 8699d24933fSFlorian Hahn 870f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 871f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 872f2ec16ccSHideki Saito // will create another. 873f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 874f2ec16ccSHideki Saito PrimaryInduction = nullptr; 875f2ec16ccSHideki Saito 876f2ec16ccSHideki Saito return true; 877f2ec16ccSHideki Saito } 878f2ec16ccSHideki Saito 879f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 880f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 881f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 882f2ec16ccSHideki Saito if (LAR) { 883f2ec16ccSHideki Saito ORE->emit([&]() { 884f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 885f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 886f2ec16ccSHideki Saito }); 887f2ec16ccSHideki Saito } 888f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 889f2ec16ccSHideki Saito return false; 890f2ec16ccSHideki Saito 8915e9215f0SAnna Thomas if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 8929e97caf5SRenato Golin reportVectorizationFailure("Stores to a uniform address", 8939e97caf5SRenato Golin "write to a loop invariant address could not be vectorized", 894ec818d7fSHideki Saito "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 895f2ec16ccSHideki Saito return false; 896f2ec16ccSHideki Saito } 897f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 898f2ec16ccSHideki Saito PSE.addPredicate(LAI->getPSE().getUnionPredicate()); 899f2ec16ccSHideki Saito 900f2ec16ccSHideki Saito return true; 901f2ec16ccSHideki Saito } 902f2ec16ccSHideki Saito 9039f76a852SKerry McLaughlin bool LoopVectorizationLegality::canVectorizeFPMath( 9049f76a852SKerry McLaughlin bool EnableStrictReductions) { 9059f76a852SKerry McLaughlin 9069f76a852SKerry McLaughlin // First check if there is any ExactFP math or if we allow reassociations 9079f76a852SKerry McLaughlin if (!Requirements->getExactFPInst() || Hints->allowReordering()) 9089f76a852SKerry McLaughlin return true; 9099f76a852SKerry McLaughlin 9109f76a852SKerry McLaughlin // If the above is false, we have ExactFPMath & do not allow reordering. 9119f76a852SKerry McLaughlin // If the EnableStrictReductions flag is set, first check if we have any 9129f76a852SKerry McLaughlin // Exact FP induction vars, which we cannot vectorize. 9139f76a852SKerry McLaughlin if (!EnableStrictReductions || 9149f76a852SKerry McLaughlin any_of(getInductionVars(), [&](auto &Induction) -> bool { 9159f76a852SKerry McLaughlin InductionDescriptor IndDesc = Induction.second; 9169f76a852SKerry McLaughlin return IndDesc.getExactFPMathInst(); 9179f76a852SKerry McLaughlin })) 9189f76a852SKerry McLaughlin return false; 9199f76a852SKerry McLaughlin 9209f76a852SKerry McLaughlin // We can now only vectorize if all reductions with Exact FP math also 9219f76a852SKerry McLaughlin // have the isOrdered flag set, which indicates that we can move the 9229f76a852SKerry McLaughlin // reduction operations in-loop. 9239f76a852SKerry McLaughlin return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 924*5e6bfb66SSimon Pilgrim const RecurrenceDescriptor &RdxDesc = Reduction.second; 9259f76a852SKerry McLaughlin return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); 9269f76a852SKerry McLaughlin })); 9279f76a852SKerry McLaughlin } 9289f76a852SKerry McLaughlin 929f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) { 930f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 931f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 932f2ec16ccSHideki Saito if (!PN) 933f2ec16ccSHideki Saito return false; 934f2ec16ccSHideki Saito 935f2ec16ccSHideki Saito return Inductions.count(PN); 936f2ec16ccSHideki Saito } 937f2ec16ccSHideki Saito 938f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) { 939f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 940f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 941f2ec16ccSHideki Saito } 942f2ec16ccSHideki Saito 943f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) { 944f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 945f2ec16ccSHideki Saito } 946f2ec16ccSHideki Saito 947f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) { 948f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 949f2ec16ccSHideki Saito } 950f2ec16ccSHideki Saito 951f82966d1SSander de Smalen bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 952f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 953f2ec16ccSHideki Saito } 954f2ec16ccSHideki Saito 955f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 956bda8fbe2SSjoerd