1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16ec818d7fSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorize.h"
17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
187403569bSPhilip Reames #include "llvm/Analysis/Loads.h"
197403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h"
20f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
21f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
22f2ec16ccSHideki Saito 
23f2ec16ccSHideki Saito using namespace llvm;
24f2ec16ccSHideki Saito 
25f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
26f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
27f2ec16ccSHideki Saito 
284e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication;
294e4ecae0SHideki Saito 
30f2ec16ccSHideki Saito static cl::opt<bool>
31f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
32f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
33f2ec16ccSHideki Saito 
34f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
35f2ec16ccSHideki Saito     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
36f2ec16ccSHideki Saito     cl::desc("The maximum allowed number of runtime memory checks with a "
37f2ec16ccSHideki Saito              "vectorize(enable) pragma."));
38f2ec16ccSHideki Saito 
39f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
40f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
41f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
42f2ec16ccSHideki Saito 
43f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
44f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
45f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
46f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
47f2ec16ccSHideki Saito 
48f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
49f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
50f2ec16ccSHideki Saito 
51f2ec16ccSHideki Saito namespace llvm {
52f2ec16ccSHideki Saito 
53f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
54f2ec16ccSHideki Saito   switch (Kind) {
55f2ec16ccSHideki Saito   case HK_WIDTH:
56f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
57f2ec16ccSHideki Saito   case HK_UNROLL:
58f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
59f2ec16ccSHideki Saito   case HK_FORCE:
60f2ec16ccSHideki Saito     return (Val <= 1);
61f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
6220b198ecSSjoerd Meijer   case HK_PREDICATE:
63f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
64f2ec16ccSHideki Saito   }
65f2ec16ccSHideki Saito   return false;
66f2ec16ccSHideki Saito }
67f2ec16ccSHideki Saito 
68d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
69d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
70f2ec16ccSHideki Saito                                        OptimizationRemarkEmitter &ORE)
71f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
72d4eb13c8SMichael Kruse       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
73f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
7420b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
7520b198ecSSjoerd Meijer       Predicate("vectorize.predicate.enable", 0, HK_PREDICATE), TheLoop(L),
7620b198ecSSjoerd Meijer       ORE(ORE) {
77f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
78f2ec16ccSHideki Saito   getHintsFromMetadata();
79f2ec16ccSHideki Saito 
80f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
81f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
82f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
83f2ec16ccSHideki Saito 
84f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
85f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
86f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
87f2ec16ccSHideki Saito     // nothing more that we can do.
88f2ec16ccSHideki Saito     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
89d4eb13c8SMichael Kruse   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
90f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
91f2ec16ccSHideki Saito }
92f2ec16ccSHideki Saito 
9377a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
9477a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
9577a614a6SMichael Kruse 
9677a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
9777a614a6SMichael Kruse       Context,
9877a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
9977a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
10077a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
10177a614a6SMichael Kruse   MDNode *NewLoopID =
10277a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
10377a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
10477a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
10577a614a6SMichael Kruse                                      {IsVectorizedMD});
10677a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
10777a614a6SMichael Kruse 
10877a614a6SMichael Kruse   // Update internal cache.
10977a614a6SMichael Kruse   IsVectorized.Value = 1;
11077a614a6SMichael Kruse }
11177a614a6SMichael Kruse 
112d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
113d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
114f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
115d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
116f2ec16ccSHideki Saito     emitRemarkWithHints();
117f2ec16ccSHideki Saito     return false;
118f2ec16ccSHideki Saito   }
119f2ec16ccSHideki Saito 
120d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
121d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
122f2ec16ccSHideki Saito     emitRemarkWithHints();
123f2ec16ccSHideki Saito     return false;
124f2ec16ccSHideki Saito   }
125f2ec16ccSHideki Saito 
126f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
127d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
128f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
129f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
130f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
131f2ec16ccSHideki Saito     ORE.emit([&]() {
132f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
133f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
134f2ec16ccSHideki Saito                                         L->getHeader())
135f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
136f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
137f2ec16ccSHideki Saito                 "vectorized";
138f2ec16ccSHideki Saito     });
139f2ec16ccSHideki Saito     return false;
140f2ec16ccSHideki Saito   }
141f2ec16ccSHideki Saito 
142f2ec16ccSHideki Saito   return true;
143f2ec16ccSHideki Saito }
144f2ec16ccSHideki Saito 
145f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
146f2ec16ccSHideki Saito   using namespace ore;
147f2ec16ccSHideki Saito 
148f2ec16ccSHideki Saito   ORE.emit([&]() {
149f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
150f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
151f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
152f2ec16ccSHideki Saito                                       TheLoop->getHeader())
153f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
154f2ec16ccSHideki Saito     else {
155f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
156f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
157f2ec16ccSHideki Saito       R << "loop not vectorized";
158f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
159f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
160f2ec16ccSHideki Saito         if (Width.Value != 0)
161f2ec16ccSHideki Saito           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
162f2ec16ccSHideki Saito         if (Interleave.Value != 0)
163f2ec16ccSHideki Saito           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
164f2ec16ccSHideki Saito         R << ")";
165f2ec16ccSHideki Saito       }
166f2ec16ccSHideki Saito       return R;
167f2ec16ccSHideki Saito     }
168f2ec16ccSHideki Saito   });
169f2ec16ccSHideki Saito }
170f2ec16ccSHideki Saito 
171f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
172f2ec16ccSHideki Saito   if (getWidth() == 1)
173f2ec16ccSHideki Saito     return LV_NAME;
174f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
175f2ec16ccSHideki Saito     return LV_NAME;
176f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
177f2ec16ccSHideki Saito     return LV_NAME;
178f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
179f2ec16ccSHideki Saito }
180f2ec16ccSHideki Saito 
181f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
182f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
183f2ec16ccSHideki Saito   if (!LoopID)
184f2ec16ccSHideki Saito     return;
185f2ec16ccSHideki Saito 
186f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
187f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
188f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
189f2ec16ccSHideki Saito 
190f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
191f2ec16ccSHideki Saito     const MDString *S = nullptr;
192f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
193f2ec16ccSHideki Saito 
194f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
195f2ec16ccSHideki Saito     // operand a MDString.
