1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===// 2f2ec16ccSHideki Saito // 32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information. 52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6f2ec16ccSHideki Saito // 7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===// 8f2ec16ccSHideki Saito // 9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code 10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time. 11f2ec16ccSHideki Saito // 12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis 13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there 14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first). 15f2ec16ccSHideki Saito // 16cc529285SSimon Pilgrim 17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" 187403569bSPhilip Reames #include "llvm/Analysis/Loads.h" 19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h" 20ed98c1b3Sserge-sans-paille #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h" 22ed98c1b3Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h" 237403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h" 24f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h" 25f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h" 2623c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h" 277bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h" 2823c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h" 29f2ec16ccSHideki Saito 30f2ec16ccSHideki Saito using namespace llvm; 3123c11380SFlorian Hahn using namespace PatternMatch; 32f2ec16ccSHideki Saito 33f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize" 34f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME 35f2ec16ccSHideki Saito 364e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication; 374e4ecae0SHideki Saito 38f2ec16ccSHideki Saito static cl::opt<bool> 39f2ec16ccSHideki Saito EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, 40f2ec16ccSHideki Saito cl::desc("Enable if-conversion during vectorization.")); 41f2ec16ccSHideki Saito 429f76a852SKerry McLaughlin namespace llvm { 439f76a852SKerry McLaughlin cl::opt<bool> 449f76a852SKerry McLaughlin HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, 459f76a852SKerry McLaughlin cl::desc("Allow enabling loop hints to reorder " 469f76a852SKerry McLaughlin "FP operations during vectorization.")); 479f76a852SKerry McLaughlin } 489f76a852SKerry McLaughlin 49c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based 50c773d0f9SFlorian Hahn // decisions instead of hard thresholds. 51f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold( 52f2ec16ccSHideki Saito "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, 53f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed.")); 54f2ec16ccSHideki Saito 55f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( 56f2ec16ccSHideki Saito "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, 57f2ec16ccSHideki Saito cl::desc("The maximum number of SCEV checks allowed with a " 58f2ec16ccSHideki Saito "vectorize(enable) pragma")); 59f2ec16ccSHideki Saito 60b1ff20fdSSander de Smalen static cl::opt<LoopVectorizeHints::ScalableForceKind> 61b1ff20fdSSander de Smalen ForceScalableVectorization( 62b1ff20fdSSander de Smalen "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), 634f86aa65SSander de Smalen cl::Hidden, 644f86aa65SSander de Smalen cl::desc("Control whether the compiler can use scalable vectors to " 654f86aa65SSander de Smalen "vectorize a loop"), 664f86aa65SSander de Smalen cl::values( 674f86aa65SSander de Smalen clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", 684f86aa65SSander de Smalen "Scalable vectorization is disabled."), 69b1ff20fdSSander de Smalen clEnumValN( 707c68ed88SPaul Walker LoopVectorizeHints::SK_PreferScalable, "preferred", 717c68ed88SPaul Walker "Scalable vectorization is available and favored when the " 727c68ed88SPaul Walker "cost is inconclusive."), 737c68ed88SPaul Walker clEnumValN( 74b1ff20fdSSander de Smalen LoopVectorizeHints::SK_PreferScalable, "on", 754f86aa65SSander de Smalen "Scalable vectorization is available and favored when the " 764f86aa65SSander de Smalen "cost is inconclusive."))); 774f86aa65SSander de Smalen 78f2ec16ccSHideki Saito /// Maximum vectorization interleave count. 79f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16; 80f2ec16ccSHideki Saito 81f2ec16ccSHideki Saito namespace llvm { 82f2ec16ccSHideki Saito 83f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) { 84f2ec16ccSHideki Saito switch (Kind) { 85f2ec16ccSHideki Saito case HK_WIDTH: 86f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; 87ddb3b26aSBardia Mahjour case HK_INTERLEAVE: 88f2ec16ccSHideki Saito return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; 89f2ec16ccSHideki Saito case HK_FORCE: 90f2ec16ccSHideki Saito return (Val <= 1); 91f2ec16ccSHideki Saito case HK_ISVECTORIZED: 9220b198ecSSjoerd Meijer case HK_PREDICATE: 9371bd59f0SDavid Sherwood case HK_SCALABLE: 94f2ec16ccSHideki Saito return (Val == 0 || Val == 1); 95f2ec16ccSHideki Saito } 96f2ec16ccSHideki Saito return false; 97f2ec16ccSHideki Saito } 98f2ec16ccSHideki Saito 99d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L, 100d4eb13c8SMichael Kruse bool InterleaveOnlyWhenForced, 101b1ff20fdSSander de Smalen OptimizationRemarkEmitter &ORE, 102b1ff20fdSSander de Smalen const TargetTransformInfo *TTI) 103f2ec16ccSHideki Saito : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), 104ddb3b26aSBardia Mahjour Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), 105f2ec16ccSHideki Saito Force("vectorize.enable", FK_Undefined, HK_FORCE), 10620b198ecSSjoerd Meijer IsVectorized("isvectorized", 0, HK_ISVECTORIZED), 10771bd59f0SDavid Sherwood Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), 1084f86aa65SSander de Smalen Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), 1094f86aa65SSander de Smalen TheLoop(L), ORE(ORE) { 110f2ec16ccSHideki Saito // Populate values with existing loop metadata. 111f2ec16ccSHideki Saito getHintsFromMetadata(); 112f2ec16ccSHideki Saito 113f2ec16ccSHideki Saito // force-vector-interleave overrides DisableInterleaving. 114f2ec16ccSHideki Saito if (VectorizerParams::isInterleaveForced()) 115f2ec16ccSHideki Saito Interleave.Value = VectorizerParams::VectorizationInterleave; 116f2ec16ccSHideki Saito 117b1ff20fdSSander de Smalen // If the metadata doesn't explicitly specify whether to enable scalable 118b1ff20fdSSander de Smalen // vectorization, then decide based on the following criteria (increasing 119b1ff20fdSSander de Smalen // level of priority): 120b1ff20fdSSander de Smalen // - Target default 121b1ff20fdSSander de Smalen // - Metadata width 122b1ff20fdSSander de Smalen // - Force option (always overrides) 123b1ff20fdSSander de Smalen if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { 124b1ff20fdSSander de Smalen if (TTI) 125b1ff20fdSSander de Smalen Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable 126b1ff20fdSSander de Smalen : SK_FixedWidthOnly; 127b1ff20fdSSander de Smalen 128b1ff20fdSSander de Smalen if (Width.Value) 1294f86aa65SSander de Smalen // If the width is set, but the metadata says nothing about the scalable 1304f86aa65SSander de Smalen // property, then assume it concerns only a fixed-width UserVF. 1314f86aa65SSander de Smalen // If width is not set, the flag takes precedence. 132b1ff20fdSSander de Smalen Scalable.Value = SK_FixedWidthOnly; 133b1ff20fdSSander de Smalen } 134b1ff20fdSSander de Smalen 135b1ff20fdSSander de Smalen // If the flag is set to force any use of scalable vectors, override the loop 136b1ff20fdSSander de Smalen // hints. 137b1ff20fdSSander de Smalen if (ForceScalableVectorization.getValue() != 138b1ff20fdSSander de Smalen LoopVectorizeHints::SK_Unspecified) 139b1ff20fdSSander de Smalen Scalable.Value = ForceScalableVectorization.getValue(); 140b1ff20fdSSander de Smalen 141b1ff20fdSSander de Smalen // Scalable vectorization is disabled if no preference is specified. 142b1ff20fdSSander de Smalen if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) 1434f86aa65SSander de Smalen Scalable.Value = SK_FixedWidthOnly; 1444f86aa65SSander de Smalen 145f2ec16ccSHideki Saito if (IsVectorized.Value != 1) 146f2ec16ccSHideki Saito // If the vectorization width and interleaving count are both 1 then 147f2ec16ccSHideki Saito // consider the loop to have been already vectorized because there's 148f2ec16ccSHideki Saito // nothing more that we can do. 14971bd59f0SDavid Sherwood IsVectorized.Value = 150ddb3b26aSBardia Mahjour getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; 151ddb3b26aSBardia Mahjour LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() 152f2ec16ccSHideki Saito << "LV: Interleaving disabled by the pass manager\n"); 153f2ec16ccSHideki Saito } 154f2ec16ccSHideki Saito 15577a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() { 15677a614a6SMichael Kruse LLVMContext &Context = TheLoop->getHeader()->getContext(); 15777a614a6SMichael Kruse 15877a614a6SMichael Kruse MDNode *IsVectorizedMD = MDNode::get( 15977a614a6SMichael Kruse Context, 16077a614a6SMichael Kruse {MDString::get(Context, "llvm.loop.isvectorized"), 16177a614a6SMichael Kruse ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); 16277a614a6SMichael Kruse MDNode *LoopID = TheLoop->getLoopID(); 16377a614a6SMichael Kruse MDNode *NewLoopID = 16477a614a6SMichael Kruse makePostTransformationMetadata(Context, LoopID, 16577a614a6SMichael Kruse {Twine(Prefix(), "vectorize.").str(), 16677a614a6SMichael Kruse Twine(Prefix(), "interleave.").str()}, 16777a614a6SMichael Kruse {IsVectorizedMD}); 16877a614a6SMichael Kruse TheLoop->setLoopID(NewLoopID); 16977a614a6SMichael Kruse 17077a614a6SMichael Kruse // Update internal cache. 