1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
177403569bSPhilip Reames #include "llvm/Analysis/Loads.h"
187403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h"
19f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
20f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
2123c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h"
2223c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h"
23f2ec16ccSHideki Saito 
24f2ec16ccSHideki Saito using namespace llvm;
2523c11380SFlorian Hahn using namespace PatternMatch;
26f2ec16ccSHideki Saito 
27f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
28f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
29f2ec16ccSHideki Saito 
304e4ecae0SHideki Saito extern cl::opt<bool> EnableVPlanPredication;
314e4ecae0SHideki Saito 
32f2ec16ccSHideki Saito static cl::opt<bool>
33f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
34f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
35f2ec16ccSHideki Saito 
36f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeMemoryCheckThreshold(
37f2ec16ccSHideki Saito     "pragma-vectorize-memory-check-threshold", cl::init(128), cl::Hidden,
38f2ec16ccSHideki Saito     cl::desc("The maximum allowed number of runtime memory checks with a "
39f2ec16ccSHideki Saito              "vectorize(enable) pragma."));
40f2ec16ccSHideki Saito 
41f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
42f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
43f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
44f2ec16ccSHideki Saito 
45f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
46f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
47f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
48f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
49f2ec16ccSHideki Saito 
50f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
51f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
52f2ec16ccSHideki Saito 
53f2ec16ccSHideki Saito namespace llvm {
54f2ec16ccSHideki Saito 
55f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
56f2ec16ccSHideki Saito   switch (Kind) {
57f2ec16ccSHideki Saito   case HK_WIDTH:
58f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
59f2ec16ccSHideki Saito   case HK_UNROLL:
60f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
61f2ec16ccSHideki Saito   case HK_FORCE:
62f2ec16ccSHideki Saito     return (Val <= 1);
63f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
6420b198ecSSjoerd Meijer   case HK_PREDICATE:
65f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
66f2ec16ccSHideki Saito   }
67f2ec16ccSHideki Saito   return false;
68f2ec16ccSHideki Saito }
69f2ec16ccSHideki Saito 
70d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
71d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
72f2ec16ccSHideki Saito                                        OptimizationRemarkEmitter &ORE)
73f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
74d4eb13c8SMichael Kruse       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_UNROLL),
75f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
7620b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
77cb47b878SSjoerd Meijer       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), TheLoop(L),
7820b198ecSSjoerd Meijer       ORE(ORE) {
79f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
80f2ec16ccSHideki Saito   getHintsFromMetadata();
81f2ec16ccSHideki Saito 
82f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
83f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
84f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
85f2ec16ccSHideki Saito 
86f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
87f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
88f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
89f2ec16ccSHideki Saito     // nothing more that we can do.
90f2ec16ccSHideki Saito     IsVectorized.Value = Width.Value == 1 && Interleave.Value == 1;
91d4eb13c8SMichael Kruse   LLVM_DEBUG(if (InterleaveOnlyWhenForced && Interleave.Value == 1) dbgs()
92f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
93f2ec16ccSHideki Saito }
94f2ec16ccSHideki Saito 
9577a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
9677a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
9777a614a6SMichael Kruse 
9877a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
9977a614a6SMichael Kruse       Context,
10077a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
10177a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
10277a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
10377a614a6SMichael Kruse   MDNode *NewLoopID =
10477a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
10577a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
10677a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
10777a614a6SMichael Kruse                                      {IsVectorizedMD});
10877a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
10977a614a6SMichael Kruse 
11077a614a6SMichael Kruse   // Update internal cache.
11177a614a6SMichael Kruse   IsVectorized.Value = 1;
11277a614a6SMichael Kruse }
11377a614a6SMichael Kruse 
114d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
115d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
116f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
117d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
118f2ec16ccSHideki Saito     emitRemarkWithHints();
119f2ec16ccSHideki Saito     return false;
120f2ec16ccSHideki Saito   }
121f2ec16ccSHideki Saito 
122d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
123d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
124f2ec16ccSHideki Saito     emitRemarkWithHints();
125f2ec16ccSHideki Saito     return false;
126f2ec16ccSHideki Saito   }
127f2ec16ccSHideki Saito 
128f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
129d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
130f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
131f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
132f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
133f2ec16ccSHideki Saito     ORE.emit([&]() {
134f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
135f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
136f2ec16ccSHideki Saito                                         L->getHeader())
137f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
138f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
139f2ec16ccSHideki Saito                 "vectorized";
140f2ec16ccSHideki Saito     });
141f2ec16ccSHideki Saito     return false;
142f2ec16ccSHideki Saito   }
143f2ec16ccSHideki Saito 
144f2ec16ccSHideki Saito   return true;
145f2ec16ccSHideki Saito }
146f2ec16ccSHideki Saito 
147f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
148f2ec16ccSHideki Saito   using namespace ore;
149f2ec16ccSHideki Saito 
150f2ec16ccSHideki Saito   ORE.emit([&]() {
151f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
152f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
153f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
154f2ec16ccSHideki Saito                                       TheLoop->getHeader())
155f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
156f2ec16ccSHideki Saito     else {
157f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
158f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
159f2ec16ccSHideki Saito       R << "loop not vectorized";
160f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
161f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
162f2ec16ccSHideki Saito         if (Width.Value != 0)
163f2ec16ccSHideki Saito           R << ", Vector Width=" << NV("VectorWidth", Width.Value);
164f2ec16ccSHideki Saito         if (Interleave.Value != 0)
165f2ec16ccSHideki Saito           R << ", Interleave Count=" << NV("InterleaveCount", Interleave.Value);
166f2ec16ccSHideki Saito         R << ")";
167f2ec16ccSHideki Saito       }
168f2ec16ccSHideki Saito       return R;
169f2ec16ccSHideki Saito     }
170f2ec16ccSHideki Saito   });
171f2ec16ccSHideki Saito }
172f2ec16ccSHideki Saito 
173f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
174f2ec16ccSHideki Saito   if (getWidth() == 1)
175f2ec16ccSHideki Saito     return LV_NAME;
176f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
177f2ec16ccSHideki Saito     return LV_NAME;
178f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth() == 0)
179f2ec16ccSHideki Saito     return LV_NAME;
180f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
181f2ec16ccSHideki Saito }
182f2ec16ccSHideki Saito 
183f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
184f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
185f2ec16ccSHideki Saito   if (!LoopID)
186f2ec16ccSHideki Saito     return;
187f2ec16ccSHideki Saito 
188f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
189f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
190f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
191f2ec16ccSHideki Saito 
192f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
193f2ec16ccSHideki Saito     const MDString *S = nullptr;
194f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
195f2ec16ccSHideki Saito 
196f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
197f2ec16ccSHideki Saito     // operand a MDString.