196f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
197f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
198f2ec16ccSHideki Saito         continue;
199f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
200f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
201f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
202f2ec16ccSHideki Saito     } else {
203f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
204f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
205f2ec16ccSHideki Saito     }
206f2ec16ccSHideki Saito 
207f2ec16ccSHideki Saito     if (!S)
208f2ec16ccSHideki Saito       continue;
209f2ec16ccSHideki Saito 
210f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
211f2ec16ccSHideki Saito     StringRef Name = S->getString();
212f2ec16ccSHideki Saito     if (Args.size() == 1)
213f2ec16ccSHideki Saito       setHint(Name, Args[0]);
214f2ec16ccSHideki Saito   }
215f2ec16ccSHideki Saito }
216f2ec16ccSHideki Saito 
217f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
218f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
219f2ec16ccSHideki Saito     return;
220f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
221f2ec16ccSHideki Saito 
222f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
223f2ec16ccSHideki Saito   if (!C)
224f2ec16ccSHideki Saito     return;
225f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
226f2ec16ccSHideki Saito 
22720b198ecSSjoerd Meijer   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
228f2ec16ccSHideki Saito   for (auto H : Hints) {
229f2ec16ccSHideki Saito     if (Name == H->Name) {
230f2ec16ccSHideki Saito       if (H->validate(Val))
231f2ec16ccSHideki Saito         H->Value = Val;
232f2ec16ccSHideki Saito       else
233d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
234f2ec16ccSHideki Saito       break;
235f2ec16ccSHideki Saito     }
236f2ec16ccSHideki Saito   }
237f2ec16ccSHideki Saito }
238f2ec16ccSHideki Saito 
239f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet(
240f2ec16ccSHideki Saito     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
241f2ec16ccSHideki Saito   const char *PassName = Hints.vectorizeAnalysisPassName();
242f2ec16ccSHideki Saito   bool Failed = false;
243f2ec16ccSHideki Saito   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
244f2ec16ccSHideki Saito     ORE.emit([&]() {
245f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisFPCommute(
246f2ec16ccSHideki Saito                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
247f2ec16ccSHideki Saito                  UnsafeAlgebraInst->getParent())
248f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
249f2ec16ccSHideki Saito                 "floating-point operations";
250f2ec16ccSHideki Saito     });
251f2ec16ccSHideki Saito     Failed = true;
252f2ec16ccSHideki Saito   }
253f2ec16ccSHideki Saito 
254f2ec16ccSHideki Saito   // Test if runtime memcheck thresholds are exceeded.
255f2ec16ccSHideki Saito   bool PragmaThresholdReached =
256f2ec16ccSHideki Saito       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
257f2ec16ccSHideki Saito   bool ThresholdReached =
258f2ec16ccSHideki Saito       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
259f2ec16ccSHideki Saito   if ((ThresholdReached && !Hints.allowReordering()) ||
260f2ec16ccSHideki Saito       PragmaThresholdReached) {
261f2ec16ccSHideki Saito     ORE.emit([&]() {
262f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
263f2ec16ccSHideki Saito                                                 L->getStartLoc(),
264f2ec16ccSHideki Saito                                                 L->getHeader())
265f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
266f2ec16ccSHideki Saito                 "memory operations";
267f2ec16ccSHideki Saito     });
268d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
269f2ec16ccSHideki Saito     Failed = true;
270f2ec16ccSHideki Saito   }
271f2ec16ccSHideki Saito 
272f2ec16ccSHideki Saito   return Failed;
273f2ec16ccSHideki Saito }
274f2ec16ccSHideki Saito 
275f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
276f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
277f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
278f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
279f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
280f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
281f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
282f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
283f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
284f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
285f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
286f2ec16ccSHideki Saito //
287f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
288f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
289f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
290f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
291f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
292f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
293f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
294f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
295f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
296f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
297f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
298f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
299f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
300f2ec16ccSHideki Saito 
301f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
302f2ec16ccSHideki Saito   if (Lp == OuterLp)
303f2ec16ccSHideki Saito     return true;
304f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
305f2ec16ccSHideki Saito 
306f2ec16ccSHideki Saito   // 1.
307f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
308f2ec16ccSHideki Saito   if (!IV) {
309d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
310f2ec16ccSHideki Saito     return false;
311f2ec16ccSHideki Saito   }
312f2ec16ccSHideki Saito 
313f2ec16ccSHideki Saito   // 2.
314f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
315f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
316f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
317d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
318f2ec16ccSHideki Saito     return false;
319f2ec16ccSHideki Saito   }
320f2ec16ccSHideki Saito 
321f2ec16ccSHideki Saito   // 3.
322f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
323f2ec16ccSHideki Saito   if (!LatchCmp) {
324d34e60caSNicola Zaghen     LLVM_DEBUG(
325d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
326f2ec16ccSHideki Saito     return false;
327f2ec16ccSHideki Saito   }
328f2ec16ccSHideki Saito 
329f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
330f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
331f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
332f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
333f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
334d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
335f2ec16ccSHideki Saito     return false;
336f2ec16ccSHideki Saito   }
337f2ec16ccSHideki Saito 
338f2ec16ccSHideki Saito   return true;
339f2ec16ccSHideki Saito }
340f2ec16ccSHideki Saito 
341f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
342f2ec16ccSHideki Saito // OuterLp.
