1f2ec16ccSHideki Saito //===- LoopVectorizationLegality.cpp --------------------------------------===//
2f2ec16ccSHideki Saito //
32946cd70SChandler Carruth // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
42946cd70SChandler Carruth // See https://llvm.org/LICENSE.txt for license information.
52946cd70SChandler Carruth // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6f2ec16ccSHideki Saito //
7f2ec16ccSHideki Saito //===----------------------------------------------------------------------===//
8f2ec16ccSHideki Saito //
9f2ec16ccSHideki Saito // This file provides loop vectorization legality analysis. Original code
10f2ec16ccSHideki Saito // resided in LoopVectorize.cpp for a long time.
11f2ec16ccSHideki Saito //
12f2ec16ccSHideki Saito // At this point, it is implemented as a utility class, not as an analysis
13f2ec16ccSHideki Saito // pass. It should be easy to create an analysis pass around it if there
14f2ec16ccSHideki Saito // is a need (but D45420 needs to happen first).
15f2ec16ccSHideki Saito //
16cc529285SSimon Pilgrim 
17f2ec16ccSHideki Saito #include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
187403569bSPhilip Reames #include "llvm/Analysis/Loads.h"
19a5f1f9c9SSimon Pilgrim #include "llvm/Analysis/LoopInfo.h"
20ed98c1b3Sserge-sans-paille #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21cc529285SSimon Pilgrim #include "llvm/Analysis/TargetLibraryInfo.h"
22ed98c1b3Sserge-sans-paille #include "llvm/Analysis/TargetTransformInfo.h"
237403569bSPhilip Reames #include "llvm/Analysis/ValueTracking.h"
24f2ec16ccSHideki Saito #include "llvm/Analysis/VectorUtils.h"
25f2ec16ccSHideki Saito #include "llvm/IR/IntrinsicInst.h"
2623c11380SFlorian Hahn #include "llvm/IR/PatternMatch.h"
277bedae7dSHiroshi Yamauchi #include "llvm/Transforms/Utils/SizeOpts.h"
2823c11380SFlorian Hahn #include "llvm/Transforms/Vectorize/LoopVectorize.h"
29f2ec16ccSHideki Saito 
30f2ec16ccSHideki Saito using namespace llvm;
3123c11380SFlorian Hahn using namespace PatternMatch;
32f2ec16ccSHideki Saito 
33f2ec16ccSHideki Saito #define LV_NAME "loop-vectorize"
34f2ec16ccSHideki Saito #define DEBUG_TYPE LV_NAME
35f2ec16ccSHideki Saito 
36f2ec16ccSHideki Saito static cl::opt<bool>
37f2ec16ccSHideki Saito     EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
38f2ec16ccSHideki Saito                        cl::desc("Enable if-conversion during vectorization."));
39f2ec16ccSHideki Saito 
409f76a852SKerry McLaughlin namespace llvm {
419f76a852SKerry McLaughlin cl::opt<bool>
429f76a852SKerry McLaughlin     HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
439f76a852SKerry McLaughlin                          cl::desc("Allow enabling loop hints to reorder "
449f76a852SKerry McLaughlin                                   "FP operations during vectorization."));
459f76a852SKerry McLaughlin }
469f76a852SKerry McLaughlin 
47c773d0f9SFlorian Hahn // TODO: Move size-based thresholds out of legality checking, make cost based
48c773d0f9SFlorian Hahn // decisions instead of hard thresholds.
49f2ec16ccSHideki Saito static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
50f2ec16ccSHideki Saito     "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
51f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed."));
52f2ec16ccSHideki Saito 
53f2ec16ccSHideki Saito static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
54f2ec16ccSHideki Saito     "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
55f2ec16ccSHideki Saito     cl::desc("The maximum number of SCEV checks allowed with a "
56f2ec16ccSHideki Saito              "vectorize(enable) pragma"));
57f2ec16ccSHideki Saito 
58b1ff20fdSSander de Smalen static cl::opt<LoopVectorizeHints::ScalableForceKind>
59b1ff20fdSSander de Smalen     ForceScalableVectorization(
60b1ff20fdSSander de Smalen         "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
614f86aa65SSander de Smalen         cl::Hidden,
624f86aa65SSander de Smalen         cl::desc("Control whether the compiler can use scalable vectors to "
634f86aa65SSander de Smalen                  "vectorize a loop"),
644f86aa65SSander de Smalen         cl::values(
654f86aa65SSander de Smalen             clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
664f86aa65SSander de Smalen                        "Scalable vectorization is disabled."),
67b1ff20fdSSander de Smalen             clEnumValN(
687c68ed88SPaul Walker                 LoopVectorizeHints::SK_PreferScalable, "preferred",
697c68ed88SPaul Walker                 "Scalable vectorization is available and favored when the "
707c68ed88SPaul Walker                 "cost is inconclusive."),
717c68ed88SPaul Walker             clEnumValN(
72b1ff20fdSSander de Smalen                 LoopVectorizeHints::SK_PreferScalable, "on",
734f86aa65SSander de Smalen                 "Scalable vectorization is available and favored when the "
744f86aa65SSander de Smalen                 "cost is inconclusive.")));
754f86aa65SSander de Smalen 
76f2ec16ccSHideki Saito /// Maximum vectorization interleave count.
77f2ec16ccSHideki Saito static const unsigned MaxInterleaveFactor = 16;
78f2ec16ccSHideki Saito 
79f2ec16ccSHideki Saito namespace llvm {
80f2ec16ccSHideki Saito 
validate(unsigned Val)81f2ec16ccSHideki Saito bool LoopVectorizeHints::Hint::validate(unsigned Val) {
82f2ec16ccSHideki Saito   switch (Kind) {
83f2ec16ccSHideki Saito   case HK_WIDTH:
84f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
85ddb3b26aSBardia Mahjour   case HK_INTERLEAVE:
86f2ec16ccSHideki Saito     return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
87f2ec16ccSHideki Saito   case HK_FORCE:
88f2ec16ccSHideki Saito     return (Val <= 1);
89f2ec16ccSHideki Saito   case HK_ISVECTORIZED:
9020b198ecSSjoerd Meijer   case HK_PREDICATE:
9171bd59f0SDavid Sherwood   case HK_SCALABLE:
92f2ec16ccSHideki Saito     return (Val == 0 || Val == 1);
93f2ec16ccSHideki Saito   }
94f2ec16ccSHideki Saito   return false;
95f2ec16ccSHideki Saito }
96f2ec16ccSHideki Saito 
LoopVectorizeHints(const Loop * L,bool InterleaveOnlyWhenForced,OptimizationRemarkEmitter & ORE,const TargetTransformInfo * TTI)97d4eb13c8SMichael Kruse LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
98d4eb13c8SMichael Kruse                                        bool InterleaveOnlyWhenForced,
99b1ff20fdSSander de Smalen                                        OptimizationRemarkEmitter &ORE,
100b1ff20fdSSander de Smalen                                        const TargetTransformInfo *TTI)
101f2ec16ccSHideki Saito     : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
102ddb3b26aSBardia Mahjour       Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
103f2ec16ccSHideki Saito       Force("vectorize.enable", FK_Undefined, HK_FORCE),
10420b198ecSSjoerd Meijer       IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
10571bd59f0SDavid Sherwood       Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
1064f86aa65SSander de Smalen       Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
1074f86aa65SSander de Smalen       TheLoop(L), ORE(ORE) {
108f2ec16ccSHideki Saito   // Populate values with existing loop metadata.
109f2ec16ccSHideki Saito   getHintsFromMetadata();
110f2ec16ccSHideki Saito 
111f2ec16ccSHideki Saito   // force-vector-interleave overrides DisableInterleaving.
112f2ec16ccSHideki Saito   if (VectorizerParams::isInterleaveForced())
113f2ec16ccSHideki Saito     Interleave.Value = VectorizerParams::VectorizationInterleave;
114f2ec16ccSHideki Saito 
115b1ff20fdSSander de Smalen   // If the metadata doesn't explicitly specify whether to enable scalable
116b1ff20fdSSander de Smalen   // vectorization, then decide based on the following criteria (increasing
117b1ff20fdSSander de Smalen   // level of priority):
118b1ff20fdSSander de Smalen   //  - Target default
119b1ff20fdSSander de Smalen   //  - Metadata width
120b1ff20fdSSander de Smalen   //  - Force option (always overrides)
121b1ff20fdSSander de Smalen   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
122b1ff20fdSSander de Smalen     if (TTI)
123b1ff20fdSSander de Smalen       Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
124b1ff20fdSSander de Smalen                                                           : SK_FixedWidthOnly;
125b1ff20fdSSander de Smalen 
126b1ff20fdSSander de Smalen     if (Width.Value)
1274f86aa65SSander de Smalen       // If the width is set, but the metadata says nothing about the scalable
1284f86aa65SSander de Smalen       // property, then assume it concerns only a fixed-width UserVF.
1294f86aa65SSander de Smalen       // If width is not set, the flag takes precedence.
130b1ff20fdSSander de Smalen       Scalable.Value = SK_FixedWidthOnly;
131b1ff20fdSSander de Smalen   }
132b1ff20fdSSander de Smalen 
133b1ff20fdSSander de Smalen   // If the flag is set to force any use of scalable vectors, override the loop
134b1ff20fdSSander de Smalen   // hints.
135b1ff20fdSSander de Smalen   if (ForceScalableVectorization.getValue() !=
136b1ff20fdSSander de Smalen       LoopVectorizeHints::SK_Unspecified)
137b1ff20fdSSander de Smalen     Scalable.Value = ForceScalableVectorization.getValue();
138b1ff20fdSSander de Smalen 
139b1ff20fdSSander de Smalen   // Scalable vectorization is disabled if no preference is specified.
140b1ff20fdSSander de Smalen   if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
1414f86aa65SSander de Smalen     Scalable.Value = SK_FixedWidthOnly;
1424f86aa65SSander de Smalen 
143f2ec16ccSHideki Saito   if (IsVectorized.Value != 1)
144f2ec16ccSHideki Saito     // If the vectorization width and interleaving count are both 1 then
145f2ec16ccSHideki Saito     // consider the loop to have been already vectorized because there's
146f2ec16ccSHideki Saito     // nothing more that we can do.
14771bd59f0SDavid Sherwood     IsVectorized.Value =
148ddb3b26aSBardia Mahjour         getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
149ddb3b26aSBardia Mahjour   LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
150f2ec16ccSHideki Saito              << "LV: Interleaving disabled by the pass manager\n");
151f2ec16ccSHideki Saito }
152f2ec16ccSHideki Saito 
setAlreadyVectorized()15377a614a6SMichael Kruse void LoopVectorizeHints::setAlreadyVectorized() {
15477a614a6SMichael Kruse   LLVMContext &Context = TheLoop->getHeader()->getContext();
15577a614a6SMichael Kruse 
15677a614a6SMichael Kruse   MDNode *IsVectorizedMD = MDNode::get(
15777a614a6SMichael Kruse       Context,
15877a614a6SMichael Kruse       {MDString::get(Context, "llvm.loop.isvectorized"),
15977a614a6SMichael Kruse        ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
16077a614a6SMichael Kruse   MDNode *LoopID = TheLoop->getLoopID();
16177a614a6SMichael Kruse   MDNode *NewLoopID =
16277a614a6SMichael Kruse       makePostTransformationMetadata(Context, LoopID,
16377a614a6SMichael Kruse                                      {Twine(Prefix(), "vectorize.").str(),
16477a614a6SMichael Kruse                                       Twine(Prefix(), "interleave.").str()},
16577a614a6SMichael Kruse                                      {IsVectorizedMD});
16677a614a6SMichael Kruse   TheLoop->setLoopID(NewLoopID);
16777a614a6SMichael Kruse 
16877a614a6SMichael Kruse   // Update internal cache.
