1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass merges loads/stores to/from sequential memory addresses into vector
10 // loads/stores.  Although there's nothing GPU-specific in here, this pass is
11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs.
12 //
13 // (For simplicity below we talk about loads only, but everything also applies
14 // to stores.)
15 //
16 // This pass is intended to be run late in the pipeline, after other
17 // vectorization opportunities have been exploited.  So the assumption here is
18 // that immediately following our new vector load we'll need to extract out the
19 // individual elements of the load, so we can operate on them individually.
20 //
21 // On CPUs this transformation is usually not beneficial, because extracting the
22 // elements of a vector register is expensive on most architectures.  It's
23 // usually better just to load each element individually into its own scalar
24 // register.
25 //
26 // However, nVidia and AMD GPUs don't have proper vector registers.  Instead, a
27 // "vector load" loads directly into a series of scalar registers.  In effect,
28 // extracting the elements of the vector is free.  It's therefore always
29 // beneficial to vectorize a sequence of loads on these architectures.
30 //
31 // Vectorizing (perhaps a better name might be "coalescing") loads can have
32 // large performance impacts on GPU kernels, and opportunities for vectorizing
33 // are common in GPU code.  This pass tries very hard to find such
34 // opportunities; its runtime is quadratic in the number of loads in a BB.
35 //
36 // Some CPU architectures, such as ARM, have instructions that load into
37 // multiple scalar registers, similar to a GPU vectorized load.  In theory ARM
38 // could use this pass (with some modifications), but currently it implements
39 // its own pass to do something similar to what we do here.
40 
41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h"
42 #include "llvm/ADT/APInt.h"
43 #include "llvm/ADT/ArrayRef.h"
44 #include "llvm/ADT/MapVector.h"
45 #include "llvm/ADT/PostOrderIterator.h"
46 #include "llvm/ADT/STLExtras.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/SmallVector.h"
49 #include "llvm/ADT/Statistic.h"
50 #include "llvm/ADT/iterator_range.h"
51 #include "llvm/Analysis/AliasAnalysis.h"
52 #include "llvm/Analysis/AssumptionCache.h"
53 #include "llvm/Analysis/MemoryLocation.h"
54 #include "llvm/Analysis/ScalarEvolution.h"
55 #include "llvm/Analysis/TargetTransformInfo.h"
56 #include "llvm/Analysis/ValueTracking.h"
57 #include "llvm/Analysis/VectorUtils.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/Constants.h"
61 #include "llvm/IR/DataLayout.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/IRBuilder.h"
66 #include "llvm/IR/InstrTypes.h"
67 #include "llvm/IR/Instruction.h"
68 #include "llvm/IR/Instructions.h"
69 #include "llvm/IR/IntrinsicInst.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/IR/User.h"
73 #include "llvm/IR/Value.h"
74 #include "llvm/InitializePasses.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/Debug.h"
78 #include "llvm/Support/KnownBits.h"
79 #include "llvm/Support/MathExtras.h"
80 #include "llvm/Support/raw_ostream.h"
81 #include "llvm/Transforms/Utils/Local.h"
82 #include "llvm/Transforms/Vectorize.h"
83 #include <algorithm>
84 #include <cassert>
85 #include <cstdlib>
86 #include <tuple>
87 #include <utility>
88 
89 using namespace llvm;
90 
91 #define DEBUG_TYPE "load-store-vectorizer"
92 
93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated");
94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized");
95 
96 // FIXME: Assuming stack alignment of 4 is always good enough
97 static const unsigned StackAdjustedAlignment = 4;
98 
99 namespace {
100 
101 /// ChainID is an arbitrary token that is allowed to be different only for the
102 /// accesses that are guaranteed to be considered non-consecutive by
103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions
104 /// together and reducing the number of instructions the main search operates on
105 /// at a time, i.e. this is to reduce compile time and nothing else as the main
106 /// search has O(n^2) time complexity. The underlying type of ChainID should not
107 /// be relied upon.