343f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
344f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
345f2ec16ccSHideki Saito     return false;
346f2ec16ccSHideki Saito 
347f2ec16ccSHideki Saito   // Check if nested loops are uniform.
348f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
349f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
350f2ec16ccSHideki Saito       return false;
351f2ec16ccSHideki Saito 
352f2ec16ccSHideki Saito   return true;
353f2ec16ccSHideki Saito }
354f2ec16ccSHideki Saito 
3555f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node.
356f2ec16ccSHideki Saito ///
357f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if
358f2ec16ccSHideki Saito /// convert.
359f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) {
360f2ec16ccSHideki Saito   for (PHINode &Phi : BB->phis()) {
361f2ec16ccSHideki Saito     for (Value *V : Phi.incoming_values())
362f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(V))
363f2ec16ccSHideki Saito         if (C->canTrap())
364f2ec16ccSHideki Saito           return false;
365f2ec16ccSHideki Saito   }
366f2ec16ccSHideki Saito   return true;
367f2ec16ccSHideki Saito }
368f2ec16ccSHideki Saito 
369f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
370f2ec16ccSHideki Saito   if (Ty->isPointerTy())
371f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
372f2ec16ccSHideki Saito 
373f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
374f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
375f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
376f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
377f2ec16ccSHideki Saito 
378f2ec16ccSHideki Saito   return Ty;
379f2ec16ccSHideki Saito }
380f2ec16ccSHideki Saito 
381f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
382f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
383f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
384f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
385f2ec16ccSHideki Saito     return Ty0;
386f2ec16ccSHideki Saito   return Ty1;
387f2ec16ccSHideki Saito }
388f2ec16ccSHideki Saito 
3895f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
390f2ec16ccSHideki Saito /// identified reduction variable.
391f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
392f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
39360a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
394f2ec16ccSHideki Saito   // other instructions must not have external users.
395f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
396f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
397f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
398f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
399f2ec16ccSHideki Saito       // This user may be a reduction exit value.
400f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
401d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
402f2ec16ccSHideki Saito         return true;
403f2ec16ccSHideki Saito       }
404f2ec16ccSHideki Saito     }
405f2ec16ccSHideki Saito   return false;
406f2ec16ccSHideki Saito }
407f2ec16ccSHideki Saito 
408f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
409f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
410f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
411f2ec16ccSHideki Saito 
412d1170dbeSSjoerd Meijer   bool CanAddPredicate = !TheLoop->getHeader()->getParent()->hasOptSize();
413d1170dbeSSjoerd Meijer   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
414f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
415f2ec16ccSHideki Saito     return Stride;
416f2ec16ccSHideki Saito   return 0;
417f2ec16ccSHideki Saito }
418f2ec16ccSHideki Saito 
419f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
420f2ec16ccSHideki Saito   return LAI->isUniform(V);
421f2ec16ccSHideki Saito }
422f2ec16ccSHideki Saito 
423f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
424f2ec16ccSHideki Saito   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
425f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
426f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
427f2ec16ccSHideki Saito   bool Result = true;
428f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
429f2ec16ccSHideki Saito 
430f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
431f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
432f2ec16ccSHideki Saito     // not supported yet.
433f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
434f2ec16ccSHideki Saito     if (!Br) {
4359e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4369e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
437ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
438f2ec16ccSHideki Saito       if (DoExtraAnalysis)
439f2ec16ccSHideki Saito         Result = false;
440f2ec16ccSHideki Saito       else
441f2ec16ccSHideki Saito         return false;
442f2ec16ccSHideki Saito     }
443f2ec16ccSHideki Saito 
444f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
445f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
446f2ec16ccSHideki Saito     // backedges are supported.
4474e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
4484e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
4494e4ecae0SHideki Saito     // once VPlan predication is on by default.
4504e4ecae0SHideki Saito     if (!EnableVPlanPredication && Br && Br->isConditional() &&
451f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
452f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
453f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
4549e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
4559e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
456ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
457f2ec16ccSHideki Saito       if (DoExtraAnalysis)
458f2ec16ccSHideki Saito         Result = false;
459f2ec16ccSHideki Saito       else
460f2ec16ccSHideki Saito         return false;
461f2ec16ccSHideki Saito     }
462f2ec16ccSHideki Saito   }
463f2ec16ccSHideki Saito 
464f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
465f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
466f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
467f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
4689e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
4699e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
470ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
471f2ec16ccSHideki Saito     if (DoExtraAnalysis)
472f2ec16ccSHideki Saito       Result = false;
473f2ec16ccSHideki Saito     else
474f2ec16ccSHideki Saito       return false;
475f2ec16ccSHideki Saito   }
476f2ec16ccSHideki Saito 
477ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
478ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
4799e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
4809e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
481ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
482ea7f3035SHideki Saito     if (DoExtraAnalysis)
483ea7f3035SHideki Saito       Result = false;
484ea7f3035SHideki Saito     else
485ea7f3035SHideki Saito       return false;
486ea7f3035SHideki Saito   }
487ea7f3035SHideki Saito 
488f2ec16ccSHideki Saito   return Result;
489f2ec16ccSHideki Saito }
490f2ec16ccSHideki Saito 
491f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
492f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
493f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
494f2ec16ccSHideki Saito   Inductions[Phi] = ID;
495f2ec16ccSHideki Saito 
496f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
497f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
498f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
499f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
500f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
501f2ec16ccSHideki Saito   if (!Casts.empty())
502f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
503f2ec16ccSHideki Saito 
504f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
505f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
506f2ec16ccSHideki Saito 
507f2ec16ccSHideki Saito   // Get the widest type.