Meijer BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 957bda8fbe2SSjoerd Meijer SmallPtrSetImpl<const Instruction *> &MaskedOp, 9584f01122cSJoachim Meyer SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 959f2ec16ccSHideki Saito for (Instruction &I : *BB) { 960f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 961f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 962f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 963f2ec16ccSHideki Saito if (C->canTrap()) 964f2ec16ccSHideki Saito return false; 965f2ec16ccSHideki Saito } 96623c11380SFlorian Hahn 96723c11380SFlorian Hahn // We can predicate blocks with calls to assume, as long as we drop them in 96823c11380SFlorian Hahn // case we flatten the CFG via predication. 96923c11380SFlorian Hahn if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 97023c11380SFlorian Hahn ConditionalAssumes.insert(&I); 97123c11380SFlorian Hahn continue; 97223c11380SFlorian Hahn } 97323c11380SFlorian Hahn 974121cac01SJeroen Dobbelaere // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 975121cac01SJeroen Dobbelaere // TODO: there might be cases that it should block the vectorization. Let's 976121cac01SJeroen Dobbelaere // ignore those for now. 977c83cff45SNikita Popov if (isa<NoAliasScopeDeclInst>(&I)) 978121cac01SJeroen Dobbelaere continue; 979121cac01SJeroen Dobbelaere 980f2ec16ccSHideki Saito // We might be able to hoist the load. 981f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 982f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 983f2ec16ccSHideki Saito if (!LI) 984f2ec16ccSHideki Saito return false; 985f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 986f2ec16ccSHideki Saito MaskedOp.insert(LI); 987f2ec16ccSHideki Saito continue; 988f2ec16ccSHideki Saito } 989f2ec16ccSHideki Saito } 990f2ec16ccSHideki Saito 991f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 992f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 993f2ec16ccSHideki Saito if (!SI) 994f2ec16ccSHideki Saito return false; 995f2ec16ccSHideki Saito // Predicated store requires some form of masking: 996f2ec16ccSHideki Saito // 1) masked store HW instruction, 997f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 998f2ec16ccSHideki Saito // be aware on the race conditions), or 999f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 1000f2ec16ccSHideki Saito MaskedOp.insert(SI); 1001f2ec16ccSHideki Saito continue; 1002f2ec16ccSHideki Saito } 1003f2ec16ccSHideki Saito if (I.mayThrow()) 1004f2ec16ccSHideki Saito return false; 1005f2ec16ccSHideki Saito } 1006f2ec16ccSHideki Saito 1007f2ec16ccSHideki Saito return true; 1008f2ec16ccSHideki Saito } 1009f2ec16ccSHideki Saito 1010f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1011f2ec16ccSHideki Saito if (!EnableIfConversion) { 10129e97caf5SRenato Golin reportVectorizationFailure("If-conversion is disabled", 10139e97caf5SRenato Golin "if-conversion is disabled", 1014ec818d7fSHideki Saito "IfConversionDisabled", 1015ec818d7fSHideki Saito ORE, TheLoop); 1016f2ec16ccSHideki Saito return false; 1017f2ec16ccSHideki Saito } 1018f2ec16ccSHideki Saito 1019f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1020f2ec16ccSHideki Saito 1021cf3b5559SPhilip Reames // A list of pointers which are known to be dereferenceable within scope of 1022cf3b5559SPhilip Reames // the loop body for each iteration of the loop which executes. That is, 1023cf3b5559SPhilip Reames // the memory pointed to can be dereferenced (with the access size implied by 1024cf3b5559SPhilip Reames // the value's type) unconditionally within the loop header without 1025cf3b5559SPhilip Reames // introducing a new fault. 10263bbc71d6SSjoerd Meijer SmallPtrSet<Value *, 8> SafePointers; 1027f2ec16ccSHideki Saito 1028f2ec16ccSHideki Saito // Collect safe addresses. 1029f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 10307403569bSPhilip Reames if (!blockNeedsPredication(BB)) { 1031f2ec16ccSHideki Saito for (Instruction &I : *BB) 1032f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 10333bbc71d6SSjoerd Meijer SafePointers.insert(Ptr); 10347403569bSPhilip Reames continue; 10357403569bSPhilip Reames } 10367403569bSPhilip Reames 10377403569bSPhilip Reames // For a block which requires predication, a address may be safe to access 10387403569bSPhilip Reames // in the loop w/o predication if we can prove dereferenceability facts 10397403569bSPhilip Reames // sufficient to ensure it'll never fault within the loop. For the moment, 10407403569bSPhilip Reames // we restrict this to loads; stores are more complicated due to 10417403569bSPhilip Reames // concurrency restrictions. 