17177a614a6SMichael Kruse IsVectorized.Value = 1; 17277a614a6SMichael Kruse } 17377a614a6SMichael Kruse 174d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization( 175d4eb13c8SMichael Kruse Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { 176f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) { 177d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); 178f2ec16ccSHideki Saito emitRemarkWithHints(); 179f2ec16ccSHideki Saito return false; 180f2ec16ccSHideki Saito } 181f2ec16ccSHideki Saito 182d4eb13c8SMichael Kruse if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { 183d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); 184f2ec16ccSHideki Saito emitRemarkWithHints(); 185f2ec16ccSHideki Saito return false; 186f2ec16ccSHideki Saito } 187f2ec16ccSHideki Saito 188f2ec16ccSHideki Saito if (getIsVectorized() == 1) { 189d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); 190f2ec16ccSHideki Saito // FIXME: Add interleave.disable metadata. This will allow 191f2ec16ccSHideki Saito // vectorize.disable to be used without disabling the pass and errors 192f2ec16ccSHideki Saito // to differentiate between disabled vectorization and a width of 1. 193f2ec16ccSHideki Saito ORE.emit([&]() { 194f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), 195f2ec16ccSHideki Saito "AllDisabled", L->getStartLoc(), 196f2ec16ccSHideki Saito L->getHeader()) 197f2ec16ccSHideki Saito << "loop not vectorized: vectorization and interleaving are " 198f2ec16ccSHideki Saito "explicitly disabled, or the loop has already been " 199f2ec16ccSHideki Saito "vectorized"; 200f2ec16ccSHideki Saito }); 201f2ec16ccSHideki Saito return false; 202f2ec16ccSHideki Saito } 203f2ec16ccSHideki Saito 204f2ec16ccSHideki Saito return true; 205f2ec16ccSHideki Saito } 206f2ec16ccSHideki Saito 207f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const { 208f2ec16ccSHideki Saito using namespace ore; 209f2ec16ccSHideki Saito 210f2ec16ccSHideki Saito ORE.emit([&]() { 211f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Disabled) 212f2ec16ccSHideki Saito return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", 213f2ec16ccSHideki Saito TheLoop->getStartLoc(), 214f2ec16ccSHideki Saito TheLoop->getHeader()) 215f2ec16ccSHideki Saito << "loop not vectorized: vectorization is explicitly disabled"; 216f2ec16ccSHideki Saito else { 217f2ec16ccSHideki Saito OptimizationRemarkMissed R(LV_NAME, "MissedDetails", 218f2ec16ccSHideki Saito TheLoop->getStartLoc(), TheLoop->getHeader()); 219f2ec16ccSHideki Saito R << "loop not vectorized"; 220f2ec16ccSHideki Saito if (Force.Value == LoopVectorizeHints::FK_Enabled) { 221f2ec16ccSHideki Saito R << " (Force=" << NV("Force", true); 222f2ec16ccSHideki Saito if (Width.Value != 0) 22371bd59f0SDavid Sherwood R << ", Vector Width=" << NV("VectorWidth", getWidth()); 224ddb3b26aSBardia Mahjour if (getInterleave() != 0) 225ddb3b26aSBardia Mahjour R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); 226f2ec16ccSHideki Saito R << ")"; 227f2ec16ccSHideki Saito } 228f2ec16ccSHideki Saito return R; 229f2ec16ccSHideki Saito } 230f2ec16ccSHideki Saito }); 231f2ec16ccSHideki Saito } 232f2ec16ccSHideki Saito 233f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { 23471bd59f0SDavid Sherwood if (getWidth() == ElementCount::getFixed(1)) 235f2ec16ccSHideki Saito return LV_NAME; 236f2ec16ccSHideki Saito if (getForce() == LoopVectorizeHints::FK_Disabled) 237f2ec16ccSHideki Saito return LV_NAME; 23871bd59f0SDavid Sherwood if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) 239f2ec16ccSHideki Saito return LV_NAME; 240f2ec16ccSHideki Saito return OptimizationRemarkAnalysis::AlwaysPrint; 241f2ec16ccSHideki Saito } 242f2ec16ccSHideki Saito 2439f76a852SKerry McLaughlin bool LoopVectorizeHints::allowReordering() const { 2449f76a852SKerry McLaughlin // Allow the vectorizer to change the order of operations if enabling 2459f76a852SKerry McLaughlin // loop hints are provided 2469f76a852SKerry McLaughlin ElementCount EC = getWidth(); 2479f76a852SKerry McLaughlin return HintsAllowReordering && 2489f76a852SKerry McLaughlin (getForce() == LoopVectorizeHints::FK_Enabled || 2499f76a852SKerry McLaughlin EC.getKnownMinValue() > 1); 2509f76a852SKerry McLaughlin } 2519f76a852SKerry McLaughlin 252f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() { 253f2ec16ccSHideki Saito MDNode *LoopID = TheLoop->getLoopID(); 254f2ec16ccSHideki Saito if (!LoopID) 255f2ec16ccSHideki Saito return; 256f2ec16ccSHideki Saito 257f2ec16ccSHideki Saito // First operand should refer to the loop id itself. 258f2ec16ccSHideki Saito assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); 259f2ec16ccSHideki Saito assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); 260f2ec16ccSHideki Saito 261f2ec16ccSHideki Saito for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { 262f2ec16ccSHideki Saito const MDString *S = nullptr; 263f2ec16ccSHideki Saito SmallVector<Metadata *, 4> Args; 264f2ec16ccSHideki Saito 265f2ec16ccSHideki Saito // The expected hint is either a MDString or a MDNode with the first 266f2ec16ccSHideki Saito // operand a MDString. 267f2ec16ccSHideki Saito if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { 268f2ec16ccSHideki Saito if (!MD || MD->getNumOperands() == 0) 269f2ec16ccSHideki Saito continue; 270f2ec16ccSHideki Saito S = dyn_cast<MDString>(MD->getOperand(0)); 271f2ec16ccSHideki Saito for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) 272f2ec16ccSHideki Saito Args.push_back(MD->getOperand(i)); 273f2ec16ccSHideki Saito } else { 274f2ec16ccSHideki Saito S = dyn_cast<MDString>(LoopID->getOperand(i)); 275f2ec16ccSHideki Saito assert(Args.size() == 0 && "too many arguments for MDString"); 276f2ec16ccSHideki Saito } 277f2ec16ccSHideki Saito 278f2ec16ccSHideki Saito if (!S) 279f2ec16ccSHideki Saito continue; 280f2ec16ccSHideki Saito 281f2ec16ccSHideki Saito // Check if the hint starts with the loop metadata prefix. 282f2ec16ccSHideki Saito StringRef Name = S->getString(); 283f2ec16ccSHideki Saito if (Args.size() == 1) 284f2ec16ccSHideki Saito setHint(Name, Args[0]); 285f2ec16ccSHideki Saito } 286f2ec16ccSHideki Saito } 287f2ec16ccSHideki Saito 288f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { 289f2ec16ccSHideki Saito if (!Name.startswith(Prefix())) 290f2ec16ccSHideki Saito return; 291f2ec16ccSHideki Saito Name = Name.substr(Prefix().size(), StringRef::npos); 292f2ec16ccSHideki Saito 293f2ec16ccSHideki Saito const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); 294f2ec16ccSHideki Saito if (!C) 295f2ec16ccSHideki Saito return; 296f2ec16ccSHideki Saito unsigned Val = C->getZExtValue(); 297f2ec16ccSHideki Saito 29871bd59f0SDavid Sherwood Hint *Hints[] = {&Width, &Interleave, &Force, 29971bd59f0SDavid Sherwood &IsVectorized, &Predicate, &Scalable}; 300f2ec16ccSHideki Saito for (auto H : Hints) { 301f2ec16ccSHideki Saito if (Name == H->Name) { 302f2ec16ccSHideki Saito if (H->validate(Val)) 303f2ec16ccSHideki Saito H->Value = Val; 304f2ec16ccSHideki Saito else 305d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); 306f2ec16ccSHideki Saito break; 307f2ec16ccSHideki Saito } 308f2ec16ccSHideki Saito } 309f2ec16ccSHideki Saito } 310f2ec16ccSHideki Saito 311f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop 312f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes 313f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is 314f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is 315f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions: 316f2ec16ccSHideki Saito // 1) it has a canonical IV (starting from 0 and with stride 1), 317f2ec16ccSHideki Saito // 2) its latch terminator is a conditional branch and, 318f2ec16ccSHideki Saito // 3) its latch condition is a compare instruction whose operands are the 319f2ec16ccSHideki Saito // canonical IV and an OuterLp invariant. 320f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not 321f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity. 322f2ec16ccSHideki Saito // 323f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation 324f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop 325f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and 326f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for 327f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we 328f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer 329f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit 330f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away 331f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not 332f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate 333f2ec16ccSHideki Saito // function that is only executed once for each \p Lp. 334f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { 335f2ec16ccSHideki Saito assert(Lp->getLoopLatch() && "Expected loop with a single latch."); 336f2ec16ccSHideki Saito 337f2ec16ccSHideki Saito // If Lp is the outer loop, it's uniform by definition. 338f2ec16ccSHideki Saito if (Lp == OuterLp) 339f2ec16ccSHideki Saito return true; 340f2ec16ccSHideki Saito assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); 341f2ec16ccSHideki Saito 342f2ec16ccSHideki Saito // 1. 343f2ec16ccSHideki Saito PHINode *IV = Lp->getCanonicalInductionVariable(); 344f2ec16ccSHideki Saito if (!IV) { 345d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); 346f2ec16ccSHideki Saito return false; 347f2ec16ccSHideki Saito } 348f2ec16ccSHideki Saito 349f2ec16ccSHideki Saito // 2. 350f2ec16ccSHideki Saito BasicBlock *Latch = Lp->getLoopLatch(); 351f2ec16ccSHideki Saito auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); 352f2ec16ccSHideki Saito if (!LatchBr || LatchBr->isUnconditional()) { 353d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); 354f2ec16ccSHideki Saito return false; 355f2ec16ccSHideki Saito } 356f2ec16ccSHideki Saito 357f2ec16ccSHideki Saito // 3. 358f2ec16ccSHideki Saito auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); 359f2ec16ccSHideki Saito if (!LatchCmp) { 360d34e60caSNicola Zaghen LLVM_DEBUG( 361d34e60caSNicola Zaghen dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); 362f2ec16ccSHideki Saito return false; 363f2ec16ccSHideki Saito } 364f2ec16ccSHideki Saito 365f2ec16ccSHideki Saito Value *CondOp0 = LatchCmp->getOperand(0); 366f2ec16ccSHideki Saito Value *CondOp1 = LatchCmp->getOperand(1); 367f2ec16ccSHideki Saito Value *IVUpdate = IV->getIncomingValueForBlock(Latch); 368f2ec16ccSHideki Saito if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && 369f2ec16ccSHideki Saito !