508f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
509f2ec16ccSHideki Saito     if (!WidestIndTy)
510f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
511f2ec16ccSHideki Saito     else
512f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
513f2ec16ccSHideki Saito   }
514f2ec16ccSHideki Saito 
515f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
516f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
517f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
518f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
519f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
520f2ec16ccSHideki Saito 
521f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
522f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
523f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
524f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
525f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
526f2ec16ccSHideki Saito       PrimaryInduction = Phi;
527f2ec16ccSHideki Saito   }
528f2ec16ccSHideki Saito 
529f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
530f2ec16ccSHideki Saito   // back into the PHI node may have external users.
531f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
532f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5336a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5346a1dd77fSAnna Thomas   // details).
535f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().isAlwaysTrue()) {
536f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
537f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
538f2ec16ccSHideki Saito   }
539f2ec16ccSHideki Saito 
540d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
541f2ec16ccSHideki Saito }
542f2ec16ccSHideki Saito 
543ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
544ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
545ea7f3035SHideki Saito 
546ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
547ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
548ea7f3035SHideki Saito     InductionDescriptor ID;
549ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
550ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
551ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
552ea7f3035SHideki Saito       return true;
553ea7f3035SHideki Saito     } else {
554ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
555ea7f3035SHideki Saito       // induction.
556ea7f3035SHideki Saito       LLVM_DEBUG(
557ea7f3035SHideki Saito           dbgs()
558ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
559ea7f3035SHideki Saito       return false;
560ea7f3035SHideki Saito     }
561ea7f3035SHideki Saito   };
562ea7f3035SHideki Saito 
563ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
564ea7f3035SHideki Saito     return true;
565ea7f3035SHideki Saito   else
566ea7f3035SHideki Saito     return false;
567ea7f3035SHideki Saito }
568ea7f3035SHideki Saito 
569f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
570f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
571f2ec16ccSHideki Saito 
572f2ec16ccSHideki Saito   // Look for the attribute signaling the absence of NaNs.
573f2ec16ccSHideki Saito   Function &F = *Header->getParent();
574f2ec16ccSHideki Saito   HasFunNoNaNAttr =
575f2ec16ccSHideki Saito       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
576f2ec16ccSHideki Saito 
577f2ec16ccSHideki Saito   // For each block in the loop.
578f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
579f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
580f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
581f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
582f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
583f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
584f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
585f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
5869e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
5879e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
588ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
589f2ec16ccSHideki Saito           return false;
590f2ec16ccSHideki Saito         }
591f2ec16ccSHideki Saito 
592f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
593f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
594f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
595f2ec16ccSHideki Saito         if (BB != Header) {
59660a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
59760a1e4ddSAnna Thomas           // them to the list of allowed exits.
59860a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
59960a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
60060a1e4ddSAnna Thomas           // recurrences.
601dd18ce45SBjorn Pettersson           AllowedExit.insert(&I);
602f2ec16ccSHideki Saito           continue;
603f2ec16ccSHideki Saito         }
604f2ec16ccSHideki Saito 
605f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
606f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6079e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6089e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
609ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
610f2ec16ccSHideki Saito           return false;
611f2ec16ccSHideki Saito         }
612f2ec16ccSHideki Saito 
613f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
614f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
615f2ec16ccSHideki Saito                                                  DT)) {
616f2ec16ccSHideki Saito           if (RedDes.hasUnsafeAlgebra())
617f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
618f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
619f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
620f2ec16ccSHideki Saito           continue;
621f2ec16ccSHideki Saito         }
622f2ec16ccSHideki Saito 
623b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
624b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
625b02b0ad8SAnna Thomas         // limited to):
626b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
627b02b0ad8SAnna Thomas         // is not available when vectorized
628b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
629b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
630b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
631b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
632b02b0ad8SAnna Thomas         // handling below
633b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
634b02b0ad8SAnna Thomas         // extraction.
635b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
636b02b0ad8SAnna Thomas         // of these NotAllowedExit.
637f2ec16ccSHideki Saito         InductionDescriptor ID;
638f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
639f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
640f2ec16ccSHideki Saito           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
641f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
642f2ec16ccSHideki Saito           continue;
643f2ec16ccSHideki Saito         }
644f2ec16ccSHideki Saito 
645f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
646f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
647f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
648f2ec16ccSHideki Saito           continue;
649f2ec16ccSHideki Saito         }
650f2ec16ccSHideki Saito 
651f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
652f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
653f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
654f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
655f2ec16ccSHideki Saito           continue;
656f2ec16ccSHideki Saito         }
657f2ec16ccSHideki Saito 
6589e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
6599e97caf5SRenato Golin             "value that could not be identified as "
6609e97caf5SRenato Golin             "reduction is used outside the loop",
661ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
662f2ec16ccSHideki Saito         return false;
663f2ec16ccSHideki Saito       } // end of PHI handling
664f2ec16ccSHideki Saito 
665f2ec16ccSHideki Saito       // We handle calls that:
666f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
667f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
668f2ec16ccSHideki Saito       //   * Have a vector version available.
