1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16cc529285SSimon Pilgrim 
17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
187403569bSPhilip Reames #include "llvm/Analysis/Loads.h"
19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h"
20ed98c1b3Sserge-sans-paille #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h"
22ed98c1b3Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h"
237403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h"
24f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
25f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
2623c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h"
277bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h"
2823c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29f2ec16ccSHideki Saito 
30f2ec16ccSHideki Saito using namespace llvm;
3123c11380SFlorian Hahn using namespace PatternMatch;
32f2ec16ccSHideki Saito 
33f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
34f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
35f2ec16ccSHideki Saito 
364e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication;
374e4ecae0SHideki Saito 
38f2ec16ccSHideki Saito static cl::opt<bool>
39f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
40f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
41f2ec16ccSHideki Saito 
429f76a852SKerry McLaughlin namespace llvm {
439f76a852SKerry McLaughlin cl::opt<bool>
449f76a852SKerry McLaughlin     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
459f76a852SKerry McLaughlin                          cl::desc("Allow enabling loop hints to reorder "
469f76a852SKerry McLaughlin                                   "FP operations during vectorization."));
479f76a852SKerry McLaughlin }
489f76a852SKerry McLaughlin 
49c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based
50c773d0f9SFlorian Hahn // decisions instead of hard thresholds.
51f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
52f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
53f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
54f2ec16ccSHideki Saito 
55f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
56f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
57f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
58f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
59f2ec16ccSHideki Saito 
60b1ff20fdSSander de Smalen static cl::opt<LoopVectorizeHints::ScalableForceKind>
61b1ff20fdSSander de Smalen     ForceScalableVectorization(
62b1ff20fdSSander de Smalen         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
634f86aa65SSander de Smalen         cl::Hidden,
644f86aa65SSander de Smalen         cl::desc("Control whether the compiler can use scalable vectors to "
654f86aa65SSander de Smalen                  "vectorize a loop"),
664f86aa65SSander de Smalen         cl::values(
674f86aa65SSander de Smalen             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
684f86aa65SSander de Smalen                        "Scalable vectorization is disabled."),
69b1ff20fdSSander de Smalen             clEnumValN(
707c68ed88SPaul Walker                 LoopVectorizeHints::SK_PreferScalable, "preferred",
717c68ed88SPaul Walker                 "Scalable vectorization is available and favored when the "
727c68ed88SPaul Walker                 "cost is inconclusive."),
737c68ed88SPaul Walker             clEnumValN(
74b1ff20fdSSander de Smalen                 LoopVectorizeHints::SK_PreferScalable, "on",
754f86aa65SSander de Smalen                 "Scalable vectorization is available and favored when the "
764f86aa65SSander de Smalen                 "cost is inconclusive.")));
774f86aa65SSander de Smalen 
78f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
79f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
80f2ec16ccSHideki Saito 
81f2ec16ccSHideki Saito namespace llvm {
82f2ec16ccSHideki Saito 
83f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
84f2ec16ccSHideki Saito   switch (Kind) {
85f2ec16ccSHideki Saito   case HK_WIDTH:
86f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
87ddb3b26aSBardia Mahjour   case HK_INTERLEAVE:
88f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
89f2ec16ccSHideki Saito   case HK_FORCE:
90f2ec16ccSHideki Saito     return (Val <= 1);
91f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
9220b198ecSSjoerd Meijer   case HK_PREDICATE:
9371bd59f0SDavid Sherwood   case HK_SCALABLE:
94f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
95f2ec16ccSHideki Saito   }
96f2ec16ccSHideki Saito   return false;
97f2ec16ccSHideki Saito }
98f2ec16ccSHideki Saito 
99d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
100d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
101b1ff20fdSSander de Smalen                                        OptimizationRemarkEmitter &ORE,
102b1ff20fdSSander de Smalen                                        const TargetTransformInfo *TTI)
103f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
104ddb3b26aSBardia Mahjour       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
105f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
10620b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
10771bd59f0SDavid Sherwood       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
1084f86aa65SSander de Smalen       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
1094f86aa65SSander de Smalen       TheLoop(L), ORE(ORE) {
110f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
111f2ec16ccSHideki Saito   getHintsFromMetadata();
112f2ec16ccSHideki Saito 
113f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
114f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
115f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
116f2ec16ccSHideki Saito 
117b1ff20fdSSander de Smalen   // If the metadata doesn't explicitly specify whether to enable scalable
118b1ff20fdSSander de Smalen   // vectorization, then decide based on the following criteria (increasing
119b1ff20fdSSander de Smalen   // level of priority):
120b1ff20fdSSander de Smalen   //  - Target default
121b1ff20fdSSander de Smalen   //  - Metadata width
122b1ff20fdSSander de Smalen   //  - Force option (always overrides)
123b1ff20fdSSander de Smalen   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
124b1ff20fdSSander de Smalen     if (TTI)
125b1ff20fdSSander de Smalen       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
126b1ff20fdSSander de Smalen                                                           : SK_FixedWidthOnly;
127b1ff20fdSSander de Smalen 
128b1ff20fdSSander de Smalen     if (Width.Value)
1294f86aa65SSander de Smalen       // If the width is set, but the metadata says nothing about the scalable
1304f86aa65SSander de Smalen       // property, then assume it concerns only a fixed-width UserVF.
1314f86aa65SSander de Smalen       // If width is not set, the flag takes precedence.
132b1ff20fdSSander de Smalen       Scalable.Value = SK_FixedWidthOnly;
133b1ff20fdSSander de Smalen   }
134b1ff20fdSSander de Smalen 
135b1ff20fdSSander de Smalen   // If the flag is set to force any use of scalable vectors, override the loop
136b1ff20fdSSander de Smalen   // hints.
137b1ff20fdSSander de Smalen   if (ForceScalableVectorization.getValue() !=
138b1ff20fdSSander de Smalen       LoopVectorizeHints::SK_Unspecified)
139b1ff20fdSSander de Smalen     Scalable.Value = ForceScalableVectorization.getValue();
140b1ff20fdSSander de Smalen 
141b1ff20fdSSander de Smalen   // Scalable vectorization is disabled if no preference is specified.
142b1ff20fdSSander de Smalen   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
1434f86aa65SSander de Smalen     Scalable.Value = SK_FixedWidthOnly;
1444f86aa65SSander de Smalen 
145f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
146f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
147f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
148f2ec16ccSHideki Saito     // nothing more that we can do.
14971bd59f0SDavid Sherwood     IsVectorized.Value =
150ddb3b26aSBardia Mahjour         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
151ddb3b26aSBardia Mahjour   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
152f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
153f2ec16ccSHideki Saito }
154f2ec16ccSHideki Saito 
15577a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
15677a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
15777a614a6SMichael Kruse 
15877a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
15977a614a6SMichael Kruse       Context,
16077a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
16177a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
16277a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
16377a614a6SMichael Kruse   MDNode *NewLoopID =
16477a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
16577a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
16677a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
16777a614a6SMichael Kruse                                      {IsVectorizedMD});
16877a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
16977a614a6SMichael Kruse 
17077a614a6SMichael Kruse   // Update internal cache.