16977a614a6SMichael Kruse   IsVectorized.Value = 1;
17077a614a6SMichael Kruse }
17177a614a6SMichael Kruse 
allowVectorization(Function * F,Loop * L,bool VectorizeOnlyWhenForced) const172d4eb13c8SMichael Kruse bool LoopVectorizeHints::allowVectorization(
173d4eb13c8SMichael Kruse     Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
174f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled) {
175d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
176f2ec16ccSHideki Saito     emitRemarkWithHints();
177f2ec16ccSHideki Saito     return false;
178f2ec16ccSHideki Saito   }
179f2ec16ccSHideki Saito 
180d4eb13c8SMichael Kruse   if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
181d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
182f2ec16ccSHideki Saito     emitRemarkWithHints();
183f2ec16ccSHideki Saito     return false;
184f2ec16ccSHideki Saito   }
185f2ec16ccSHideki Saito 
186f2ec16ccSHideki Saito   if (getIsVectorized() == 1) {
187d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
188f2ec16ccSHideki Saito     // FIXME: Add interleave.disable metadata. This will allow
189f2ec16ccSHideki Saito     // vectorize.disable to be used without disabling the pass and errors
190f2ec16ccSHideki Saito     // to differentiate between disabled vectorization and a width of 1.
191f2ec16ccSHideki Saito     ORE.emit([&]() {
192f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
193f2ec16ccSHideki Saito                                         "AllDisabled", L->getStartLoc(),
194f2ec16ccSHideki Saito                                         L->getHeader())
195f2ec16ccSHideki Saito              << "loop not vectorized: vectorization and interleaving are "
196f2ec16ccSHideki Saito                 "explicitly disabled, or the loop has already been "
197f2ec16ccSHideki Saito                 "vectorized";
198f2ec16ccSHideki Saito     });
199f2ec16ccSHideki Saito     return false;
200f2ec16ccSHideki Saito   }
201f2ec16ccSHideki Saito 
202f2ec16ccSHideki Saito   return true;
203f2ec16ccSHideki Saito }
204f2ec16ccSHideki Saito 
emitRemarkWithHints() const205f2ec16ccSHideki Saito void LoopVectorizeHints::emitRemarkWithHints() const {
206f2ec16ccSHideki Saito   using namespace ore;
207f2ec16ccSHideki Saito 
208f2ec16ccSHideki Saito   ORE.emit([&]() {
209f2ec16ccSHideki Saito     if (Force.Value == LoopVectorizeHints::FK_Disabled)
210f2ec16ccSHideki Saito       return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
211f2ec16ccSHideki Saito                                       TheLoop->getStartLoc(),
212f2ec16ccSHideki Saito                                       TheLoop->getHeader())
213f2ec16ccSHideki Saito              << "loop not vectorized: vectorization is explicitly disabled";
214f2ec16ccSHideki Saito     else {
215f2ec16ccSHideki Saito       OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
216f2ec16ccSHideki Saito                                  TheLoop->getStartLoc(), TheLoop->getHeader());
217f2ec16ccSHideki Saito       R << "loop not vectorized";
218f2ec16ccSHideki Saito       if (Force.Value == LoopVectorizeHints::FK_Enabled) {
219f2ec16ccSHideki Saito         R << " (Force=" << NV("Force", true);
220f2ec16ccSHideki Saito         if (Width.Value != 0)
22171bd59f0SDavid Sherwood           R << ", Vector Width=" << NV("VectorWidth", getWidth());
222ddb3b26aSBardia Mahjour         if (getInterleave() != 0)
223ddb3b26aSBardia Mahjour           R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
224f2ec16ccSHideki Saito         R << ")";
225f2ec16ccSHideki Saito       }
226f2ec16ccSHideki Saito       return R;
227f2ec16ccSHideki Saito     }
228f2ec16ccSHideki Saito   });
229f2ec16ccSHideki Saito }
230f2ec16ccSHideki Saito 
vectorizeAnalysisPassName() const231f2ec16ccSHideki Saito const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
23271bd59f0SDavid Sherwood   if (getWidth() == ElementCount::getFixed(1))
233f2ec16ccSHideki Saito     return LV_NAME;
234f2ec16ccSHideki Saito   if (getForce() == LoopVectorizeHints::FK_Disabled)
235f2ec16ccSHideki Saito     return LV_NAME;
23671bd59f0SDavid Sherwood   if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
237f2ec16ccSHideki Saito     return LV_NAME;
238f2ec16ccSHideki Saito   return OptimizationRemarkAnalysis::AlwaysPrint;
239f2ec16ccSHideki Saito }
240f2ec16ccSHideki Saito 
allowReordering() const2419f76a852SKerry McLaughlin bool LoopVectorizeHints::allowReordering() const {
2429f76a852SKerry McLaughlin   // Allow the vectorizer to change the order of operations if enabling
2439f76a852SKerry McLaughlin   // loop hints are provided
2449f76a852SKerry McLaughlin   ElementCount EC = getWidth();
2459f76a852SKerry McLaughlin   return HintsAllowReordering &&
2469f76a852SKerry McLaughlin          (getForce() == LoopVectorizeHints::FK_Enabled ||
2479f76a852SKerry McLaughlin           EC.getKnownMinValue() > 1);
2489f76a852SKerry McLaughlin }
2499f76a852SKerry McLaughlin 
getHintsFromMetadata()250f2ec16ccSHideki Saito void LoopVectorizeHints::getHintsFromMetadata() {
251f2ec16ccSHideki Saito   MDNode *LoopID = TheLoop->getLoopID();
252f2ec16ccSHideki Saito   if (!LoopID)
253f2ec16ccSHideki Saito     return;
254f2ec16ccSHideki Saito 
255f2ec16ccSHideki Saito   // First operand should refer to the loop id itself.
256f2ec16ccSHideki Saito   assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
257f2ec16ccSHideki Saito   assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
258f2ec16ccSHideki Saito 
259f2ec16ccSHideki Saito   for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
260f2ec16ccSHideki Saito     const MDString *S = nullptr;
261f2ec16ccSHideki Saito     SmallVector<Metadata *, 4> Args;
262f2ec16ccSHideki Saito 
263f2ec16ccSHideki Saito     // The expected hint is either a MDString or a MDNode with the first
264f2ec16ccSHideki Saito     // operand a MDString.
265f2ec16ccSHideki Saito     if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
266f2ec16ccSHideki Saito       if (!MD || MD->getNumOperands() == 0)
267f2ec16ccSHideki Saito         continue;
268f2ec16ccSHideki Saito       S = dyn_cast<MDString>(MD->getOperand(0));
269f2ec16ccSHideki Saito       for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
270f2ec16ccSHideki Saito         Args.push_back(MD->getOperand(i));
271f2ec16ccSHideki Saito     } else {
272f2ec16ccSHideki Saito       S = dyn_cast<MDString>(LoopID->getOperand(i));
273f2ec16ccSHideki Saito       assert(Args.size() == 0 && "too many arguments for MDString");
274f2ec16ccSHideki Saito     }
275f2ec16ccSHideki Saito 
276f2ec16ccSHideki Saito     if (!S)
277f2ec16ccSHideki Saito       continue;
278f2ec16ccSHideki Saito 
279f2ec16ccSHideki Saito     // Check if the hint starts with the loop metadata prefix.
280f2ec16ccSHideki Saito     StringRef Name = S->getString();
281f2ec16ccSHideki Saito     if (Args.size() == 1)
282f2ec16ccSHideki Saito       setHint(Name, Args[0]);
283f2ec16ccSHideki Saito   }
284f2ec16ccSHideki Saito }
285f2ec16ccSHideki Saito 
setHint(StringRef Name,Metadata * Arg)286f2ec16ccSHideki Saito void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
287f2ec16ccSHideki Saito   if (!Name.startswith(Prefix()))
288f2ec16ccSHideki Saito     return;
289f2ec16ccSHideki Saito   Name = Name.substr(Prefix().size(), StringRef::npos);
290f2ec16ccSHideki Saito 
291f2ec16ccSHideki Saito   const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
292f2ec16ccSHideki Saito   if (!C)
293f2ec16ccSHideki Saito     return;
294f2ec16ccSHideki Saito   unsigned Val = C->getZExtValue();
295f2ec16ccSHideki Saito 
29671bd59f0SDavid Sherwood   Hint *Hints[] = {&Width,        &Interleave, &Force,
29771bd59f0SDavid Sherwood                    &IsVectorized, &Predicate,  &Scalable};
298f2ec16ccSHideki Saito   for (auto H : Hints) {
299f2ec16ccSHideki Saito     if (Name == H->Name) {
300f2ec16ccSHideki Saito       if (H->validate(Val))
301f2ec16ccSHideki Saito         H->Value = Val;
302f2ec16ccSHideki Saito       else
303d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
304f2ec16ccSHideki Saito       break;
305f2ec16ccSHideki Saito     }
306f2ec16ccSHideki Saito   }
307f2ec16ccSHideki Saito }
308f2ec16ccSHideki Saito 
309f2ec16ccSHideki Saito // Return true if the inner loop \p Lp is uniform with regard to the outer loop
310f2ec16ccSHideki Saito // \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
311f2ec16ccSHideki Saito // executing the inner loop will execute the same iterations). This check is
312f2ec16ccSHideki Saito // very constrained for now but it will be relaxed in the future. \p Lp is
313f2ec16ccSHideki Saito // considered uniform if it meets all the following conditions:
314f2ec16ccSHideki Saito //   1) it has a canonical IV (starting from 0 and with stride 1),
315f2ec16ccSHideki Saito //   2) its latch terminator is a conditional branch and,
316f2ec16ccSHideki Saito //   3) its latch condition is a compare instruction whose operands are the
317f2ec16ccSHideki Saito //      canonical IV and an OuterLp invariant.
318f2ec16ccSHideki Saito // This check doesn't take into account the uniformity of other conditions not
319f2ec16ccSHideki Saito // related to the loop latch because they don't affect the loop uniformity.
320f2ec16ccSHideki Saito //
321f2ec16ccSHideki Saito // NOTE: We decided to keep all these checks and its associated documentation
322f2ec16ccSHideki Saito // together so that we can easily have a picture of the current supported loop
323f2ec16ccSHideki Saito // nests. However, some of the current checks don't depend on \p OuterLp and
324f2ec16ccSHideki Saito // would be redundantly executed for each \p Lp if we invoked this function for
325f2ec16ccSHideki Saito // different candidate outer loops. This is not the case for now because we
326f2ec16ccSHideki Saito // don't currently have the infrastructure to evaluate multiple candidate outer
327f2ec16ccSHideki Saito // loops and \p OuterLp will be a fixed parameter while we only support explicit
328f2ec16ccSHideki Saito // outer loop vectorization. It's also very likely that these checks go away
329f2ec16ccSHideki Saito // before introducing the aforementioned infrastructure. However, if this is not
330f2ec16ccSHideki Saito // the case, we should move the \p OuterLp independent checks to a separate
331f2ec16ccSHideki Saito // function that is only executed once for each \p Lp.
isUniformLoop(Loop * Lp,Loop * OuterLp)332f2ec16ccSHideki Saito static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
333f2ec16ccSHideki Saito   assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
334f2ec16ccSHideki Saito 
335f2ec16ccSHideki Saito   // If Lp is the outer loop, it's uniform by definition.
336f2ec16ccSHideki Saito   if (Lp == OuterLp)
337f2ec16ccSHideki Saito     return true;
338f2ec16ccSHideki Saito   assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
339f2ec16ccSHideki Saito 
340f2ec16ccSHideki Saito   // 1.
341f2ec16ccSHideki Saito   PHINode *IV = Lp->getCanonicalInductionVariable();
342f2ec16ccSHideki Saito   if (!IV) {
343d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
344f2ec16ccSHideki Saito     return false;
345f2ec16ccSHideki Saito   }
346f2ec16ccSHideki Saito 
347f2ec16ccSHideki Saito   // 2.