669f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
670f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
671f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
672f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
673f2ec16ccSHideki Saito             TLI->isFunctionVectorizable(CI->getCalledFunction()->getName()))) {
6747d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
6757d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
6767d65fe5cSSanjay Patel         LibFunc Func;
6777d65fe5cSSanjay Patel         bool IsMathLibCall =
6787d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
6797d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
6807d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
6817d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
6827d65fe5cSSanjay Patel 
6837d65fe5cSSanjay Patel         if (IsMathLibCall) {
6847d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
6857d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
6867d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
6877d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
6889e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
6899e97caf5SRenato Golin               "library call cannot be vectorized. "
6907d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
6919e97caf5SRenato Golin               "or similar flags",
692ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
6937d65fe5cSSanjay Patel         } else {
6949e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
6959e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
696ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
6977d65fe5cSSanjay Patel         }
698f2ec16ccSHideki Saito         return false;
699f2ec16ccSHideki Saito       }
700f2ec16ccSHideki Saito 
701a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
702a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
703a066f1f9SSimon Pilgrim       if (CI) {
704f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
705a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
706a066f1f9SSimon Pilgrim         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
707a066f1f9SSimon Pilgrim           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
708a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7099e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7109e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
711ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
712f2ec16ccSHideki Saito               return false;
713f2ec16ccSHideki Saito             }
714f2ec16ccSHideki Saito           }
715a066f1f9SSimon Pilgrim       }
716f2ec16ccSHideki Saito 
717f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
718f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
719f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
720f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
721f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
7229e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
7239e97caf5SRenato Golin             "instruction return type cannot be vectorized",
724ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
725f2ec16ccSHideki Saito         return false;
726f2ec16ccSHideki Saito       }
727f2ec16ccSHideki Saito 
728f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
729f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
730f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
731f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
7329e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
7339e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
734ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
735f2ec16ccSHideki Saito           return false;
736f2ec16ccSHideki Saito         }
737f2ec16ccSHideki Saito 
7386452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
7396452bdd2SWarren Ristow         // supported on the target.
7406452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
7416452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
7426452bdd2SWarren Ristow           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
7436452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
744*5e1e83eeSGuillaume Chatelet           const MaybeAlign Alignment = getLoadStoreAlignment(ST);
74533671cefSGuillaume Chatelet           assert(Alignment && "Alignment should be set");
746*5e1e83eeSGuillaume Chatelet           if (!TTI->isLegalNTStore(VecTy, *Alignment)) {
7476452bdd2SWarren Ristow             reportVectorizationFailure(
7486452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
7496452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
750ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
7516452bdd2SWarren Ristow             return false;
7526452bdd2SWarren Ristow           }
7536452bdd2SWarren Ristow         }
7546452bdd2SWarren Ristow 
7556452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
7566452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
7576452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
7586452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
7596452bdd2SWarren Ristow           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
7606452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
761*5e1e83eeSGuillaume Chatelet           const MaybeAlign Alignment = getLoadStoreAlignment(LD);
76233671cefSGuillaume Chatelet           assert(Alignment && "Alignment should be set");
763*5e1e83eeSGuillaume Chatelet           if (!TTI->isLegalNTLoad(VecTy, *Alignment)) {
7646452bdd2SWarren Ristow             reportVectorizationFailure(
7656452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
7666452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
767ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
7686452bdd2SWarren Ristow             return false;
7696452bdd2SWarren Ristow           }
7706452bdd2SWarren Ristow         }
7716452bdd2SWarren Ristow 
772f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
773f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
774f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
775f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
776f2ec16ccSHideki Saito         // semantics.
777f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
778f2ec16ccSHideki Saito                  !I.isFast()) {
779d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
780f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
781f2ec16ccSHideki Saito       }
782f2ec16ccSHideki Saito 
783f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
784f2ec16ccSHideki Saito       // All other instructions must not have external users.
785f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
786b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
787b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
788b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
789b02b0ad8SAnna Thomas         // outside the loop.
790b02b0ad8SAnna Thomas         if (PSE.getUnionPredicate().isAlwaysTrue()) {
791b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
792b02b0ad8SAnna Thomas           continue;
793b02b0ad8SAnna Thomas         }
7949e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
7959e97caf5SRenato Golin                                    "value cannot be used outside the loop",
796ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
797f2ec16ccSHideki Saito         return false;
798f2ec16ccSHideki Saito       }
799f2ec16ccSHideki Saito     } // next instr.
800f2ec16ccSHideki Saito   }
801f2ec16ccSHideki Saito 
802f2ec16ccSHideki Saito   if (!PrimaryInduction) {
803f2ec16ccSHideki Saito     if (Inductions.empty()) {
8049e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8059e97caf5SRenato Golin           "loop induction variable could not be identified",
806ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
807f2ec16ccSHideki Saito       return false;
8084f27730eSWarren Ristow     } else if (!WidestIndTy) {
8099e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8109e97caf5SRenato Golin           "integer loop induction variable could not be identified",
811ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8124f27730eSWarren Ristow       return false;
8139e97caf5SRenato Golin     } else {
8149e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
815f2ec16ccSHideki Saito     }
816f2ec16ccSHideki Saito   }
817f2ec16ccSHideki Saito 
818f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
819f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
820f2ec16ccSHideki Saito   // will create another.