17177a614a6SMichael Kruse   IsVectorized.Value = 1;
17277a614a6SMichael Kruse }
17377a614a6SMichael Kruse 
174d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
175d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
176f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
177d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
178f2ec16ccSHideki Saito     emitRemarkWithHints();
179f2ec16ccSHideki Saito     return false;
180f2ec16ccSHideki Saito   }
181f2ec16ccSHideki Saito 
182d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
183d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
184f2ec16ccSHideki Saito     emitRemarkWithHints();
185f2ec16ccSHideki Saito     return false;
186f2ec16ccSHideki Saito   }
187f2ec16ccSHideki Saito 
188f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
189d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
190f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
191f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
192f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
193f2ec16ccSHideki Saito     ORE.emit([&]() {
194f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
195f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
196f2ec16ccSHideki Saito                                         L->getHeader())
197f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
198f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
199f2ec16ccSHideki Saito                 "vectorized";
200f2ec16ccSHideki Saito     });
201f2ec16ccSHideki Saito     return false;
202f2ec16ccSHideki Saito   }
203f2ec16ccSHideki Saito 
204f2ec16ccSHideki Saito   return true;
205f2ec16ccSHideki Saito }
206f2ec16ccSHideki Saito 
207f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
208f2ec16ccSHideki Saito   using namespace ore;
209f2ec16ccSHideki Saito 
210f2ec16ccSHideki Saito   ORE.emit([&]() {
211f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
212f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
213f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
214f2ec16ccSHideki Saito                                       TheLoop->getHeader())
215f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
216f2ec16ccSHideki Saito     else {
217f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
218f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
219f2ec16ccSHideki Saito       R << "loop not vectorized";
220f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
221f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
222f2ec16ccSHideki Saito         if (Width.Value != 0)
22371bd59f0SDavid Sherwood           R << ", Vector Width=" << NV("VectorWidth", getWidth());
224ddb3b26aSBardia Mahjour         if (getInterleave() != 0)
225ddb3b26aSBardia Mahjour           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
226f2ec16ccSHideki Saito         R << ")";
227f2ec16ccSHideki Saito       }
228f2ec16ccSHideki Saito       return R;
229f2ec16ccSHideki Saito     }
230f2ec16ccSHideki Saito   });
231f2ec16ccSHideki Saito }
232f2ec16ccSHideki Saito 
233f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
23471bd59f0SDavid Sherwood   if (getWidth() == ElementCount::getFixed(1))
235f2ec16ccSHideki Saito     return LV_NAME;
236f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
237f2ec16ccSHideki Saito     return LV_NAME;
23871bd59f0SDavid Sherwood   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
239f2ec16ccSHideki Saito     return LV_NAME;
240f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
241f2ec16ccSHideki Saito }
242f2ec16ccSHideki Saito 
2439f76a852SKerry McLaughlin bool LoopVectorizeHints::allowReordering() const {
2449f76a852SKerry McLaughlin   // Allow the vectorizer to change the order of operations if enabling
2459f76a852SKerry McLaughlin   // loop hints are provided
2469f76a852SKerry McLaughlin   ElementCount EC = getWidth();
2479f76a852SKerry McLaughlin   return HintsAllowReordering &&
2489f76a852SKerry McLaughlin          (getForce() == LoopVectorizeHints::FK_Enabled ||
2499f76a852SKerry McLaughlin           EC.getKnownMinValue() > 1);
2509f76a852SKerry McLaughlin }
2519f76a852SKerry McLaughlin 
252f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
253f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
254f2ec16ccSHideki Saito   if (!LoopID)
255f2ec16ccSHideki Saito     return;
256f2ec16ccSHideki Saito 
257f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
258f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
259f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
260f2ec16ccSHideki Saito 
261f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
262f2ec16ccSHideki Saito     const MDString *S = nullptr;
263f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
264f2ec16ccSHideki Saito 
265f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
266f2ec16ccSHideki Saito     // operand a MDString.
267f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
268f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
269f2ec16ccSHideki Saito         continue;
270f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
271f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
272f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
273f2ec16ccSHideki Saito     } else {
274f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
275f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
276f2ec16ccSHideki Saito     }
277f2ec16ccSHideki Saito 
278f2ec16ccSHideki Saito     if (!S)
279f2ec16ccSHideki Saito       continue;
280f2ec16ccSHideki Saito 
281f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
282f2ec16ccSHideki Saito     StringRef Name = S->getString();
283f2ec16ccSHideki Saito     if (Args.size() == 1)
284f2ec16ccSHideki Saito       setHint(Name, Args[0]);
285f2ec16ccSHideki Saito   }
286f2ec16ccSHideki Saito }
287f2ec16ccSHideki Saito 
288f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
289f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
290f2ec16ccSHideki Saito     return;
291f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
292f2ec16ccSHideki Saito 
293f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
294f2ec16ccSHideki Saito   if (!C)
295f2ec16ccSHideki Saito     return;
296f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
297f2ec16ccSHideki Saito 
29871bd59f0SDavid Sherwood   Hint *Hints[] = {&Width,        &Interleave, &Force,
29971bd59f0SDavid Sherwood                    &IsVectorized, &Predicate,  &Scalable};
300f2ec16ccSHideki Saito   for (auto H : Hints) {
301f2ec16ccSHideki Saito     if (Name == H->Name) {
302f2ec16ccSHideki Saito       if (H->validate(Val))
303f2ec16ccSHideki Saito         H->Value = Val;
304f2ec16ccSHideki Saito       else
305d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
306f2ec16ccSHideki Saito       break;
307f2ec16ccSHideki Saito     }
308f2ec16ccSHideki Saito   }
309f2ec16ccSHideki Saito }
310f2ec16ccSHideki Saito 
311f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
312f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
313f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
314f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
315f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
316f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
317f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
318f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
319f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
320f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
321f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
322f2ec16ccSHideki Saito //
323f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
324f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
325f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
326f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
327f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
328f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
329f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
330f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
331f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
332f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
333f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
334f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
335f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
336f2ec16ccSHideki Saito 
337f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
338f2ec16ccSHideki Saito   if (Lp == OuterLp)
339f2ec16ccSHideki Saito     return true;
340f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
341f2ec16ccSHideki Saito 
342f2ec16ccSHideki Saito   // 1.
343f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
344f2ec16ccSHideki Saito   if (!IV) {
345d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
346f2ec16ccSHideki Saito     return false;
347f2ec16ccSHideki Saito   }
348f2ec16ccSHideki Saito 
349f2ec16ccSHideki Saito   // 2.
350f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
351f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
352f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
353d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
354f2ec16ccSHideki Saito     return false;
355f2ec16ccSHideki Saito   }
356f2ec16ccSHideki Saito 
357f2ec16ccSHideki Saito   // 3.
358f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
359f2ec16ccSHideki Saito   if (!LatchCmp) {
360d34e60caSNicola Zaghen     LLVM_DEBUG(
361d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
362f2ec16ccSHideki Saito     return false;
363f2ec16ccSHideki Saito   }
364f2ec16ccSHideki Saito 
365f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
366f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
367f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
368f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
369f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
370d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
371f2ec16ccSHideki Saito     return false;
372f2ec16ccSHideki Saito   }
373f2ec16ccSHideki Saito 
374f2ec16ccSHideki Saito   return true;
375f2ec16ccSHideki Saito }
376f2ec16ccSHideki Saito 
377f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
378f2ec16ccSHideki Saito // OuterLp.
379f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
380f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
381f2ec16ccSHideki Saito     return false;
382f2ec16ccSHideki Saito 
383f2ec16ccSHideki Saito   // Check if nested loops are uniform.
384f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
385f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
386f2ec16ccSHideki Saito       return false;
387f2ec16ccSHideki Saito 
388f2ec16ccSHideki Saito   return true;
389f2ec16ccSHideki Saito }
390f2ec16ccSHideki Saito 
3915f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node.