348f2ec16ccSHideki Saito   BasicBlock *Latch = Lp->getLoopLatch();
349f2ec16ccSHideki Saito   auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
350f2ec16ccSHideki Saito   if (!LatchBr || LatchBr->isUnconditional()) {
351d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
352f2ec16ccSHideki Saito     return false;
353f2ec16ccSHideki Saito   }
354f2ec16ccSHideki Saito 
355f2ec16ccSHideki Saito   // 3.
356f2ec16ccSHideki Saito   auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
357f2ec16ccSHideki Saito   if (!LatchCmp) {
358d34e60caSNicola Zaghen     LLVM_DEBUG(
359d34e60caSNicola Zaghen         dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
360f2ec16ccSHideki Saito     return false;
361f2ec16ccSHideki Saito   }
362f2ec16ccSHideki Saito 
363f2ec16ccSHideki Saito   Value *CondOp0 = LatchCmp->getOperand(0);
364f2ec16ccSHideki Saito   Value *CondOp1 = LatchCmp->getOperand(1);
365f2ec16ccSHideki Saito   Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
366f2ec16ccSHideki Saito   if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
367f2ec16ccSHideki Saito       !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
368d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
369f2ec16ccSHideki Saito     return false;
370f2ec16ccSHideki Saito   }
371f2ec16ccSHideki Saito 
372f2ec16ccSHideki Saito   return true;
373f2ec16ccSHideki Saito }
374f2ec16ccSHideki Saito 
375f2ec16ccSHideki Saito // Return true if \p Lp and all its nested loops are uniform with regard to \p
376f2ec16ccSHideki Saito // OuterLp.
isUniformLoopNest(Loop * Lp,Loop * OuterLp)377f2ec16ccSHideki Saito static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
378f2ec16ccSHideki Saito   if (!isUniformLoop(Lp, OuterLp))
379f2ec16ccSHideki Saito     return false;
380f2ec16ccSHideki Saito 
381f2ec16ccSHideki Saito   // Check if nested loops are uniform.
382f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
383f2ec16ccSHideki Saito     if (!isUniformLoopNest(SubLp, OuterLp))
384f2ec16ccSHideki Saito       return false;
385f2ec16ccSHideki Saito 
386f2ec16ccSHideki Saito   return true;
387f2ec16ccSHideki Saito }
388f2ec16ccSHideki Saito 
convertPointerToIntegerType(const DataLayout & DL,Type * Ty)389f2ec16ccSHideki Saito static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
390f2ec16ccSHideki Saito   if (Ty->isPointerTy())
391f2ec16ccSHideki Saito     return DL.getIntPtrType(Ty);
392f2ec16ccSHideki Saito 
393f2ec16ccSHideki Saito   // It is possible that char's or short's overflow when we ask for the loop's
394f2ec16ccSHideki Saito   // trip count, work around this by changing the type size.
395f2ec16ccSHideki Saito   if (Ty->getScalarSizeInBits() < 32)
396f2ec16ccSHideki Saito     return Type::getInt32Ty(Ty->getContext());
397f2ec16ccSHideki Saito 
398f2ec16ccSHideki Saito   return Ty;
399f2ec16ccSHideki Saito }
400f2ec16ccSHideki Saito 
getWiderType(const DataLayout & DL,Type * Ty0,Type * Ty1)401f2ec16ccSHideki Saito static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
402f2ec16ccSHideki Saito   Ty0 = convertPointerToIntegerType(DL, Ty0);
403f2ec16ccSHideki Saito   Ty1 = convertPointerToIntegerType(DL, Ty1);
404f2ec16ccSHideki Saito   if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
405f2ec16ccSHideki Saito     return Ty0;
406f2ec16ccSHideki Saito   return Ty1;
407f2ec16ccSHideki Saito }
408f2ec16ccSHideki Saito 
4095f8f34e4SAdrian Prantl /// Check that the instruction has outside loop users and is not an
410f2ec16ccSHideki Saito /// identified reduction variable.
hasOutsideLoopUser(const Loop * TheLoop,Instruction * Inst,SmallPtrSetImpl<Value * > & AllowedExit)411f2ec16ccSHideki Saito static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
412f2ec16ccSHideki Saito                                SmallPtrSetImpl<Value *> &AllowedExit) {
41360a1e4ddSAnna Thomas   // Reductions, Inductions and non-header phis are allowed to have exit users. All
414f2ec16ccSHideki Saito   // other instructions must not have external users.
415f2ec16ccSHideki Saito   if (!AllowedExit.count(Inst))
416f2ec16ccSHideki Saito     // Check that all of the users of the loop are inside the BB.
417f2ec16ccSHideki Saito     for (User *U : Inst->users()) {
418f2ec16ccSHideki Saito       Instruction *UI = cast<Instruction>(U);
419f2ec16ccSHideki Saito       // This user may be a reduction exit value.
420f2ec16ccSHideki Saito       if (!TheLoop->contains(UI)) {
421d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
422f2ec16ccSHideki Saito         return true;
423f2ec16ccSHideki Saito       }
424f2ec16ccSHideki Saito     }
425f2ec16ccSHideki Saito   return false;
426f2ec16ccSHideki Saito }
427f2ec16ccSHideki Saito 
4284e5e042dSIgor Kirillov /// Returns true if A and B have same pointer operands or same SCEVs addresses
storeToSameAddress(ScalarEvolution * SE,StoreInst * A,StoreInst * B)4294e5e042dSIgor Kirillov static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
4304e5e042dSIgor Kirillov                                StoreInst *B) {
4314e5e042dSIgor Kirillov   // Compare store
4324e5e042dSIgor Kirillov   if (A == B)
4334e5e042dSIgor Kirillov     return true;
4344e5e042dSIgor Kirillov 
4354e5e042dSIgor Kirillov   // Otherwise Compare pointers
4364e5e042dSIgor Kirillov   Value *APtr = A->getPointerOperand();
4374e5e042dSIgor Kirillov   Value *BPtr = B->getPointerOperand();
4384e5e042dSIgor Kirillov   if (APtr == BPtr)
4394e5e042dSIgor Kirillov     return true;
4404e5e042dSIgor Kirillov 
4414e5e042dSIgor Kirillov   // Otherwise compare address SCEVs
4424e5e042dSIgor Kirillov   if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
4434e5e042dSIgor Kirillov     return true;
4444e5e042dSIgor Kirillov 
4454e5e042dSIgor Kirillov   return false;
4464e5e042dSIgor Kirillov }
4474e5e042dSIgor Kirillov 
isConsecutivePtr(Type * AccessTy,Value * Ptr) const44845c46734SNikita Popov int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
44945c46734SNikita Popov                                                 Value *Ptr) const {
450f2ec16ccSHideki Saito   const ValueToValueMap &Strides =
451f2ec16ccSHideki Saito       getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
452f2ec16ccSHideki Saito 
4537bedae7dSHiroshi Yamauchi   Function *F = TheLoop->getHeader()->getParent();
4547bedae7dSHiroshi Yamauchi   bool OptForSize = F->hasOptSize() ||
4557bedae7dSHiroshi Yamauchi                     llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
4567bedae7dSHiroshi Yamauchi                                                 PGSOQueryType::IRPass);
4577bedae7dSHiroshi Yamauchi   bool CanAddPredicate = !OptForSize;
45845c46734SNikita Popov   int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
45945c46734SNikita Popov                             CanAddPredicate, false);
460f2ec16ccSHideki Saito   if (Stride == 1 || Stride == -1)
461f2ec16ccSHideki Saito     return Stride;
462f2ec16ccSHideki Saito   return 0;
463f2ec16ccSHideki Saito }
464f2ec16ccSHideki Saito 
isUniform(Value * V)465f2ec16ccSHideki Saito bool LoopVectorizationLegality::isUniform(Value *V) {
466f2ec16ccSHideki Saito   return LAI->isUniform(V);
467f2ec16ccSHideki Saito }
468f2ec16ccSHideki Saito 
canVectorizeOuterLoop()469f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeOuterLoop() {
47089c1e35fSStefanos Baziotis   assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
471f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
472f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
473f2ec16ccSHideki Saito   bool Result = true;
474f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
475f2ec16ccSHideki Saito 
476f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
477f2ec16ccSHideki Saito     // Check whether the BB terminator is a BranchInst. Any other terminator is
478f2ec16ccSHideki Saito     // not supported yet.
479f2ec16ccSHideki Saito     auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
480f2ec16ccSHideki Saito     if (!Br) {
4819e97caf5SRenato Golin       reportVectorizationFailure("Unsupported basic block terminator",
4829e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
483ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
484f2ec16ccSHideki Saito       if (DoExtraAnalysis)
485f2ec16ccSHideki Saito         Result = false;
486f2ec16ccSHideki Saito       else
487f2ec16ccSHideki Saito         return false;
488f2ec16ccSHideki Saito     }
489f2ec16ccSHideki Saito 
490f2ec16ccSHideki Saito     // Check whether the BranchInst is a supported one. Only unconditional
491f2ec16ccSHideki Saito     // branches, conditional branches with an outer loop invariant condition or
492f2ec16ccSHideki Saito     // backedges are supported.
4934e4ecae0SHideki Saito     // FIXME: We skip these checks when VPlan predication is enabled as we
4944e4ecae0SHideki Saito     // want to allow divergent branches. This whole check will be removed
4954e4ecae0SHideki Saito     // once VPlan predication is on by default.
496d1570194SFlorian Hahn     if (Br && Br->isConditional() &&
497f2ec16ccSHideki Saito         !TheLoop->isLoopInvariant(Br->getCondition()) &&
498f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(0)) &&
499f2ec16ccSHideki Saito         !LI->isLoopHeader(Br->getSuccessor(1))) {
5009e97caf5SRenato Golin       reportVectorizationFailure("Unsupported conditional branch",
5019e97caf5SRenato Golin           "loop control flow is not understood by vectorizer",
502ec818d7fSHideki Saito           "CFGNotUnderstood", ORE, TheLoop);
503f2ec16ccSHideki Saito       if (DoExtraAnalysis)
504f2ec16ccSHideki Saito         Result = false;
505f2ec16ccSHideki Saito       else
506f2ec16ccSHideki Saito         return false;
507f2ec16ccSHideki Saito     }
508f2ec16ccSHideki Saito   }
509f2ec16ccSHideki Saito 
510f2ec16ccSHideki Saito   // Check whether inner loops are uniform. At this point, we only support
511f2ec16ccSHideki Saito   // simple outer loops scenarios with uniform nested loops.
512f2ec16ccSHideki Saito   if (!isUniformLoopNest(TheLoop /*loop nest*/,
513f2ec16ccSHideki Saito                          TheLoop /*context outer loop*/)) {
5149e97caf5SRenato Golin     reportVectorizationFailure("Outer loop contains divergent loops",
5159e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
516ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
517f2ec16ccSHideki Saito     if (DoExtraAnalysis)
518f2ec16ccSHideki Saito       Result = false;
519f2ec16ccSHideki Saito     else
520f2ec16ccSHideki Saito       return false;
521f2ec16ccSHideki Saito   }
522f2ec16ccSHideki Saito 
523ea7f3035SHideki Saito   // Check whether we are able to set up outer loop induction.