10427403569bSPhilip Reames ScalarEvolution &SE = *PSE.getSE(); 10437403569bSPhilip Reames for (Instruction &I : *BB) { 10447403569bSPhilip Reames LoadInst *LI = dyn_cast<LoadInst>(&I); 1045467e5cf4SJoe Ellis if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 10467403569bSPhilip Reames isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 10473bbc71d6SSjoerd Meijer SafePointers.insert(LI->getPointerOperand()); 10487403569bSPhilip Reames } 1049f2ec16ccSHideki Saito } 1050f2ec16ccSHideki Saito 1051f2ec16ccSHideki Saito // Collect the blocks that need predication. 1052f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 1053f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 1054f2ec16ccSHideki Saito // We don't support switch statements inside loops. 1055f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 10569e97caf5SRenato Golin reportVectorizationFailure("Loop contains a switch statement", 10579e97caf5SRenato Golin "loop contains a switch statement", 1058ec818d7fSHideki Saito "LoopContainsSwitch", ORE, TheLoop, 1059ec818d7fSHideki Saito BB->getTerminator()); 1060f2ec16ccSHideki Saito return false; 1061f2ec16ccSHideki Saito } 1062f2ec16ccSHideki Saito 1063f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 1064f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 1065bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1066bda8fbe2SSjoerd Meijer ConditionalAssumes)) { 10679e97caf5SRenato Golin reportVectorizationFailure( 10689e97caf5SRenato Golin "Control flow cannot be substituted for a select", 10699e97caf5SRenato Golin "control flow cannot be substituted for a select", 1070ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1071ec818d7fSHideki Saito BB->getTerminator()); 1072f2ec16ccSHideki Saito return false; 1073f2ec16ccSHideki Saito } 1074f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 10759e97caf5SRenato Golin reportVectorizationFailure( 10769e97caf5SRenato Golin "Control flow cannot be substituted for a select", 10779e97caf5SRenato Golin "control flow cannot be substituted for a select", 1078ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1079ec818d7fSHideki Saito BB->getTerminator()); 1080f2ec16ccSHideki Saito return false; 1081f2ec16ccSHideki Saito } 1082f2ec16ccSHideki Saito } 1083f2ec16ccSHideki Saito 1084f2ec16ccSHideki Saito // We can if-convert this loop. 1085f2ec16ccSHideki Saito return true; 1086f2ec16ccSHideki Saito } 1087f2ec16ccSHideki Saito 1088f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 1089f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1090f2ec16ccSHideki Saito bool UseVPlanNativePath) { 109189c1e35fSStefanos Baziotis assert((UseVPlanNativePath || Lp->isInnermost()) && 1092f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 1093f2ec16ccSHideki Saito 1094f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 1095f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 1096f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 1097f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 1098f2ec16ccSHideki Saito 1099f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1100f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1101f2ec16ccSHideki Saito bool Result = true; 1102f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1103f2ec16ccSHideki Saito 1104f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 1105f2ec16ccSHideki Saito // be canonicalized. 1106f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 11079e97caf5SRenato Golin reportVectorizationFailure("Loop doesn't have a legal pre-header", 11089e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1109ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1110f2ec16ccSHideki Saito if (DoExtraAnalysis) 1111f2ec16ccSHideki Saito Result = false; 1112f2ec16ccSHideki Saito else 1113f2ec16ccSHideki Saito return false; 1114f2ec16ccSHideki Saito } 1115f2ec16ccSHideki Saito 1116f2ec16ccSHideki Saito // We must have a single backedge. 1117f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 11189e97caf5SRenato Golin reportVectorizationFailure("The loop must have a single backedge", 11199e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1120ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1121f2ec16ccSHideki Saito if (DoExtraAnalysis) 1122f2ec16ccSHideki Saito Result = false; 1123f2ec16ccSHideki Saito else 1124f2ec16ccSHideki Saito return false; 1125f2ec16ccSHideki Saito } 1126f2ec16ccSHideki Saito 11274b33b238SPhilip Reames // We currently must have a single "exit block" after the loop. Note that 11284b33b238SPhilip Reames // multiple "exiting blocks" inside the loop are allowed, provided they all 11294b33b238SPhilip Reames // reach the single exit block. 