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { 370d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); 371f2ec16ccSHideki Saito return false; 372f2ec16ccSHideki Saito } 373f2ec16ccSHideki Saito 374f2ec16ccSHideki Saito return true; 375f2ec16ccSHideki Saito } 376f2ec16ccSHideki Saito 377f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p 378f2ec16ccSHideki Saito // OuterLp. 379f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { 380f2ec16ccSHideki Saito if (!isUniformLoop(Lp, OuterLp)) 381f2ec16ccSHideki Saito return false; 382f2ec16ccSHideki Saito 383f2ec16ccSHideki Saito // Check if nested loops are uniform. 384f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 385f2ec16ccSHideki Saito if (!isUniformLoopNest(SubLp, OuterLp)) 386f2ec16ccSHideki Saito return false; 387f2ec16ccSHideki Saito 388f2ec16ccSHideki Saito return true; 389f2ec16ccSHideki Saito } 390f2ec16ccSHideki Saito 3915f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node. 392f2ec16ccSHideki Saito /// 393f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if 394f2ec16ccSHideki Saito /// convert. 395f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) { 396f2ec16ccSHideki Saito for (PHINode &Phi : BB->phis()) { 397f2ec16ccSHideki Saito for (Value *V : Phi.incoming_values()) 398f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(V)) 399f2ec16ccSHideki Saito if (C->canTrap()) 400f2ec16ccSHideki Saito return false; 401f2ec16ccSHideki Saito } 402f2ec16ccSHideki Saito return true; 403f2ec16ccSHideki Saito } 404f2ec16ccSHideki Saito 405f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { 406f2ec16ccSHideki Saito if (Ty->isPointerTy()) 407f2ec16ccSHideki Saito return DL.getIntPtrType(Ty); 408f2ec16ccSHideki Saito 409f2ec16ccSHideki Saito // It is possible that char's or short's overflow when we ask for the loop's 410f2ec16ccSHideki Saito // trip count, work around this by changing the type size. 411f2ec16ccSHideki Saito if (Ty->getScalarSizeInBits() < 32) 412f2ec16ccSHideki Saito return Type::getInt32Ty(Ty->getContext()); 413f2ec16ccSHideki Saito 414f2ec16ccSHideki Saito return Ty; 415f2ec16ccSHideki Saito } 416f2ec16ccSHideki Saito 417f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { 418f2ec16ccSHideki Saito Ty0 = convertPointerToIntegerType(DL, Ty0); 419f2ec16ccSHideki Saito Ty1 = convertPointerToIntegerType(DL, Ty1); 420f2ec16ccSHideki Saito if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) 421f2ec16ccSHideki Saito return Ty0; 422f2ec16ccSHideki Saito return Ty1; 423f2ec16ccSHideki Saito } 424f2ec16ccSHideki Saito 4255f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an 426f2ec16ccSHideki Saito /// identified reduction variable. 427f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, 428f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 42960a1e4ddSAnna Thomas // Reductions, Inductions and non-header phis are allowed to have exit users. All 430f2ec16ccSHideki Saito // other instructions must not have external users. 431f2ec16ccSHideki Saito if (!AllowedExit.count(Inst)) 432f2ec16ccSHideki Saito // Check that all of the users of the loop are inside the BB. 433f2ec16ccSHideki Saito for (User *U : Inst->users()) { 434f2ec16ccSHideki Saito Instruction *UI = cast<Instruction>(U); 435f2ec16ccSHideki Saito // This user may be a reduction exit value. 436f2ec16ccSHideki Saito if (!TheLoop->contains(UI)) { 437d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); 438f2ec16ccSHideki Saito return true; 439f2ec16ccSHideki Saito } 440f2ec16ccSHideki Saito } 441f2ec16ccSHideki Saito return false; 442f2ec16ccSHideki Saito } 443f2ec16ccSHideki Saito 444*4e5e042dSIgor Kirillov /// Returns true if A and B have same pointer operands or same SCEVs addresses 445*4e5e042dSIgor Kirillov static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, 446*4e5e042dSIgor Kirillov StoreInst *B) { 447*4e5e042dSIgor Kirillov // Compare store 448*4e5e042dSIgor Kirillov if (A == B) 449*4e5e042dSIgor Kirillov return true; 450*4e5e042dSIgor Kirillov 451*4e5e042dSIgor Kirillov // Otherwise Compare pointers 452*4e5e042dSIgor Kirillov Value *APtr = A->getPointerOperand(); 453*4e5e042dSIgor Kirillov Value *BPtr = B->getPointerOperand(); 454*4e5e042dSIgor Kirillov if (APtr == BPtr) 455*4e5e042dSIgor Kirillov return true; 456*4e5e042dSIgor Kirillov 457*4e5e042dSIgor Kirillov // Otherwise compare address SCEVs 458*4e5e042dSIgor Kirillov if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) 459*4e5e042dSIgor Kirillov return true; 460*4e5e042dSIgor Kirillov 461*4e5e042dSIgor Kirillov return false; 462*4e5e042dSIgor Kirillov } 463*4e5e042dSIgor Kirillov 46445c46734SNikita Popov int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, 46545c46734SNikita Popov Value *Ptr) const { 466f2ec16ccSHideki Saito const ValueToValueMap &Strides = 467f2ec16ccSHideki Saito getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); 468f2ec16ccSHideki Saito 4697bedae7dSHiroshi Yamauchi Function *F = TheLoop->getHeader()->getParent(); 4707bedae7dSHiroshi Yamauchi bool OptForSize = F->hasOptSize() || 4717bedae7dSHiroshi Yamauchi llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, 4727bedae7dSHiroshi Yamauchi PGSOQueryType::IRPass); 4737bedae7dSHiroshi Yamauchi bool CanAddPredicate = !OptForSize; 47445c46734SNikita Popov int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, 47545c46734SNikita Popov CanAddPredicate, false); 476f2ec16ccSHideki Saito if (Stride == 1 || Stride == -1) 477f2ec16ccSHideki Saito return Stride; 478f2ec16ccSHideki Saito return 0; 479f2ec16ccSHideki Saito } 480f2ec16ccSHideki Saito 481f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) { 482f2ec16ccSHideki Saito return LAI->isUniform(V); 483f2ec16ccSHideki Saito } 484f2ec16ccSHideki Saito 485f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() { 48689c1e35fSStefanos Baziotis assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); 487f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 488f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 489f2ec16ccSHideki Saito bool Result = true; 490f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 491f2ec16ccSHideki Saito 492f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 493f2ec16ccSHideki Saito // Check whether the BB terminator is a BranchInst. Any other terminator is 494f2ec16ccSHideki Saito // not supported yet. 495f2ec16ccSHideki Saito auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); 496f2ec16ccSHideki Saito if (!Br) { 4979e97caf5SRenato Golin reportVectorizationFailure("Unsupported basic block terminator", 4989e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 499ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 500f2ec16ccSHideki Saito if (DoExtraAnalysis) 501f2ec16ccSHideki Saito Result = false; 502f2ec16ccSHideki Saito else 503f2ec16ccSHideki Saito return false; 504f2ec16ccSHideki Saito } 505f2ec16ccSHideki Saito 506f2ec16ccSHideki Saito // Check whether the BranchInst is a supported one. Only unconditional 507f2ec16ccSHideki Saito // branches, conditional branches with an outer loop invariant condition or 508f2ec16ccSHideki Saito // backedges are supported. 5094e4ecae0SHideki Saito // FIXME: We skip these checks when VPlan predication is enabled as we 5104e4ecae0SHideki Saito // want to allow divergent branches. This whole check will be removed 5114e4ecae0SHideki Saito // once VPlan predication is on by default. 5124e4ecae0SHideki Saito if (!EnableVPlanPredication && Br && Br->isConditional() && 513f2ec16ccSHideki Saito !TheLoop->isLoopInvariant(Br->getCondition()) && 514f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(0)) && 515f2ec16ccSHideki Saito !LI->isLoopHeader(Br->getSuccessor(1))) { 5169e97caf5SRenato Golin reportVectorizationFailure("Unsupported conditional branch", 5179e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 518ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 519f2ec16ccSHideki Saito if (DoExtraAnalysis) 520f2ec16ccSHideki Saito Result = false; 521f2ec16ccSHideki Saito else 522f2ec16ccSHideki Saito return false; 523f2ec16ccSHideki Saito } 524f2ec16ccSHideki Saito } 525f2ec16ccSHideki Saito 526f2ec16ccSHideki Saito // Check whether inner loops are uniform. At this point, we only support 527f2ec16ccSHideki Saito // simple outer loops scenarios with uniform nested loops. 528f2ec16ccSHideki Saito if (!isUniformLoopNest(TheLoop /*loop nest*/, 529f2ec16ccSHideki Saito TheLoop /*context outer loop*/)) { 5309e97caf5SRenato Golin reportVectorizationFailure("Outer loop contains divergent loops", 5319e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 532ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 533f2ec16ccSHideki Saito if (DoExtraAnalysis) 534f2ec16ccSHideki Saito Result = false; 535f2ec16ccSHideki Saito else 536f2ec16ccSHideki Saito return false; 537f2ec16ccSHideki Saito } 538f2ec16ccSHideki Saito 539ea7f3035SHideki Saito // Check whether we are able to set up outer loop induction. 540ea7f3035SHideki Saito if (!setupOuterLoopInductions()) { 5419e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop Phi(s)", 5429e97caf5SRenato Golin "Unsupported outer loop Phi(s)", 543ec818d7fSHideki Saito "UnsupportedPhi", ORE, TheLoop); 544ea7f3035SHideki Saito if (DoExtraAnalysis) 545ea7f3035SHideki Saito Result = false; 546ea7f3035SHideki Saito else 547ea7f3035SHideki Saito return false; 548ea7f3035SHideki Saito } 549ea7f3035SHideki Saito 550f2ec16ccSHideki Saito return Result; 551f2ec16ccSHideki Saito } 552f2ec16ccSHideki Saito 553f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi( 554f2ec16ccSHideki Saito PHINode *Phi, const InductionDescriptor &ID, 555f2ec16ccSHideki Saito SmallPtrSetImpl<Value *> &AllowedExit) { 556f2ec16ccSHideki Saito Inductions[Phi] = ID; 557f2ec16ccSHideki Saito 558f2ec16ccSHideki Saito // In case this induction also comes with casts that we know we can ignore 559f2ec16ccSHideki Saito // in the vectorized loop body, record them here. All casts could be recorded 560f2ec16ccSHideki Saito // here for ignoring, but suffices to record only the first (as it is the 561f2ec16ccSHideki Saito // only one that may bw used outside the cast sequence). 