524ea7f3035SHideki Saito   if (!setupOuterLoopInductions()) {
5259e97caf5SRenato Golin     reportVectorizationFailure("Unsupported outer loop Phi(s)",
5269e97caf5SRenato Golin                                "Unsupported outer loop Phi(s)",
527ec818d7fSHideki Saito                                "UnsupportedPhi", ORE, TheLoop);
528ea7f3035SHideki Saito     if (DoExtraAnalysis)
529ea7f3035SHideki Saito       Result = false;
530ea7f3035SHideki Saito     else
531ea7f3035SHideki Saito       return false;
532ea7f3035SHideki Saito   }
533ea7f3035SHideki Saito 
534f2ec16ccSHideki Saito   return Result;
535f2ec16ccSHideki Saito }
536f2ec16ccSHideki Saito 
addInductionPhi(PHINode * Phi,const InductionDescriptor & ID,SmallPtrSetImpl<Value * > & AllowedExit)537f2ec16ccSHideki Saito void LoopVectorizationLegality::addInductionPhi(
538f2ec16ccSHideki Saito     PHINode *Phi, const InductionDescriptor &ID,
539f2ec16ccSHideki Saito     SmallPtrSetImpl<Value *> &AllowedExit) {
540f2ec16ccSHideki Saito   Inductions[Phi] = ID;
541f2ec16ccSHideki Saito 
542f2ec16ccSHideki Saito   // In case this induction also comes with casts that we know we can ignore
543f2ec16ccSHideki Saito   // in the vectorized loop body, record them here. All casts could be recorded
544f2ec16ccSHideki Saito   // here for ignoring, but suffices to record only the first (as it is the
545f2ec16ccSHideki Saito   // only one that may bw used outside the cast sequence).
546f2ec16ccSHideki Saito   const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
547f2ec16ccSHideki Saito   if (!Casts.empty())
548f2ec16ccSHideki Saito     InductionCastsToIgnore.insert(*Casts.begin());
549f2ec16ccSHideki Saito 
550f2ec16ccSHideki Saito   Type *PhiTy = Phi->getType();
551f2ec16ccSHideki Saito   const DataLayout &DL = Phi->getModule()->getDataLayout();
552f2ec16ccSHideki Saito 
553f2ec16ccSHideki Saito   // Get the widest type.
554f2ec16ccSHideki Saito   if (!PhiTy->isFloatingPointTy()) {
555f2ec16ccSHideki Saito     if (!WidestIndTy)
556f2ec16ccSHideki Saito       WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
557f2ec16ccSHideki Saito     else
558f2ec16ccSHideki Saito       WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
559f2ec16ccSHideki Saito   }
560f2ec16ccSHideki Saito 
561f2ec16ccSHideki Saito   // Int inductions are special because we only allow one IV.
562f2ec16ccSHideki Saito   if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
563f2ec16ccSHideki Saito       ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
564f2ec16ccSHideki Saito       isa<Constant>(ID.getStartValue()) &&
565f2ec16ccSHideki Saito       cast<Constant>(ID.getStartValue())->isNullValue()) {
566f2ec16ccSHideki Saito 
567f2ec16ccSHideki Saito     // Use the phi node with the widest type as induction. Use the last
568f2ec16ccSHideki Saito     // one if there are multiple (no good reason for doing this other
569f2ec16ccSHideki Saito     // than it is expedient). We've checked that it begins at zero and
570f2ec16ccSHideki Saito     // steps by one, so this is a canonical induction variable.
571f2ec16ccSHideki Saito     if (!PrimaryInduction || PhiTy == WidestIndTy)
572f2ec16ccSHideki Saito       PrimaryInduction = Phi;
573f2ec16ccSHideki Saito   }
574f2ec16ccSHideki Saito 
575f2ec16ccSHideki Saito   // Both the PHI node itself, and the "post-increment" value feeding
576f2ec16ccSHideki Saito   // back into the PHI node may have external users.
577f2ec16ccSHideki Saito   // We can allow those uses, except if the SCEVs we have for them rely
578f2ec16ccSHideki Saito   // on predicates that only hold within the loop, since allowing the exit
5796a1dd77fSAnna Thomas   // currently means re-using this SCEV outside the loop (see PR33706 for more
5806a1dd77fSAnna Thomas   // details).
5815ba11503SPhilip Reames   if (PSE.getPredicate().isAlwaysTrue()) {
582f2ec16ccSHideki Saito     AllowedExit.insert(Phi);
583f2ec16ccSHideki Saito     AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
584f2ec16ccSHideki Saito   }
585f2ec16ccSHideki Saito 
586d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
587f2ec16ccSHideki Saito }
588f2ec16ccSHideki Saito 
setupOuterLoopInductions()589ea7f3035SHideki Saito bool LoopVectorizationLegality::setupOuterLoopInductions() {
590ea7f3035SHideki Saito   BasicBlock *Header = TheLoop->getHeader();
591ea7f3035SHideki Saito 
592ea7f3035SHideki Saito   // Returns true if a given Phi is a supported induction.
593ea7f3035SHideki Saito   auto isSupportedPhi = [&](PHINode &Phi) -> bool {
594ea7f3035SHideki Saito     InductionDescriptor ID;
595ea7f3035SHideki Saito     if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
596ea7f3035SHideki Saito         ID.getKind() == InductionDescriptor::IK_IntInduction) {
597ea7f3035SHideki Saito       addInductionPhi(&Phi, ID, AllowedExit);
598ea7f3035SHideki Saito       return true;
599ea7f3035SHideki Saito     } else {
600ea7f3035SHideki Saito       // Bail out for any Phi in the outer loop header that is not a supported
601ea7f3035SHideki Saito       // induction.
602ea7f3035SHideki Saito       LLVM_DEBUG(
603ea7f3035SHideki Saito           dbgs()
604ea7f3035SHideki Saito           << "LV: Found unsupported PHI for outer loop vectorization.\n");
605ea7f3035SHideki Saito       return false;
606ea7f3035SHideki Saito     }
607ea7f3035SHideki Saito   };
608ea7f3035SHideki Saito 
609ea7f3035SHideki Saito   if (llvm::all_of(Header->phis(), isSupportedPhi))
610ea7f3035SHideki Saito     return true;
611ea7f3035SHideki Saito   else
612ea7f3035SHideki Saito     return false;
613ea7f3035SHideki Saito }
614ea7f3035SHideki Saito 
61566c120f0SFrancesco Petrogalli /// Checks if a function is scalarizable according to the TLI, in
61666c120f0SFrancesco Petrogalli /// the sense that it should be vectorized and then expanded in
61766c120f0SFrancesco Petrogalli /// multiple scalar calls. This is represented in the
61866c120f0SFrancesco Petrogalli /// TLI via mappings that do not specify a vector name, as in the
61966c120f0SFrancesco Petrogalli /// following example:
62066c120f0SFrancesco Petrogalli ///
62166c120f0SFrancesco Petrogalli ///    const VecDesc VecIntrinsics[] = {
62266c120f0SFrancesco Petrogalli ///      {"llvm.phx.abs.i32", "", 4}
62366c120f0SFrancesco Petrogalli ///    };
isTLIScalarize(const TargetLibraryInfo & TLI,const CallInst & CI)62466c120f0SFrancesco Petrogalli static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
62566c120f0SFrancesco Petrogalli   const StringRef ScalarName = CI.getCalledFunction()->getName();
62666c120f0SFrancesco Petrogalli   bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
62766c120f0SFrancesco Petrogalli   // Check that all known VFs are not associated to a vector
62866c120f0SFrancesco Petrogalli   // function, i.e. the vector name is emty.
62901b87444SDavid Sherwood   if (Scalarize) {
63001b87444SDavid Sherwood     ElementCount WidestFixedVF, WidestScalableVF;
63101b87444SDavid Sherwood     TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
63201b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getFixed(2);
63301b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
63466c120f0SFrancesco Petrogalli       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
63501b87444SDavid Sherwood     for (ElementCount VF = ElementCount::getScalable(1);
63601b87444SDavid Sherwood          ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
63701b87444SDavid Sherwood       Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
63801b87444SDavid Sherwood     assert((WidestScalableVF.isZero() || !Scalarize) &&
63901b87444SDavid Sherwood            "Caller may decide to scalarize a variant using a scalable VF");
64066c120f0SFrancesco Petrogalli   }
64166c120f0SFrancesco Petrogalli   return Scalarize;
64266c120f0SFrancesco Petrogalli }
64366c120f0SFrancesco Petrogalli 
canVectorizeInstrs()644f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeInstrs() {
645f2ec16ccSHideki Saito   BasicBlock *Header = TheLoop->getHeader();
646f2ec16ccSHideki Saito 
647f2ec16ccSHideki Saito   // For each block in the loop.
648f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
649f2ec16ccSHideki Saito     // Scan the instructions in the block and look for hazards.
650f2ec16ccSHideki Saito     for (Instruction &I : *BB) {
651f2ec16ccSHideki Saito       if (auto *Phi = dyn_cast<PHINode>(&I)) {
652f2ec16ccSHideki Saito         Type *PhiTy = Phi->getType();
653f2ec16ccSHideki Saito         // Check that this PHI type is allowed.
654f2ec16ccSHideki Saito         if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
655f2ec16ccSHideki Saito             !PhiTy->isPointerTy()) {
6569e97caf5SRenato Golin           reportVectorizationFailure("Found a non-int non-pointer PHI",
6579e97caf5SRenato Golin                                      "loop control flow is not understood by vectorizer",
658ec818d7fSHideki Saito                                      "CFGNotUnderstood", ORE, TheLoop);
659f2ec16ccSHideki Saito           return false;
660f2ec16ccSHideki Saito         }
661f2ec16ccSHideki Saito 
662f2ec16ccSHideki Saito         // If this PHINode is not in the header block, then we know that we
663f2ec16ccSHideki Saito         // can convert it to select during if-conversion. No need to check if
664f2ec16ccSHideki Saito         // the PHIs in this block are induction or reduction variables.
665f2ec16ccSHideki Saito         if (BB != Header) {
66660a1e4ddSAnna Thomas           // Non-header phi nodes that have outside uses can be vectorized. Add
66760a1e4ddSAnna Thomas           // them to the list of allowed exits.
66860a1e4ddSAnna Thomas           // Unsafe cyclic dependencies with header phis are identified during
66960a1e4ddSAnna Thomas           // legalization for reduction, induction and first order
67060a1e4ddSAnna Thomas           // recurrences.
671dd18ce45SBjorn Pettersson           AllowedExit.insert(&I);
672f2ec16ccSHideki Saito           continue;
673f2ec16ccSHideki Saito         }
674f2ec16ccSHideki Saito 
675f2ec16ccSHideki Saito         // We only allow if-converted PHIs with exactly two incoming values.
676f2ec16ccSHideki Saito         if (Phi->getNumIncomingValues() != 2) {
6779e97caf5SRenato Golin           reportVectorizationFailure("Found an invalid PHI",
6789e97caf5SRenato Golin               "loop control flow is not understood by vectorizer",
679ec818d7fSHideki Saito               "CFGNotUnderstood", ORE, TheLoop, Phi);
680f2ec16ccSHideki Saito           return false;
681f2ec16ccSHideki Saito         }
682f2ec16ccSHideki Saito 
683f2ec16ccSHideki Saito         RecurrenceDescriptor RedDes;
684f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
6854e5e042dSIgor Kirillov                                                  DT, PSE.getSE())) {
686b3a33553SSanjay Patel           Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
687f2ec16ccSHideki Saito           AllowedExit.insert(RedDes.getLoopExitInstr());
688f2ec16ccSHideki Saito           Reductions[Phi] = RedDes;
689f2ec16ccSHideki Saito           continue;
690f2ec16ccSHideki Saito         }
691f2ec16ccSHideki Saito 
692b02b0ad8SAnna Thomas         // TODO: Instead of recording the AllowedExit, it would be good to record the
693b02b0ad8SAnna Thomas         // complementary set: NotAllowedExit. These include (but may not be
694b02b0ad8SAnna Thomas         // limited to):
695b02b0ad8SAnna Thomas         // 1. Reduction phis as they represent the one-before-last value, which
696b02b0ad8SAnna Thomas         // is not available when vectorized
697b02b0ad8SAnna Thomas         // 2. Induction phis and increment when SCEV predicates cannot be used
698b02b0ad8SAnna Thomas         // outside the loop - see addInductionPhi
699b02b0ad8SAnna Thomas         // 3. Non-Phis with outside uses when SCEV predicates cannot be used
700b02b0ad8SAnna Thomas         // outside the loop - see call to hasOutsideLoopUser in the non-phi
701b02b0ad8SAnna Thomas         // handling below
702b02b0ad8SAnna Thomas         // 4. FirstOrderRecurrence phis that can possibly be handled by
703b02b0ad8SAnna Thomas         // extraction.