108 using ChainID = const Value *;
109 using InstrList = SmallVector<Instruction *, 8>;
110 using InstrListMap = MapVector<ChainID, InstrList>;
111 
112 class Vectorizer {
113   Function &F;
114   AliasAnalysis &AA;
115   AssumptionCache &AC;
116   DominatorTree &DT;
117   ScalarEvolution &SE;
118   TargetTransformInfo &TTI;
119   const DataLayout &DL;
120   IRBuilder<> Builder;
121 
122 public:
123   Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC,
124              DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI)
125       : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI),
126         DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {}
127 
128   bool run();
129 
130 private:
131   unsigned getPointerAddressSpace(Value *I);
132 
133   static const unsigned MaxDepth = 3;
134 
135   bool isConsecutiveAccess(Value *A, Value *B);
136   bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta,
137                               unsigned Depth = 0) const;
138   bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta,
139                                    unsigned Depth) const;
140   bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta,
141                           unsigned Depth) const;
142 
143   /// After vectorization, reorder the instructions that I depends on
144   /// (the instructions defining its operands), to ensure they dominate I.
145   void reorder(Instruction *I);
146 
147   /// Returns the first and the last instructions in Chain.
148   std::pair<BasicBlock::iterator, BasicBlock::iterator>
149   getBoundaryInstrs(ArrayRef<Instruction *> Chain);
150 
151   /// Erases the original instructions after vectorizing.
152   void eraseInstructions(ArrayRef<Instruction *> Chain);
153 
154   /// "Legalize" the vector type that would be produced by combining \p
155   /// ElementSizeBits elements in \p Chain. Break into two pieces such that the
156   /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is
157   /// expected to have more than 4 elements.
158   std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
159   splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits);
160 
161   /// Finds the largest prefix of Chain that's vectorizable, checking for
162   /// intervening instructions which may affect the memory accessed by the
163   /// instructions within Chain.
164   ///
165   /// The elements of \p Chain must be all loads or all stores and must be in
166   /// address order.
167   ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain);
168 
169   /// Collects load and store instructions to vectorize.
170   std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB);
171 
172   /// Processes the collected instructions, the \p Map. The values of \p Map
173   /// should be all loads or all stores.
174   bool vectorizeChains(InstrListMap &Map);
175 
176   /// Finds the load/stores to consecutive memory addresses and vectorizes them.
177   bool vectorizeInstructions(ArrayRef<Instruction *> Instrs);
178 
179   /// Vectorizes the load instructions in Chain.
180   bool
181   vectorizeLoadChain(ArrayRef<Instruction *> Chain,
182                      SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
183 
184   /// Vectorizes the store instructions in Chain.
185   bool
186   vectorizeStoreChain(ArrayRef<Instruction *> Chain,
187                       SmallPtrSet<Instruction *, 16> *InstructionsProcessed);
188 
189   /// Check if this load/store access is misaligned accesses.
190   bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
191                           Align Alignment);
192 };
193 
194 class LoadStoreVectorizerLegacyPass : public FunctionPass {
195 public:
196   static char ID;
197 
198   LoadStoreVectorizerLegacyPass() : FunctionPass(ID) {
199     initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry());
200   }
201 
202   bool runOnFunction(Function &F) override;
203 
204   StringRef getPassName() const override {
205     return "GPU Load and Store Vectorizer";
206   }
207 
208   void getAnalysisUsage(AnalysisUsage &AU) const override {
209     AU.addRequired<AAResultsWrapperPass>();
210     AU.addRequired<AssumptionCacheTracker>();
211     AU.addRequired<ScalarEvolutionWrapperPass>();
212     AU.addRequired<DominatorTreeWrapperPass>();
213     AU.addRequired<TargetTransformInfoWrapperPass>();
214     AU.setPreservesCFG();
215   }
216 };
217 
218 } // end anonymous namespace
219 
220 char LoadStoreVectorizerLegacyPass::ID = 0;
221 
222 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
223                       "Vectorize load and Store instructions", false, false)
224 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
225 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker);
226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
227 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
228 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
230 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE,
231                     "Vectorize load and store instructions", false, false)
232 
233 Pass *llvm::createLoadStoreVectorizerPass() {
234   return new LoadStoreVectorizerLegacyPass();
235 }
236 
237 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) {
238   // Don't vectorize when the attribute NoImplicitFloat is used.