198f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
199f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
200f2ec16ccSHideki Saito         continue;
201f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
202f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
203f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
204f2ec16ccSHideki Saito     } else {
205f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
206f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
207f2ec16ccSHideki Saito     }
208f2ec16ccSHideki Saito 
209f2ec16ccSHideki Saito     if (!S)
210f2ec16ccSHideki Saito       continue;
211f2ec16ccSHideki Saito 
212f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
213f2ec16ccSHideki Saito     StringRef Name = S->getString();
214f2ec16ccSHideki Saito     if (Args.size() == 1)
215f2ec16ccSHideki Saito       setHint(Name, Args[0]);
216f2ec16ccSHideki Saito   }
217f2ec16ccSHideki Saito }
218f2ec16ccSHideki Saito 
219f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
220f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
221f2ec16ccSHideki Saito     return;
222f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
223f2ec16ccSHideki Saito 
224f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
225f2ec16ccSHideki Saito   if (!C)
226f2ec16ccSHideki Saito     return;
227f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
228f2ec16ccSHideki Saito 
22920b198ecSSjoerd Meijer   Hint *Hints[] = {&Width, &Interleave, &Force, &IsVectorized, &Predicate};
230f2ec16ccSHideki Saito   for (auto H : Hints) {
231f2ec16ccSHideki Saito     if (Name == H->Name) {
232f2ec16ccSHideki Saito       if (H->validate(Val))
233f2ec16ccSHideki Saito         H->Value = Val;
234f2ec16ccSHideki Saito       else
235d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
236f2ec16ccSHideki Saito       break;
237f2ec16ccSHideki Saito     }
238f2ec16ccSHideki Saito   }
239f2ec16ccSHideki Saito }
240f2ec16ccSHideki Saito 
241f2ec16ccSHideki Saito bool LoopVectorizationRequirements::doesNotMeet(
242f2ec16ccSHideki Saito     Function *F, Loop *L, const LoopVectorizeHints &Hints) {
243f2ec16ccSHideki Saito   const char *PassName = Hints.vectorizeAnalysisPassName();
244f2ec16ccSHideki Saito   bool Failed = false;
245f2ec16ccSHideki Saito   if (UnsafeAlgebraInst && !Hints.allowReordering()) {
246f2ec16ccSHideki Saito     ORE.emit([&]() {
247f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisFPCommute(
248f2ec16ccSHideki Saito                  PassName, "CantReorderFPOps", UnsafeAlgebraInst->getDebugLoc(),
249f2ec16ccSHideki Saito                  UnsafeAlgebraInst->getParent())
250f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
251f2ec16ccSHideki Saito                 "floating-point operations";
252f2ec16ccSHideki Saito     });
253f2ec16ccSHideki Saito     Failed = true;
254f2ec16ccSHideki Saito   }
255f2ec16ccSHideki Saito 
256f2ec16ccSHideki Saito   // Test if runtime memcheck thresholds are exceeded.
257f2ec16ccSHideki Saito   bool PragmaThresholdReached =
258f2ec16ccSHideki Saito       NumRuntimePointerChecks > PragmaVectorizeMemoryCheckThreshold;
259f2ec16ccSHideki Saito   bool ThresholdReached =
260f2ec16ccSHideki Saito       NumRuntimePointerChecks > VectorizerParams::RuntimeMemoryCheckThreshold;
261f2ec16ccSHideki Saito   if ((ThresholdReached && !Hints.allowReordering()) ||
262f2ec16ccSHideki Saito       PragmaThresholdReached) {
263f2ec16ccSHideki Saito     ORE.emit([&]() {
264f2ec16ccSHideki Saito       return OptimizationRemarkAnalysisAliasing(PassName, "CantReorderMemOps",
265f2ec16ccSHideki Saito                                                 L->getStartLoc(),
266f2ec16ccSHideki Saito                                                 L->getHeader())
267f2ec16ccSHideki Saito              << "loop not vectorized: cannot prove it is safe to reorder "
268f2ec16ccSHideki Saito                 "memory operations";
269f2ec16ccSHideki Saito     });
270d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Too many memory checks needed.\n");
271f2ec16ccSHideki Saito     Failed = true;
272f2ec16ccSHideki Saito   }
273f2ec16ccSHideki Saito 
274f2ec16ccSHideki Saito   return Failed;
275f2ec16ccSHideki Saito }
276f2ec16ccSHideki Saito 
277f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
278f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
279f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
280f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
281f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
282f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
283f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
284f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
285f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
286f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
287f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
288f2ec16ccSHideki Saito //
289f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
290f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
291f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
292f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
293f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
294f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
295f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
296f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
297f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
298f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
299f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
300f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
301f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
302f2ec16ccSHideki Saito 
303f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
304f2ec16ccSHideki Saito   if (Lp == OuterLp)
305f2ec16ccSHideki Saito     return true;
306f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
307f2ec16ccSHideki Saito 
308f2ec16ccSHideki Saito   // 1.
309f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
310f2ec16ccSHideki Saito   if (!IV) {
311d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
312f2ec16ccSHideki Saito     return false;
313f2ec16ccSHideki Saito   }
314f2ec16ccSHideki Saito 
315f2ec16ccSHideki Saito   // 2.
316f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
317f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
318f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
319d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
320f2ec16ccSHideki Saito     return false;
321f2ec16ccSHideki Saito   }
322f2ec16ccSHideki Saito 
323f2ec16ccSHideki Saito   // 3.
324f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
325f2ec16ccSHideki Saito   if (!LatchCmp) {
326d34e60caSNicola Zaghen     LLVM_DEBUG(
327d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
328f2ec16ccSHideki Saito     return false;
329f2ec16ccSHideki Saito   }
330f2ec16ccSHideki Saito 
331f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
332f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
333f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
334f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
335f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
336d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
337f2ec16ccSHideki Saito     return false;
338f2ec16ccSHideki Saito   }
339f2ec16ccSHideki Saito 
340f2ec16ccSHideki Saito   return true;
341f2ec16ccSHideki Saito }
342f2ec16ccSHideki Saito 
343f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
344f2ec16ccSHideki Saito // OuterLp.