11304b33b238SPhilip Reames // TODO: This restriction can be relaxed in the near future, it's here solely 11314b33b238SPhilip Reames // to allow separation of changes for review. We need to generalize the phi 11324b33b238SPhilip Reames // update logic in a number of places. 11339f61fbd7SPhilip Reames if (!Lp->getUniqueExitBlock()) { 11344b33b238SPhilip Reames reportVectorizationFailure("The loop must have a unique exit block", 11359e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1136ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1137f2ec16ccSHideki Saito if (DoExtraAnalysis) 1138f2ec16ccSHideki Saito Result = false; 1139f2ec16ccSHideki Saito else 1140f2ec16ccSHideki Saito return false; 1141f2ec16ccSHideki Saito } 1142f2ec16ccSHideki Saito return Result; 1143f2ec16ccSHideki Saito } 1144f2ec16ccSHideki Saito 1145f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1146f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1147f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1148f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1149f2ec16ccSHideki Saito bool Result = true; 1150f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1151f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1152f2ec16ccSHideki Saito if (DoExtraAnalysis) 1153f2ec16ccSHideki Saito Result = false; 1154f2ec16ccSHideki Saito else 1155f2ec16ccSHideki Saito return false; 1156f2ec16ccSHideki Saito } 1157f2ec16ccSHideki Saito 1158f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1159f2ec16ccSHideki Saito // understood. 1160f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1161f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1162f2ec16ccSHideki Saito if (DoExtraAnalysis) 1163f2ec16ccSHideki Saito Result = false; 1164f2ec16ccSHideki Saito else 1165f2ec16ccSHideki Saito return false; 1166f2ec16ccSHideki Saito } 1167f2ec16ccSHideki Saito 1168f2ec16ccSHideki Saito return Result; 1169f2ec16ccSHideki Saito } 1170f2ec16ccSHideki Saito 1171f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1172f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1173f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1174f2ec16ccSHideki Saito bool Result = true; 1175f2ec16ccSHideki Saito 1176f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1177f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1178f2ec16ccSHideki Saito // vectorizer. 1179f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1180f2ec16ccSHideki Saito if (DoExtraAnalysis) 1181f2ec16ccSHideki Saito Result = false; 1182f2ec16ccSHideki Saito else 1183f2ec16ccSHideki Saito return false; 1184f2ec16ccSHideki Saito } 1185f2ec16ccSHideki Saito 1186f2ec16ccSHideki Saito // We need to have a loop header. 1187d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1188f2ec16ccSHideki Saito << '\n'); 1189f2ec16ccSHideki Saito 1190f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1191f2ec16ccSHideki Saito // point because they don't support outer loops. 119289c1e35fSStefanos Baziotis if (!TheLoop->isInnermost()) { 1193f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1194f2ec16ccSHideki Saito 1195f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 11969e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop", 11979e97caf5SRenato Golin "unsupported outer loop", 1198ec818d7fSHideki Saito "UnsupportedOuterLoop", 1199ec818d7fSHideki Saito ORE, TheLoop); 1200f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1201f2ec16ccSHideki Saito // outer loops. 1202f2ec16ccSHideki Saito return false; 1203f2ec16ccSHideki Saito } 1204f2ec16ccSHideki Saito 1205d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1206f2ec16ccSHideki Saito return Result; 1207f2ec16ccSHideki Saito } 1208f2ec16ccSHideki Saito 120989c1e35fSStefanos Baziotis assert(TheLoop->isInnermost() && "Inner loop expected."); 1210f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1211f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1212f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1213d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1214f2ec16ccSHideki Saito if (DoExtraAnalysis) 1215f2ec16ccSHideki Saito Result = false; 1216f2ec16ccSHideki Saito else 1217f2ec16ccSHideki Saito return false; 1218f2ec16ccSHideki Saito } 1219f2ec16ccSHideki Saito 1220f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1221f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1222d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1223f2ec16ccSHideki