704b02b0ad8SAnna Thomas         // By recording these, we can then reason about ways to vectorize each
705b02b0ad8SAnna Thomas         // of these NotAllowedExit.
706f2ec16ccSHideki Saito         InductionDescriptor ID;
707f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
708f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
70936a489d1SSanjay Patel           Requirements->addExactFPMathInst(ID.getExactFPMathInst());
710f2ec16ccSHideki Saito           continue;
711f2ec16ccSHideki Saito         }
712f2ec16ccSHideki Saito 
713f2ec16ccSHideki Saito         if (RecurrenceDescriptor::isFirstOrderRecurrence(Phi, TheLoop,
714f2ec16ccSHideki Saito                                                          SinkAfter, DT)) {
7158e0c5f72SAyal Zaks           AllowedExit.insert(Phi);
716f2ec16ccSHideki Saito           FirstOrderRecurrences.insert(Phi);
717f2ec16ccSHideki Saito           continue;
718f2ec16ccSHideki Saito         }
719f2ec16ccSHideki Saito 
720f2ec16ccSHideki Saito         // As a last resort, coerce the PHI to a AddRec expression
721f2ec16ccSHideki Saito         // and re-try classifying it a an induction PHI.
722f2ec16ccSHideki Saito         if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
723f2ec16ccSHideki Saito           addInductionPhi(Phi, ID, AllowedExit);
724f2ec16ccSHideki Saito           continue;
725f2ec16ccSHideki Saito         }
726f2ec16ccSHideki Saito 
7279e97caf5SRenato Golin         reportVectorizationFailure("Found an unidentified PHI",
7289e97caf5SRenato Golin             "value that could not be identified as "
7299e97caf5SRenato Golin             "reduction is used outside the loop",
730ec818d7fSHideki Saito             "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
731f2ec16ccSHideki Saito         return false;
732f2ec16ccSHideki Saito       } // end of PHI handling
733f2ec16ccSHideki Saito 
734f2ec16ccSHideki Saito       // We handle calls that:
735f2ec16ccSHideki Saito       //   * Are debug info intrinsics.
736f2ec16ccSHideki Saito       //   * Have a mapping to an IR intrinsic.
737f2ec16ccSHideki Saito       //   * Have a vector version available.
738f2ec16ccSHideki Saito       auto *CI = dyn_cast<CallInst>(&I);
73966c120f0SFrancesco Petrogalli 
740f2ec16ccSHideki Saito       if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
741f2ec16ccSHideki Saito           !isa<DbgInfoIntrinsic>(CI) &&
742f2ec16ccSHideki Saito           !(CI->getCalledFunction() && TLI &&
74366c120f0SFrancesco Petrogalli             (!VFDatabase::getMappings(*CI).empty() ||
74466c120f0SFrancesco Petrogalli              isTLIScalarize(*TLI, *CI)))) {
7457d65fe5cSSanjay Patel         // If the call is a recognized math libary call, it is likely that
7467d65fe5cSSanjay Patel         // we can vectorize it given loosened floating-point constraints.
7477d65fe5cSSanjay Patel         LibFunc Func;
7487d65fe5cSSanjay Patel         bool IsMathLibCall =
7497d65fe5cSSanjay Patel             TLI && CI->getCalledFunction() &&
7507d65fe5cSSanjay Patel             CI->getType()->isFloatingPointTy() &&
7517d65fe5cSSanjay Patel             TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
7527d65fe5cSSanjay Patel             TLI->hasOptimizedCodeGen(Func);
7537d65fe5cSSanjay Patel 
7547d65fe5cSSanjay Patel         if (IsMathLibCall) {
7557d65fe5cSSanjay Patel           // TODO: Ideally, we should not use clang-specific language here,
7567d65fe5cSSanjay Patel           // but it's hard to provide meaningful yet generic advice.
7577d65fe5cSSanjay Patel           // Also, should this be guarded by allowExtraAnalysis() and/or be part
7587d65fe5cSSanjay Patel           // of the returned info from isFunctionVectorizable()?
75966c120f0SFrancesco Petrogalli           reportVectorizationFailure(
76066c120f0SFrancesco Petrogalli               "Found a non-intrinsic callsite",
7619e97caf5SRenato Golin               "library call cannot be vectorized. "
7627d65fe5cSSanjay Patel               "Try compiling with -fno-math-errno, -ffast-math, "
7639e97caf5SRenato Golin               "or similar flags",
764ec818d7fSHideki Saito               "CantVectorizeLibcall", ORE, TheLoop, CI);
7657d65fe5cSSanjay Patel         } else {
7669e97caf5SRenato Golin           reportVectorizationFailure("Found a non-intrinsic callsite",
7679e97caf5SRenato Golin                                      "call instruction cannot be vectorized",
768ec818d7fSHideki Saito                                      "CantVectorizeLibcall", ORE, TheLoop, CI);
7697d65fe5cSSanjay Patel         }
770f2ec16ccSHideki Saito         return false;
771f2ec16ccSHideki Saito       }
772f2ec16ccSHideki Saito 
773a066f1f9SSimon Pilgrim       // Some intrinsics have scalar arguments and should be same in order for
774a066f1f9SSimon Pilgrim       // them to be vectorized (i.e. loop invariant).
775a066f1f9SSimon Pilgrim       if (CI) {
776f2ec16ccSHideki Saito         auto *SE = PSE.getSE();
777a066f1f9SSimon Pilgrim         Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
7784f0225f6SKazu Hirata         for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
7796f81903eSDavid Green           if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
780a066f1f9SSimon Pilgrim             if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
7819e97caf5SRenato Golin               reportVectorizationFailure("Found unvectorizable intrinsic",
7829e97caf5SRenato Golin                   "intrinsic instruction cannot be vectorized",
783ec818d7fSHideki Saito                   "CantVectorizeIntrinsic", ORE, TheLoop, CI);
784f2ec16ccSHideki Saito               return false;
785f2ec16ccSHideki Saito             }
786f2ec16ccSHideki Saito           }
787a066f1f9SSimon Pilgrim       }
788f2ec16ccSHideki Saito 
789f2ec16ccSHideki Saito       // Check that the instruction return type is vectorizable.
790f2ec16ccSHideki Saito       // Also, we can't vectorize extractelement instructions.
791f2ec16ccSHideki Saito       if ((!VectorType::isValidElementType(I.getType()) &&
792f2ec16ccSHideki Saito            !I.getType()->isVoidTy()) ||
793f2ec16ccSHideki Saito           isa<ExtractElementInst>(I)) {
7949e97caf5SRenato Golin         reportVectorizationFailure("Found unvectorizable type",
7959e97caf5SRenato Golin             "instruction return type cannot be vectorized",
796ec818d7fSHideki Saito             "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
797f2ec16ccSHideki Saito         return false;
798f2ec16ccSHideki Saito       }
799f2ec16ccSHideki Saito 
800f2ec16ccSHideki Saito       // Check that the stored type is vectorizable.
801f2ec16ccSHideki Saito       if (auto *ST = dyn_cast<StoreInst>(&I)) {
802f2ec16ccSHideki Saito         Type *T = ST->getValueOperand()->getType();
803f2ec16ccSHideki Saito         if (!VectorType::isValidElementType(T)) {
8049e97caf5SRenato Golin           reportVectorizationFailure("Store instruction cannot be vectorized",
8059e97caf5SRenato Golin                                      "store instruction cannot be vectorized",
806ec818d7fSHideki Saito                                      "CantVectorizeStore", ORE, TheLoop, ST);
807f2ec16ccSHideki Saito           return false;
808f2ec16ccSHideki Saito         }
809f2ec16ccSHideki Saito 
8106452bdd2SWarren Ristow         // For nontemporal stores, check that a nontemporal vector version is
8116452bdd2SWarren Ristow         // supported on the target.
8126452bdd2SWarren Ristow         if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
8136452bdd2SWarren Ristow           // Arbitrarily try a vector of 2 elements.
8146913812aSFangrui Song           auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
8156452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of stored type");
81652e98f62SNikita Popov           if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
8176452bdd2SWarren Ristow             reportVectorizationFailure(
8186452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
8196452bdd2SWarren Ristow                 "nontemporal store instruction cannot be vectorized",
820ec818d7fSHideki Saito                 "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
8216452bdd2SWarren Ristow             return false;
8226452bdd2SWarren Ristow           }
8236452bdd2SWarren Ristow         }
8246452bdd2SWarren Ristow 
8256452bdd2SWarren Ristow       } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
8266452bdd2SWarren Ristow         if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
8276452bdd2SWarren Ristow           // For nontemporal loads, check that a nontemporal vector version is
8286452bdd2SWarren Ristow           // supported on the target (arbitrarily try a vector of 2 elements).
8296913812aSFangrui Song           auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
8306452bdd2SWarren Ristow           assert(VecTy && "did not find vectorized version of load type");
83152e98f62SNikita Popov           if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
8326452bdd2SWarren Ristow             reportVectorizationFailure(
8336452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
8346452bdd2SWarren Ristow                 "nontemporal load instruction cannot be vectorized",
835ec818d7fSHideki Saito                 "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
8366452bdd2SWarren Ristow             return false;
8376452bdd2SWarren Ristow           }
8386452bdd2SWarren Ristow         }
8396452bdd2SWarren Ristow 
840f2ec16ccSHideki Saito         // FP instructions can allow unsafe algebra, thus vectorizable by
841f2ec16ccSHideki Saito         // non-IEEE-754 compliant SIMD units.
842f2ec16ccSHideki Saito         // This applies to floating-point math operations and calls, not memory
843f2ec16ccSHideki Saito         // operations, shuffles, or casts, as they don't change precision or
844f2ec16ccSHideki Saito         // semantics.
845f2ec16ccSHideki Saito       } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
846f2ec16ccSHideki Saito                  !I.isFast()) {
847d34e60caSNicola Zaghen         LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
848f2ec16ccSHideki Saito         Hints->setPotentiallyUnsafe();
849f2ec16ccSHideki Saito       }
850f2ec16ccSHideki Saito 
851f2ec16ccSHideki Saito       // Reduction instructions are allowed to have exit users.
852f2ec16ccSHideki Saito       // All other instructions must not have external users.
853f2ec16ccSHideki Saito       if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
854b02b0ad8SAnna Thomas         // We can safely vectorize loops where instructions within the loop are
855b02b0ad8SAnna Thomas         // used outside the loop only if the SCEV predicates within the loop is
856b02b0ad8SAnna Thomas         // same as outside the loop. Allowing the exit means reusing the SCEV
857b02b0ad8SAnna Thomas         // outside the loop.
8585ba11503SPhilip Reames         if (PSE.getPredicate().isAlwaysTrue()) {
859b02b0ad8SAnna Thomas           AllowedExit.insert(&I);
860b02b0ad8SAnna Thomas           continue;
861b02b0ad8SAnna Thomas         }
8629e97caf5SRenato Golin         reportVectorizationFailure("Value cannot be used outside the loop",
8639e97caf5SRenato Golin                                    "value cannot be used outside the loop",
864ec818d7fSHideki Saito                                    "ValueUsedOutsideLoop", ORE, TheLoop, &I);
865f2ec16ccSHideki Saito         return false;
866f2ec16ccSHideki Saito       }
867f2ec16ccSHideki Saito     } // next instr.