345f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
346f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
347f2ec16ccSHideki Saito     return false;
348f2ec16ccSHideki Saito 
349f2ec16ccSHideki Saito   // Check if nested loops are uniform.
350f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
351f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
352f2ec16ccSHideki Saito       return false;
353f2ec16ccSHideki Saito 
354f2ec16ccSHideki Saito   return true;
355f2ec16ccSHideki Saito }
356f2ec16ccSHideki Saito 
3575f8f34e4SAdrian Prantl /// Check whether it is safe to if-convert this phi node.
358f2ec16ccSHideki Saito ///
359f2ec16ccSHideki Saito /// Phi nodes with constant expressions that can trap are not safe to if
360f2ec16ccSHideki Saito /// convert.
361f2ec16ccSHideki Saito static bool canIfConvertPHINodes(BasicBlock *BB) {
362f2ec16ccSHideki Saito   for (PHINode &Phi : BB->phis()) {
363f2ec16ccSHideki Saito     for (Value *V : Phi.incoming_values())
364f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(V))
365f2ec16ccSHideki Saito         if (C->canTrap())
366f2ec16ccSHideki Saito           return false;
367f2ec16ccSHideki Saito   }
368f2ec16ccSHideki Saito   return true;
369f2ec16ccSHideki Saito }
370f2ec16ccSHideki Saito 
371f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
372f2ec16ccSHideki Saito   if (Ty->isPointerTy())
373f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
374f2ec16ccSHideki Saito 
375f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
376f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
377f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
378f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
379f2ec16ccSHideki Saito 
380f2ec16ccSHideki Saito   return Ty;
381f2ec16ccSHideki Saito }
382f2ec16ccSHideki Saito 
383f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
384f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
385f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
386f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
387f2ec16ccSHideki Saito     return Ty0;
388f2ec16ccSHideki Saito   return Ty1;
389f2ec16ccSHideki Saito }
390f2ec16ccSHideki Saito 
3915f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
392f2ec16ccSHideki Saito /// identified reduction variable.
393f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
394f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
39560a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
396f2ec16ccSHideki Saito   // other instructions must not have external users.
397f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
398f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
399f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
400f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
401f2ec16ccSHideki Saito       // This user may be a reduction exit value.
402f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
403d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
404f2ec16ccSHideki Saito         return true;
405f2ec16ccSHideki Saito       }
406f2ec16ccSHideki Saito     }
407f2ec16ccSHideki Saito   return false;
408f2ec16ccSHideki Saito }
409f2ec16ccSHideki Saito 
410f2ec16ccSHideki Saito int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
411f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
412f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
413f2ec16ccSHideki Saito 
414d1170dbeSSjoerd Meijer   bool CanAddPredicate = !TheLoop->getHeader()->getParent()->hasOptSize();
415d1170dbeSSjoerd Meijer   int Stride = getPtrStride(PSE, Ptr, TheLoop, Strides, CanAddPredicate, false);
416f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
417f2ec16ccSHideki Saito     return Stride;
418f2ec16ccSHideki Saito   return 0;
419f2ec16ccSHideki Saito }
420f2ec16ccSHideki Saito 
421f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
422f2ec16ccSHideki Saito   return LAI->isUniform(V);
423f2ec16ccSHideki Saito }
424f2ec16ccSHideki Saito 
425f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
426f2ec16ccSHideki Saito   assert(!TheLoop->empty() && "We are not vectorizing an outer loop.");
427f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
428f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
429f2ec16ccSHideki Saito   bool Result = true;
430f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
431f2ec16ccSHideki Saito 
432f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
433f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
434f2ec16ccSHideki Saito     // not supported yet.
435f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
436f2ec16ccSHideki Saito     if (!Br) {
4379e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4389e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
439ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
440f2ec16ccSHideki Saito       if (DoExtraAnalysis)
441f2ec16ccSHideki Saito         Result = false;
442f2ec16ccSHideki Saito       else
443f2ec16ccSHideki Saito         return false;
444f2ec16ccSHideki Saito     }
445f2ec16ccSHideki Saito 
446f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
447f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
448f2ec16ccSHideki Saito     // backedges are supported.
4494e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
4504e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
4514e4ecae0SHideki Saito     // once VPlan predication is on by default.
4524e4ecae0SHideki Saito     if (!EnableVPlanPredication && Br && Br->isConditional() &&
453f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
454f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
455f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
4569e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
4579e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
458ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
459f2ec16ccSHideki Saito       if (DoExtraAnalysis)
460f2ec16ccSHideki Saito         Result = false;
461f2ec16ccSHideki Saito       else
462f2ec16ccSHideki Saito         return false;
463f2ec16ccSHideki Saito     }
464f2ec16ccSHideki Saito   }
465f2ec16ccSHideki Saito 
466f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
467f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
468f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
469f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
4709e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
4719e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
472ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
473f2ec16ccSHideki Saito     if (DoExtraAnalysis)
474f2ec16ccSHideki Saito       Result = false;
475f2ec16ccSHideki Saito     else
476f2ec16ccSHideki Saito       return false;
477f2ec16ccSHideki Saito   }
478f2ec16ccSHideki Saito 
479ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
480ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
4819e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
4829e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
483ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
484ea7f3035SHideki Saito     if (DoExtraAnalysis)
485ea7f3035SHideki Saito       Result = false;
486ea7f3035SHideki Saito     else
487ea7f3035SHideki Saito       return false;
488ea7f3035SHideki Saito   }
489ea7f3035SHideki Saito 
490f2ec16ccSHideki Saito   return Result;
491f2ec16ccSHideki Saito }
492f2ec16ccSHideki Saito 
493f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
494f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
495f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
496f2ec16ccSHideki Saito   Inductions[Phi] = ID;
497f2ec16ccSHideki Saito 
498f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
499f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
500f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
501f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
502f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
503f2ec16ccSHideki Saito   if (!Casts.empty())
504f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
505f2ec16ccSHideki Saito 
506f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
507f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
508f2ec16ccSHideki Saito 
509f2ec16ccSHideki Saito   // Get the widest type.