392f2ec16ccSHideki Saito ///
393f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if
394f2ec16ccSHideki Saito /// convert.
395f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) {
396f2ec16ccSHideki Saito   for (PHINode &Phi : BB->phis()) {
397f2ec16ccSHideki Saito     for (Value *V : Phi.incoming_values())
398f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(V))
399f2ec16ccSHideki Saito         if (C->canTrap())
400f2ec16ccSHideki Saito           return false;
401f2ec16ccSHideki Saito   }
402f2ec16ccSHideki Saito   return true;
403f2ec16ccSHideki Saito }
404f2ec16ccSHideki Saito 
405f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
406f2ec16ccSHideki Saito   if (Ty->isPointerTy())
407f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
408f2ec16ccSHideki Saito 
409f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
410f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
411f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
412f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
413f2ec16ccSHideki Saito 
414f2ec16ccSHideki Saito   return Ty;
415f2ec16ccSHideki Saito }
416f2ec16ccSHideki Saito 
417f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
418f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
419f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
420f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
421f2ec16ccSHideki Saito     return Ty0;
422f2ec16ccSHideki Saito   return Ty1;
423f2ec16ccSHideki Saito }
424f2ec16ccSHideki Saito 
4255f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
426f2ec16ccSHideki Saito /// identified reduction variable.
427f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
428f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
42960a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
430f2ec16ccSHideki Saito   // other instructions must not have external users.
431f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
432f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
433f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
434f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
435f2ec16ccSHideki Saito       // This user may be a reduction exit value.
436f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
437d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
438f2ec16ccSHideki Saito         return true;
439f2ec16ccSHideki Saito       }
440f2ec16ccSHideki Saito     }
441f2ec16ccSHideki Saito   return false;
442f2ec16ccSHideki Saito }
443f2ec16ccSHideki Saito 
444*4e5e042dSIgor Kirillov /// Returns true if A and B have same pointer operands or same SCEVs addresses
445*4e5e042dSIgor Kirillov static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
446*4e5e042dSIgor Kirillov                                StoreInst *B) {
447*4e5e042dSIgor Kirillov   // Compare store
448*4e5e042dSIgor Kirillov   if (A == B)
449*4e5e042dSIgor Kirillov     return true;
450*4e5e042dSIgor Kirillov 
451*4e5e042dSIgor Kirillov   // Otherwise Compare pointers
452*4e5e042dSIgor Kirillov   Value *APtr = A->getPointerOperand();
453*4e5e042dSIgor Kirillov   Value *BPtr = B->getPointerOperand();
454*4e5e042dSIgor Kirillov   if (APtr == BPtr)
455*4e5e042dSIgor Kirillov     return true;
456*4e5e042dSIgor Kirillov 
457*4e5e042dSIgor Kirillov   // Otherwise compare address SCEVs
458*4e5e042dSIgor Kirillov   if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
459*4e5e042dSIgor Kirillov     return true;
460*4e5e042dSIgor Kirillov 
461*4e5e042dSIgor Kirillov   return false;
462*4e5e042dSIgor Kirillov }
463*4e5e042dSIgor Kirillov 
46445c46734SNikita Popov int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
46545c46734SNikita Popov                                                 Value *Ptr) const {
466f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
467f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
468f2ec16ccSHideki Saito 
4697bedae7dSHiroshi Yamauchi   Function *F = TheLoop->getHeader()->getParent();
4707bedae7dSHiroshi Yamauchi   bool OptForSize = F->hasOptSize() ||
4717bedae7dSHiroshi Yamauchi                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
4727bedae7dSHiroshi Yamauchi                                                 PGSOQueryType::IRPass);
4737bedae7dSHiroshi Yamauchi   bool CanAddPredicate = !OptForSize;
47445c46734SNikita Popov   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
47545c46734SNikita Popov                             CanAddPredicate, false);
476f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
477f2ec16ccSHideki Saito     return Stride;
478f2ec16ccSHideki Saito   return 0;
479f2ec16ccSHideki Saito }
480f2ec16ccSHideki Saito 
481f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
482f2ec16ccSHideki Saito   return LAI->isUniform(V);
483f2ec16ccSHideki Saito }
484f2ec16ccSHideki Saito 
485f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
48689c1e35fSStefanos Baziotis   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
487f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
488f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
489f2ec16ccSHideki Saito   bool Result = true;
490f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
491f2ec16ccSHideki Saito 
492f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
493f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
494f2ec16ccSHideki Saito     // not supported yet.
495f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
496f2ec16ccSHideki Saito     if (!Br) {
4979e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4989e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
499ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
500f2ec16ccSHideki Saito       if (DoExtraAnalysis)
501f2ec16ccSHideki Saito         Result = false;
502f2ec16ccSHideki Saito       else
503f2ec16ccSHideki Saito         return false;
504f2ec16ccSHideki Saito     }
505f2ec16ccSHideki Saito 
506f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
507f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
508f2ec16ccSHideki Saito     // backedges are supported.
5094e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
5104e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
5114e4ecae0SHideki Saito     // once VPlan predication is on by default.
5124e4ecae0SHideki Saito     if (!EnableVPlanPredication && Br && Br->isConditional() &&
513f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
514f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
515f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
5169e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
5179e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
518ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
519f2ec16ccSHideki Saito       if (DoExtraAnalysis)
520f2ec16ccSHideki Saito         Result = false;
521f2ec16ccSHideki Saito       else
522f2ec16ccSHideki Saito         return false;
523f2ec16ccSHideki Saito     }
524f2ec16ccSHideki Saito   }
525f2ec16ccSHideki Saito 
526f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
527f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
528f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
529f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
5309e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
5319e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
532ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
533f2ec16ccSHideki Saito     if (DoExtraAnalysis)
534f2ec16ccSHideki Saito       Result = false;
535f2ec16ccSHideki Saito     else
536f2ec16ccSHideki Saito       return false;
537f2ec16ccSHideki Saito   }
538f2ec16ccSHideki Saito 
539ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
540ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
5419e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
5429e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
543ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
544ea7f3035SHideki Saito     if (DoExtraAnalysis)
545ea7f3035SHideki Saito       Result = false;
546ea7f3035SHideki Saito     else
547ea7f3035SHideki Saito       return false;
548ea7f3035SHideki Saito   }
549ea7f3035SHideki Saito 
550f2ec16ccSHideki Saito   return Result;
551f2ec16ccSHideki Saito }
552f2ec16ccSHideki Saito 
553f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
554f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
555f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
556f2ec16ccSHideki Saito   Inductions[Phi] = ID;
557f2ec16ccSHideki Saito 
558f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
559f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
560f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
561f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
562f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
563f2ec16ccSHideki Saito   if (!Casts.empty())
564f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
565f2ec16ccSHideki Saito 
566f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
567f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
568f2ec16ccSHideki Saito 
569f2ec16ccSHideki Saito   // Get the widest type.
570f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
571f2ec16ccSHideki Saito     if (!WidestIndTy)
572f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
573f2ec16ccSHideki Saito     else
574f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
575f2ec16ccSHideki Saito   }
576f2ec16ccSHideki Saito 
577f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
578f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
579f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
580f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
581f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
582f2ec16ccSHideki Saito 
583f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
584f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
585f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
586f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
587f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
588f2ec16ccSHideki Saito       PrimaryInduction = Phi;
589f2ec16ccSHideki Saito   }
590f2ec16ccSHideki Saito 
591f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
592f2ec16ccSHideki Saito   // back into the PHI node may have external users.
593f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
594f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5956a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5966a1dd77fSAnna Thomas   // details).