868f2ec16ccSHideki Saito   }
869f2ec16ccSHideki Saito 
870f2ec16ccSHideki Saito   if (!PrimaryInduction) {
871f2ec16ccSHideki Saito     if (Inductions.empty()) {
8729e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8739e97caf5SRenato Golin           "loop induction variable could not be identified",
874ec818d7fSHideki Saito           "NoInductionVariable", ORE, TheLoop);
875f2ec16ccSHideki Saito       return false;
8764f27730eSWarren Ristow     } else if (!WidestIndTy) {
8779e97caf5SRenato Golin       reportVectorizationFailure("Did not find one integer induction var",
8789e97caf5SRenato Golin           "integer loop induction variable could not be identified",
879ec818d7fSHideki Saito           "NoIntegerInductionVariable", ORE, TheLoop);
8804f27730eSWarren Ristow       return false;
8819e97caf5SRenato Golin     } else {
8829e97caf5SRenato Golin       LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
883f2ec16ccSHideki Saito     }
884f2ec16ccSHideki Saito   }
885f2ec16ccSHideki Saito 
8869d24933fSFlorian Hahn   // For first order recurrences, we use the previous value (incoming value from
8879d24933fSFlorian Hahn   // the latch) to check if it dominates all users of the recurrence. Bail out
8889d24933fSFlorian Hahn   // if we have to sink such an instruction for another recurrence, as the
8899d24933fSFlorian Hahn   // dominance requirement may not hold after sinking.
8909d24933fSFlorian Hahn   BasicBlock *LoopLatch = TheLoop->getLoopLatch();
8919d24933fSFlorian Hahn   if (any_of(FirstOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
8929d24933fSFlorian Hahn         Instruction *V =
8939d24933fSFlorian Hahn             cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
8949d24933fSFlorian Hahn         return SinkAfter.find(V) != SinkAfter.end();
8959d24933fSFlorian Hahn       }))
8969d24933fSFlorian Hahn     return false;
8979d24933fSFlorian Hahn 
898f2ec16ccSHideki Saito   // Now we know the widest induction type, check if our found induction
899f2ec16ccSHideki Saito   // is the same size. If it's not, unset it here and InnerLoopVectorizer
900f2ec16ccSHideki Saito   // will create another.
901f2ec16ccSHideki Saito   if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
902f2ec16ccSHideki Saito     PrimaryInduction = nullptr;
903f2ec16ccSHideki Saito 
904f2ec16ccSHideki Saito   return true;
905f2ec16ccSHideki Saito }
906f2ec16ccSHideki Saito 
canVectorizeMemory()907f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeMemory() {
908f2ec16ccSHideki Saito   LAI = &(*GetLAA)(*TheLoop);
909f2ec16ccSHideki Saito   const OptimizationRemarkAnalysis *LAR = LAI->getReport();
910f2ec16ccSHideki Saito   if (LAR) {
911f2ec16ccSHideki Saito     ORE->emit([&]() {
912f2ec16ccSHideki Saito       return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
913f2ec16ccSHideki Saito                                         "loop not vectorized: ", *LAR);
914f2ec16ccSHideki Saito     });
915f2ec16ccSHideki Saito   }
916287d39ddSPaul Walker 
917f2ec16ccSHideki Saito   if (!LAI->canVectorizeMemory())
918f2ec16ccSHideki Saito     return false;
919f2ec16ccSHideki Saito 
9204e5e042dSIgor Kirillov   // We can vectorize stores to invariant address when final reduction value is
9214e5e042dSIgor Kirillov   // guaranteed to be stored at the end of the loop. Also, if decision to
9224e5e042dSIgor Kirillov   // vectorize loop is made, runtime checks are added so as to make sure that
9234e5e042dSIgor Kirillov   // invariant address won't alias with any other objects.
9244e5e042dSIgor Kirillov   if (!LAI->getStoresToInvariantAddresses().empty()) {
9254e5e042dSIgor Kirillov     // For each invariant address, check its last stored value is unconditional.
9264e5e042dSIgor Kirillov     for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
9274e5e042dSIgor Kirillov       if (isInvariantStoreOfReduction(SI) &&
9284e5e042dSIgor Kirillov           blockNeedsPredication(SI->getParent())) {
9294e5e042dSIgor Kirillov         reportVectorizationFailure(
9304e5e042dSIgor Kirillov             "We don't allow storing to uniform addresses",
9314e5e042dSIgor Kirillov             "write of conditional recurring variant value to a loop "
9324e5e042dSIgor Kirillov             "invariant address could not be vectorized",
933ec818d7fSHideki Saito             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
934f2ec16ccSHideki Saito         return false;
935f2ec16ccSHideki Saito       }
9364e5e042dSIgor Kirillov     }
9374e5e042dSIgor Kirillov 
9384e5e042dSIgor Kirillov     if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
9394e5e042dSIgor Kirillov       // For each invariant address, check its last stored value is the result
9404e5e042dSIgor Kirillov       // of one of our reductions.
9414e5e042dSIgor Kirillov       //
9424e5e042dSIgor Kirillov       // We do not check if dependence with loads exists because they are
9434e5e042dSIgor Kirillov       // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
9444e5e042dSIgor Kirillov       // behaviour changes we have to modify this code.
9454e5e042dSIgor Kirillov       ScalarEvolution *SE = PSE.getSE();
9464e5e042dSIgor Kirillov       SmallVector<StoreInst *, 4> UnhandledStores;
9474e5e042dSIgor Kirillov       for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
9484e5e042dSIgor Kirillov         if (isInvariantStoreOfReduction(SI)) {
9494e5e042dSIgor Kirillov           // Earlier stores to this address are effectively deadcode.
9504e5e042dSIgor Kirillov           // With opaque pointers it is possible for one pointer to be used with
9514e5e042dSIgor Kirillov           // different sizes of stored values:
9524e5e042dSIgor Kirillov           //    store i32 0, ptr %x
9534e5e042dSIgor Kirillov           //    store i8 0, ptr %x
9544e5e042dSIgor Kirillov           // The latest store doesn't complitely overwrite the first one in the
9554e5e042dSIgor Kirillov           // example. That is why we have to make sure that types of stored
9564e5e042dSIgor Kirillov           // values are same.
9574e5e042dSIgor Kirillov           // TODO: Check that bitwidth of unhandled store is smaller then the
9584e5e042dSIgor Kirillov           // one that overwrites it and add a test.
9594e5e042dSIgor Kirillov           erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
9604e5e042dSIgor Kirillov             return storeToSameAddress(SE, SI, I) &&
9614e5e042dSIgor Kirillov                    I->getValueOperand()->getType() ==
9624e5e042dSIgor Kirillov                        SI->getValueOperand()->getType();
9634e5e042dSIgor Kirillov           });
9644e5e042dSIgor Kirillov           continue;
9654e5e042dSIgor Kirillov         }
9664e5e042dSIgor Kirillov         UnhandledStores.push_back(SI);
9674e5e042dSIgor Kirillov       }
9684e5e042dSIgor Kirillov 
9694e5e042dSIgor Kirillov       bool IsOK = UnhandledStores.empty();
9704e5e042dSIgor Kirillov       // TODO: we should also validate against InvariantMemSets.
9714e5e042dSIgor Kirillov       if (!IsOK) {
9724e5e042dSIgor Kirillov         reportVectorizationFailure(
9734e5e042dSIgor Kirillov             "We don't allow storing to uniform addresses",
9744e5e042dSIgor Kirillov             "write to a loop invariant address could not "
9754e5e042dSIgor Kirillov             "be vectorized",
9764e5e042dSIgor Kirillov             "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
9774e5e042dSIgor Kirillov         return false;
9784e5e042dSIgor Kirillov       }
9794e5e042dSIgor Kirillov     }
9804e5e042dSIgor Kirillov   }
981287d39ddSPaul Walker 
9825ba11503SPhilip Reames   PSE.addPredicate(LAI->getPSE().getPredicate());
983f2ec16ccSHideki Saito   return true;
984f2ec16ccSHideki Saito }
985f2ec16ccSHideki Saito 
canVectorizeFPMath(bool EnableStrictReductions)9869f76a852SKerry McLaughlin bool LoopVectorizationLegality::canVectorizeFPMath(
9879f76a852SKerry McLaughlin     bool EnableStrictReductions) {
9889f76a852SKerry McLaughlin 
9899f76a852SKerry McLaughlin   // First check if there is any ExactFP math or if we allow reassociations
9909f76a852SKerry McLaughlin   if (!Requirements->getExactFPInst() || Hints->allowReordering())
9919f76a852SKerry McLaughlin     return true;
9929f76a852SKerry McLaughlin 
9939f76a852SKerry McLaughlin   // If the above is false, we have ExactFPMath & do not allow reordering.
9949f76a852SKerry McLaughlin   // If the EnableStrictReductions flag is set, first check if we have any
9959f76a852SKerry McLaughlin   // Exact FP induction vars, which we cannot vectorize.
9969f76a852SKerry McLaughlin   if (!EnableStrictReductions ||
9979f76a852SKerry McLaughlin       any_of(getInductionVars(), [&](auto &Induction) -> bool {
9989f76a852SKerry McLaughlin         InductionDescriptor IndDesc = Induction.second;
9999f76a852SKerry McLaughlin         return IndDesc.getExactFPMathInst();
10009f76a852SKerry McLaughlin       }))
10019f76a852SKerry McLaughlin     return false;
10029f76a852SKerry McLaughlin 
10039f76a852SKerry McLaughlin   // We can now only vectorize if all reductions with Exact FP math also
10049f76a852SKerry McLaughlin   // have the isOrdered flag set, which indicates that we can move the
1005*6bb40552SMalhar Jajoo   // reduction operations in-loop.