239   if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat))
240     return false;
241 
242   AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
243   DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
244   ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
245   TargetTransformInfo &TTI =
246       getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
247 
248   AssumptionCache &AC =
249       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
250 
251   Vectorizer V(F, AA, AC, DT, SE, TTI);
252   return V.run();
253 }
254 
255 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
256   // Don't vectorize when the attribute NoImplicitFloat is used.
257   if (F.hasFnAttribute(Attribute::NoImplicitFloat))
258     return PreservedAnalyses::all();
259 
260   AliasAnalysis &AA = AM.getResult<AAManager>(F);
261   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
262   ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F);
263   TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F);
264   AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F);
265 
266   Vectorizer V(F, AA, AC, DT, SE, TTI);
267   bool Changed = V.run();
268   PreservedAnalyses PA;
269   PA.preserveSet<CFGAnalyses>();
270   return Changed ? PA : PreservedAnalyses::all();
271 }
272 
273 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in
274 // vectors of Instructions.
275 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) {
276   SmallVector<Value *, 8> VL(IL.begin(), IL.end());
277   propagateMetadata(I, VL);
278 }
279 
280 // Vectorizer Implementation
281 bool Vectorizer::run() {
282   bool Changed = false;
283 
284   // Scan the blocks in the function in post order.
285   for (BasicBlock *BB : post_order(&F)) {
286     InstrListMap LoadRefs, StoreRefs;
287     std::tie(LoadRefs, StoreRefs) = collectInstructions(BB);
288     Changed |= vectorizeChains(LoadRefs);
289     Changed |= vectorizeChains(StoreRefs);
290   }
291 
292   return Changed;
293 }
294 
295 unsigned Vectorizer::getPointerAddressSpace(Value *I) {
296   if (LoadInst *L = dyn_cast<LoadInst>(I))
297     return L->getPointerAddressSpace();
298   if (StoreInst *S = dyn_cast<StoreInst>(I))
299     return S->getPointerAddressSpace();
300   return -1;
301 }
302 
303 // FIXME: Merge with llvm::isConsecutiveAccess
304 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) {
305   Value *PtrA = getLoadStorePointerOperand(A);
306   Value *PtrB = getLoadStorePointerOperand(B);
307   unsigned ASA = getPointerAddressSpace(A);
308   unsigned ASB = getPointerAddressSpace(B);
309 
310   // Check that the address spaces match and that the pointers are valid.
311   if (!PtrA || !PtrB || (ASA != ASB))
312     return false;
313 
314   // Make sure that A and B are different pointers of the same size type.
315   Type *PtrATy = getLoadStoreType(A);
316   Type *PtrBTy = getLoadStoreType(B);
317   if (PtrA == PtrB ||
318       PtrATy->isVectorTy() != PtrBTy->isVectorTy() ||
319       DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) ||
320       DL.getTypeStoreSize(PtrATy->getScalarType()) !=
321           DL.getTypeStoreSize(PtrBTy->getScalarType()))
322     return false;
323 
324   unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
325   APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy));
326 
327   return areConsecutivePointers(PtrA, PtrB, Size);
328 }
329 
330 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB,
331                                         APInt PtrDelta, unsigned Depth) const {
332   unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType());
333   APInt OffsetA(PtrBitWidth, 0);
334   APInt OffsetB(PtrBitWidth, 0);
335   PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
336   PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
337 
338   unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType());
339 
340   if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType()))
341     return false;
342 
343   // In case if we have to shrink the pointer
344   // stripAndAccumulateInBoundsConstantOffsets should properly handle a
345   // possible overflow and the value should fit into a smallest data type
346   // used in the cast/gep chain.
347   assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth &&
348          OffsetB.getMinSignedBits() <= NewPtrBitWidth);
349 
350   OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth);
351   OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth);
352   PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth);
353 
354   APInt OffsetDelta = OffsetB - OffsetA;
355 
356   // Check if they are based on the same pointer. That makes the offsets
357   // sufficient.
358   if (PtrA == PtrB)
359     return OffsetDelta == PtrDelta;
360 
361   // Compute the necessary base pointer delta to have the necessary final delta
362   // equal to the pointer delta requested.
363   APInt BaseDelta = PtrDelta - OffsetDelta;
364 
365   // Compute the distance with SCEV between the base pointers.