5975ba11503SPhilip Reames   if (PSE.getPredicate().isAlwaysTrue()) {
598f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
599f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
600f2ec16ccSHideki Saito   }
601f2ec16ccSHideki Saito 
602d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
603f2ec16ccSHideki Saito }
604f2ec16ccSHideki Saito 
605ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
606ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
607ea7f3035SHideki Saito 
608ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
609ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
610ea7f3035SHideki Saito     InductionDescriptor ID;
611ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
612ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
613ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
614ea7f3035SHideki Saito       return true;
615ea7f3035SHideki Saito     } else {
616ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
617ea7f3035SHideki Saito       // induction.
618ea7f3035SHideki Saito       LLVM_DEBUG(
619ea7f3035SHideki Saito           dbgs()
620ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
621ea7f3035SHideki Saito       return false;
622ea7f3035SHideki Saito     }
623ea7f3035SHideki Saito   };
624ea7f3035SHideki Saito 
625ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
626ea7f3035SHideki Saito     return true;
627ea7f3035SHideki Saito   else
628ea7f3035SHideki Saito     return false;
629ea7f3035SHideki Saito }
630ea7f3035SHideki Saito 
63166c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in
63266c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in
63366c120f0SFrancesco Petrogalli /// multiple scalar calls. This is represented in the
63466c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the
63566c120f0SFrancesco Petrogalli /// following example:
63666c120f0SFrancesco Petrogalli ///
63766c120f0SFrancesco Petrogalli ///    const VecDesc VecIntrinsics[] = {
63866c120f0SFrancesco Petrogalli ///      {"llvm.phx.abs.i32", "", 4}
63966c120f0SFrancesco Petrogalli ///    };
64066c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
64166c120f0SFrancesco Petrogalli   const StringRef ScalarName = CI.getCalledFunction()->getName();
64266c120f0SFrancesco Petrogalli   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
64366c120f0SFrancesco Petrogalli   // Check that all known VFs are not associated to a vector
64466c120f0SFrancesco Petrogalli   // function, i.e. the vector name is emty.
64501b87444SDavid Sherwood   if (Scalarize) {
64601b87444SDavid Sherwood     ElementCount WidestFixedVF, WidestScalableVF;
64701b87444SDavid Sherwood     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
64801b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getFixed(2);
64901b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
65066c120f0SFrancesco Petrogalli       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
65101b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getScalable(1);
65201b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
65301b87444SDavid Sherwood       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
65401b87444SDavid Sherwood     assert((WidestScalableVF.isZero() || !Scalarize) &&
65501b87444SDavid Sherwood            "Caller may decide to scalarize a variant using a scalable VF");
65666c120f0SFrancesco Petrogalli   }
65766c120f0SFrancesco Petrogalli   return Scalarize;
65866c120f0SFrancesco Petrogalli }
65966c120f0SFrancesco Petrogalli 
660f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
661f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
662f2ec16ccSHideki Saito 
663f2ec16ccSHideki Saito   // For each block in the loop.
664f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
665f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
666f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
667f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
668f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
669f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
670f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
671f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
6729e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
6739e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
674ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
675f2ec16ccSHideki Saito           return false;
676f2ec16ccSHideki Saito         }
677f2ec16ccSHideki Saito 
678f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
679f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
680f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
681f2ec16ccSHideki Saito         if (BB != Header) {
68260a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
68360a1e4ddSAnna Thomas           // them to the list of allowed exits.
68460a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
68560a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
68660a1e4ddSAnna Thomas           // recurrences.
687dd18ce45SBjorn Pettersson           AllowedExit.insert(&I);
688f2ec16ccSHideki Saito           continue;
689f2ec16ccSHideki Saito         }
690f2ec16ccSHideki Saito 
691f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
692f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6939e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6949e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
695ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
696f2ec16ccSHideki Saito           return false;
697f2ec16ccSHideki Saito         }
698f2ec16ccSHideki Saito 
699f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
700f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
701*4e5e042dSIgor Kirillov                                                  DT, PSE.getSE())) {
702b3a33553SSanjay Patel           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
703f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
704f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
705f2ec16ccSHideki Saito           continue;
706f2ec16ccSHideki Saito         }
707f2ec16ccSHideki Saito 
708b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
709b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
710b02b0ad8SAnna Thomas         // limited to):
711b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
712b02b0ad8SAnna Thomas         // is not available when vectorized
713b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
714b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
715b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
716b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
717b02b0ad8SAnna Thomas         // handling below
718b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
719b02b0ad8SAnna Thomas         // extraction.
720b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
721b02b0ad8SAnna Thomas         // of these NotAllowedExit.
722f2ec16ccSHideki Saito         InductionDescriptor ID;
723f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
724f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
72536a489d1SSanjay Patel           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
726f2ec16ccSHideki Saito           continue;
727f2ec16ccSHideki Saito         }
728f2ec16ccSHideki Saito 
729f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
730f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
7318e0c5f72SAyal Zaks           AllowedExit.insert(Phi);
732f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
733f2ec16ccSHideki Saito           continue;
734f2ec16ccSHideki Saito         }
735f2ec16ccSHideki Saito 
736f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
737f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
738f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
739f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
740f2ec16ccSHideki Saito           continue;
741f2ec16ccSHideki Saito         }
742f2ec16ccSHideki Saito 
7439e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
7449e97caf5SRenato Golin             "value that could not be identified as "
7459e97caf5SRenato Golin             "reduction is used outside the loop",
746ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
747f2ec16ccSHideki Saito         return false;
748f2ec16ccSHideki Saito       } // end of PHI handling
749f2ec16ccSHideki Saito 
750f2ec16ccSHideki Saito       // We handle calls that:
751f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
752f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
753f2ec16ccSHideki Saito       //   * Have a vector version available.
754f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
75566c120f0SFrancesco Petrogalli 
756f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
757f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
758f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
75966c120f0SFrancesco Petrogalli             (!VFDatabase::getMappings(*CI).empty() ||
76066c120f0SFrancesco Petrogalli              isTLIScalarize(*TLI, *CI)))) {
7617d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
7627d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
7637d65fe5cSSanjay Patel         LibFunc Func;
7647d65fe5cSSanjay Patel         bool IsMathLibCall =
7657d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
7667d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
7677d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
7687d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
7697d65fe5cSSanjay Patel 
7707d65fe5cSSanjay Patel         if (IsMathLibCall) {
7717d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
7727d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
7737d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
7747d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
77566c120f0SFrancesco Petrogalli           reportVectorizationFailure(
77666c120f0SFrancesco Petrogalli               "Found a non-intrinsic callsite",
7779e97caf5SRenato Golin               "library call cannot be vectorized. "
7787d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
7799e97caf5SRenato Golin               "or similar flags",
780ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
7817d65fe5cSSanjay Patel         } else {
7829e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
7839e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
784ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
7857d65fe5cSSanjay Patel         }
786f2ec16ccSHideki Saito         return false;
787f2ec16ccSHideki Saito       }
788f2ec16ccSHideki Saito 
789a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
790a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
791a066f1f9SSimon Pilgrim       if (CI) {
792f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
793a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
7944f0225f6SKazu Hirata         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
7956f81903eSDavid Green           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
796a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7979e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7989e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
799ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
800f2ec16ccSHideki Saito               return false;
801f2ec16ccSHideki Saito             }
802f2ec16ccSHideki Saito           }
803a066f1f9SSimon Pilgrim       }
804f2ec16ccSHideki Saito 
805f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
806f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
807f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
808f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
809f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
8109e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
8119e97caf5SRenato Golin             "instruction return type cannot be vectorized",
812ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
813f2ec16ccSHideki Saito         return false;
814f2ec16ccSHideki Saito       }
815f2ec16ccSHideki Saito 
816f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
817f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
818f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
819f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
8209e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
8219e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
822ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
823f2ec16ccSHideki Saito           return false;
824f2ec16ccSHideki Saito         }
825f2ec16ccSHideki Saito 
8266452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
8276452bdd2SWarren Ristow         // supported on the target.