510f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
511f2ec16ccSHideki Saito     if (!WidestIndTy)
512f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
513f2ec16ccSHideki Saito     else
514f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
515f2ec16ccSHideki Saito   }
516f2ec16ccSHideki Saito 
517f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
518f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
519f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
520f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
521f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
522f2ec16ccSHideki Saito 
523f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
524f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
525f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
526f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
527f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
528f2ec16ccSHideki Saito       PrimaryInduction = Phi;
529f2ec16ccSHideki Saito   }
530f2ec16ccSHideki Saito 
531f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
532f2ec16ccSHideki Saito   // back into the PHI node may have external users.
533f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
534f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5356a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5366a1dd77fSAnna Thomas   // details).
537f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().isAlwaysTrue()) {
538f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
539f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
540f2ec16ccSHideki Saito   }
541f2ec16ccSHideki Saito 
542d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
543f2ec16ccSHideki Saito }
544f2ec16ccSHideki Saito 
545ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
546ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
547ea7f3035SHideki Saito 
548ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
549ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
550ea7f3035SHideki Saito     InductionDescriptor ID;
551ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
552ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
553ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
554ea7f3035SHideki Saito       return true;
555ea7f3035SHideki Saito     } else {
556ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
557ea7f3035SHideki Saito       // induction.
558ea7f3035SHideki Saito       LLVM_DEBUG(
559ea7f3035SHideki Saito           dbgs()
560ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
561ea7f3035SHideki Saito       return false;
562ea7f3035SHideki Saito     }
563ea7f3035SHideki Saito   };
564ea7f3035SHideki Saito 
565ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
566ea7f3035SHideki Saito     return true;
567ea7f3035SHideki Saito   else
568ea7f3035SHideki Saito     return false;
569ea7f3035SHideki Saito }
570ea7f3035SHideki Saito 
57166c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in
57266c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in
57366c120f0SFrancesco Petrogalli /// multiple scalarcalls. This is represented in the
57466c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the
57566c120f0SFrancesco Petrogalli /// following example:
57666c120f0SFrancesco Petrogalli ///
57766c120f0SFrancesco Petrogalli ///    const VecDesc VecIntrinsics[] = {
57866c120f0SFrancesco Petrogalli ///      {"llvm.phx.abs.i32", "", 4}
57966c120f0SFrancesco Petrogalli ///    };
58066c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
58166c120f0SFrancesco Petrogalli   const StringRef ScalarName = CI.getCalledFunction()->getName();
58266c120f0SFrancesco Petrogalli   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
58366c120f0SFrancesco Petrogalli   // Check that all known VFs are not associated to a vector
58466c120f0SFrancesco Petrogalli   // function, i.e. the vector name is emty.
58566c120f0SFrancesco Petrogalli   if (Scalarize)
58666c120f0SFrancesco Petrogalli     for (unsigned VF = 2, WidestVF = TLI.getWidestVF(ScalarName);
58766c120f0SFrancesco Petrogalli          VF <= WidestVF; VF *= 2) {
58866c120f0SFrancesco Petrogalli       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
58966c120f0SFrancesco Petrogalli     }
59066c120f0SFrancesco Petrogalli   return Scalarize;
59166c120f0SFrancesco Petrogalli }
59266c120f0SFrancesco Petrogalli 
593f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
594f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
595f2ec16ccSHideki Saito 
596f2ec16ccSHideki Saito   // Look for the attribute signaling the absence of NaNs.
597f2ec16ccSHideki Saito   Function &F = *Header->getParent();
598f2ec16ccSHideki Saito   HasFunNoNaNAttr =
599f2ec16ccSHideki Saito       F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
600f2ec16ccSHideki Saito 
601f2ec16ccSHideki Saito   // For each block in the loop.
602f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
603f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
604f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
605f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
606f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
607f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
608f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
609f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
6109e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
6119e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
612ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
613f2ec16ccSHideki Saito           return false;
614f2ec16ccSHideki Saito         }
615f2ec16ccSHideki Saito 
616f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
617f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
618f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
619f2ec16ccSHideki Saito         if (BB != Header) {
62060a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
62160a1e4ddSAnna Thomas           // them to the list of allowed exits.
62260a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
62360a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
62460a1e4ddSAnna Thomas           // recurrences.
625dd18ce45SBjorn Pettersson           AllowedExit.insert(&I);
626f2ec16ccSHideki Saito           continue;
627f2ec16ccSHideki Saito         }
628f2ec16ccSHideki Saito 
629f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
630f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6319e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6329e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
633ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
634f2ec16ccSHideki Saito           return false;
635f2ec16ccSHideki Saito         }
636f2ec16ccSHideki Saito 
637f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
638f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
639f2ec16ccSHideki Saito                                                  DT)) {
640f2ec16ccSHideki Saito           if (RedDes.hasUnsafeAlgebra())
641f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(RedDes.getUnsafeAlgebraInst());
642f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
643f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
644f2ec16ccSHideki Saito           continue;
645f2ec16ccSHideki Saito         }
646f2ec16ccSHideki Saito 
647b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
648b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
649b02b0ad8SAnna Thomas         // limited to):
650b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
651b02b0ad8SAnna Thomas         // is not available when vectorized
652b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
653b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
654b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
655b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
656b02b0ad8SAnna Thomas         // handling below
657b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
658b02b0ad8SAnna Thomas         // extraction.
659b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
660b02b0ad8SAnna Thomas         // of these NotAllowedExit.
661f2ec16ccSHideki Saito         InductionDescriptor ID;
662f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
663f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
664f2ec16ccSHideki Saito           if (ID.hasUnsafeAlgebra() && !HasFunNoNaNAttr)
665f2ec16ccSHideki Saito             Requirements->addUnsafeAlgebraInst(ID.getUnsafeAlgebraInst());
666f2ec16ccSHideki Saito           continue;
667f2ec16ccSHideki Saito         }
668f2ec16ccSHideki Saito 
669f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
670f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
6718e0c5f72SAyal Zaks           AllowedExit.insert(Phi);
672f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
673f2ec16ccSHideki Saito           continue;
674f2ec16ccSHideki Saito         }
675f2ec16ccSHideki Saito 
676f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
677f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
678f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
679f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
680f2ec16ccSHideki Saito           continue;
681f2ec16ccSHideki Saito         }
682f2ec16ccSHideki Saito 
6839e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
6849e97caf5SRenato Golin             "value that could not be identified as "
6859e97caf5SRenato Golin             "reduction is used outside the loop",
686ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
687f2ec16ccSHideki Saito         return false;
688f2ec16ccSHideki Saito       } // end of PHI handling
689f2ec16ccSHideki Saito 
690f2ec16ccSHideki Saito       // We handle calls that:
691f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
692f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
693f2ec16ccSHideki Saito       //   * Have a vector version available.