366   const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
367   const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
368   const SCEV *C = SE.getConstant(BaseDelta);
369   const SCEV *X = SE.getAddExpr(PtrSCEVA, C);
370   if (X == PtrSCEVB)
371     return true;
372 
373   // The above check will not catch the cases where one of the pointers is
374   // factorized but the other one is not, such as (C + (S * (A + B))) vs
375   // (AS + BS). Get the minus scev. That will allow re-combining the expresions
376   // and getting the simplified difference.
377   const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA);
378   if (C == Dist)
379     return true;
380 
381   // Sometimes even this doesn't work, because SCEV can't always see through
382   // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking
383   // things the hard way.
384   return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth);
385 }
386 
387 static bool checkNoWrapFlags(Instruction *I, bool Signed) {
388   BinaryOperator *BinOpI = cast<BinaryOperator>(I);
389   return (Signed && BinOpI->hasNoSignedWrap()) ||
390          (!Signed && BinOpI->hasNoUnsignedWrap());
391 }
392 
393 static bool checkIfSafeAddSequence(const APInt &IdxDiff, Instruction *AddOpA,
394                                    unsigned MatchingOpIdxA, Instruction *AddOpB,
395                                    unsigned MatchingOpIdxB, bool Signed) {
396   // If both OpA and OpB is an add with NSW/NUW and with
397   // one of the operands being the same, we can guarantee that the
398   // transformation is safe if we can prove that OpA won't overflow when
399   // IdxDiff added to the other operand of OpA.
400   // For example:
401   //  %tmp7 = add nsw i32 %tmp2, %v0
402   //  %tmp8 = sext i32 %tmp7 to i64
403   //  ...
404   //  %tmp11 = add nsw i32 %v0, 1
405   //  %tmp12 = add nsw i32 %tmp2, %tmp11
406   //  %tmp13 = sext i32 %tmp12 to i64
407   //
408   //  Both %tmp7 and %tmp2 has the nsw flag and the first operand
409   //  is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow
410   //  because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the
411   //  nsw flag.
412   assert(AddOpA->getOpcode() == Instruction::Add &&
413          AddOpB->getOpcode() == Instruction::Add &&
414          checkNoWrapFlags(AddOpA, Signed) && checkNoWrapFlags(AddOpB, Signed));
415   if (AddOpA->getOperand(MatchingOpIdxA) ==
416       AddOpB->getOperand(MatchingOpIdxB)) {
417     Value *OtherOperandA = AddOpA->getOperand(MatchingOpIdxA == 1 ? 0 : 1);
418     Value *OtherOperandB = AddOpB->getOperand(MatchingOpIdxB == 1 ? 0 : 1);
419     Instruction *OtherInstrA = dyn_cast<Instruction>(OtherOperandA);
420     Instruction *OtherInstrB = dyn_cast<Instruction>(OtherOperandB);
421     // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`.
422     if (OtherInstrB && OtherInstrB->getOpcode() == Instruction::Add &&
423         checkNoWrapFlags(OtherInstrB, Signed) &&
424         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
425       int64_t CstVal =
426           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
427       if (OtherInstrB->getOperand(0) == OtherOperandA &&
428           IdxDiff.getSExtValue() == CstVal)
429         return true;
430     }
431     // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`.
432     if (OtherInstrA && OtherInstrA->getOpcode() == Instruction::Add &&
433         checkNoWrapFlags(OtherInstrA, Signed) &&
434         isa<ConstantInt>(OtherInstrA->getOperand(1))) {
435       int64_t CstVal =
436           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
437       if (OtherInstrA->getOperand(0) == OtherOperandB &&
438           IdxDiff.getSExtValue() == -CstVal)
439         return true;
440     }
441     // Match `x +nsw/nuw (y +nsw/nuw c)` and
442     // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`.