821f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
822f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
823f2ec16ccSHideki Saito 
824f2ec16ccSHideki Saito   return true;
825f2ec16ccSHideki Saito }
826f2ec16ccSHideki Saito 
827f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
828f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
829f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
830f2ec16ccSHideki Saito   if (LAR) {
831f2ec16ccSHideki Saito     ORE->emit([&]() {
832f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
833f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
834f2ec16ccSHideki Saito     });
835f2ec16ccSHideki Saito   }
836f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
837f2ec16ccSHideki Saito     return false;
838f2ec16ccSHideki Saito 
8395e9215f0SAnna Thomas   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
8409e97caf5SRenato Golin     reportVectorizationFailure("Stores to a uniform address",
8419e97caf5SRenato Golin         "write to a loop invariant address could not be vectorized",
842ec818d7fSHideki Saito         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
843f2ec16ccSHideki Saito     return false;
844f2ec16ccSHideki Saito   }
845f2ec16ccSHideki Saito   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
846f2ec16ccSHideki Saito   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
847f2ec16ccSHideki Saito 
848f2ec16ccSHideki Saito   return true;
849f2ec16ccSHideki Saito }
850f2ec16ccSHideki Saito 
851f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
852f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
853f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
854f2ec16ccSHideki Saito   if (!PN)
855f2ec16ccSHideki Saito     return false;
856f2ec16ccSHideki Saito 
857f2ec16ccSHideki Saito   return Inductions.count(PN);
858f2ec16ccSHideki Saito }
859f2ec16ccSHideki Saito 
860f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
861f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
862f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
863f2ec16ccSHideki Saito }
864f2ec16ccSHideki Saito 
865f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
866f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
867f2ec16ccSHideki Saito }
868f2ec16ccSHideki Saito 
869f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
870f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
871f2ec16ccSHideki Saito }
872f2ec16ccSHideki Saito 
873f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
874f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
875f2ec16ccSHideki Saito }
876f2ec16ccSHideki Saito 
877f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
878d57d73daSDorit Nuzman     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, bool PreserveGuards) {
879f2ec16ccSHideki Saito   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
880f2ec16ccSHideki Saito 
881f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
882f2ec16ccSHideki Saito     // Check that we don't have a constant expression that can trap as operand.
883f2ec16ccSHideki Saito     for (Value *Operand : I.operands()) {
884f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(Operand))
885f2ec16ccSHideki Saito         if (C->canTrap())
886f2ec16ccSHideki Saito           return false;
887f2ec16ccSHideki Saito     }
888f2ec16ccSHideki Saito     // We might be able to hoist the load.
889f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
890f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
891f2ec16ccSHideki Saito       if (!LI)
892f2ec16ccSHideki Saito         return false;
893f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
894f2ec16ccSHideki Saito         // !llvm.mem.parallel_loop_access implies if-conversion safety.
895f2ec16ccSHideki Saito         // Otherwise, record that the load needs (real or emulated) masking
896f2ec16ccSHideki Saito         // and let the cost model decide.
897d57d73daSDorit Nuzman         if (!IsAnnotatedParallel || PreserveGuards)
898f2ec16ccSHideki Saito           MaskedOp.insert(LI);
899f2ec16ccSHideki Saito         continue;
900f2ec16ccSHideki Saito       }
901f2ec16ccSHideki Saito     }
902f2ec16ccSHideki Saito 
903f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
904f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
905f2ec16ccSHideki Saito       if (!SI)
906f2ec16ccSHideki Saito         return false;
907f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
908f2ec16ccSHideki Saito       // 1) masked store HW instruction,
909f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
910f2ec16ccSHideki Saito       //    be aware on the race conditions), or
911f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
912f2ec16ccSHideki Saito       MaskedOp.insert(SI);
913f2ec16ccSHideki Saito       continue;
914f2ec16ccSHideki Saito     }
915f2ec16ccSHideki Saito     if (I.mayThrow())
916f2ec16ccSHideki Saito       return false;
917f2ec16ccSHideki Saito   }
918f2ec16ccSHideki Saito 
919f2ec16ccSHideki Saito   return true;
920f2ec16ccSHideki Saito }
921f2ec16ccSHideki Saito 
922f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
923f2ec16ccSHideki Saito   if (!EnableIfConversion) {
9249e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
9259e97caf5SRenato Golin                                "if-conversion is disabled",
926ec818d7fSHideki Saito                                "IfConversionDisabled",
927ec818d7fSHideki Saito                                ORE, TheLoop);
928f2ec16ccSHideki Saito     return false;
929f2ec16ccSHideki Saito   }
930f2ec16ccSHideki Saito 
931f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
932f2ec16ccSHideki Saito 
933cf3b5559SPhilip Reames   // A list of pointers which are known to be dereferenceable within scope of
934cf3b5559SPhilip Reames   // the loop body for each iteration of the loop which executes.  That is,
935cf3b5559SPhilip Reames   // the memory pointed to can be dereferenced (with the access size implied by
936cf3b5559SPhilip Reames   // the value's type) unconditionally within the loop header without
937cf3b5559SPhilip Reames   // introducing a new fault.
938f2ec16ccSHideki Saito   SmallPtrSet<Value *, 8> SafePointes;
939f2ec16ccSHideki Saito 
940f2ec16ccSHideki Saito   // Collect safe addresses.
941f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
9427403569bSPhilip Reames     if (!blockNeedsPredication(BB)) {
943f2ec16ccSHideki Saito       for (Instruction &I : *BB)
944f2ec16ccSHideki Saito         if (auto *Ptr = getLoadStorePointerOperand(&I))
945f2ec16ccSHideki Saito           SafePointes.insert(Ptr);
9467403569bSPhilip Reames       continue;
9477403569bSPhilip Reames     }
9487403569bSPhilip Reames 
9497403569bSPhilip Reames     // For a block which requires predication, a address may be safe to access
9507403569bSPhilip Reames     // in the loop w/o predication if we can prove dereferenceability facts
9517403569bSPhilip Reames     // sufficient to ensure it'll never fault within the loop. For the moment,
9527403569bSPhilip Reames     // we restrict this to loads; stores are more complicated due to
9537403569bSPhilip Reames     // concurrency restrictions.
9547403569bSPhilip Reames     ScalarEvolution &SE = *PSE.getSE();
9557403569bSPhilip Reames     for (Instruction &I : *BB) {
9567403569bSPhilip Reames       LoadInst *LI = dyn_cast<LoadInst>(&I);
9577403569bSPhilip Reames       if (LI && !mustSuppressSpeculation(*LI) &&
9587403569bSPhilip Reames           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
9597403569bSPhilip Reames         SafePointes.insert(LI->getPointerOperand());
9607403569bSPhilip Reames     }
961f2ec16ccSHideki Saito   }
962f2ec16ccSHideki Saito 
963f2ec16ccSHideki Saito   // Collect the blocks that need predication.