694f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
69566c120f0SFrancesco Petrogalli 
696f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
697f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
698f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
69966c120f0SFrancesco Petrogalli             (!VFDatabase::getMappings(*CI).empty() ||
70066c120f0SFrancesco Petrogalli              isTLIScalarize(*TLI, *CI)))) {
7017d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
7027d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
7037d65fe5cSSanjay Patel         LibFunc Func;
7047d65fe5cSSanjay Patel         bool IsMathLibCall =
7057d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
7067d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
7077d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
7087d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
7097d65fe5cSSanjay Patel 
7107d65fe5cSSanjay Patel         if (IsMathLibCall) {
7117d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
7127d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
7137d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
7147d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
71566c120f0SFrancesco Petrogalli           reportVectorizationFailure(
71666c120f0SFrancesco Petrogalli               "Found a non-intrinsic callsite",
7179e97caf5SRenato Golin               "library call cannot be vectorized. "
7187d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
7199e97caf5SRenato Golin               "or similar flags",
720ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
7217d65fe5cSSanjay Patel         } else {
7229e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
7239e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
724ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
7257d65fe5cSSanjay Patel         }
726f2ec16ccSHideki Saito         return false;
727f2ec16ccSHideki Saito       }
728f2ec16ccSHideki Saito 
729a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
730a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
731a066f1f9SSimon Pilgrim       if (CI) {
732f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
733a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
734a066f1f9SSimon Pilgrim         for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i)
735a066f1f9SSimon Pilgrim           if (hasVectorInstrinsicScalarOpd(IntrinID, i)) {
736a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7379e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7389e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
739ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
740f2ec16ccSHideki Saito               return false;
741f2ec16ccSHideki Saito             }
742f2ec16ccSHideki Saito           }
743a066f1f9SSimon Pilgrim       }
744f2ec16ccSHideki Saito 
745f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
746f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
747f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
748f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
749f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
7509e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
7519e97caf5SRenato Golin             "instruction return type cannot be vectorized",
752ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
753f2ec16ccSHideki Saito         return false;
754f2ec16ccSHideki Saito       }
755f2ec16ccSHideki Saito 
756f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
757f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
758f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
759f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
7609e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
7619e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
762ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
763f2ec16ccSHideki Saito           return false;
764f2ec16ccSHideki Saito         }
765f2ec16ccSHideki Saito 
7666452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
7676452bdd2SWarren Ristow         // supported on the target.
7686452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
7696452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
7706452bdd2SWarren Ristow           Type *VecTy = VectorType::get(T, /*NumElements=*/2);
7716452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
7725e1e83eeSGuillaume Chatelet           const MaybeAlign Alignment = getLoadStoreAlignment(ST);
77333671cefSGuillaume Chatelet           assert(Alignment && "Alignment should be set");
7745e1e83eeSGuillaume Chatelet           if (!TTI->isLegalNTStore(VecTy, *Alignment)) {
7756452bdd2SWarren Ristow             reportVectorizationFailure(
7766452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
7776452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
778ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
7796452bdd2SWarren Ristow             return false;
7806452bdd2SWarren Ristow           }
7816452bdd2SWarren Ristow         }
7826452bdd2SWarren Ristow 
7836452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
7846452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
7856452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
7866452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
7876452bdd2SWarren Ristow           Type *VecTy = VectorType::get(I.getType(), /*NumElements=*/2);
7886452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
7895e1e83eeSGuillaume Chatelet           const MaybeAlign Alignment = getLoadStoreAlignment(LD);
79033671cefSGuillaume Chatelet           assert(Alignment && "Alignment should be set");
7915e1e83eeSGuillaume Chatelet           if (!TTI->isLegalNTLoad(VecTy, *Alignment)) {
7926452bdd2SWarren Ristow             reportVectorizationFailure(
7936452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
7946452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
795ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
7966452bdd2SWarren Ristow             return false;
7976452bdd2SWarren Ristow           }
7986452bdd2SWarren Ristow         }
7996452bdd2SWarren Ristow 
800f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
801f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
802f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
803f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
804f2ec16ccSHideki Saito         // semantics.
805f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
806f2ec16ccSHideki Saito                  !I.isFast()) {
807d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
808f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
809f2ec16ccSHideki Saito       }
810f2ec16ccSHideki Saito 
811f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
812f2ec16ccSHideki Saito       // All other instructions must not have external users.
813f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
814b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
815b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
816b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
817b02b0ad8SAnna Thomas         // outside the loop.
818b02b0ad8SAnna Thomas         if (PSE.getUnionPredicate().isAlwaysTrue()) {
819b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
820b02b0ad8SAnna Thomas           continue;
821b02b0ad8SAnna Thomas         }
8229e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
8239e97caf5SRenato Golin                                    "value cannot be used outside the loop",
824ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
825f2ec16ccSHideki Saito         return false;
826f2ec16ccSHideki Saito       }
827f2ec16ccSHideki Saito     } // next instr.
828f2ec16ccSHideki Saito   }
829f2ec16ccSHideki Saito 
830f2ec16ccSHideki Saito   if (!PrimaryInduction) {
831f2ec16ccSHideki Saito     if (Inductions.empty()) {
8329e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8339e97caf5SRenato Golin           "loop induction variable could not be identified",
834ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
835f2ec16ccSHideki Saito       return false;
8364f27730eSWarren Ristow     } else if (!WidestIndTy) {
8379e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8389e97caf5SRenato Golin           "integer loop induction variable could not be identified",
839ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8404f27730eSWarren Ristow       return false;
8419e97caf5SRenato Golin     } else {
8429e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
843f2ec16ccSHideki Saito     }
844f2ec16ccSHideki Saito   }
845f2ec16ccSHideki Saito 
8469d24933fSFlorian Hahn   // For first order recurrences, we use the previous value (incoming value from
8479d24933fSFlorian Hahn   // the latch) to check if it dominates all users of the recurrence. Bail out
8489d24933fSFlorian Hahn   // if we have to sink such an instruction for another recurrence, as the
8499d24933fSFlorian Hahn   // dominance requirement may not hold after sinking.
8509d24933fSFlorian Hahn   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
8519d24933fSFlorian Hahn   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
8529d24933fSFlorian Hahn         Instruction *V =
8539d24933fSFlorian Hahn             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
8549d24933fSFlorian Hahn         return SinkAfter.find(V) != SinkAfter.end();
8559d24933fSFlorian Hahn       }))
8569d24933fSFlorian Hahn     return false;
8579d24933fSFlorian Hahn 
858f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
859f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
860f2ec16ccSHideki Saito   // will create another.