562f2ec16ccSHideki Saito const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); 563f2ec16ccSHideki Saito if (!Casts.empty()) 564f2ec16ccSHideki Saito InductionCastsToIgnore.insert(*Casts.begin()); 565f2ec16ccSHideki Saito 566f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 567f2ec16ccSHideki Saito const DataLayout &DL = Phi->getModule()->getDataLayout(); 568f2ec16ccSHideki Saito 569f2ec16ccSHideki Saito // Get the widest type. 570f2ec16ccSHideki Saito if (!PhiTy->isFloatingPointTy()) { 571f2ec16ccSHideki Saito if (!WidestIndTy) 572f2ec16ccSHideki Saito WidestIndTy = convertPointerToIntegerType(DL, PhiTy); 573f2ec16ccSHideki Saito else 574f2ec16ccSHideki Saito WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); 575f2ec16ccSHideki Saito } 576f2ec16ccSHideki Saito 577f2ec16ccSHideki Saito // Int inductions are special because we only allow one IV. 578f2ec16ccSHideki Saito if (ID.getKind() == InductionDescriptor::IK_IntInduction && 579f2ec16ccSHideki Saito ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && 580f2ec16ccSHideki Saito isa<Constant>(ID.getStartValue()) && 581f2ec16ccSHideki Saito cast<Constant>(ID.getStartValue())->isNullValue()) { 582f2ec16ccSHideki Saito 583f2ec16ccSHideki Saito // Use the phi node with the widest type as induction. Use the last 584f2ec16ccSHideki Saito // one if there are multiple (no good reason for doing this other 585f2ec16ccSHideki Saito // than it is expedient). We've checked that it begins at zero and 586f2ec16ccSHideki Saito // steps by one, so this is a canonical induction variable. 587f2ec16ccSHideki Saito if (!PrimaryInduction || PhiTy == WidestIndTy) 588f2ec16ccSHideki Saito PrimaryInduction = Phi; 589f2ec16ccSHideki Saito } 590f2ec16ccSHideki Saito 591f2ec16ccSHideki Saito // Both the PHI node itself, and the "post-increment" value feeding 592f2ec16ccSHideki Saito // back into the PHI node may have external users. 593f2ec16ccSHideki Saito // We can allow those uses, except if the SCEVs we have for them rely 594f2ec16ccSHideki Saito // on predicates that only hold within the loop, since allowing the exit 5956a1dd77fSAnna Thomas // currently means re-using this SCEV outside the loop (see PR33706 for more 5966a1dd77fSAnna Thomas // details). 5975ba11503SPhilip Reames if (PSE.getPredicate().isAlwaysTrue()) { 598f2ec16ccSHideki Saito AllowedExit.insert(Phi); 599f2ec16ccSHideki Saito AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); 600f2ec16ccSHideki Saito } 601f2ec16ccSHideki Saito 602d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); 603f2ec16ccSHideki Saito } 604f2ec16ccSHideki Saito 605ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() { 606ea7f3035SHideki Saito BasicBlock *Header = TheLoop->getHeader(); 607ea7f3035SHideki Saito 608ea7f3035SHideki Saito // Returns true if a given Phi is a supported induction. 609ea7f3035SHideki Saito auto isSupportedPhi = [&](PHINode &Phi) -> bool { 610ea7f3035SHideki Saito InductionDescriptor ID; 611ea7f3035SHideki Saito if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && 612ea7f3035SHideki Saito ID.getKind() == InductionDescriptor::IK_IntInduction) { 613ea7f3035SHideki Saito addInductionPhi(&Phi, ID, AllowedExit); 614ea7f3035SHideki Saito return true; 615ea7f3035SHideki Saito } else { 616ea7f3035SHideki Saito // Bail out for any Phi in the outer loop header that is not a supported 617ea7f3035SHideki Saito // induction. 618ea7f3035SHideki Saito LLVM_DEBUG( 619ea7f3035SHideki Saito dbgs() 620ea7f3035SHideki Saito << "LV: Found unsupported PHI for outer loop vectorization.\n"); 621ea7f3035SHideki Saito return false; 622ea7f3035SHideki Saito } 623ea7f3035SHideki Saito }; 624ea7f3035SHideki Saito 625ea7f3035SHideki Saito if (llvm::all_of(Header->phis(), isSupportedPhi)) 626ea7f3035SHideki Saito return true; 627ea7f3035SHideki Saito else 628ea7f3035SHideki Saito return false; 629ea7f3035SHideki Saito } 630ea7f3035SHideki Saito 63166c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in 63266c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in 63366c120f0SFrancesco Petrogalli /// multiple scalar calls. This is represented in the 63466c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the 63566c120f0SFrancesco Petrogalli /// following example: 63666c120f0SFrancesco Petrogalli /// 63766c120f0SFrancesco Petrogalli /// const VecDesc VecIntrinsics[] = { 63866c120f0SFrancesco Petrogalli /// {"llvm.phx.abs.i32", "", 4} 63966c120f0SFrancesco Petrogalli /// }; 64066c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { 64166c120f0SFrancesco Petrogalli const StringRef ScalarName = CI.getCalledFunction()->getName(); 64266c120f0SFrancesco Petrogalli bool Scalarize = TLI.isFunctionVectorizable(ScalarName); 64366c120f0SFrancesco Petrogalli // Check that all known VFs are not associated to a vector 64466c120f0SFrancesco Petrogalli // function, i.e. the vector name is emty. 64501b87444SDavid Sherwood if (Scalarize) { 64601b87444SDavid Sherwood ElementCount WidestFixedVF, WidestScalableVF; 64701b87444SDavid Sherwood TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); 64801b87444SDavid Sherwood for (ElementCount VF = ElementCount::getFixed(2); 64901b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) 65066c120f0SFrancesco Petrogalli Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 65101b87444SDavid Sherwood for (ElementCount VF = ElementCount::getScalable(1); 65201b87444SDavid Sherwood ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) 65301b87444SDavid Sherwood Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); 65401b87444SDavid Sherwood assert((WidestScalableVF.isZero() || !Scalarize) && 65501b87444SDavid Sherwood "Caller may decide to scalarize a variant using a scalable VF"); 65666c120f0SFrancesco Petrogalli } 65766c120f0SFrancesco Petrogalli return Scalarize; 65866c120f0SFrancesco Petrogalli } 65966c120f0SFrancesco Petrogalli 660f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() { 661f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 662f2ec16ccSHideki Saito 663f2ec16ccSHideki Saito // For each block in the loop. 664f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 665f2ec16ccSHideki Saito // Scan the instructions in the block and look for hazards. 666f2ec16ccSHideki Saito for (Instruction &I : *BB) { 667f2ec16ccSHideki Saito if (auto *Phi = dyn_cast<PHINode>(&I)) { 668f2ec16ccSHideki Saito Type *PhiTy = Phi->getType(); 669f2ec16ccSHideki Saito // Check that this PHI type is allowed. 670f2ec16ccSHideki Saito if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && 671f2ec16ccSHideki Saito !PhiTy->isPointerTy()) { 6729e97caf5SRenato Golin reportVectorizationFailure("Found a non-int non-pointer PHI", 6739e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 674ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 675f2ec16ccSHideki Saito return false; 676f2ec16ccSHideki Saito } 677f2ec16ccSHideki Saito 678f2ec16ccSHideki Saito // If this PHINode is not in the header block, then we know that we 679f2ec16ccSHideki Saito // can convert it to select during if-conversion. No need to check if 680f2ec16ccSHideki Saito // the PHIs in this block are induction or reduction variables. 681f2ec16ccSHideki Saito if (BB != Header) { 68260a1e4ddSAnna Thomas // Non-header phi nodes that have outside uses can be vectorized. Add 68360a1e4ddSAnna Thomas // them to the list of allowed exits. 68460a1e4ddSAnna Thomas // Unsafe cyclic dependencies with header phis are identified during 68560a1e4ddSAnna Thomas // legalization for reduction, induction and first order 68660a1e4ddSAnna Thomas // recurrences. 687dd18ce45SBjorn Pettersson AllowedExit.insert(&I); 688f2ec16ccSHideki Saito continue; 689f2ec16ccSHideki Saito } 690f2ec16ccSHideki Saito 691f2ec16ccSHideki Saito // We only allow if-converted PHIs with exactly two incoming values. 692f2ec16ccSHideki Saito if (Phi->getNumIncomingValues() != 2) { 6939e97caf5SRenato Golin reportVectorizationFailure("Found an invalid PHI", 6949e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 695ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop, Phi); 696f2ec16ccSHideki Saito return false; 697f2ec16ccSHideki Saito } 698f2ec16ccSHideki Saito 699f2ec16ccSHideki Saito RecurrenceDescriptor RedDes; 700f2ec16ccSHideki Saito if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, 701*4e5e042dSIgor Kirillov DT, PSE.getSE())) { 702b3a33553SSanjay Patel Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); 703f2ec16ccSHideki Saito AllowedExit.insert(RedDes.getLoopExitInstr()); 704f2ec16ccSHideki Saito Reductions[Phi] = RedDes; 705f2ec16ccSHideki Saito continue; 706f2ec16ccSHideki Saito } 707f2ec16ccSHideki Saito 708b02b0ad8SAnna Thomas // TODO: Instead of recording the AllowedExit, it would be good to record the 709b02b0ad8SAnna Thomas // complementary set: NotAllowedExit. These include (but may not be 710b02b0ad8SAnna Thomas // limited to): 711b02b0ad8SAnna Thomas // 1. Reduction phis as they represent the one-before-last value, which 712b02b0ad8SAnna Thomas // is not available when vectorized 713b02b0ad8SAnna Thomas // 2. Induction phis and increment when SCEV predicates cannot be used 714b02b0ad8SAnna Thomas // outside the loop - see addInductionPhi 715b02b0ad8SAnna Thomas // 3. Non-Phis with outside uses when SCEV predicates cannot be used 716b02b0ad8SAnna Thomas // outside the loop - see call to hasOutsideLoopUser in the non-phi 717b02b0ad8SAnna Thomas // handling below 718b02b0ad8SAnna Thomas // 4. FirstOrderRecurrence phis that can possibly be handled by 719b02b0ad8SAnna Thomas // extraction. 720b02b0ad8SAnna Thomas // By recording these, we can then reason about ways to vectorize each 721b02b0ad8SAnna Thomas // of these NotAllowedExit. 