964f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
965f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
966f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
967f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
9689e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
9699e97caf5SRenato Golin                                  "loop contains a switch statement",
970ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
971ec818d7fSHideki Saito                                  BB->getTerminator());
972f2ec16ccSHideki Saito       return false;
973f2ec16ccSHideki Saito     }
974f2ec16ccSHideki Saito 
975f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
976f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
977f2ec16ccSHideki Saito       if (!blockCanBePredicated(BB, SafePointes)) {
9789e97caf5SRenato Golin         reportVectorizationFailure(
9799e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
9809e97caf5SRenato Golin             "control flow cannot be substituted for a select",
981ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
982ec818d7fSHideki Saito             BB->getTerminator());
983f2ec16ccSHideki Saito         return false;
984f2ec16ccSHideki Saito       }
985f2ec16ccSHideki Saito     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
9869e97caf5SRenato Golin       reportVectorizationFailure(
9879e97caf5SRenato Golin           "Control flow cannot be substituted for a select",
9889e97caf5SRenato Golin           "control flow cannot be substituted for a select",
989ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
990ec818d7fSHideki Saito           BB->getTerminator());
991f2ec16ccSHideki Saito       return false;
992f2ec16ccSHideki Saito     }
993f2ec16ccSHideki Saito   }
994f2ec16ccSHideki Saito 
995f2ec16ccSHideki Saito   // We can if-convert this loop.
996f2ec16ccSHideki Saito   return true;
997f2ec16ccSHideki Saito }
998f2ec16ccSHideki Saito 
999f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
1000f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1001f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
1002f2ec16ccSHideki Saito   assert((UseVPlanNativePath || Lp->empty()) &&
1003f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
1004f2ec16ccSHideki Saito 
1005f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
1006f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
1007f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
1008f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
1009f2ec16ccSHideki Saito 
1010f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1011f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1012f2ec16ccSHideki Saito   bool Result = true;
1013f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1014f2ec16ccSHideki Saito 
1015f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1016f2ec16ccSHideki Saito   // be canonicalized.
1017f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
10189e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
10199e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1020ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1021f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1022f2ec16ccSHideki Saito       Result = false;
1023f2ec16ccSHideki Saito     else
1024f2ec16ccSHideki Saito       return false;
1025f2ec16ccSHideki Saito   }
1026f2ec16ccSHideki Saito 
1027f2ec16ccSHideki Saito   // We must have a single backedge.
1028f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
10299e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
10309e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1031ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1032f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1033f2ec16ccSHideki Saito       Result = false;
1034f2ec16ccSHideki Saito     else
1035f2ec16ccSHideki Saito       return false;
1036f2ec16ccSHideki Saito   }
1037f2ec16ccSHideki Saito 
1038f2ec16ccSHideki Saito   // We must have a single exiting block.
1039f2ec16ccSHideki Saito   if (!Lp->getExitingBlock()) {
10409e97caf5SRenato Golin     reportVectorizationFailure("The loop must have an exiting block",
10419e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1042ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1043f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1044f2ec16ccSHideki Saito       Result = false;
1045f2ec16ccSHideki Saito     else
1046f2ec16ccSHideki Saito       return false;
1047f2ec16ccSHideki Saito   }
1048f2ec16ccSHideki Saito 
1049f2ec16ccSHideki Saito   // We only handle bottom-tested loops, i.e. loop in which the condition is
1050f2ec16ccSHideki Saito   // checked at the end of each iteration. With that we can assume that all
1051f2ec16ccSHideki Saito   // instructions in the loop are executed the same number of times.
1052f2ec16ccSHideki Saito   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
10539e97caf5SRenato Golin     reportVectorizationFailure("The exiting block is not the loop latch",
10549e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1055ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1056f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1057f2ec16ccSHideki Saito       Result = false;
1058f2ec16ccSHideki Saito     else
1059f2ec16ccSHideki Saito       return false;
1060f2ec16ccSHideki Saito   }
1061f2ec16ccSHideki Saito 
1062f2ec16ccSHideki Saito   return Result;
1063f2ec16ccSHideki Saito }
1064f2ec16ccSHideki Saito 
1065f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1066f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1067f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1068f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1069f2ec16ccSHideki Saito   bool Result = true;
1070f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1071f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1072f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1073f2ec16ccSHideki Saito       Result = false;
1074f2ec16ccSHideki Saito     else
1075f2ec16ccSHideki Saito       return false;
1076f2ec16ccSHideki Saito   }
1077f2ec16ccSHideki Saito 
1078f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1079f2ec16ccSHideki Saito   // understood.
1080f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1081f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1082f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1083f2ec16ccSHideki Saito         Result = false;
1084f2ec16ccSHideki Saito       else
1085f2ec16ccSHideki Saito         return false;
1086f2ec16ccSHideki Saito     }
1087f2ec16ccSHideki Saito 
1088f2ec16ccSHideki Saito   return Result;
1089f2ec16ccSHideki Saito }
1090f2ec16ccSHideki Saito 
1091f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1092f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1093f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1094f2ec16ccSHideki Saito   bool Result = true;
1095f2ec16ccSHideki Saito 
1096f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1097f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1098f2ec16ccSHideki Saito   // vectorizer.
1099f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1100f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1101f2ec16ccSHideki Saito       Result = false;
1102f2ec16ccSHideki Saito     else
1103f2ec16ccSHideki Saito       return false;
1104f2ec16ccSHideki Saito   }
1105f2ec16ccSHideki Saito 
1106f2ec16ccSHideki Saito   // We need to have a loop header.