8286452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
8296452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
8306913812aSFangrui Song           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
8316452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
83252e98f62SNikita Popov           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
8336452bdd2SWarren Ristow             reportVectorizationFailure(
8346452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
8356452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
836ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
8376452bdd2SWarren Ristow             return false;
8386452bdd2SWarren Ristow           }
8396452bdd2SWarren Ristow         }
8406452bdd2SWarren Ristow 
8416452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
8426452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
8436452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
8446452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
8456913812aSFangrui Song           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
8466452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
84752e98f62SNikita Popov           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
8486452bdd2SWarren Ristow             reportVectorizationFailure(
8496452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
8506452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
851ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
8526452bdd2SWarren Ristow             return false;
8536452bdd2SWarren Ristow           }
8546452bdd2SWarren Ristow         }
8556452bdd2SWarren Ristow 
856f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
857f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
858f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
859f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
860f2ec16ccSHideki Saito         // semantics.
861f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
862f2ec16ccSHideki Saito                  !I.isFast()) {
863d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
864f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
865f2ec16ccSHideki Saito       }
866f2ec16ccSHideki Saito 
867f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
868f2ec16ccSHideki Saito       // All other instructions must not have external users.
869f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
870b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
871b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
872b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
873b02b0ad8SAnna Thomas         // outside the loop.
8745ba11503SPhilip Reames         if (PSE.getPredicate().isAlwaysTrue()) {
875b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
876b02b0ad8SAnna Thomas           continue;
877b02b0ad8SAnna Thomas         }
8789e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
8799e97caf5SRenato Golin                                    "value cannot be used outside the loop",
880ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
881f2ec16ccSHideki Saito         return false;
882f2ec16ccSHideki Saito       }
883f2ec16ccSHideki Saito     } // next instr.
884f2ec16ccSHideki Saito   }
885f2ec16ccSHideki Saito 
886f2ec16ccSHideki Saito   if (!PrimaryInduction) {
887f2ec16ccSHideki Saito     if (Inductions.empty()) {
8889e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8899e97caf5SRenato Golin           "loop induction variable could not be identified",
890ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
891f2ec16ccSHideki Saito       return false;
8924f27730eSWarren Ristow     } else if (!WidestIndTy) {
8939e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8949e97caf5SRenato Golin           "integer loop induction variable could not be identified",
895ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8964f27730eSWarren Ristow       return false;
8979e97caf5SRenato Golin     } else {
8989e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
899f2ec16ccSHideki Saito     }
900f2ec16ccSHideki Saito   }
901f2ec16ccSHideki Saito 
9029d24933fSFlorian Hahn   // For first order recurrences, we use the previous value (incoming value from
9039d24933fSFlorian Hahn   // the latch) to check if it dominates all users of the recurrence. Bail out
9049d24933fSFlorian Hahn   // if we have to sink such an instruction for another recurrence, as the
9059d24933fSFlorian Hahn   // dominance requirement may not hold after sinking.
9069d24933fSFlorian Hahn   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
9079d24933fSFlorian Hahn   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
9089d24933fSFlorian Hahn         Instruction *V =
9099d24933fSFlorian Hahn             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
9109d24933fSFlorian Hahn         return SinkAfter.find(V) != SinkAfter.end();
9119d24933fSFlorian Hahn       }))
9129d24933fSFlorian Hahn     return false;
9139d24933fSFlorian Hahn 
914f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
915f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
916f2ec16ccSHideki Saito   // will create another.
917f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
918f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
919f2ec16ccSHideki Saito 
920f2ec16ccSHideki Saito   return true;
921f2ec16ccSHideki Saito }
922f2ec16ccSHideki Saito 
923f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
924f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
925f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
926f2ec16ccSHideki Saito   if (LAR) {
927f2ec16ccSHideki Saito     ORE->emit([&]() {
928f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
929f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
930f2ec16ccSHideki Saito     });
931f2ec16ccSHideki Saito   }
932287d39ddSPaul Walker 
933f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
934f2ec16ccSHideki Saito     return false;
935f2ec16ccSHideki Saito 
936*4e5e042dSIgor Kirillov   // We can vectorize stores to invariant address when final reduction value is
937*4e5e042dSIgor Kirillov   // guaranteed to be stored at the end of the loop. Also, if decision to
938*4e5e042dSIgor Kirillov   // vectorize loop is made, runtime checks are added so as to make sure that
939*4e5e042dSIgor Kirillov   // invariant address won't alias with any other objects.
940*4e5e042dSIgor Kirillov   if (!LAI->getStoresToInvariantAddresses().empty()) {
941*4e5e042dSIgor Kirillov     // For each invariant address, check its last stored value is unconditional.
942*4e5e042dSIgor Kirillov     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
943*4e5e042dSIgor Kirillov       if (isInvariantStoreOfReduction(SI) &&
944*4e5e042dSIgor Kirillov           blockNeedsPredication(SI->getParent())) {
945*4e5e042dSIgor Kirillov         reportVectorizationFailure(
946*4e5e042dSIgor Kirillov             "We don't allow storing to uniform addresses",
947*4e5e042dSIgor Kirillov             "write of conditional recurring variant value to a loop "
948*4e5e042dSIgor Kirillov             "invariant address could not be vectorized",
949ec818d7fSHideki Saito             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
950f2ec16ccSHideki Saito         return false;
951f2ec16ccSHideki Saito       }
952*4e5e042dSIgor Kirillov     }
953*4e5e042dSIgor Kirillov 
954*4e5e042dSIgor Kirillov     if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
955*4e5e042dSIgor Kirillov       // For each invariant address, check its last stored value is the result
956*4e5e042dSIgor Kirillov       // of one of our reductions.
957*4e5e042dSIgor Kirillov       //
958*4e5e042dSIgor Kirillov       // We do not check if dependence with loads exists because they are
959*4e5e042dSIgor Kirillov       // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
960*4e5e042dSIgor Kirillov       // behaviour changes we have to modify this code.
961*4e5e042dSIgor Kirillov       ScalarEvolution *SE = PSE.getSE();
962*4e5e042dSIgor Kirillov       SmallVector<StoreInst *, 4> UnhandledStores;
963*4e5e042dSIgor Kirillov       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
964*4e5e042dSIgor Kirillov         if (isInvariantStoreOfReduction(SI)) {
965*4e5e042dSIgor Kirillov           // Earlier stores to this address are effectively deadcode.
966*4e5e042dSIgor Kirillov           // With opaque pointers it is possible for one pointer to be used with
967*4e5e042dSIgor Kirillov           // different sizes of stored values:
968*4e5e042dSIgor Kirillov           //    store i32 0, ptr %x
969*4e5e042dSIgor Kirillov           //    store i8 0, ptr %x
970*4e5e042dSIgor Kirillov           // The latest store doesn't complitely overwrite the first one in the
971*4e5e042dSIgor Kirillov           // example. That is why we have to make sure that types of stored
972*4e5e042dSIgor Kirillov           // values are same.
973*4e5e042dSIgor Kirillov           // TODO: Check that bitwidth of unhandled store is smaller then the
974*4e5e042dSIgor Kirillov           // one that overwrites it and add a test.