722f2ec16ccSHideki Saito InductionDescriptor ID; 723f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { 724f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 72536a489d1SSanjay Patel Requirements->addExactFPMathInst(ID.getExactFPMathInst()); 726f2ec16ccSHideki Saito continue; 727f2ec16ccSHideki Saito } 728f2ec16ccSHideki Saito 729f2ec16ccSHideki Saito if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop, 730f2ec16ccSHideki Saito SinkAfter, DT)) { 7318e0c5f72SAyal Zaks AllowedExit.insert(Phi); 732f2ec16ccSHideki Saito FirstOrderRecurrences.insert(Phi); 733f2ec16ccSHideki Saito continue; 734f2ec16ccSHideki Saito } 735f2ec16ccSHideki Saito 736f2ec16ccSHideki Saito // As a last resort, coerce the PHI to a AddRec expression 737f2ec16ccSHideki Saito // and re-try classifying it a an induction PHI. 738f2ec16ccSHideki Saito if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { 739f2ec16ccSHideki Saito addInductionPhi(Phi, ID, AllowedExit); 740f2ec16ccSHideki Saito continue; 741f2ec16ccSHideki Saito } 742f2ec16ccSHideki Saito 7439e97caf5SRenato Golin reportVectorizationFailure("Found an unidentified PHI", 7449e97caf5SRenato Golin "value that could not be identified as " 7459e97caf5SRenato Golin "reduction is used outside the loop", 746ec818d7fSHideki Saito "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); 747f2ec16ccSHideki Saito return false; 748f2ec16ccSHideki Saito } // end of PHI handling 749f2ec16ccSHideki Saito 750f2ec16ccSHideki Saito // We handle calls that: 751f2ec16ccSHideki Saito // * Are debug info intrinsics. 752f2ec16ccSHideki Saito // * Have a mapping to an IR intrinsic. 753f2ec16ccSHideki Saito // * Have a vector version available. 754f2ec16ccSHideki Saito auto *CI = dyn_cast<CallInst>(&I); 75566c120f0SFrancesco Petrogalli 756f2ec16ccSHideki Saito if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && 757f2ec16ccSHideki Saito !isa<DbgInfoIntrinsic>(CI) && 758f2ec16ccSHideki Saito !(CI->getCalledFunction() && TLI && 75966c120f0SFrancesco Petrogalli (!VFDatabase::getMappings(*CI).empty() || 76066c120f0SFrancesco Petrogalli isTLIScalarize(*TLI, *CI)))) { 7617d65fe5cSSanjay Patel // If the call is a recognized math libary call, it is likely that 7627d65fe5cSSanjay Patel // we can vectorize it given loosened floating-point constraints. 7637d65fe5cSSanjay Patel LibFunc Func; 7647d65fe5cSSanjay Patel bool IsMathLibCall = 7657d65fe5cSSanjay Patel TLI && CI->getCalledFunction() && 7667d65fe5cSSanjay Patel CI->getType()->isFloatingPointTy() && 7677d65fe5cSSanjay Patel TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && 7687d65fe5cSSanjay Patel TLI->hasOptimizedCodeGen(Func); 7697d65fe5cSSanjay Patel 7707d65fe5cSSanjay Patel if (IsMathLibCall) { 7717d65fe5cSSanjay Patel // TODO: Ideally, we should not use clang-specific language here, 7727d65fe5cSSanjay Patel // but it's hard to provide meaningful yet generic advice. 7737d65fe5cSSanjay Patel // Also, should this be guarded by allowExtraAnalysis() and/or be part 7747d65fe5cSSanjay Patel // of the returned info from isFunctionVectorizable()? 77566c120f0SFrancesco Petrogalli reportVectorizationFailure( 77666c120f0SFrancesco Petrogalli "Found a non-intrinsic callsite", 7779e97caf5SRenato Golin "library call cannot be vectorized. " 7787d65fe5cSSanjay Patel "Try compiling with -fno-math-errno, -ffast-math, " 7799e97caf5SRenato Golin "or similar flags", 780ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7817d65fe5cSSanjay Patel } else { 7829e97caf5SRenato Golin reportVectorizationFailure("Found a non-intrinsic callsite", 7839e97caf5SRenato Golin "call instruction cannot be vectorized", 784ec818d7fSHideki Saito "CantVectorizeLibcall", ORE, TheLoop, CI); 7857d65fe5cSSanjay Patel } 786f2ec16ccSHideki Saito return false; 787f2ec16ccSHideki Saito } 788f2ec16ccSHideki Saito 789a066f1f9SSimon Pilgrim // Some intrinsics have scalar arguments and should be same in order for 790a066f1f9SSimon Pilgrim // them to be vectorized (i.e. loop invariant). 791a066f1f9SSimon Pilgrim if (CI) { 792f2ec16ccSHideki Saito auto *SE = PSE.getSE(); 793a066f1f9SSimon Pilgrim Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); 7944f0225f6SKazu Hirata for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) 7956f81903eSDavid Green if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { 796a066f1f9SSimon Pilgrim if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { 7979e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable intrinsic", 7989e97caf5SRenato Golin "intrinsic instruction cannot be vectorized", 799ec818d7fSHideki Saito "CantVectorizeIntrinsic", ORE, TheLoop, CI); 800f2ec16ccSHideki Saito return false; 801f2ec16ccSHideki Saito } 802f2ec16ccSHideki Saito } 803a066f1f9SSimon Pilgrim } 804f2ec16ccSHideki Saito 805f2ec16ccSHideki Saito // Check that the instruction return type is vectorizable. 806f2ec16ccSHideki Saito // Also, we can't vectorize extractelement instructions. 807f2ec16ccSHideki Saito if ((!VectorType::isValidElementType(I.getType()) && 808f2ec16ccSHideki Saito !I.getType()->isVoidTy()) || 809f2ec16ccSHideki Saito isa<ExtractElementInst>(I)) { 8109e97caf5SRenato Golin reportVectorizationFailure("Found unvectorizable type", 8119e97caf5SRenato Golin "instruction return type cannot be vectorized", 812ec818d7fSHideki Saito "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); 813f2ec16ccSHideki Saito return false; 814f2ec16ccSHideki Saito } 815f2ec16ccSHideki Saito 816f2ec16ccSHideki Saito // Check that the stored type is vectorizable. 817f2ec16ccSHideki Saito if (auto *ST = dyn_cast<StoreInst>(&I)) { 818f2ec16ccSHideki Saito Type *T = ST->getValueOperand()->getType(); 819f2ec16ccSHideki Saito if (!VectorType::isValidElementType(T)) { 8209e97caf5SRenato Golin reportVectorizationFailure("Store instruction cannot be vectorized", 8219e97caf5SRenato Golin "store instruction cannot be vectorized", 822ec818d7fSHideki Saito "CantVectorizeStore", ORE, TheLoop, ST); 823f2ec16ccSHideki Saito return false; 824f2ec16ccSHideki Saito } 825f2ec16ccSHideki Saito 8266452bdd2SWarren Ristow // For nontemporal stores, check that a nontemporal vector version is 8276452bdd2SWarren Ristow // supported on the target. 8286452bdd2SWarren Ristow if (ST->getMetadata(LLVMContext::MD_nontemporal)) { 8296452bdd2SWarren Ristow // Arbitrarily try a vector of 2 elements. 8306913812aSFangrui Song auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); 8316452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of stored type"); 83252e98f62SNikita Popov if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { 8336452bdd2SWarren Ristow reportVectorizationFailure( 8346452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 8356452bdd2SWarren Ristow "nontemporal store instruction cannot be vectorized", 836ec818d7fSHideki Saito "CantVectorizeNontemporalStore", ORE, TheLoop, ST); 8376452bdd2SWarren Ristow return false; 8386452bdd2SWarren Ristow } 8396452bdd2SWarren Ristow } 8406452bdd2SWarren Ristow 8416452bdd2SWarren Ristow } else if (auto *LD = dyn_cast<LoadInst>(&I)) { 8426452bdd2SWarren Ristow if (LD->getMetadata(LLVMContext::MD_nontemporal)) { 8436452bdd2SWarren Ristow // For nontemporal loads, check that a nontemporal vector version is 8446452bdd2SWarren Ristow // supported on the target (arbitrarily try a vector of 2 elements). 8456913812aSFangrui Song auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); 8466452bdd2SWarren Ristow assert(VecTy && "did not find vectorized version of load type"); 84752e98f62SNikita Popov if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { 8486452bdd2SWarren Ristow reportVectorizationFailure( 8496452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 8506452bdd2SWarren Ristow "nontemporal load instruction cannot be vectorized", 851ec818d7fSHideki Saito "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); 8526452bdd2SWarren Ristow return false; 8536452bdd2SWarren Ristow } 8546452bdd2SWarren Ristow } 8556452bdd2SWarren Ristow 856f2ec16ccSHideki Saito // FP instructions can allow unsafe algebra, thus vectorizable by 857f2ec16ccSHideki Saito // non-IEEE-754 compliant SIMD units. 858f2ec16ccSHideki Saito // This applies to floating-point math operations and calls, not memory 859f2ec16ccSHideki Saito // operations, shuffles, or casts, as they don't change precision or 860f2ec16ccSHideki Saito // semantics. 861f2ec16ccSHideki Saito } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && 862f2ec16ccSHideki Saito !I.isFast()) { 863d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); 864f2ec16ccSHideki Saito Hints->setPotentiallyUnsafe(); 865f2ec16ccSHideki Saito } 866f2ec16ccSHideki Saito 867f2ec16ccSHideki Saito // Reduction instructions are allowed to have exit users. 868f2ec16ccSHideki Saito // All other instructions must not have external users. 869f2ec16ccSHideki Saito if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { 870b02b0ad8SAnna Thomas // We can safely vectorize loops where instructions within the loop are 871b02b0ad8SAnna Thomas // used outside the loop only if the SCEV predicates within the loop is 872b02b0ad8SAnna Thomas // same as outside the loop. Allowing the exit means reusing the SCEV 873b02b0ad8SAnna Thomas // outside the loop. 8745ba11503SPhilip Reames if (PSE.getPredicate().isAlwaysTrue()) { 875b02b0ad8SAnna Thomas AllowedExit.insert(&I); 876b02b0ad8SAnna Thomas continue; 877b02b0ad8SAnna Thomas } 8789e97caf5SRenato Golin reportVectorizationFailure("Value cannot be used outside the loop", 8799e97caf5SRenato Golin "value cannot be used outside the loop", 880ec818d7fSHideki Saito "ValueUsedOutsideLoop", ORE, TheLoop, &I); 881f2ec16ccSHideki Saito return false; 882f2ec16ccSHideki Saito } 883f2ec16ccSHideki Saito } // next instr. 884f2ec16ccSHideki Saito } 885f2ec16ccSHideki Saito 886f2ec16ccSHideki Saito if (!PrimaryInduction) { 887f2ec16ccSHideki Saito if (Inductions.empty()) { 8889e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8899e97caf5SRenato Golin "loop induction variable could not be identified", 890ec818d7fSHideki Saito "NoInductionVariable", ORE, TheLoop); 891f2ec16ccSHideki Saito return false; 8924f27730eSWarren Ristow } else if (!WidestIndTy) { 8939e97caf5SRenato Golin reportVectorizationFailure("Did not find one integer induction var", 8949e97caf5SRenato Golin "integer loop induction variable could not be identified", 895ec818d7fSHideki Saito "NoIntegerInductionVariable", ORE, TheLoop); 8964f27730eSWarren Ristow return false; 8979e97caf5SRenato Golin } else { 8989e97caf5SRenato Golin LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); 899f2ec16ccSHideki Saito } 900f2ec16ccSHideki Saito } 901f2ec16ccSHideki Saito 9029d24933fSFlorian Hahn // For first order recurrences, we use the previous value (incoming value from 9039d24933fSFlorian Hahn // the latch) to check if it dominates all users of the recurrence. Bail out 9049d24933fSFlorian Hahn // if we have to sink such an instruction for another recurrence, as the 9059d24933fSFlorian Hahn // dominance requirement may not hold after sinking. 