1107d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1108f2ec16ccSHideki Saito                     << '\n');
1109f2ec16ccSHideki Saito 
1110f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1111f2ec16ccSHideki Saito   // point because they don't support outer loops.
1112f2ec16ccSHideki Saito   if (!TheLoop->empty()) {
1113f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1114f2ec16ccSHideki Saito 
1115f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
11169e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
11179e97caf5SRenato Golin                                  "unsupported outer loop",
1118ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1119ec818d7fSHideki Saito                                  ORE, TheLoop);
1120f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1121f2ec16ccSHideki Saito       // outer loops.
1122f2ec16ccSHideki Saito       return false;
1123f2ec16ccSHideki Saito     }
1124f2ec16ccSHideki Saito 
1125d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1126f2ec16ccSHideki Saito     return Result;
1127f2ec16ccSHideki Saito   }
1128f2ec16ccSHideki Saito 
1129f2ec16ccSHideki Saito   assert(TheLoop->empty() && "Inner loop expected.");
1130f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1131f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1132f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1133d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1134f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1135f2ec16ccSHideki Saito       Result = false;
1136f2ec16ccSHideki Saito     else
1137f2ec16ccSHideki Saito       return false;
1138f2ec16ccSHideki Saito   }
1139f2ec16ccSHideki Saito 
1140f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1141f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1142d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1143f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1144f2ec16ccSHideki Saito       Result = false;
1145f2ec16ccSHideki Saito     else
1146f2ec16ccSHideki Saito       return false;
1147f2ec16ccSHideki Saito   }
1148f2ec16ccSHideki Saito 
1149f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1150f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1151d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1152f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1153f2ec16ccSHideki Saito       Result = false;
1154f2ec16ccSHideki Saito     else
1155f2ec16ccSHideki Saito       return false;
1156f2ec16ccSHideki Saito   }
1157f2ec16ccSHideki Saito 
1158d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1159f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1160f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1161f2ec16ccSHideki Saito                             : "")
1162f2ec16ccSHideki Saito                     << "!\n");
1163f2ec16ccSHideki Saito 
1164f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1165f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1166f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1167f2ec16ccSHideki Saito 
1168f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
11699e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
11709e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1171ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1172f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1173f2ec16ccSHideki Saito       Result = false;
1174f2ec16ccSHideki Saito     else
1175f2ec16ccSHideki Saito       return false;
1176f2ec16ccSHideki Saito   }
1177f2ec16ccSHideki Saito 
1178f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1179f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1180f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1181f2ec16ccSHideki Saito   // no restrictions.
1182f2ec16ccSHideki Saito   return Result;
1183f2ec16ccSHideki Saito }
1184f2ec16ccSHideki Saito 
1185d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1186b0b5312eSAyal Zaks 
1187b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1188b0b5312eSAyal Zaks 
1189b0b5312eSAyal Zaks   if (!PrimaryInduction) {
11909e97caf5SRenato Golin     reportVectorizationFailure(
11919e97caf5SRenato Golin         "No primary induction, cannot fold tail by masking",
11929e97caf5SRenato Golin         "Missing a primary induction variable in the loop, which is "
11939e97caf5SRenato Golin         "needed in order to fold tail by masking as required.",
1194ec818d7fSHideki Saito         "NoPrimaryInduction", ORE, TheLoop);
1195b0b5312eSAyal Zaks     return false;
1196b0b5312eSAyal Zaks   }
1197b0b5312eSAyal Zaks 
1198d15df0edSAyal Zaks   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1199b0b5312eSAyal Zaks 
1200d15df0edSAyal Zaks   for (auto &Reduction : *getReductionVars())
1201d15df0edSAyal Zaks     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1202d15df0edSAyal Zaks 
1203d15df0edSAyal Zaks   // TODO: handle non-reduction outside users when tail is folded by masking.
1204b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1205d15df0edSAyal Zaks     // Check that all users of allowed exit values are inside the loop or
1206d15df0edSAyal Zaks     // are the live-out of a reduction.
1207d15df0edSAyal Zaks     if (ReductionLiveOuts.count(AE))
1208d15df0edSAyal Zaks       continue;
1209b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1210b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1211b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1212b0b5312eSAyal Zaks         continue;
12139e97caf5SRenato Golin       reportVectorizationFailure(
12149e97caf5SRenato Golin           "Cannot fold tail by masking, loop has an outside user for",
12159e97caf5SRenato Golin           "Cannot fold tail by masking in the presence of live outs.",
1216ec818d7fSHideki Saito           "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
1217b0b5312eSAyal Zaks       return false;
1218b0b5312eSAyal Zaks     }
1219b0b5312eSAyal Zaks   }
1220b0b5312eSAyal Zaks 
1221b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1222b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1223b0b5312eSAyal Zaks 
1224b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1225b0b5312eSAyal Zaks   // do not need predication such as the header block.
1226b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1227d57d73daSDorit Nuzman     if (!blockCanBePredicated(BB, SafePointers, /* MaskAllLoads= */ true)) {
12289e97caf5SRenato Golin       reportVectorizationFailure(
12299e97caf5SRenato Golin           "Cannot fold tail by masking as required",
12309e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1231ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1232ec818d7fSHideki Saito           BB->getTerminator());
1233b0b5312eSAyal Zaks       return false;
1234b0b5312eSAyal Zaks     }
1235b0b5312eSAyal Zaks   }
1236b0b5312eSAyal Zaks 
1237b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1238b0b5312eSAyal Zaks   return true;
1239b0b5312eSAyal Zaks }
1240b0b5312eSAyal Zaks 
1241f2ec16ccSHideki Saito } // namespace llvm
1242