10069f76a852SKerry McLaughlin   return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
10075e6bfb66SSimon Pilgrim     const RecurrenceDescriptor &RdxDesc = Reduction.second;
1008*6bb40552SMalhar Jajoo     return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
10099f76a852SKerry McLaughlin   }));
10109f76a852SKerry McLaughlin }
10119f76a852SKerry McLaughlin 
isInvariantStoreOfReduction(StoreInst * SI)10124e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
10134e5e042dSIgor Kirillov   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
10144e5e042dSIgor Kirillov     const RecurrenceDescriptor &RdxDesc = Reduction.second;
10154e5e042dSIgor Kirillov     return RdxDesc.IntermediateStore == SI;
10164e5e042dSIgor Kirillov   });
10174e5e042dSIgor Kirillov }
10184e5e042dSIgor Kirillov 
isInvariantAddressOfReduction(Value * V)10194e5e042dSIgor Kirillov bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
10204e5e042dSIgor Kirillov   return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
10214e5e042dSIgor Kirillov     const RecurrenceDescriptor &RdxDesc = Reduction.second;
10224e5e042dSIgor Kirillov     if (!RdxDesc.IntermediateStore)
10234e5e042dSIgor Kirillov       return false;
10244e5e042dSIgor Kirillov 
10254e5e042dSIgor Kirillov     ScalarEvolution *SE = PSE.getSE();
10264e5e042dSIgor Kirillov     Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
10274e5e042dSIgor Kirillov     return V == InvariantAddress ||
10284e5e042dSIgor Kirillov            SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
10294e5e042dSIgor Kirillov   });
10304e5e042dSIgor Kirillov }
10314e5e042dSIgor Kirillov 
isInductionPhi(const Value * V) const1032d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
1033f2ec16ccSHideki Saito   Value *In0 = const_cast<Value *>(V);
1034f2ec16ccSHideki Saito   PHINode *PN = dyn_cast_or_null<PHINode>(In0);
1035f2ec16ccSHideki Saito   if (!PN)
1036f2ec16ccSHideki Saito     return false;
1037f2ec16ccSHideki Saito 
1038f2ec16ccSHideki Saito   return Inductions.count(PN);
1039f2ec16ccSHideki Saito }
1040f2ec16ccSHideki Saito 
1041978883d2SFlorian Hahn const InductionDescriptor *
getIntOrFpInductionDescriptor(PHINode * Phi) const1042978883d2SFlorian Hahn LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
1043978883d2SFlorian Hahn   if (!isInductionPhi(Phi))
1044978883d2SFlorian Hahn     return nullptr;
1045978883d2SFlorian Hahn   auto &ID = getInductionVars().find(Phi)->second;
1046978883d2SFlorian Hahn   if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
1047978883d2SFlorian Hahn       ID.getKind() == InductionDescriptor::IK_FpInduction)
1048978883d2SFlorian Hahn     return &ID;
1049978883d2SFlorian Hahn   return nullptr;
1050978883d2SFlorian Hahn }
1051978883d2SFlorian Hahn 
105246432a00SFlorian Hahn const InductionDescriptor *
getPointerInductionDescriptor(PHINode * Phi) const105346432a00SFlorian Hahn LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
105446432a00SFlorian Hahn   if (!isInductionPhi(Phi))
105546432a00SFlorian Hahn     return nullptr;
105646432a00SFlorian Hahn   auto &ID = getInductionVars().find(Phi)->second;
105746432a00SFlorian Hahn   if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
105846432a00SFlorian Hahn     return &ID;
105946432a00SFlorian Hahn   return nullptr;
106046432a00SFlorian Hahn }
106146432a00SFlorian Hahn 
isCastedInductionVariable(const Value * V) const1062d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isCastedInductionVariable(
1063d74a8a78SFlorian Hahn     const Value *V) const {
1064f2ec16ccSHideki Saito   auto *Inst = dyn_cast<Instruction>(V);
1065f2ec16ccSHideki Saito   return (Inst && InductionCastsToIgnore.count(Inst));
1066f2ec16ccSHideki Saito }
1067f2ec16ccSHideki Saito 
isInductionVariable(const Value * V) const1068d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
1069f2ec16ccSHideki Saito   return isInductionPhi(V) || isCastedInductionVariable(V);
1070f2ec16ccSHideki Saito }
1071f2ec16ccSHideki Saito 
isFirstOrderRecurrence(const PHINode * Phi) const1072d74a8a78SFlorian Hahn bool LoopVectorizationLegality::isFirstOrderRecurrence(
1073d74a8a78SFlorian Hahn     const PHINode *Phi) const {
1074f2ec16ccSHideki Saito   return FirstOrderRecurrences.count(Phi);
1075f2ec16ccSHideki Saito }
1076f2ec16ccSHideki Saito 
blockNeedsPredication(BasicBlock * BB) const1077f82966d1SSander de Smalen bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
1078f2ec16ccSHideki Saito   return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
1079f2ec16ccSHideki Saito }
1080f2ec16ccSHideki Saito 
blockCanBePredicated(BasicBlock * BB,SmallPtrSetImpl<Value * > & SafePtrs,SmallPtrSetImpl<const Instruction * > & MaskedOp,SmallPtrSetImpl<Instruction * > & ConditionalAssumes) const1081f2ec16ccSHideki Saito bool LoopVectorizationLegality::blockCanBePredicated(
1082bda8fbe2SSjoerd Meijer     BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
1083bda8fbe2SSjoerd Meijer     SmallPtrSetImpl<const Instruction *> &MaskedOp,
10844f01122cSJoachim Meyer     SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
1085f2ec16ccSHideki Saito   for (Instruction &I : *BB) {
108623c11380SFlorian Hahn     // We can predicate blocks with calls to assume, as long as we drop them in
108723c11380SFlorian Hahn     // case we flatten the CFG via predication.
108823c11380SFlorian Hahn     if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
108923c11380SFlorian Hahn       ConditionalAssumes.insert(&I);
109023c11380SFlorian Hahn       continue;
109123c11380SFlorian Hahn     }
109223c11380SFlorian Hahn 
1093121cac01SJeroen Dobbelaere     // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
1094121cac01SJeroen Dobbelaere     // TODO: there might be cases that it should block the vectorization. Let's
1095121cac01SJeroen Dobbelaere     // ignore those for now.
1096c83cff45SNikita Popov     if (isa<NoAliasScopeDeclInst>(&I))
1097121cac01SJeroen Dobbelaere       continue;
1098121cac01SJeroen Dobbelaere 
1099f2ec16ccSHideki Saito     // We might be able to hoist the load.
1100f2ec16ccSHideki Saito     if (I.mayReadFromMemory()) {
1101f2ec16ccSHideki Saito       auto *LI = dyn_cast<LoadInst>(&I);
1102f2ec16ccSHideki Saito       if (!LI)
1103f2ec16ccSHideki Saito         return false;
1104f2ec16ccSHideki Saito       if (!SafePtrs.count(LI->getPointerOperand())) {
1105f2ec16ccSHideki Saito         MaskedOp.insert(LI);
1106f2ec16ccSHideki Saito         continue;
1107f2ec16ccSHideki Saito       }
1108f2ec16ccSHideki Saito     }
1109f2ec16ccSHideki Saito 
1110f2ec16ccSHideki Saito     if (I.mayWriteToMemory()) {
1111f2ec16ccSHideki Saito       auto *SI = dyn_cast<StoreInst>(&I);
1112f2ec16ccSHideki Saito       if (!SI)
1113f2ec16ccSHideki Saito         return false;
1114f2ec16ccSHideki Saito       // Predicated store requires some form of masking:
1115f2ec16ccSHideki Saito       // 1) masked store HW instruction,
1116f2ec16ccSHideki Saito       // 2) emulation via load-blend-store (only if safe and legal to do so,
1117f2ec16ccSHideki Saito       //    be aware on the race conditions), or
1118f2ec16ccSHideki Saito       // 3) element-by-element predicate check and scalar store.
1119f2ec16ccSHideki Saito       MaskedOp.insert(SI);
1120f2ec16ccSHideki Saito       continue;
1121f2ec16ccSHideki Saito     }
1122f2ec16ccSHideki Saito     if (I.mayThrow())
1123f2ec16ccSHideki Saito       return false;
1124f2ec16ccSHideki Saito   }
1125f2ec16ccSHideki Saito 
1126f2ec16ccSHideki Saito   return true;
1127f2ec16ccSHideki Saito }
1128f2ec16ccSHideki Saito 
canVectorizeWithIfConvert()1129f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
1130f2ec16ccSHideki Saito   if (!EnableIfConversion) {
11319e97caf5SRenato Golin     reportVectorizationFailure("If-conversion is disabled",
11329e97caf5SRenato Golin                                "if-conversion is disabled",
1133ec818d7fSHideki Saito                                "IfConversionDisabled",
1134ec818d7fSHideki Saito                                ORE, TheLoop);
1135f2ec16ccSHideki Saito     return false;
1136f2ec16ccSHideki Saito   }
1137f2ec16ccSHideki Saito 
1138f2ec16ccSHideki Saito   assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
1139f2ec16ccSHideki Saito 
1140cf3b5559SPhilip Reames   // A list of pointers which are known to be dereferenceable within scope of
1141cf3b5559SPhilip Reames   // the loop body for each iteration of the loop which executes.  That is,
1142cf3b5559SPhilip Reames   // the memory pointed to can be dereferenced (with the access size implied by
1143cf3b5559SPhilip Reames   // the value's type) unconditionally within the loop header without
1144cf3b5559SPhilip Reames   // introducing a new fault.
11453bbc71d6SSjoerd Meijer   SmallPtrSet<Value *, 8> SafePointers;
1146f2ec16ccSHideki Saito 
1147f2ec16ccSHideki Saito   // Collect safe addresses.
1148f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
11497403569bSPhilip Reames     if (!blockNeedsPredication(BB)) {
1150f2ec16ccSHideki Saito       for (Instruction &I : *BB)
1151f2ec16ccSHideki Saito         if (auto *Ptr = getLoadStorePointerOperand(&I))
11523bbc71d6SSjoerd Meijer           SafePointers.insert(Ptr);
11537403569bSPhilip Reames       continue;
11547403569bSPhilip Reames     }
11557403569bSPhilip Reames 
11567403569bSPhilip Reames     // For a block which requires predication, a address may be safe to access
11577403569bSPhilip Reames     // in the loop w/o predication if we can prove dereferenceability facts
11587403569bSPhilip Reames     // sufficient to ensure it'll never fault within the loop. For the moment,
11597403569bSPhilip Reames     // we restrict this to loads; stores are more complicated due to
11607403569bSPhilip Reames     // concurrency restrictions.
11617403569bSPhilip Reames     ScalarEvolution &SE = *PSE.getSE();
11627403569bSPhilip Reames     for (Instruction &I : *BB) {
11637403569bSPhilip Reames       LoadInst *LI = dyn_cast<LoadInst>(&I);
1164467e5cf4SJoe Ellis       if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
11657403569bSPhilip Reames           isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT))
11663bbc71d6SSjoerd Meijer         SafePointers.insert(LI->getPointerOperand());
11677403569bSPhilip Reames     }
1168f2ec16ccSHideki Saito   }
1169f2ec16ccSHideki Saito 
1170f2ec16ccSHideki Saito   // Collect the blocks that need predication.
1171f2ec16ccSHideki Saito   for (BasicBlock *BB : TheLoop->blocks()) {
1172f2ec16ccSHideki Saito     // We don't support switch statements inside loops.
1173f2ec16ccSHideki Saito     if (!isa<BranchInst>(BB->getTerminator())) {
11749e97caf5SRenato Golin       reportVectorizationFailure("Loop contains a switch statement",
11759e97caf5SRenato Golin                                  "loop contains a switch statement",
1176ec818d7fSHideki Saito                                  "LoopContainsSwitch", ORE, TheLoop,
1177ec818d7fSHideki Saito                                  BB->getTerminator());
1178f2ec16ccSHideki Saito       return false;
1179f2ec16ccSHideki Saito     }
1180f2ec16ccSHideki Saito 
1181f2ec16ccSHideki Saito     // We must be able to predicate all blocks that need to be predicated.
1182f2ec16ccSHideki Saito     if (blockNeedsPredication(BB)) {
1183bda8fbe2SSjoerd Meijer       if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
1184bda8fbe2SSjoerd Meijer                                 ConditionalAssumes)) {
11859e97caf5SRenato Golin         reportVectorizationFailure(
11869e97caf5SRenato Golin             "Control flow cannot be substituted for a select",
11879e97caf5SRenato Golin             "control flow cannot be substituted for a select",
1188ec818d7fSHideki Saito             "NoCFGForSelect", ORE, TheLoop,
1189ec818d7fSHideki Saito             BB->getTerminator());
1190f2ec16ccSHideki Saito         return false;
1191f2ec16ccSHideki Saito       }
1192f2ec16ccSHideki Saito     }
1193f2ec16ccSHideki Saito   }
1194f2ec16ccSHideki Saito 
1195f2ec16ccSHideki Saito   // We can if-convert this loop.
1196f2ec16ccSHideki Saito   return true;
1197f2ec16ccSHideki Saito }
1198f2ec16ccSHideki Saito 
1199f2ec16ccSHideki Saito // Helper function to canVectorizeLoopNestCFG.
canVectorizeLoopCFG(Loop * Lp,bool UseVPlanNativePath)1200f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
1201f2ec16ccSHideki Saito                                                     bool UseVPlanNativePath) {
120289c1e35fSStefanos Baziotis   assert((UseVPlanNativePath || Lp->isInnermost()) &&
1203f2ec16ccSHideki Saito          "VPlan-native path is not enabled.");
1204f2ec16ccSHideki Saito 
1205f2ec16ccSHideki Saito   // TODO: ORE should be improved to show more accurate information when an
1206f2ec16ccSHideki Saito   // outer loop can't be vectorized because a nested loop is not understood or
1207f2ec16ccSHideki Saito   // legal. Something like: "outer_loop_location: loop not vectorized:
1208f2ec16ccSHideki Saito   // (inner_loop_location) loop control flow is not understood by vectorizer".