9069d24933fSFlorian Hahn BasicBlock *LoopLatch = TheLoop->getLoopLatch(); 9079d24933fSFlorian Hahn if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { 9089d24933fSFlorian Hahn Instruction *V = 9099d24933fSFlorian Hahn cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); 9109d24933fSFlorian Hahn return SinkAfter.find(V) != SinkAfter.end(); 9119d24933fSFlorian Hahn })) 9129d24933fSFlorian Hahn return false; 9139d24933fSFlorian Hahn 914f2ec16ccSHideki Saito // Now we know the widest induction type, check if our found induction 915f2ec16ccSHideki Saito // is the same size. If it's not, unset it here and InnerLoopVectorizer 916f2ec16ccSHideki Saito // will create another. 917f2ec16ccSHideki Saito if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) 918f2ec16ccSHideki Saito PrimaryInduction = nullptr; 919f2ec16ccSHideki Saito 920f2ec16ccSHideki Saito return true; 921f2ec16ccSHideki Saito } 922f2ec16ccSHideki Saito 923f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() { 924f2ec16ccSHideki Saito LAI = &(*GetLAA)(*TheLoop); 925f2ec16ccSHideki Saito const OptimizationRemarkAnalysis *LAR = LAI->getReport(); 926f2ec16ccSHideki Saito if (LAR) { 927f2ec16ccSHideki Saito ORE->emit([&]() { 928f2ec16ccSHideki Saito return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), 929f2ec16ccSHideki Saito "loop not vectorized: ", *LAR); 930f2ec16ccSHideki Saito }); 931f2ec16ccSHideki Saito } 932287d39ddSPaul Walker 933f2ec16ccSHideki Saito if (!LAI->canVectorizeMemory()) 934f2ec16ccSHideki Saito return false; 935f2ec16ccSHideki Saito 936*4e5e042dSIgor Kirillov // We can vectorize stores to invariant address when final reduction value is 937*4e5e042dSIgor Kirillov // guaranteed to be stored at the end of the loop. Also, if decision to 938*4e5e042dSIgor Kirillov // vectorize loop is made, runtime checks are added so as to make sure that 939*4e5e042dSIgor Kirillov // invariant address won't alias with any other objects. 940*4e5e042dSIgor Kirillov if (!LAI->getStoresToInvariantAddresses().empty()) { 941*4e5e042dSIgor Kirillov // For each invariant address, check its last stored value is unconditional. 942*4e5e042dSIgor Kirillov for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 943*4e5e042dSIgor Kirillov if (isInvariantStoreOfReduction(SI) && 944*4e5e042dSIgor Kirillov blockNeedsPredication(SI->getParent())) { 945*4e5e042dSIgor Kirillov reportVectorizationFailure( 946*4e5e042dSIgor Kirillov "We don't allow storing to uniform addresses", 947*4e5e042dSIgor Kirillov "write of conditional recurring variant value to a loop " 948*4e5e042dSIgor Kirillov "invariant address could not be vectorized", 949ec818d7fSHideki Saito "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 950f2ec16ccSHideki Saito return false; 951f2ec16ccSHideki Saito } 952*4e5e042dSIgor Kirillov } 953*4e5e042dSIgor Kirillov 954*4e5e042dSIgor Kirillov if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { 955*4e5e042dSIgor Kirillov // For each invariant address, check its last stored value is the result 956*4e5e042dSIgor Kirillov // of one of our reductions. 957*4e5e042dSIgor Kirillov // 958*4e5e042dSIgor Kirillov // We do not check if dependence with loads exists because they are 959*4e5e042dSIgor Kirillov // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this 960*4e5e042dSIgor Kirillov // behaviour changes we have to modify this code. 961*4e5e042dSIgor Kirillov ScalarEvolution *SE = PSE.getSE(); 962*4e5e042dSIgor Kirillov SmallVector<StoreInst *, 4> UnhandledStores; 963*4e5e042dSIgor Kirillov for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { 964*4e5e042dSIgor Kirillov if (isInvariantStoreOfReduction(SI)) { 965*4e5e042dSIgor Kirillov // Earlier stores to this address are effectively deadcode. 966*4e5e042dSIgor Kirillov // With opaque pointers it is possible for one pointer to be used with 967*4e5e042dSIgor Kirillov // different sizes of stored values: 968*4e5e042dSIgor Kirillov // store i32 0, ptr %x 969*4e5e042dSIgor Kirillov // store i8 0, ptr %x 970*4e5e042dSIgor Kirillov // The latest store doesn't complitely overwrite the first one in the 971*4e5e042dSIgor Kirillov // example. That is why we have to make sure that types of stored 972*4e5e042dSIgor Kirillov // values are same. 973*4e5e042dSIgor Kirillov // TODO: Check that bitwidth of unhandled store is smaller then the 974*4e5e042dSIgor Kirillov // one that overwrites it and add a test. 975*4e5e042dSIgor Kirillov erase_if(UnhandledStores, [SE, SI](StoreInst *I) { 976*4e5e042dSIgor Kirillov return storeToSameAddress(SE, SI, I) && 977*4e5e042dSIgor Kirillov I->getValueOperand()->getType() == 978*4e5e042dSIgor Kirillov SI->getValueOperand()->getType(); 979*4e5e042dSIgor Kirillov }); 980*4e5e042dSIgor Kirillov continue; 981*4e5e042dSIgor Kirillov } 982*4e5e042dSIgor Kirillov UnhandledStores.push_back(SI); 983*4e5e042dSIgor Kirillov } 984*4e5e042dSIgor Kirillov 985*4e5e042dSIgor Kirillov bool IsOK = UnhandledStores.empty(); 986*4e5e042dSIgor Kirillov // TODO: we should also validate against InvariantMemSets. 987*4e5e042dSIgor Kirillov if (!IsOK) { 988*4e5e042dSIgor Kirillov reportVectorizationFailure( 989*4e5e042dSIgor Kirillov "We don't allow storing to uniform addresses", 990*4e5e042dSIgor Kirillov "write to a loop invariant address could not " 991*4e5e042dSIgor Kirillov "be vectorized", 992*4e5e042dSIgor Kirillov "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); 993*4e5e042dSIgor Kirillov return false; 994*4e5e042dSIgor Kirillov } 995*4e5e042dSIgor Kirillov } 996*4e5e042dSIgor Kirillov } 997287d39ddSPaul Walker 998f2ec16ccSHideki Saito Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks()); 9995ba11503SPhilip Reames PSE.addPredicate(LAI->getPSE().getPredicate()); 1000f2ec16ccSHideki Saito return true; 1001f2ec16ccSHideki Saito } 1002f2ec16ccSHideki Saito 10039f76a852SKerry McLaughlin bool LoopVectorizationLegality::canVectorizeFPMath( 10049f76a852SKerry McLaughlin bool EnableStrictReductions) { 10059f76a852SKerry McLaughlin 10069f76a852SKerry McLaughlin // First check if there is any ExactFP math or if we allow reassociations 10079f76a852SKerry McLaughlin if (!Requirements->getExactFPInst() || Hints->allowReordering()) 10089f76a852SKerry McLaughlin return true; 10099f76a852SKerry McLaughlin 10109f76a852SKerry McLaughlin // If the above is false, we have ExactFPMath & do not allow reordering. 10119f76a852SKerry McLaughlin // If the EnableStrictReductions flag is set, first check if we have any 10129f76a852SKerry McLaughlin // Exact FP induction vars, which we cannot vectorize. 10139f76a852SKerry McLaughlin if (!EnableStrictReductions || 10149f76a852SKerry McLaughlin any_of(getInductionVars(), [&](auto &Induction) -> bool { 10159f76a852SKerry McLaughlin InductionDescriptor IndDesc = Induction.second; 10169f76a852SKerry McLaughlin return IndDesc.getExactFPMathInst(); 10179f76a852SKerry McLaughlin })) 10189f76a852SKerry McLaughlin return false; 10199f76a852SKerry McLaughlin 10209f76a852SKerry McLaughlin // We can now only vectorize if all reductions with Exact FP math also 10219f76a852SKerry McLaughlin // have the isOrdered flag set, which indicates that we can move the 1022*4e5e042dSIgor Kirillov // reduction operations in-loop, and do not have intermediate store. 10239f76a852SKerry McLaughlin return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { 10245e6bfb66SSimon Pilgrim const RecurrenceDescriptor &RdxDesc = Reduction.second; 1025*4e5e042dSIgor Kirillov return !RdxDesc.hasExactFPMath() || 1026*4e5e042dSIgor Kirillov (RdxDesc.isOrdered() && !RdxDesc.IntermediateStore); 10279f76a852SKerry McLaughlin })); 10289f76a852SKerry McLaughlin } 10299f76a852SKerry McLaughlin 1030*4e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { 1031*4e5e042dSIgor Kirillov return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1032*4e5e042dSIgor Kirillov const RecurrenceDescriptor &RdxDesc = Reduction.second; 1033*4e5e042dSIgor Kirillov return RdxDesc.IntermediateStore == SI; 1034*4e5e042dSIgor Kirillov }); 1035*4e5e042dSIgor Kirillov } 1036*4e5e042dSIgor Kirillov 1037*4e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { 1038*4e5e042dSIgor Kirillov return any_of(getReductionVars(), [&](auto &Reduction) -> bool { 1039*4e5e042dSIgor Kirillov const RecurrenceDescriptor &RdxDesc = Reduction.second; 1040*4e5e042dSIgor Kirillov if (!RdxDesc.IntermediateStore) 1041*4e5e042dSIgor Kirillov return false; 1042*4e5e042dSIgor Kirillov 1043*4e5e042dSIgor Kirillov ScalarEvolution *SE = PSE.getSE(); 1044*4e5e042dSIgor Kirillov Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); 1045*4e5e042dSIgor Kirillov return V == InvariantAddress || 1046*4e5e042dSIgor Kirillov SE->getSCEV(V) == SE->getSCEV(InvariantAddress); 1047*4e5e042dSIgor Kirillov }); 1048*4e5e042dSIgor Kirillov } 1049*4e5e042dSIgor Kirillov 1050d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { 1051f2ec16ccSHideki Saito Value *In0 = const_cast<Value *>(V); 1052f2ec16ccSHideki Saito PHINode *PN = dyn_cast_or_null<PHINode>(In0); 1053f2ec16ccSHideki Saito if (!PN) 1054f2ec16ccSHideki Saito return false; 1055f2ec16ccSHideki Saito 1056f2ec16ccSHideki Saito return Inductions.count(PN); 1057f2ec16ccSHideki Saito } 1058f2ec16ccSHideki Saito 1059978883d2SFlorian Hahn const InductionDescriptor * 1060978883d2SFlorian Hahn LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { 1061978883d2SFlorian Hahn if (!isInductionPhi(Phi)) 1062978883d2SFlorian Hahn return nullptr; 1063978883d2SFlorian Hahn auto &ID = getInductionVars().find(Phi)->second; 1064978883d2SFlorian Hahn if (ID.getKind() == InductionDescriptor::IK_IntInduction || 1065978883d2SFlorian Hahn ID.getKind() == InductionDescriptor::IK_FpInduction) 1066978883d2SFlorian Hahn return &ID; 1067978883d2SFlorian Hahn return nullptr; 1068978883d2SFlorian Hahn } 1069978883d2SFlorian Hahn 107046432a00SFlorian Hahn const InductionDescriptor * 107146432a00SFlorian Hahn LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { 107246432a00SFlorian Hahn if (!isInductionPhi(Phi)) 107346432a00SFlorian Hahn return nullptr; 107446432a00SFlorian Hahn auto &ID = getInductionVars().find(Phi)->second; 107546432a00SFlorian Hahn if (ID.getKind() == InductionDescriptor::IK_PtrInduction) 107646432a00SFlorian Hahn return &ID; 107746432a00SFlorian Hahn return nullptr; 107846432a00SFlorian Hahn } 107946432a00SFlorian Hahn 1080d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isCastedInductionVariable( 1081d74a8a78SFlorian Hahn const Value *V) const { 1082f2ec16ccSHideki Saito auto *Inst = dyn_cast<Instruction>(V); 1083f2ec16ccSHideki Saito return (Inst && InductionCastsToIgnore.count(Inst)); 1084f2ec16ccSHideki Saito } 1085f2ec16ccSHideki Saito 1086d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { 1087f2ec16ccSHideki Saito return isInductionPhi(V) || isCastedInductionVariable(V); 1088f2ec16ccSHideki Saito } 1089f2ec16ccSHideki Saito 1090d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isFirstOrderRecurrence( 1091d74a8a78SFlorian Hahn const PHINode *Phi) const { 1092f2ec16ccSHideki Saito return FirstOrderRecurrences.count(Phi); 1093f2ec16ccSHideki Saito } 1094f2ec16ccSHideki Saito 1095f82966d1SSander de Smalen bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { 1096f2ec16ccSHideki Saito return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); 1097f2ec16ccSHideki Saito } 1098f2ec16ccSHideki Saito 1099f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated( 1100bda8fbe2SSjoerd Meijer BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, 1101bda8fbe2SSjoerd Meijer SmallPtrSetImpl<const Instruction *> &MaskedOp, 11024f01122cSJoachim Meyer SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { 1103f2ec16ccSHideki Saito for (Instruction &I : *BB) { 1104f2ec16ccSHideki Saito // Check that we don't have a constant expression that can trap as operand. 1105f2ec16ccSHideki Saito for (Value *Operand : I.operands()) { 1106f2ec16ccSHideki Saito if (auto *C = dyn_cast<Constant>(Operand)) 1107f2ec16ccSHideki Saito if (C->canTrap()) 1108f2ec16ccSHideki Saito return false; 1109f2ec16ccSHideki Saito } 111023c11380SFlorian Hahn 111123c11380SFlorian Hahn // We can predicate blocks with calls to assume, as long as we drop them in 111223c11380SFlorian Hahn // case we flatten the CFG via predication. 111323c11380SFlorian Hahn if (match(&I, m_Intrinsic<Intrinsic::assume>())) { 111423c11380SFlorian Hahn ConditionalAssumes.insert(&I); 111523c11380SFlorian Hahn continue; 111623c11380SFlorian Hahn } 111723c11380SFlorian Hahn 1118121cac01SJeroen Dobbelaere // Do not let llvm.experimental.noalias.scope.decl block the vectorization. 1119121cac01SJeroen Dobbelaere // TODO: there might be cases that it should block the vectorization. Let's 1120121cac01SJeroen Dobbelaere // ignore those for now. 1121c83cff45SNikita Popov if (isa<NoAliasScopeDeclInst>(&I)) 1122121cac01SJeroen Dobbelaere continue; 1123121cac01SJeroen Dobbelaere 1124f2ec16ccSHideki Saito // We might be able to hoist the load. 1125f2ec16ccSHideki Saito if (I.mayReadFromMemory()) { 1126f2ec16ccSHideki Saito auto *LI = dyn_cast<LoadInst>(&I); 1127f2ec16ccSHideki Saito if (!LI) 1128f2ec16ccSHideki Saito return false; 1129f2ec16ccSHideki Saito if (!SafePtrs.count(LI->getPointerOperand())) { 1130f2ec16ccSHideki Saito MaskedOp.insert(LI); 1131f2ec16ccSHideki Saito continue; 1132f2ec16ccSHideki Saito } 1133f2ec16ccSHideki Saito } 1134f2ec16ccSHideki Saito 1135f2ec16ccSHideki Saito if (I.mayWriteToMemory()) { 1136f2ec16ccSHideki Saito auto *SI = dyn_cast<StoreInst>(&I); 1137f2ec16ccSHideki Saito if (!SI) 1138f2ec16ccSHideki Saito return false; 1139f2ec16ccSHideki Saito // Predicated store requires some form of masking: 1140f2ec16ccSHideki Saito // 1) masked store HW instruction, 1141f2ec16ccSHideki Saito // 2) emulation via load-blend-store (only if safe and legal to do so, 1142f2ec16ccSHideki Saito // be aware on the race conditions), or 1143f2ec16ccSHideki Saito // 3) element-by-element predicate check and scalar store. 1144f2ec16ccSHideki Saito MaskedOp.insert(SI); 1145f2ec16ccSHideki Saito continue; 1146f2ec16ccSHideki Saito } 1147f2ec16ccSHideki Saito if (I.mayThrow()) 1148f2ec16ccSHideki Saito return false; 1149f2ec16ccSHideki Saito } 1150f2ec16ccSHideki Saito 1151f2ec16ccSHideki Saito return true; 1152f2ec16ccSHideki Saito } 1153f2ec16ccSHideki Saito 1154f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() { 1155f2ec16ccSHideki Saito if (!EnableIfConversion) { 11569e97caf5SRenato Golin reportVectorizationFailure("If-conversion is disabled", 11579e97caf5SRenato Golin "if-conversion is disabled", 1158ec818d7fSHideki Saito "IfConversionDisabled", 1159ec818d7fSHideki Saito ORE, TheLoop); 1160f2ec16ccSHideki Saito return false; 1161f2ec16ccSHideki Saito } 1162f2ec16ccSHideki Saito 1163f2ec16ccSHideki Saito assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); 1164f2ec16ccSHideki Saito 1165cf3b5559SPhilip Reames // A list of pointers which are known to be dereferenceable within scope of 1166cf3b5559SPhilip Reames // the loop body for each iteration of the loop which executes. That is, 1167cf3b5559SPhilip Reames // the memory pointed to can be dereferenced (with the access size implied by 1168cf3b5559SPhilip Reames // the value's type) unconditionally within the loop header without 1169cf3b5559SPhilip Reames // introducing a new fault. 11703bbc71d6SSjoerd Meijer SmallPtrSet<Value *, 8> SafePointers; 1171f2ec16ccSHideki Saito 1172f2ec16ccSHideki Saito // Collect safe addresses. 1173f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 11747403569bSPhilip Reames if (!blockNeedsPredication(BB)) { 1175f2ec16ccSHideki Saito for (Instruction &I : *BB) 1176f2ec16ccSHideki Saito if (auto *Ptr = getLoadStorePointerOperand(&I)) 11773bbc71d6SSjoerd Meijer SafePointers.insert(Ptr); 11787403569bSPhilip Reames continue; 11797403569bSPhilip Reames } 11807403569bSPhilip Reames 11817403569bSPhilip Reames // For a block which requires predication, a address may be safe to access 11827403569bSPhilip Reames // in the loop w/o predication if we can prove dereferenceability facts 11837403569bSPhilip Reames // sufficient to ensure it'll never fault within the loop. For the moment, 11847403569bSPhilip Reames // we restrict this to loads; stores are more complicated due to 11857403569bSPhilip Reames // concurrency restrictions. 11867403569bSPhilip Reames ScalarEvolution &SE = *PSE.getSE(); 11877403569bSPhilip Reames for (Instruction &I : *BB) { 11887403569bSPhilip Reames LoadInst *LI = dyn_cast<LoadInst>(&I); 1189467e5cf4SJoe Ellis if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && 11907403569bSPhilip Reames isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT)) 11913bbc71d6SSjoerd Meijer SafePointers.insert(LI->getPointerOperand()); 11927403569bSPhilip Reames } 1193f2ec16ccSHideki Saito } 1194f2ec16ccSHideki Saito 1195f2ec16ccSHideki Saito // Collect the blocks that need predication. 1196f2ec16ccSHideki Saito BasicBlock *Header = TheLoop->getHeader(); 1197f2ec16ccSHideki Saito for (BasicBlock *BB : TheLoop->blocks()) { 1198f2ec16ccSHideki Saito // We don't support switch statements inside loops. 1199f2ec16ccSHideki Saito if (!isa<BranchInst>(BB->getTerminator())) { 12009e97caf5SRenato Golin reportVectorizationFailure("Loop contains a switch statement", 12019e97caf5SRenato Golin "loop contains a switch statement", 1202ec818d7fSHideki Saito "LoopContainsSwitch", ORE, TheLoop, 1203ec818d7fSHideki Saito BB->getTerminator()); 1204f2ec16ccSHideki Saito return false; 1205f2ec16ccSHideki Saito } 1206f2ec16ccSHideki Saito 1207f2ec16ccSHideki Saito // We must be able to predicate all blocks that need to be predicated. 1208f2ec16ccSHideki Saito if (blockNeedsPredication(BB)) { 1209bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, MaskedOp, 1210bda8fbe2SSjoerd Meijer ConditionalAssumes)) { 12119e97caf5SRenato Golin reportVectorizationFailure( 12129e97caf5SRenato Golin "Control flow cannot be substituted for a select", 12139e97caf5SRenato Golin "control flow cannot be substituted for a select", 1214ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1215ec818d7fSHideki Saito BB->getTerminator()); 1216f2ec16ccSHideki Saito return false; 1217f2ec16ccSHideki Saito } 1218f2ec16ccSHideki Saito } else if (BB != Header && !canIfConvertPHINodes(BB)) { 12199e97caf5SRenato Golin reportVectorizationFailure( 12209e97caf5SRenato Golin "Control flow cannot be substituted for a select", 12219e97caf5SRenato Golin "control flow cannot be substituted for a select", 1222ec818d7fSHideki Saito "NoCFGForSelect", ORE, TheLoop, 1223ec818d7fSHideki Saito BB->getTerminator()); 1224f2ec16ccSHideki Saito return false; 1225f2ec16ccSHideki Saito } 1226f2ec16ccSHideki Saito } 1227f2ec16ccSHideki Saito 1228f2ec16ccSHideki Saito // We can if-convert this loop. 1229f2ec16ccSHideki Saito return true; 1230f2ec16ccSHideki Saito } 1231f2ec16ccSHideki Saito 1232f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG. 1233f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, 1234f2ec16ccSHideki Saito bool UseVPlanNativePath) { 123589c1e35fSStefanos Baziotis assert((UseVPlanNativePath || Lp->isInnermost()) && 1236f2ec16ccSHideki Saito "VPlan-native path is not enabled."); 1237f2ec16ccSHideki Saito 1238f2ec16ccSHideki Saito // TODO: ORE should be improved to show more accurate information when an 1239f2ec16ccSHideki Saito // outer loop can't be vectorized because a nested loop is not understood or 1240f2ec16ccSHideki Saito // legal. Something like: "outer_loop_location: loop not vectorized: 1241f2ec16ccSHideki Saito // (inner_loop_location) loop control flow is not understood by vectorizer". 1242f2ec16ccSHideki Saito 1243f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1244f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1245f2ec16ccSHideki Saito bool Result = true; 1246f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1247f2ec16ccSHideki Saito 1248f2ec16ccSHideki Saito // We must have a loop in canonical form. Loops with indirectbr in them cannot 1249f2ec16ccSHideki Saito // be canonicalized. 