861f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
862f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
863f2ec16ccSHideki Saito 
864f2ec16ccSHideki Saito   return true;
865f2ec16ccSHideki Saito }
866f2ec16ccSHideki Saito 
867f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
868f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
869f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
870f2ec16ccSHideki Saito   if (LAR) {
871f2ec16ccSHideki Saito     ORE->emit([&]() {
872f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
873f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
874f2ec16ccSHideki Saito     });
875f2ec16ccSHideki Saito   }
876f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
877f2ec16ccSHideki Saito     return false;
878f2ec16ccSHideki Saito 
8795e9215f0SAnna Thomas   if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
8809e97caf5SRenato Golin     reportVectorizationFailure("Stores to a uniform address",
8819e97caf5SRenato Golin         "write to a loop invariant address could not be vectorized",
882ec818d7fSHideki Saito         "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
883f2ec16ccSHideki Saito     return false;
884f2ec16ccSHideki Saito   }
885f2ec16ccSHideki Saito   Requirements->addRuntimePointerChecks(LAI->getNumRuntimePointerChecks());
886f2ec16ccSHideki Saito   PSE.addPredicate(LAI->getPSE().getUnionPredicate());
887f2ec16ccSHideki Saito 
888f2ec16ccSHideki Saito   return true;
889f2ec16ccSHideki Saito }
890f2ec16ccSHideki Saito 
891f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionPhi(const Value *V) {
892f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
893f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
894f2ec16ccSHideki Saito   if (!PN)
895f2ec16ccSHideki Saito     return false;
896f2ec16ccSHideki Saito 
897f2ec16ccSHideki Saito   return Inductions.count(PN);
898f2ec16ccSHideki Saito }
899f2ec16ccSHideki Saito 
900f2ec16ccSHideki Saito bool LoopVectorizationLegality::isCastedInductionVariable(const Value *V) {
901f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
902f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
903f2ec16ccSHideki Saito }
904f2ec16ccSHideki Saito 
905f2ec16ccSHideki Saito bool LoopVectorizationLegality::isInductionVariable(const Value *V) {
906f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
907f2ec16ccSHideki Saito }
908f2ec16ccSHideki Saito 
909f2ec16ccSHideki Saito bool LoopVectorizationLegality::isFirstOrderRecurrence(const PHINode *Phi) {
910f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
911f2ec16ccSHideki Saito }
912f2ec16ccSHideki Saito 
913f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
914f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
915f2ec16ccSHideki Saito }
916f2ec16ccSHideki Saito 
917f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
918d57d73daSDorit Nuzman     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, bool PreserveGuards) {
919f2ec16ccSHideki Saito   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
920f2ec16ccSHideki Saito 
921f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
922f2ec16ccSHideki Saito     // Check that we don't have a constant expression that can trap as operand.
923f2ec16ccSHideki Saito     for (Value *Operand : I.operands()) {
924f2ec16ccSHideki Saito       if (auto *C = dyn_cast<Constant>(Operand))
925f2ec16ccSHideki Saito         if (C->canTrap())
926f2ec16ccSHideki Saito           return false;
927f2ec16ccSHideki Saito     }
92823c11380SFlorian Hahn 
92923c11380SFlorian Hahn     // We can predicate blocks with calls to assume, as long as we drop them in
93023c11380SFlorian Hahn     // case we flatten the CFG via predication.
93123c11380SFlorian Hahn     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
93223c11380SFlorian Hahn       ConditionalAssumes.insert(&I);
93323c11380SFlorian Hahn       continue;
93423c11380SFlorian Hahn     }
93523c11380SFlorian Hahn 
936f2ec16ccSHideki Saito     // We might be able to hoist the load.
937f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
938f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
939f2ec16ccSHideki Saito       if (!LI)
940f2ec16ccSHideki Saito         return false;
941f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
942f2ec16ccSHideki Saito         // !llvm.mem.parallel_loop_access implies if-conversion safety.
943f2ec16ccSHideki Saito         // Otherwise, record that the load needs (real or emulated) masking
944f2ec16ccSHideki Saito         // and let the cost model decide.
945d57d73daSDorit Nuzman         if (!IsAnnotatedParallel || PreserveGuards)
946f2ec16ccSHideki Saito           MaskedOp.insert(LI);
947f2ec16ccSHideki Saito         continue;
948f2ec16ccSHideki Saito       }
949f2ec16ccSHideki Saito     }
950f2ec16ccSHideki Saito 
951f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
952f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
953f2ec16ccSHideki Saito       if (!SI)
954f2ec16ccSHideki Saito         return false;
955f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
956f2ec16ccSHideki Saito       // 1) masked store HW instruction,
957f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
958f2ec16ccSHideki Saito       //    be aware on the race conditions), or
959f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
960f2ec16ccSHideki Saito       MaskedOp.insert(SI);
961f2ec16ccSHideki Saito       continue;
962f2ec16ccSHideki Saito     }
963f2ec16ccSHideki Saito     if (I.mayThrow())
964f2ec16ccSHideki Saito       return false;
965f2ec16ccSHideki Saito   }
966f2ec16ccSHideki Saito 
967f2ec16ccSHideki Saito   return true;
968f2ec16ccSHideki Saito }
969f2ec16ccSHideki Saito 
970f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
971f2ec16ccSHideki Saito   if (!EnableIfConversion) {
9729e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
9739e97caf5SRenato Golin                                "if-conversion is disabled",
974ec818d7fSHideki Saito                                "IfConversionDisabled",
975ec818d7fSHideki Saito                                ORE, TheLoop);
976f2ec16ccSHideki Saito     return false;
977f2ec16ccSHideki Saito   }
978f2ec16ccSHideki Saito 
979f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
980f2ec16ccSHideki Saito 
981cf3b5559SPhilip Reames   // A list of pointers which are known to be dereferenceable within scope of
982cf3b5559SPhilip Reames   // the loop body for each iteration of the loop which executes.  That is,
983cf3b5559SPhilip Reames   // the memory pointed to can be dereferenced (with the access size implied by
984cf3b5559SPhilip Reames   // the value's type) unconditionally within the loop header without
985cf3b5559SPhilip Reames   // introducing a new fault.