443     if (OtherInstrA && OtherInstrB &&
444         OtherInstrA->getOpcode() == Instruction::Add &&
445         OtherInstrB->getOpcode() == Instruction::Add &&
446         checkNoWrapFlags(OtherInstrA, Signed) &&
447         checkNoWrapFlags(OtherInstrB, Signed) &&
448         isa<ConstantInt>(OtherInstrA->getOperand(1)) &&
449         isa<ConstantInt>(OtherInstrB->getOperand(1))) {
450       int64_t CstValA =
451           cast<ConstantInt>(OtherInstrA->getOperand(1))->getSExtValue();
452       int64_t CstValB =
453           cast<ConstantInt>(OtherInstrB->getOperand(1))->getSExtValue();
454       if (OtherInstrA->getOperand(0) == OtherInstrB->getOperand(0) &&
455           IdxDiff.getSExtValue() == (CstValB - CstValA))
456         return true;
457     }
458   }
459   return false;
460 }
461 
462 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB,
463                                              APInt PtrDelta,
464                                              unsigned Depth) const {
465   auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA);
466   auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB);
467   if (!GEPA || !GEPB)
468     return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth);
469 
470   // Look through GEPs after checking they're the same except for the last
471   // index.
472   if (GEPA->getNumOperands() != GEPB->getNumOperands() ||
473       GEPA->getPointerOperand() != GEPB->getPointerOperand())
474     return false;
475   gep_type_iterator GTIA = gep_type_begin(GEPA);
476   gep_type_iterator GTIB = gep_type_begin(GEPB);
477   for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) {
478     if (GTIA.getOperand() != GTIB.getOperand())
479       return false;
480     ++GTIA;
481     ++GTIB;
482   }
483 
484   Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand());
485   Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand());
486   if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() ||
487       OpA->getType() != OpB->getType())
488     return false;
489 
490   if (PtrDelta.isNegative()) {
491     if (PtrDelta.isMinSignedValue())
492       return false;
493     PtrDelta.negate();
494     std::swap(OpA, OpB);
495   }
496   uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType());
497   if (PtrDelta.urem(Stride) != 0)
498     return false;
499   unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits();
500   APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth);
501 
502   // Only look through a ZExt/SExt.
503   if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA))
504     return false;
505 
506   bool Signed = isa<SExtInst>(OpA);
507 
508   // At this point A could be a function parameter, i.e. not an instruction
509   Value *ValA = OpA->getOperand(0);
510   OpB = dyn_cast<Instruction>(OpB->getOperand(0));
511   if (!OpB || ValA->getType() != OpB->getType())
512     return false;
513 
514   // Now we need to prove that adding IdxDiff to ValA won't overflow.
515   bool Safe = false;
516 
517   // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to
518   // ValA, we're okay.
519   if (OpB->getOpcode() == Instruction::Add &&
520       isa<ConstantInt>(OpB->getOperand(1)) &&
521       IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) &&
522       checkNoWrapFlags(OpB, Signed))
523     Safe = true;
524 
525   // Second attempt: check if we have eligible add NSW/NUW instruction
526   // sequences.
527   OpA = dyn_cast<Instruction>(ValA);
528   if (!Safe && OpA && OpA->getOpcode() == Instruction::Add &&
529       OpB->getOpcode() == Instruction::Add && checkNoWrapFlags(OpA, Signed) &&
530       checkNoWrapFlags(OpB, Signed)) {
531     // In the checks below a matching operand in OpA and OpB is
532     // an operand which is the same in those two instructions.
533     // Below we account for possible orders of the operands of
534     // these add instructions.
535     for (unsigned MatchingOpIdxA : {0, 1})
536       for (unsigned MatchingOpIdxB : {0, 1})
537         if (!Safe)
538           Safe = checkIfSafeAddSequence(IdxDiff, OpA, MatchingOpIdxA, OpB,
539                                         MatchingOpIdxB, Signed);
540   }
541 
542   unsigned BitWidth = ValA->getType()->getScalarSizeInBits();
543 
544   // Third attempt:
545   // If all set bits of IdxDiff or any higher order bit other than the sign bit
546   // are known to be zero in ValA, we can add Diff to it while guaranteeing no
547   // overflow of any sort.