975*4e5e042dSIgor Kirillov           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
976*4e5e042dSIgor Kirillov             return storeToSameAddress(SE, SI, I) &&
977*4e5e042dSIgor Kirillov                    I->getValueOperand()->getType() ==
978*4e5e042dSIgor Kirillov                        SI->getValueOperand()->getType();
979*4e5e042dSIgor Kirillov           });
980*4e5e042dSIgor Kirillov           continue;
981*4e5e042dSIgor Kirillov         }
982*4e5e042dSIgor Kirillov         UnhandledStores.push_back(SI);
983*4e5e042dSIgor Kirillov       }
984*4e5e042dSIgor Kirillov 
985*4e5e042dSIgor Kirillov       bool IsOK = UnhandledStores.empty();
986*4e5e042dSIgor Kirillov       // TODO: we should also validate against InvariantMemSets.
987*4e5e042dSIgor Kirillov       if (!IsOK) {
988*4e5e042dSIgor Kirillov         reportVectorizationFailure(
989*4e5e042dSIgor Kirillov             "We don't allow storing to uniform addresses",
990*4e5e042dSIgor Kirillov             "write to a loop invariant address could not "
991*4e5e042dSIgor Kirillov             "be vectorized",
992*4e5e042dSIgor Kirillov             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
993*4e5e042dSIgor Kirillov         return false;
994*4e5e042dSIgor Kirillov       }
995*4e5e042dSIgor Kirillov     }
996*4e5e042dSIgor Kirillov   }
997287d39ddSPaul Walker 
998f2ec16ccSHideki Saito   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
9995ba11503SPhilip Reames   PSE.addPredicate(LAI->getPSE().getPredicate());
1000f2ec16ccSHideki Saito   return true;
1001f2ec16ccSHideki Saito }
1002f2ec16ccSHideki Saito 
10039f76a852SKerry McLaughlin bool LoopVectorizationLegality::canVectorizeFPMath(
10049f76a852SKerry McLaughlin     bool EnableStrictReductions) {
10059f76a852SKerry McLaughlin 
10069f76a852SKerry McLaughlin   // First check if there is any ExactFP math or if we allow reassociations
10079f76a852SKerry McLaughlin   if (!Requirements->getExactFPInst() || Hints->allowReordering())
10089f76a852SKerry McLaughlin     return true;
10099f76a852SKerry McLaughlin 
10109f76a852SKerry McLaughlin   // If the above is false, we have ExactFPMath & do not allow reordering.
10119f76a852SKerry McLaughlin   // If the EnableStrictReductions flag is set, first check if we have any
10129f76a852SKerry McLaughlin   // Exact FP induction vars, which we cannot vectorize.
10139f76a852SKerry McLaughlin   if (!EnableStrictReductions ||
10149f76a852SKerry McLaughlin       any_of(getInductionVars(), [&](auto &Induction) -> bool {
10159f76a852SKerry McLaughlin         InductionDescriptor IndDesc = Induction.second;
10169f76a852SKerry McLaughlin         return IndDesc.getExactFPMathInst();
10179f76a852SKerry McLaughlin       }))
10189f76a852SKerry McLaughlin     return false;
10199f76a852SKerry McLaughlin 
10209f76a852SKerry McLaughlin   // We can now only vectorize if all reductions with Exact FP math also
10219f76a852SKerry McLaughlin   // have the isOrdered flag set, which indicates that we can move the
1022*4e5e042dSIgor Kirillov   // reduction operations in-loop, and do not have intermediate store.
10239f76a852SKerry McLaughlin   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
10245e6bfb66SSimon Pilgrim     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1025*4e5e042dSIgor Kirillov     return !RdxDesc.hasExactFPMath() ||
1026*4e5e042dSIgor Kirillov            (RdxDesc.isOrdered() && !RdxDesc.IntermediateStore);
10279f76a852SKerry McLaughlin   }));
10289f76a852SKerry McLaughlin }
10299f76a852SKerry McLaughlin 
1030*4e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
1031*4e5e042dSIgor Kirillov   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1032*4e5e042dSIgor Kirillov     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1033*4e5e042dSIgor Kirillov     return RdxDesc.IntermediateStore == SI;
1034*4e5e042dSIgor Kirillov   });
1035*4e5e042dSIgor Kirillov }
1036*4e5e042dSIgor Kirillov 
1037*4e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
1038*4e5e042dSIgor Kirillov   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
1039*4e5e042dSIgor Kirillov     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1040*4e5e042dSIgor Kirillov     if (!RdxDesc.IntermediateStore)
1041*4e5e042dSIgor Kirillov       return false;
1042*4e5e042dSIgor Kirillov 
1043*4e5e042dSIgor Kirillov     ScalarEvolution *SE = PSE.getSE();
1044*4e5e042dSIgor Kirillov     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
1045*4e5e042dSIgor Kirillov     return V == InvariantAddress ||
1046*4e5e042dSIgor Kirillov            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
1047*4e5e042dSIgor Kirillov   });
1048*4e5e042dSIgor Kirillov }
1049*4e5e042dSIgor Kirillov 
1050d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1051f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
1052f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1053f2ec16ccSHideki Saito   if (!PN)
1054f2ec16ccSHideki Saito     return false;
1055f2ec16ccSHideki Saito 
1056f2ec16ccSHideki Saito   return Inductions.count(PN);
1057f2ec16ccSHideki Saito }
1058f2ec16ccSHideki Saito 
1059978883d2SFlorian Hahn const InductionDescriptor *
1060978883d2SFlorian Hahn LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1061978883d2SFlorian Hahn   if (!isInductionPhi(Phi))
1062978883d2SFlorian Hahn     return nullptr;
1063978883d2SFlorian Hahn   auto &ID = getInductionVars().find(Phi)->second;
1064978883d2SFlorian Hahn   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1065978883d2SFlorian Hahn       ID.getKind() == InductionDescriptor::IK_FpInduction)
1066978883d2SFlorian Hahn     return &ID;
1067978883d2SFlorian Hahn   return nullptr;
1068978883d2SFlorian Hahn }
1069978883d2SFlorian Hahn 
107046432a00SFlorian Hahn const InductionDescriptor *
107146432a00SFlorian Hahn LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
107246432a00SFlorian Hahn   if (!isInductionPhi(Phi))
107346432a00SFlorian Hahn     return nullptr;
107446432a00SFlorian Hahn   auto &ID = getInductionVars().find(Phi)->second;
107546432a00SFlorian Hahn   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
107646432a00SFlorian Hahn     return &ID;
107746432a00SFlorian Hahn   return nullptr;
107846432a00SFlorian Hahn }
107946432a00SFlorian Hahn 
1080d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isCastedInductionVariable(
1081d74a8a78SFlorian Hahn     const Value *V) const {
1082f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
1083f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
1084f2ec16ccSHideki Saito }
1085f2ec16ccSHideki Saito 
1086d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1087f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
1088f2ec16ccSHideki Saito }
1089f2ec16ccSHideki Saito 
1090d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isFirstOrderRecurrence(
1091d74a8a78SFlorian Hahn     const PHINode *Phi) const {
1092f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
1093f2ec16ccSHideki Saito }
1094f2ec16ccSHideki Saito 
1095f82966d1SSander de Smalen bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1096f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1097f2ec16ccSHideki Saito }
1098f2ec16ccSHideki Saito 
1099f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
1100bda8fbe2SSjoerd Meijer     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1101bda8fbe2SSjoerd Meijer     SmallPtrSetImpl<const Instruction *> &MaskedOp,
11024f01122cSJoachim Meyer     SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1103f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
1104f2ec16ccSHideki Saito     // Check that we don't have a constant expression that can trap as operand.