Saito if (DoExtraAnalysis) 1224f2ec16ccSHideki Saito Result = false; 1225f2ec16ccSHideki Saito else 1226f2ec16ccSHideki Saito return false; 1227f2ec16ccSHideki Saito } 1228f2ec16ccSHideki Saito 1229f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1230f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1231d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1232f2ec16ccSHideki Saito if (DoExtraAnalysis) 1233f2ec16ccSHideki Saito Result = false; 1234f2ec16ccSHideki Saito else 1235f2ec16ccSHideki Saito return false; 1236f2ec16ccSHideki Saito } 1237f2ec16ccSHideki Saito 1238d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1239f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1240f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1241f2ec16ccSHideki Saito : "") 1242f2ec16ccSHideki Saito << "!\n"); 1243f2ec16ccSHideki Saito 1244f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1245f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1246f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1247f2ec16ccSHideki Saito 1248f2ec16ccSHideki Saito if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) { 12499e97caf5SRenato Golin reportVectorizationFailure("Too many SCEV checks needed", 12509e97caf5SRenato Golin "Too many SCEV assumptions need to be made and checked at runtime", 1251ec818d7fSHideki Saito "TooManySCEVRunTimeChecks", ORE, TheLoop); 1252f2ec16ccSHideki Saito if (DoExtraAnalysis) 1253f2ec16ccSHideki Saito Result = false; 1254f2ec16ccSHideki Saito else 1255f2ec16ccSHideki Saito return false; 1256f2ec16ccSHideki Saito } 1257f2ec16ccSHideki Saito 1258f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1259f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1260f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1261f2ec16ccSHideki Saito // no restrictions. 1262f2ec16ccSHideki Saito return Result; 1263f2ec16ccSHideki Saito } 1264f2ec16ccSHideki Saito 1265d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1266b0b5312eSAyal Zaks 1267b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1268b0b5312eSAyal Zaks 1269d15df0edSAyal Zaks SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1270b0b5312eSAyal Zaks 1271d0d38df0SDavid Green for (auto &Reduction : getReductionVars()) 1272d15df0edSAyal Zaks ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1273d15df0edSAyal Zaks 1274d15df0edSAyal Zaks // TODO: handle non-reduction outside users when tail is folded by masking. 1275b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1276d15df0edSAyal Zaks // Check that all users of allowed exit values are inside the loop or 1277d15df0edSAyal Zaks // are the live-out of a reduction. 1278d15df0edSAyal Zaks if (ReductionLiveOuts.count(AE)) 1279d15df0edSAyal Zaks continue; 1280b0b5312eSAyal Zaks for (User *U : AE->users()) { 1281b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1282b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1283b0b5312eSAyal Zaks continue; 1284bda8fbe2SSjoerd Meijer LLVM_DEBUG( 1285bda8fbe2SSjoerd Meijer dbgs() 1286bda8fbe2SSjoerd Meijer << "LV: Cannot fold tail by masking, loop has an outside user for " 1287bda8fbe2SSjoerd Meijer << *UI << "\n"); 1288b0b5312eSAyal Zaks return false; 1289b0b5312eSAyal Zaks } 1290b0b5312eSAyal Zaks } 1291b0b5312eSAyal Zaks 1292b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1293b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1294b0b5312eSAyal Zaks 1295bda8fbe2SSjoerd Meijer SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1296bda8fbe2SSjoerd Meijer SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1297bda8fbe2SSjoerd Meijer 1298b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1299b0b5312eSAyal Zaks // do not need predication such as the header block. 1300b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1301bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 13024f01122cSJoachim Meyer TmpConditionalAssumes)) { 1303bda8fbe2SSjoerd Meijer LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1304b0b5312eSAyal Zaks return false; 1305b0b5312eSAyal Zaks } 1306b0b5312eSAyal Zaks } 1307b0b5312eSAyal Zaks 1308b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1309bda8fbe2SSjoerd Meijer 1310bda8fbe2SSjoerd Meijer MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1311bda8fbe2SSjoerd Meijer ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1312bda8fbe2SSjoerd Meijer TmpConditionalAssumes.end()); 1313bda8fbe2SSjoerd Meijer 1314b0b5312eSAyal Zaks return true; 1315b0b5312eSAyal Zaks } 1316b0b5312eSAyal Zaks 1317f2ec16ccSHideki Saito } // namespace llvm 1318