1209f2ec16ccSHideki Saito 
1210f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1211f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1212f2ec16ccSHideki Saito   bool Result = true;
1213f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1214f2ec16ccSHideki Saito 
1215f2ec16ccSHideki Saito   // We must have a loop in canonical form. Loops with indirectbr in them cannot
1216f2ec16ccSHideki Saito   // be canonicalized.
1217f2ec16ccSHideki Saito   if (!Lp->getLoopPreheader()) {
12189e97caf5SRenato Golin     reportVectorizationFailure("Loop doesn't have a legal pre-header",
12199e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1220ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1221f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1222f2ec16ccSHideki Saito       Result = false;
1223f2ec16ccSHideki Saito     else
1224f2ec16ccSHideki Saito       return false;
1225f2ec16ccSHideki Saito   }
1226f2ec16ccSHideki Saito 
1227f2ec16ccSHideki Saito   // We must have a single backedge.
1228f2ec16ccSHideki Saito   if (Lp->getNumBackEdges() != 1) {
12299e97caf5SRenato Golin     reportVectorizationFailure("The loop must have a single backedge",
12309e97caf5SRenato Golin         "loop control flow is not understood by vectorizer",
1231ec818d7fSHideki Saito         "CFGNotUnderstood", ORE, TheLoop);
1232f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1233f2ec16ccSHideki Saito       Result = false;
1234f2ec16ccSHideki Saito     else
1235f2ec16ccSHideki Saito       return false;
1236f2ec16ccSHideki Saito   }
1237f2ec16ccSHideki Saito 
1238f2ec16ccSHideki Saito   return Result;
1239f2ec16ccSHideki Saito }
1240f2ec16ccSHideki Saito 
canVectorizeLoopNestCFG(Loop * Lp,bool UseVPlanNativePath)1241f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
1242f2ec16ccSHideki Saito     Loop *Lp, bool UseVPlanNativePath) {
1243f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1244f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1245f2ec16ccSHideki Saito   bool Result = true;
1246f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1247f2ec16ccSHideki Saito   if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
1248f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1249f2ec16ccSHideki Saito       Result = false;
1250f2ec16ccSHideki Saito     else
1251f2ec16ccSHideki Saito       return false;
1252f2ec16ccSHideki Saito   }
1253f2ec16ccSHideki Saito 
1254f2ec16ccSHideki Saito   // Recursively check whether the loop control flow of nested loops is
1255f2ec16ccSHideki Saito   // understood.
1256f2ec16ccSHideki Saito   for (Loop *SubLp : *Lp)
1257f2ec16ccSHideki Saito     if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
1258f2ec16ccSHideki Saito       if (DoExtraAnalysis)
1259f2ec16ccSHideki Saito         Result = false;
1260f2ec16ccSHideki Saito       else
1261f2ec16ccSHideki Saito         return false;
1262f2ec16ccSHideki Saito     }
1263f2ec16ccSHideki Saito 
1264f2ec16ccSHideki Saito   return Result;
1265f2ec16ccSHideki Saito }
1266f2ec16ccSHideki Saito 
canVectorize(bool UseVPlanNativePath)1267f2ec16ccSHideki Saito bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
1268f2ec16ccSHideki Saito   // Store the result and return it at the end instead of exiting early, in case
1269f2ec16ccSHideki Saito   // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
1270f2ec16ccSHideki Saito   bool Result = true;
1271f2ec16ccSHideki Saito 
1272f2ec16ccSHideki Saito   bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
1273f2ec16ccSHideki Saito   // Check whether the loop-related control flow in the loop nest is expected by
1274f2ec16ccSHideki Saito   // vectorizer.
1275f2ec16ccSHideki Saito   if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
1276f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1277f2ec16ccSHideki Saito       Result = false;
1278f2ec16ccSHideki Saito     else
1279f2ec16ccSHideki Saito       return false;
1280f2ec16ccSHideki Saito   }
1281f2ec16ccSHideki Saito 
1282f2ec16ccSHideki Saito   // We need to have a loop header.
1283d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
1284f2ec16ccSHideki Saito                     << '\n');
1285f2ec16ccSHideki Saito 
1286f2ec16ccSHideki Saito   // Specific checks for outer loops. We skip the remaining legal checks at this
1287f2ec16ccSHideki Saito   // point because they don't support outer loops.
128889c1e35fSStefanos Baziotis   if (!TheLoop->isInnermost()) {
1289f2ec16ccSHideki Saito     assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
1290f2ec16ccSHideki Saito 
1291f2ec16ccSHideki Saito     if (!canVectorizeOuterLoop()) {
12929e97caf5SRenato Golin       reportVectorizationFailure("Unsupported outer loop",
12939e97caf5SRenato Golin                                  "unsupported outer loop",
1294ec818d7fSHideki Saito                                  "UnsupportedOuterLoop",
1295ec818d7fSHideki Saito                                  ORE, TheLoop);
1296f2ec16ccSHideki Saito       // TODO: Implement DoExtraAnalysis when subsequent legal checks support
1297f2ec16ccSHideki Saito       // outer loops.
1298f2ec16ccSHideki Saito       return false;
1299f2ec16ccSHideki Saito     }
1300f2ec16ccSHideki Saito 
1301d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
1302f2ec16ccSHideki Saito     return Result;
1303f2ec16ccSHideki Saito   }
1304f2ec16ccSHideki Saito 
130589c1e35fSStefanos Baziotis   assert(TheLoop->isInnermost() && "Inner loop expected.");
1306f2ec16ccSHideki Saito   // Check if we can if-convert non-single-bb loops.
1307f2ec16ccSHideki Saito   unsigned NumBlocks = TheLoop->getNumBlocks();
1308f2ec16ccSHideki Saito   if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
1309d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
1310f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1311f2ec16ccSHideki Saito       Result = false;
1312f2ec16ccSHideki Saito     else
1313f2ec16ccSHideki Saito       return false;
1314f2ec16ccSHideki Saito   }
1315f2ec16ccSHideki Saito 
1316f2ec16ccSHideki Saito   // Check if we can vectorize the instructions and CFG in this loop.
1317f2ec16ccSHideki Saito   if (!canVectorizeInstrs()) {
1318d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
1319f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1320f2ec16ccSHideki Saito       Result = false;
1321f2ec16ccSHideki Saito     else
1322f2ec16ccSHideki Saito       return false;
1323f2ec16ccSHideki Saito   }
1324f2ec16ccSHideki Saito 
1325f2ec16ccSHideki Saito   // Go over each instruction and look at memory deps.
1326f2ec16ccSHideki Saito   if (!canVectorizeMemory()) {
1327d34e60caSNicola Zaghen     LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
1328f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1329f2ec16ccSHideki Saito       Result = false;
1330f2ec16ccSHideki Saito     else
1331f2ec16ccSHideki Saito       return false;
1332f2ec16ccSHideki Saito   }
1333f2ec16ccSHideki Saito 
1334d34e60caSNicola Zaghen   LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
1335f2ec16ccSHideki Saito                     << (LAI->getRuntimePointerChecking()->Need
1336f2ec16ccSHideki Saito                             ? " (with a runtime bound check)"
1337f2ec16ccSHideki Saito                             : "")
1338f2ec16ccSHideki Saito                     << "!\n");
1339f2ec16ccSHideki Saito 
1340f2ec16ccSHideki Saito   unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
1341f2ec16ccSHideki Saito   if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
1342f2ec16ccSHideki Saito     SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
1343f2ec16ccSHideki Saito 
13445ba11503SPhilip Reames   if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
13459e97caf5SRenato Golin     reportVectorizationFailure("Too many SCEV checks needed",
13469e97caf5SRenato Golin         "Too many SCEV assumptions need to be made and checked at runtime",
1347ec818d7fSHideki Saito         "TooManySCEVRunTimeChecks", ORE, TheLoop);
1348f2ec16ccSHideki Saito     if (DoExtraAnalysis)
1349f2ec16ccSHideki Saito       Result = false;
1350f2ec16ccSHideki Saito     else
1351f2ec16ccSHideki Saito       return false;
1352f2ec16ccSHideki Saito   }
1353f2ec16ccSHideki Saito 
1354f2ec16ccSHideki Saito   // Okay! We've done all the tests. If any have failed, return false. Otherwise
1355f2ec16ccSHideki Saito   // we can vectorize, and at this point we don't have any other mem analysis
1356f2ec16ccSHideki Saito   // which may limit our maximum vectorization factor, so just return true with
1357f2ec16ccSHideki Saito   // no restrictions.
1358f2ec16ccSHideki Saito   return Result;
1359f2ec16ccSHideki Saito }
1360f2ec16ccSHideki Saito 
prepareToFoldTailByMasking()1361d57d73daSDorit Nuzman bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
1362b0b5312eSAyal Zaks 
1363b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
1364b0b5312eSAyal Zaks 
1365d15df0edSAyal Zaks   SmallPtrSet<const Value *, 8> ReductionLiveOuts;
1366b0b5312eSAyal Zaks 
1367d0d38df0SDavid Green   for (auto &Reduction : getReductionVars())
1368d15df0edSAyal Zaks     ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
1369d15df0edSAyal Zaks 
1370d15df0edSAyal Zaks   // TODO: handle non-reduction outside users when tail is folded by masking.
1371b0b5312eSAyal Zaks   for (auto *AE : AllowedExit) {
1372d15df0edSAyal Zaks     // Check that all users of allowed exit values are inside the loop or
1373d15df0edSAyal Zaks     // are the live-out of a reduction.
1374d15df0edSAyal Zaks     if (ReductionLiveOuts.count(AE))
1375d15df0edSAyal Zaks       continue;
1376b0b5312eSAyal Zaks     for (User *U : AE->users()) {
1377b0b5312eSAyal Zaks       Instruction *UI = cast<Instruction>(U);
1378b0b5312eSAyal Zaks       if (TheLoop->contains(UI))
1379b0b5312eSAyal Zaks         continue;
1380bda8fbe2SSjoerd Meijer       LLVM_DEBUG(
1381bda8fbe2SSjoerd Meijer           dbgs()
1382bda8fbe2SSjoerd Meijer           << "LV: Cannot fold tail by masking, loop has an outside user for "
1383bda8fbe2SSjoerd Meijer           << *UI << "\n");
1384b0b5312eSAyal Zaks       return false;
1385b0b5312eSAyal Zaks     }
1386b0b5312eSAyal Zaks   }
1387b0b5312eSAyal Zaks 
1388b0b5312eSAyal Zaks   // The list of pointers that we can safely read and write to remains empty.
1389b0b5312eSAyal Zaks   SmallPtrSet<Value *, 8> SafePointers;
1390b0b5312eSAyal Zaks 
1391bda8fbe2SSjoerd Meijer   SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
1392bda8fbe2SSjoerd Meijer   SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
1393bda8fbe2SSjoerd Meijer 
1394b0b5312eSAyal Zaks   // Check and mark all blocks for predication, including those that ordinarily
1395b0b5312eSAyal Zaks   // do not need predication such as the header block.
1396b0b5312eSAyal Zaks   for (BasicBlock *BB : TheLoop->blocks()) {
1397bda8fbe2SSjoerd Meijer     if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
13984f01122cSJoachim Meyer                               TmpConditionalAssumes)) {
1399bda8fbe2SSjoerd Meijer       LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
1400b0b5312eSAyal Zaks       return false;
1401b0b5312eSAyal Zaks     }
1402b0b5312eSAyal Zaks   }
1403b0b5312eSAyal Zaks 
1404b0b5312eSAyal Zaks   LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
1405bda8fbe2SSjoerd Meijer 
1406bda8fbe2SSjoerd Meijer   MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
1407bda8fbe2SSjoerd Meijer   ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
1408bda8fbe2SSjoerd Meijer                             TmpConditionalAssumes.end());
1409bda8fbe2SSjoerd Meijer 
1410b0b5312eSAyal Zaks   return true;
1411b0b5312eSAyal Zaks }
1412b0b5312eSAyal Zaks 
1413f2ec16ccSHideki Saito } // namespace llvm
1414