1105f2ec16ccSHideki Saito     for (Value *Operand : I.operands()) {
1106f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(Operand))
1107f2ec16ccSHideki Saito         if (C->canTrap())
1108f2ec16ccSHideki Saito           return false;
1109f2ec16ccSHideki Saito     }
111023c11380SFlorian Hahn 
111123c11380SFlorian Hahn     // We can predicate blocks with calls to assume, as long as we drop them in
111223c11380SFlorian Hahn     // case we flatten the CFG via predication.
111323c11380SFlorian Hahn     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
111423c11380SFlorian Hahn       ConditionalAssumes.insert(&I);
111523c11380SFlorian Hahn       continue;
111623c11380SFlorian Hahn     }
111723c11380SFlorian Hahn 
1118121cac01SJeroen Dobbelaere     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1119121cac01SJeroen Dobbelaere     // TODO: there might be cases that it should block the vectorization. Let's
1120121cac01SJeroen Dobbelaere     // ignore those for now.
1121c83cff45SNikita Popov     if (isa<NoAliasScopeDeclInst>(&I))
1122121cac01SJeroen Dobbelaere       continue;
1123121cac01SJeroen Dobbelaere 
1124f2ec16ccSHideki Saito     // We might be able to hoist the load.
1125f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
1126f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
1127f2ec16ccSHideki Saito       if (!LI)
1128f2ec16ccSHideki Saito         return false;
1129f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
1130f2ec16ccSHideki Saito         MaskedOp.insert(LI);
1131f2ec16ccSHideki Saito         continue;
1132f2ec16ccSHideki Saito       }
1133f2ec16ccSHideki Saito     }
1134f2ec16ccSHideki Saito 
1135f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
1136f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
1137f2ec16ccSHideki Saito       if (!SI)
1138f2ec16ccSHideki Saito         return false;
1139f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
1140f2ec16ccSHideki Saito       // 1) masked store HW instruction,
1141f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
1142f2ec16ccSHideki Saito       //    be aware on the race conditions), or
1143f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
1144f2ec16ccSHideki Saito       MaskedOp.insert(SI);
1145f2ec16ccSHideki Saito       continue;
1146f2ec16ccSHideki Saito     }
1147f2ec16ccSHideki Saito     if (I.mayThrow())
1148f2ec16ccSHideki Saito       return false;
1149f2ec16ccSHideki Saito   }
1150f2ec16ccSHideki Saito 
1151f2ec16ccSHideki Saito   return true;
1152f2ec16ccSHideki Saito }
1153f2ec16ccSHideki Saito 
1154f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1155f2ec16ccSHideki Saito   if (!EnableIfConversion) {
11569e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
11579e97caf5SRenato Golin                                "if-conversion is disabled",
1158ec818d7fSHideki Saito                                "IfConversionDisabled",
1159ec818d7fSHideki Saito                                ORE, TheLoop);
1160f2ec16ccSHideki Saito     return false;
1161f2ec16ccSHideki Saito   }
1162f2ec16ccSHideki Saito 
1163f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1164f2ec16ccSHideki Saito 
1165cf3b5559SPhilip Reames   // A list of pointers which are known to be dereferenceable within scope of
1166cf3b5559SPhilip Reames   // the loop body for each iteration of the loop which executes.  That is,
1167cf3b5559SPhilip Reames   // the memory pointed to can be dereferenced (with the access size implied by
1168cf3b5559SPhilip Reames   // the value's type) unconditionally within the loop header without
1169cf3b5559SPhilip Reames   // introducing a new fault.
11703bbc71d6SSjoerd Meijer   SmallPtrSet<Value *, 8> SafePointers;
1171f2ec16ccSHideki Saito 
1172f2ec16ccSHideki Saito   // Collect safe addresses.
1173f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
11747403569bSPhilip Reames     if (!blockNeedsPredication(BB)) {
1175f2ec16ccSHideki Saito       for (Instruction &I : *BB)
1176f2ec16ccSHideki Saito         if (auto *Ptr = getLoadStorePointerOperand(&I))
11773bbc71d6SSjoerd Meijer           SafePointers.insert(Ptr);
11787403569bSPhilip Reames       continue;
11797403569bSPhilip Reames     }
11807403569bSPhilip Reames 
11817403569bSPhilip Reames     // For a block which requires predication, a address may be safe to access
11827403569bSPhilip Reames     // in the loop w/o predication if we can prove dereferenceability facts
11837403569bSPhilip Reames     // sufficient to ensure it'll never fault within the loop. For the moment,
11847403569bSPhilip Reames     // we restrict this to loads; stores are more complicated due to
11857403569bSPhilip Reames     // concurrency restrictions.
11867403569bSPhilip Reames     ScalarEvolution &SE = *PSE.getSE();
11877403569bSPhilip Reames     for (Instruction &I : *BB) {
11887403569bSPhilip Reames       LoadInst *LI = dyn_cast<LoadInst>(&I);
1189467e5cf4SJoe Ellis       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
11907403569bSPhilip Reames           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
11913bbc71d6SSjoerd Meijer         SafePointers.insert(LI->getPointerOperand());
11927403569bSPhilip Reames     }
1193f2ec16ccSHideki Saito   }
1194f2ec16ccSHideki Saito 
1195f2ec16ccSHideki Saito   // Collect the blocks that need predication.
1196f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
1197f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
1198f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
1199f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
12009e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
12019e97caf5SRenato Golin                                  "loop contains a switch statement",
1202ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
1203ec818d7fSHideki Saito                                  BB->getTerminator());
1204f2ec16ccSHideki Saito       return false;
1205f2ec16ccSHideki Saito     }
1206f2ec16ccSHideki Saito 
1207f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
1208f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
1209bda8fbe2SSjoerd Meijer       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1210bda8fbe2SSjoerd Meijer                                 ConditionalAssumes)) {
12119e97caf5SRenato Golin         reportVectorizationFailure(
12129e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
12139e97caf5SRenato Golin             "control flow cannot be substituted for a select",
1214ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
1215ec818d7fSHideki Saito             BB->getTerminator());
1216f2ec16ccSHideki Saito         return false;
1217f2ec16ccSHideki Saito       }
1218f2ec16ccSHideki Saito     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
12199e97caf5SRenato Golin       reportVectorizationFailure(
12209e97caf5SRenato Golin           "Control flow cannot be substituted for a select",
12219e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1222ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1223ec818d7fSHideki Saito           BB->getTerminator());
1224f2ec16ccSHideki Saito       return false;
1225f2ec16ccSHideki Saito     }
1226f2ec16ccSHideki Saito   }
1227f2ec16ccSHideki Saito 
1228f2ec16ccSHideki Saito   // We can if-convert this loop.
1229f2ec16ccSHideki Saito   return true;
1230f2ec16ccSHideki Saito }
1231f2ec16ccSHideki Saito 
1232f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
1233f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1234f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
123589c1e35fSStefanos Baziotis   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1236f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
1237f2ec16ccSHideki Saito 
1238f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
1239f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
1240f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
1241f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
1242f2ec16ccSHideki Saito 
1243f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1244f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1245f2ec16ccSHideki Saito   bool Result = true;
1246f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1247f2ec16ccSHideki Saito 
1248f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1249f2ec16ccSHideki Saito   // be canonicalized.