986*3bbc71d6SSjoerd Meijer   SmallPtrSet<Value *, 8> SafePointers;
987f2ec16ccSHideki Saito 
988f2ec16ccSHideki Saito   // Collect safe addresses.
989f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
9907403569bSPhilip Reames     if (!blockNeedsPredication(BB)) {
991f2ec16ccSHideki Saito       for (Instruction &I : *BB)
992f2ec16ccSHideki Saito         if (auto *Ptr = getLoadStorePointerOperand(&I))
993*3bbc71d6SSjoerd Meijer           SafePointers.insert(Ptr);
9947403569bSPhilip Reames       continue;
9957403569bSPhilip Reames     }
9967403569bSPhilip Reames 
9977403569bSPhilip Reames     // For a block which requires predication, a address may be safe to access
9987403569bSPhilip Reames     // in the loop w/o predication if we can prove dereferenceability facts
9997403569bSPhilip Reames     // sufficient to ensure it'll never fault within the loop. For the moment,
10007403569bSPhilip Reames     // we restrict this to loads; stores are more complicated due to
10017403569bSPhilip Reames     // concurrency restrictions.
10027403569bSPhilip Reames     ScalarEvolution &SE = *PSE.getSE();
10037403569bSPhilip Reames     for (Instruction &I : *BB) {
10047403569bSPhilip Reames       LoadInst *LI = dyn_cast<LoadInst>(&I);
10057403569bSPhilip Reames       if (LI && !mustSuppressSpeculation(*LI) &&
10067403569bSPhilip Reames           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
1007*3bbc71d6SSjoerd Meijer         SafePointers.insert(LI->getPointerOperand());
10087403569bSPhilip Reames     }
1009f2ec16ccSHideki Saito   }
1010f2ec16ccSHideki Saito 
1011f2ec16ccSHideki Saito   // Collect the blocks that need predication.
1012f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
1013f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
1014f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
1015f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
10169e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
10179e97caf5SRenato Golin                                  "loop contains a switch statement",
1018ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
1019ec818d7fSHideki Saito                                  BB->getTerminator());
1020f2ec16ccSHideki Saito       return false;
1021f2ec16ccSHideki Saito     }
1022f2ec16ccSHideki Saito 
1023f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
1024f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
1025*3bbc71d6SSjoerd Meijer       if (!blockCanBePredicated(BB, SafePointers)) {
10269e97caf5SRenato Golin         reportVectorizationFailure(
10279e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
10289e97caf5SRenato Golin             "control flow cannot be substituted for a select",
1029ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
1030ec818d7fSHideki Saito             BB->getTerminator());
1031f2ec16ccSHideki Saito         return false;
1032f2ec16ccSHideki Saito       }
1033f2ec16ccSHideki Saito     } else if (BB != Header && !canIfConvertPHINodes(BB)) {
10349e97caf5SRenato Golin       reportVectorizationFailure(
10359e97caf5SRenato Golin           "Control flow cannot be substituted for a select",
10369e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1037ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1038ec818d7fSHideki Saito           BB->getTerminator());
1039f2ec16ccSHideki Saito       return false;
1040f2ec16ccSHideki Saito     }
1041f2ec16ccSHideki Saito   }
1042f2ec16ccSHideki Saito 
1043f2ec16ccSHideki Saito   // We can if-convert this loop.
1044f2ec16ccSHideki Saito   return true;
1045f2ec16ccSHideki Saito }
1046f2ec16ccSHideki Saito 
1047f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
1048f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1049f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
1050f2ec16ccSHideki Saito   assert((UseVPlanNativePath || Lp->empty()) &&
1051f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
1052f2ec16ccSHideki Saito 
1053f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
1054f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
1055f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
1056f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
1057f2ec16ccSHideki Saito 
1058f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1059f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1060f2ec16ccSHideki Saito   bool Result = true;
1061f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1062f2ec16ccSHideki Saito 
1063f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1064f2ec16ccSHideki Saito   // be canonicalized.
1065f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
10669e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
10679e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1068ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1069f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1070f2ec16ccSHideki Saito       Result = false;
1071f2ec16ccSHideki Saito     else
1072f2ec16ccSHideki Saito       return false;
1073f2ec16ccSHideki Saito   }
1074f2ec16ccSHideki Saito 
1075f2ec16ccSHideki Saito   // We must have a single backedge.
1076f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
10779e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
10789e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1079ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1080f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1081f2ec16ccSHideki Saito       Result = false;
1082f2ec16ccSHideki Saito     else
1083f2ec16ccSHideki Saito       return false;
1084f2ec16ccSHideki Saito   }
1085f2ec16ccSHideki Saito 
1086f2ec16ccSHideki Saito   // We must have a single exiting block.
1087f2ec16ccSHideki Saito   if (!Lp->getExitingBlock()) {
10889e97caf5SRenato Golin     reportVectorizationFailure("The loop must have an exiting block",
10899e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1090ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1091f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1092f2ec16ccSHideki Saito       Result = false;
1093f2ec16ccSHideki Saito     else
1094f2ec16ccSHideki Saito       return false;
1095f2ec16ccSHideki Saito   }
1096f2ec16ccSHideki Saito 
1097f2ec16ccSHideki Saito   // We only handle bottom-tested loops, i.e. loop in which the condition is
1098f2ec16ccSHideki Saito   // checked at the end of each iteration. With that we can assume that all
1099f2ec16ccSHideki Saito   // instructions in the loop are executed the same number of times.
1100f2ec16ccSHideki Saito   if (Lp->getExitingBlock() != Lp->getLoopLatch()) {
11019e97caf5SRenato Golin     reportVectorizationFailure("The exiting block is not the loop latch",
11029e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1103ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1104f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1105f2ec16ccSHideki Saito       Result = false;
1106f2ec16ccSHideki Saito     else
1107f2ec16ccSHideki Saito       return false;
1108f2ec16ccSHideki Saito   }
1109f2ec16ccSHideki Saito 
1110f2ec16ccSHideki Saito   return Result;
1111f2ec16ccSHideki Saito }
1112f2ec16ccSHideki Saito 
1113f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1114f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1115f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1116f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1117f2ec16ccSHideki Saito   bool Result = true;
1118f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1119f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1120f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1121f2ec16ccSHideki Saito       Result = false;
1122f2ec16ccSHideki Saito     else
1123f2ec16ccSHideki Saito       return false;
1124f2ec16ccSHideki Saito   }
1125f2ec16ccSHideki Saito 
1126f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1127f2ec16ccSHideki Saito   // understood.