1250f2ec16ccSHideki Saito if (!Lp->getLoopPreheader()) { 12519e97caf5SRenato Golin reportVectorizationFailure("Loop doesn't have a legal pre-header", 12529e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1253ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1254f2ec16ccSHideki Saito if (DoExtraAnalysis) 1255f2ec16ccSHideki Saito Result = false; 1256f2ec16ccSHideki Saito else 1257f2ec16ccSHideki Saito return false; 1258f2ec16ccSHideki Saito } 1259f2ec16ccSHideki Saito 1260f2ec16ccSHideki Saito // We must have a single backedge. 1261f2ec16ccSHideki Saito if (Lp->getNumBackEdges() != 1) { 12629e97caf5SRenato Golin reportVectorizationFailure("The loop must have a single backedge", 12639e97caf5SRenato Golin "loop control flow is not understood by vectorizer", 1264ec818d7fSHideki Saito "CFGNotUnderstood", ORE, TheLoop); 1265f2ec16ccSHideki Saito if (DoExtraAnalysis) 1266f2ec16ccSHideki Saito Result = false; 1267f2ec16ccSHideki Saito else 1268f2ec16ccSHideki Saito return false; 1269f2ec16ccSHideki Saito } 1270f2ec16ccSHideki Saito 1271f2ec16ccSHideki Saito return Result; 1272f2ec16ccSHideki Saito } 1273f2ec16ccSHideki Saito 1274f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG( 1275f2ec16ccSHideki Saito Loop *Lp, bool UseVPlanNativePath) { 1276f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1277f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1278f2ec16ccSHideki Saito bool Result = true; 1279f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1280f2ec16ccSHideki Saito if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { 1281f2ec16ccSHideki Saito if (DoExtraAnalysis) 1282f2ec16ccSHideki Saito Result = false; 1283f2ec16ccSHideki Saito else 1284f2ec16ccSHideki Saito return false; 1285f2ec16ccSHideki Saito } 1286f2ec16ccSHideki Saito 1287f2ec16ccSHideki Saito // Recursively check whether the loop control flow of nested loops is 1288f2ec16ccSHideki Saito // understood. 1289f2ec16ccSHideki Saito for (Loop *SubLp : *Lp) 1290f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { 1291f2ec16ccSHideki Saito if (DoExtraAnalysis) 1292f2ec16ccSHideki Saito Result = false; 1293f2ec16ccSHideki Saito else 1294f2ec16ccSHideki Saito return false; 1295f2ec16ccSHideki Saito } 1296f2ec16ccSHideki Saito 1297f2ec16ccSHideki Saito return Result; 1298f2ec16ccSHideki Saito } 1299f2ec16ccSHideki Saito 1300f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { 1301f2ec16ccSHideki Saito // Store the result and return it at the end instead of exiting early, in case 1302f2ec16ccSHideki Saito // allowExtraAnalysis is used to report multiple reasons for not vectorizing. 1303f2ec16ccSHideki Saito bool Result = true; 1304f2ec16ccSHideki Saito 1305f2ec16ccSHideki Saito bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); 1306f2ec16ccSHideki Saito // Check whether the loop-related control flow in the loop nest is expected by 1307f2ec16ccSHideki Saito // vectorizer. 1308f2ec16ccSHideki Saito if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { 1309f2ec16ccSHideki Saito if (DoExtraAnalysis) 1310f2ec16ccSHideki Saito Result = false; 1311f2ec16ccSHideki Saito else 1312f2ec16ccSHideki Saito return false; 1313f2ec16ccSHideki Saito } 1314f2ec16ccSHideki Saito 1315f2ec16ccSHideki Saito // We need to have a loop header. 1316d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() 1317f2ec16ccSHideki Saito << '\n'); 1318f2ec16ccSHideki Saito 1319f2ec16ccSHideki Saito // Specific checks for outer loops. We skip the remaining legal checks at this 1320f2ec16ccSHideki Saito // point because they don't support outer loops. 132189c1e35fSStefanos Baziotis if (!TheLoop->isInnermost()) { 1322f2ec16ccSHideki Saito assert(UseVPlanNativePath && "VPlan-native path is not enabled."); 1323f2ec16ccSHideki Saito 1324f2ec16ccSHideki Saito if (!canVectorizeOuterLoop()) { 13259e97caf5SRenato Golin reportVectorizationFailure("Unsupported outer loop", 13269e97caf5SRenato Golin "unsupported outer loop", 1327ec818d7fSHideki Saito "UnsupportedOuterLoop", 1328ec818d7fSHideki Saito ORE, TheLoop); 1329f2ec16ccSHideki Saito // TODO: Implement DoExtraAnalysis when subsequent legal checks support 1330f2ec16ccSHideki Saito // outer loops. 1331f2ec16ccSHideki Saito return false; 1332f2ec16ccSHideki Saito } 1333f2ec16ccSHideki Saito 1334d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); 1335f2ec16ccSHideki Saito return Result; 1336f2ec16ccSHideki Saito } 1337f2ec16ccSHideki Saito 133889c1e35fSStefanos Baziotis assert(TheLoop->isInnermost() && "Inner loop expected."); 1339f2ec16ccSHideki Saito // Check if we can if-convert non-single-bb loops. 1340f2ec16ccSHideki Saito unsigned NumBlocks = TheLoop->getNumBlocks(); 1341f2ec16ccSHideki Saito if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { 1342d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); 1343f2ec16ccSHideki Saito if (DoExtraAnalysis) 1344f2ec16ccSHideki Saito Result = false; 1345f2ec16ccSHideki Saito else 1346f2ec16ccSHideki Saito return false; 1347f2ec16ccSHideki Saito } 1348f2ec16ccSHideki Saito 1349f2ec16ccSHideki Saito // Check if we can vectorize the instructions and CFG in this loop. 1350f2ec16ccSHideki Saito if (!canVectorizeInstrs()) { 1351d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); 1352f2ec16ccSHideki Saito if (DoExtraAnalysis) 1353f2ec16ccSHideki Saito Result = false; 1354f2ec16ccSHideki Saito else 1355f2ec16ccSHideki Saito return false; 1356f2ec16ccSHideki Saito } 1357f2ec16ccSHideki Saito 1358f2ec16ccSHideki Saito // Go over each instruction and look at memory deps. 1359f2ec16ccSHideki Saito if (!canVectorizeMemory()) { 1360d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); 1361f2ec16ccSHideki Saito if (DoExtraAnalysis) 1362f2ec16ccSHideki Saito Result = false; 1363f2ec16ccSHideki Saito else 1364f2ec16ccSHideki Saito return false; 1365f2ec16ccSHideki Saito } 1366f2ec16ccSHideki Saito 1367d34e60caSNicola Zaghen LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" 1368f2ec16ccSHideki Saito << (LAI->getRuntimePointerChecking()->Need 1369f2ec16ccSHideki Saito ? " (with a runtime bound check)" 1370f2ec16ccSHideki Saito : "") 1371f2ec16ccSHideki Saito << "!\n"); 1372f2ec16ccSHideki Saito 1373f2ec16ccSHideki Saito unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; 1374f2ec16ccSHideki Saito if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) 1375f2ec16ccSHideki Saito SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; 1376f2ec16ccSHideki Saito 13775ba11503SPhilip Reames if (PSE.getPredicate().getComplexity() > SCEVThreshold) { 13789e97caf5SRenato Golin reportVectorizationFailure("Too many SCEV checks needed", 13799e97caf5SRenato Golin "Too many SCEV assumptions need to be made and checked at runtime", 1380ec818d7fSHideki Saito "TooManySCEVRunTimeChecks", ORE, TheLoop); 1381f2ec16ccSHideki Saito if (DoExtraAnalysis) 1382f2ec16ccSHideki Saito Result = false; 1383f2ec16ccSHideki Saito else 1384f2ec16ccSHideki Saito return false; 1385f2ec16ccSHideki Saito } 1386f2ec16ccSHideki Saito 1387f2ec16ccSHideki Saito // Okay! We've done all the tests. If any have failed, return false. Otherwise 1388f2ec16ccSHideki Saito // we can vectorize, and at this point we don't have any other mem analysis 1389f2ec16ccSHideki Saito // which may limit our maximum vectorization factor, so just return true with 1390f2ec16ccSHideki Saito // no restrictions. 1391f2ec16ccSHideki Saito return Result; 1392f2ec16ccSHideki Saito } 1393f2ec16ccSHideki Saito 1394d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() { 1395b0b5312eSAyal Zaks 1396b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); 1397b0b5312eSAyal Zaks 1398d15df0edSAyal Zaks SmallPtrSet<const Value *, 8> ReductionLiveOuts; 1399b0b5312eSAyal Zaks 1400d0d38df0SDavid Green for (auto &Reduction : getReductionVars()) 1401d15df0edSAyal Zaks ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); 1402d15df0edSAyal Zaks 1403d15df0edSAyal Zaks // TODO: handle non-reduction outside users when tail is folded by masking. 1404b0b5312eSAyal Zaks for (auto *AE : AllowedExit) { 1405d15df0edSAyal Zaks // Check that all users of allowed exit values are inside the loop or 1406d15df0edSAyal Zaks // are the live-out of a reduction. 1407d15df0edSAyal Zaks if (ReductionLiveOuts.count(AE)) 1408d15df0edSAyal Zaks continue; 1409b0b5312eSAyal Zaks for (User *U : AE->users()) { 1410b0b5312eSAyal Zaks Instruction *UI = cast<Instruction>(U); 1411b0b5312eSAyal Zaks if (TheLoop->contains(UI)) 1412b0b5312eSAyal Zaks continue; 1413bda8fbe2SSjoerd Meijer LLVM_DEBUG( 1414bda8fbe2SSjoerd Meijer dbgs() 1415bda8fbe2SSjoerd Meijer << "LV: Cannot fold tail by masking, loop has an outside user for " 1416bda8fbe2SSjoerd Meijer << *UI << "\n"); 1417b0b5312eSAyal Zaks return false; 1418b0b5312eSAyal Zaks } 1419b0b5312eSAyal Zaks } 1420b0b5312eSAyal Zaks 1421b0b5312eSAyal Zaks // The list of pointers that we can safely read and write to remains empty. 1422b0b5312eSAyal Zaks SmallPtrSet<Value *, 8> SafePointers; 1423b0b5312eSAyal Zaks 1424bda8fbe2SSjoerd Meijer SmallPtrSet<const Instruction *, 8> TmpMaskedOp; 1425bda8fbe2SSjoerd Meijer SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; 1426bda8fbe2SSjoerd Meijer 1427b0b5312eSAyal Zaks // Check and mark all blocks for predication, including those that ordinarily 1428b0b5312eSAyal Zaks // do not need predication such as the header block. 1429b0b5312eSAyal Zaks for (BasicBlock *BB : TheLoop->blocks()) { 1430bda8fbe2SSjoerd Meijer if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, 14314f01122cSJoachim Meyer TmpConditionalAssumes)) { 1432bda8fbe2SSjoerd Meijer LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); 1433b0b5312eSAyal Zaks return false; 1434b0b5312eSAyal Zaks } 1435b0b5312eSAyal Zaks } 1436b0b5312eSAyal Zaks 1437b0b5312eSAyal Zaks LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); 1438bda8fbe2SSjoerd Meijer 1439bda8fbe2SSjoerd Meijer MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); 1440bda8fbe2SSjoerd Meijer ConditionalAssumes.insert(TmpConditionalAssumes.begin(), 1441bda8fbe2SSjoerd Meijer TmpConditionalAssumes.end()); 1442bda8fbe2SSjoerd Meijer 1443b0b5312eSAyal Zaks return true; 1444b0b5312eSAyal Zaks } 1445b0b5312eSAyal Zaks 1446f2ec16ccSHideki Saito } // namespace llvm 1447