1250f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
12519e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
12529e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1253ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1254f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1255f2ec16ccSHideki Saito       Result = false;
1256f2ec16ccSHideki Saito     else
1257f2ec16ccSHideki Saito       return false;
1258f2ec16ccSHideki Saito   }
1259f2ec16ccSHideki Saito 
1260f2ec16ccSHideki Saito   // We must have a single backedge.
1261f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
12629e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
12639e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1264ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1265f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1266f2ec16ccSHideki Saito       Result = false;
1267f2ec16ccSHideki Saito     else
1268f2ec16ccSHideki Saito       return false;
1269f2ec16ccSHideki Saito   }
1270f2ec16ccSHideki Saito 
1271f2ec16ccSHideki Saito   return Result;
1272f2ec16ccSHideki Saito }
1273f2ec16ccSHideki Saito 
1274f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1275f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1276f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1277f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1278f2ec16ccSHideki Saito   bool Result = true;
1279f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1280f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1281f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1282f2ec16ccSHideki Saito       Result = false;
1283f2ec16ccSHideki Saito     else
1284f2ec16ccSHideki Saito       return false;
1285f2ec16ccSHideki Saito   }
1286f2ec16ccSHideki Saito 
1287f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1288f2ec16ccSHideki Saito   // understood.
1289f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1290f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1291f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1292f2ec16ccSHideki Saito         Result = false;
1293f2ec16ccSHideki Saito       else
1294f2ec16ccSHideki Saito         return false;
1295f2ec16ccSHideki Saito     }
1296f2ec16ccSHideki Saito 
1297f2ec16ccSHideki Saito   return Result;
1298f2ec16ccSHideki Saito }
1299f2ec16ccSHideki Saito 
1300f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1301f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1302f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1303f2ec16ccSHideki Saito   bool Result = true;
1304f2ec16ccSHideki Saito 
1305f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1306f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1307f2ec16ccSHideki Saito   // vectorizer.
1308f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1309f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1310f2ec16ccSHideki Saito       Result = false;
1311f2ec16ccSHideki Saito     else
1312f2ec16ccSHideki Saito       return false;
1313f2ec16ccSHideki Saito   }
1314f2ec16ccSHideki Saito 
1315f2ec16ccSHideki Saito   // We need to have a loop header.
1316d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1317f2ec16ccSHideki Saito                     << '\n');
1318f2ec16ccSHideki Saito 
1319f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1320f2ec16ccSHideki Saito   // point because they don't support outer loops.
132189c1e35fSStefanos Baziotis   if (!TheLoop->isInnermost()) {
1322f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1323f2ec16ccSHideki Saito 
1324f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
13259e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
13269e97caf5SRenato Golin                                  "unsupported outer loop",
1327ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1328ec818d7fSHideki Saito                                  ORE, TheLoop);
1329f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1330f2ec16ccSHideki Saito       // outer loops.
1331f2ec16ccSHideki Saito       return false;
1332f2ec16ccSHideki Saito     }
1333f2ec16ccSHideki Saito 
1334d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1335f2ec16ccSHideki Saito     return Result;
1336f2ec16ccSHideki Saito   }
1337f2ec16ccSHideki Saito 
133889c1e35fSStefanos Baziotis   assert(TheLoop->isInnermost() && "Inner loop expected.");
1339f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1340f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1341f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1342d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1343f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1344f2ec16ccSHideki Saito       Result = false;
1345f2ec16ccSHideki Saito     else
1346f2ec16ccSHideki Saito       return false;
1347f2ec16ccSHideki Saito   }
1348f2ec16ccSHideki Saito 
1349f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1350f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1351d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1352f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1353f2ec16ccSHideki Saito       Result = false;
1354f2ec16ccSHideki Saito     else
1355f2ec16ccSHideki Saito       return false;
1356f2ec16ccSHideki Saito   }
1357f2ec16ccSHideki Saito 
1358f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1359f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1360d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1361f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1362f2ec16ccSHideki Saito       Result = false;
1363f2ec16ccSHideki Saito     else
1364f2ec16ccSHideki Saito       return false;
1365f2ec16ccSHideki Saito   }
1366f2ec16ccSHideki Saito 
1367d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1368f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1369f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1370f2ec16ccSHideki Saito                             : "")
1371f2ec16ccSHideki Saito                     << "!\n");
1372f2ec16ccSHideki Saito 
1373f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1374f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1375f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1376f2ec16ccSHideki Saito 
13775ba11503SPhilip Reames   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
13789e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
13799e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1380ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1381f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1382f2ec16ccSHideki Saito       Result = false;
1383f2ec16ccSHideki Saito     else
1384f2ec16ccSHideki Saito       return false;
1385f2ec16ccSHideki Saito   }
1386f2ec16ccSHideki Saito 
1387f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1388f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1389f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1390f2ec16ccSHideki Saito   // no restrictions.
1391f2ec16ccSHideki Saito   return Result;
1392f2ec16ccSHideki Saito }
1393f2ec16ccSHideki Saito 
1394d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1395b0b5312eSAyal Zaks 
1396b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1397b0b5312eSAyal Zaks 
1398d15df0edSAyal Zaks   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1399b0b5312eSAyal Zaks 
1400d0d38df0SDavid Green   for (auto &Reduction : getReductionVars())
1401d15df0edSAyal Zaks     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1402d15df0edSAyal Zaks 
1403d15df0edSAyal Zaks   // TODO: handle non-reduction outside users when tail is folded by masking.
1404b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1405d15df0edSAyal Zaks     // Check that all users of allowed exit values are inside the loop or
1406d15df0edSAyal Zaks     // are the live-out of a reduction.
1407d15df0edSAyal Zaks     if (ReductionLiveOuts.count(AE))
1408d15df0edSAyal Zaks       continue;
1409b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1410b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1411b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1412b0b5312eSAyal Zaks         continue;
1413bda8fbe2SSjoerd Meijer       LLVM_DEBUG(
1414bda8fbe2SSjoerd Meijer           dbgs()
1415bda8fbe2SSjoerd Meijer           << "LV: Cannot fold tail by masking, loop has an outside user for "
1416bda8fbe2SSjoerd Meijer           << *UI << "\n");
1417b0b5312eSAyal Zaks       return false;
1418b0b5312eSAyal Zaks     }
1419b0b5312eSAyal Zaks   }
1420b0b5312eSAyal Zaks 
1421b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1422b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1423b0b5312eSAyal Zaks 
1424bda8fbe2SSjoerd Meijer   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1425bda8fbe2SSjoerd Meijer   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1426bda8fbe2SSjoerd Meijer 
1427b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1428b0b5312eSAyal Zaks   // do not need predication such as the header block.
1429b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1430bda8fbe2SSjoerd Meijer     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
14314f01122cSJoachim Meyer                               TmpConditionalAssumes)) {
1432bda8fbe2SSjoerd Meijer       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1433b0b5312eSAyal Zaks       return false;
1434b0b5312eSAyal Zaks     }
1435b0b5312eSAyal Zaks   }
1436b0b5312eSAyal Zaks 
1437b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1438bda8fbe2SSjoerd Meijer 
1439bda8fbe2SSjoerd Meijer   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1440bda8fbe2SSjoerd Meijer   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1441bda8fbe2SSjoerd Meijer                             TmpConditionalAssumes.end());
1442bda8fbe2SSjoerd Meijer 
1443b0b5312eSAyal Zaks   return true;
1444b0b5312eSAyal Zaks }
1445b0b5312eSAyal Zaks 
1446f2ec16ccSHideki Saito } // namespace llvm
1447