1128f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1129f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1130f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1131f2ec16ccSHideki Saito         Result = false;
1132f2ec16ccSHideki Saito       else
1133f2ec16ccSHideki Saito         return false;
1134f2ec16ccSHideki Saito     }
1135f2ec16ccSHideki Saito 
1136f2ec16ccSHideki Saito   return Result;
1137f2ec16ccSHideki Saito }
1138f2ec16ccSHideki Saito 
1139f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1140f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1141f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1142f2ec16ccSHideki Saito   bool Result = true;
1143f2ec16ccSHideki Saito 
1144f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1145f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1146f2ec16ccSHideki Saito   // vectorizer.
1147f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1148f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1149f2ec16ccSHideki Saito       Result = false;
1150f2ec16ccSHideki Saito     else
1151f2ec16ccSHideki Saito       return false;
1152f2ec16ccSHideki Saito   }
1153f2ec16ccSHideki Saito 
1154f2ec16ccSHideki Saito   // We need to have a loop header.
1155d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1156f2ec16ccSHideki Saito                     << '\n');
1157f2ec16ccSHideki Saito 
1158f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1159f2ec16ccSHideki Saito   // point because they don't support outer loops.
1160f2ec16ccSHideki Saito   if (!TheLoop->empty()) {
1161f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1162f2ec16ccSHideki Saito 
1163f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
11649e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
11659e97caf5SRenato Golin                                  "unsupported outer loop",
1166ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1167ec818d7fSHideki Saito                                  ORE, TheLoop);
1168f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1169f2ec16ccSHideki Saito       // outer loops.
1170f2ec16ccSHideki Saito       return false;
1171f2ec16ccSHideki Saito     }
1172f2ec16ccSHideki Saito 
1173d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1174f2ec16ccSHideki Saito     return Result;
1175f2ec16ccSHideki Saito   }
1176f2ec16ccSHideki Saito 
1177f2ec16ccSHideki Saito   assert(TheLoop->empty() && "Inner loop expected.");
1178f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1179f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1180f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1181d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1182f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1183f2ec16ccSHideki Saito       Result = false;
1184f2ec16ccSHideki Saito     else
1185f2ec16ccSHideki Saito       return false;
1186f2ec16ccSHideki Saito   }
1187f2ec16ccSHideki Saito 
1188f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1189f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1190d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1191f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1192f2ec16ccSHideki Saito       Result = false;
1193f2ec16ccSHideki Saito     else
1194f2ec16ccSHideki Saito       return false;
1195f2ec16ccSHideki Saito   }
1196f2ec16ccSHideki Saito 
1197f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1198f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1199d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1200f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1201f2ec16ccSHideki Saito       Result = false;
1202f2ec16ccSHideki Saito     else
1203f2ec16ccSHideki Saito       return false;
1204f2ec16ccSHideki Saito   }
1205f2ec16ccSHideki Saito 
1206d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1207f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1208f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1209f2ec16ccSHideki Saito                             : "")
1210f2ec16ccSHideki Saito                     << "!\n");
1211f2ec16ccSHideki Saito 
1212f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1213f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1214f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1215f2ec16ccSHideki Saito 
1216f2ec16ccSHideki Saito   if (PSE.getUnionPredicate().getComplexity() > SCEVThreshold) {
12179e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
12189e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1219ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1220f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1221f2ec16ccSHideki Saito       Result = false;
1222f2ec16ccSHideki Saito     else
1223f2ec16ccSHideki Saito       return false;
1224f2ec16ccSHideki Saito   }
1225f2ec16ccSHideki Saito 
1226f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1227f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1228f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1229f2ec16ccSHideki Saito   // no restrictions.
1230f2ec16ccSHideki Saito   return Result;
1231f2ec16ccSHideki Saito }
1232f2ec16ccSHideki Saito 
1233d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1234b0b5312eSAyal Zaks 
1235b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1236b0b5312eSAyal Zaks 
1237d15df0edSAyal Zaks   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1238b0b5312eSAyal Zaks 
1239d0d38df0SDavid Green   for (auto &Reduction : getReductionVars())
1240d15df0edSAyal Zaks     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1241d15df0edSAyal Zaks 
1242d15df0edSAyal Zaks   // TODO: handle non-reduction outside users when tail is folded by masking.
1243b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1244d15df0edSAyal Zaks     // Check that all users of allowed exit values are inside the loop or
1245d15df0edSAyal Zaks     // are the live-out of a reduction.
1246d15df0edSAyal Zaks     if (ReductionLiveOuts.count(AE))
1247d15df0edSAyal Zaks       continue;
1248b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1249b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1250b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1251b0b5312eSAyal Zaks         continue;
12529e97caf5SRenato Golin       reportVectorizationFailure(
12539e97caf5SRenato Golin           "Cannot fold tail by masking, loop has an outside user for",
12549e97caf5SRenato Golin           "Cannot fold tail by masking in the presence of live outs.",
1255ec818d7fSHideki Saito           "LiveOutFoldingTailByMasking", ORE, TheLoop, UI);
1256b0b5312eSAyal Zaks       return false;
1257b0b5312eSAyal Zaks     }
1258b0b5312eSAyal Zaks   }
1259b0b5312eSAyal Zaks 
1260b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1261b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1262b0b5312eSAyal Zaks 
1263b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1264b0b5312eSAyal Zaks   // do not need predication such as the header block.
1265b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1266d57d73daSDorit Nuzman     if (!blockCanBePredicated(BB, SafePointers, /* MaskAllLoads= */ true)) {
12679e97caf5SRenato Golin       reportVectorizationFailure(
12689e97caf5SRenato Golin           "Cannot fold tail by masking as required",
12699e97caf5SRenato Golin           "control flow cannot be substituted for a select",
1270ec818d7fSHideki Saito           "NoCFGForSelect", ORE, TheLoop,
1271ec818d7fSHideki Saito           BB->getTerminator());
1272b0b5312eSAyal Zaks       return false;
1273b0b5312eSAyal Zaks     }
1274b0b5312eSAyal Zaks   }
1275b0b5312eSAyal Zaks 
1276b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1277b0b5312eSAyal Zaks   return true;
1278b0b5312eSAyal Zaks }
1279b0b5312eSAyal Zaks 
1280f2ec16ccSHideki Saito } // namespace llvm
1281