548   if (!Safe) {
549     KnownBits Known(BitWidth);
550     computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT);
551     APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth());
552     if (Signed)
553       BitsAllowedToBeSet.clearBit(BitWidth - 1);
554     if (BitsAllowedToBeSet.ult(IdxDiff))
555       return false;
556   }
557 
558   const SCEV *OffsetSCEVA = SE.getSCEV(ValA);
559   const SCEV *OffsetSCEVB = SE.getSCEV(OpB);
560   const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth));
561   const SCEV *X = SE.getAddExpr(OffsetSCEVA, C);
562   return X == OffsetSCEVB;
563 }
564 
565 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB,
566                                     const APInt &PtrDelta,
567                                     unsigned Depth) const {
568   if (Depth++ == MaxDepth)
569     return false;
570 
571   if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) {
572     if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) {
573       return SelectA->getCondition() == SelectB->getCondition() &&
574              areConsecutivePointers(SelectA->getTrueValue(),
575                                     SelectB->getTrueValue(), PtrDelta, Depth) &&
576              areConsecutivePointers(SelectA->getFalseValue(),
577                                     SelectB->getFalseValue(), PtrDelta, Depth);
578     }
579   }
580   return false;
581 }
582 
583 void Vectorizer::reorder(Instruction *I) {
584   SmallPtrSet<Instruction *, 16> InstructionsToMove;
585   SmallVector<Instruction *, 16> Worklist;
586 
587   Worklist.push_back(I);
588   while (!Worklist.empty()) {
589     Instruction *IW = Worklist.pop_back_val();
590     int NumOperands = IW->getNumOperands();
591     for (int i = 0; i < NumOperands; i++) {
592       Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i));
593       if (!IM || IM->getOpcode() == Instruction::PHI)
594         continue;
595 
596       // If IM is in another BB, no need to move it, because this pass only
597       // vectorizes instructions within one BB.
598       if (IM->getParent() != I->getParent())
599         continue;
600 
601       if (!IM->comesBefore(I)) {
602         InstructionsToMove.insert(IM);
603         Worklist.push_back(IM);
604       }
605     }
606   }
607 
608   // All instructions to move should follow I. Start from I, not from begin().
609   for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E;
610        ++BBI) {
611     if (!InstructionsToMove.count(&*BBI))
612       continue;
613     Instruction *IM = &*BBI;
614     --BBI;
615     IM->removeFromParent();
616     IM->insertBefore(I);
617   }
618 }
619 
620 std::pair<BasicBlock::iterator, BasicBlock::iterator>
621 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) {
622   Instruction *C0 = Chain[0];
623   BasicBlock::iterator FirstInstr = C0->getIterator();
624   BasicBlock::iterator LastInstr = C0->getIterator();
625 
626   BasicBlock *BB = C0->getParent();
627   unsigned NumFound = 0;
628   for (Instruction &I : *BB) {
629     if (!is_contained(Chain, &I))
630       continue;
631 
632     ++NumFound;
633     if (NumFound == 1) {
634       FirstInstr = I.getIterator();
635     }
636     if (NumFound == Chain.size()) {
637       LastInstr = I.getIterator();
638       break;
639     }
640   }
641 
642   // Range is [first, last).
643   return std::make_pair(FirstInstr, ++LastInstr);
644 }
645 
646 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) {
647   SmallVector<Instruction *, 16> Instrs;
648   for (Instruction *I : Chain) {
649     Value *PtrOperand = getLoadStorePointerOperand(I);
650     assert(PtrOperand && "Instruction must have a pointer operand.");
651     Instrs.push_back(I);
652     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand))
653       Instrs.push_back(GEP);
654   }
655 
656   // Erase instructions.
657   for (Instruction *I : Instrs)
658     if (I->use_empty())
659       I->eraseFromParent();
660 }
661 
662 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>>
663 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain,
664                                unsigned ElementSizeBits) {
665   unsigned ElementSizeBytes = ElementSizeBits / 8;
666   unsigned SizeBytes = ElementSizeBytes * Chain.size();
667   unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes;
668   if (NumLeft == Chain.size()) {
669     if ((NumLeft & 1) == 0)
670       NumLeft /= 2; // Split even in half
671     else
672       --NumLeft;    // Split off last element
673   } else if (NumLeft == 0)
674     NumLeft = 1;
675   return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft));
676 }
677 
678 ArrayRef<Instruction *>
679 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) {
680   // These are in BB order, unlike Chain, which is in address order.
681   SmallVector<Instruction *, 16> MemoryInstrs;
682   SmallVector<Instruction *, 16> ChainInstrs;
683 
684   bool IsLoadChain = isa<LoadInst>(Chain[0]);
685   LLVM_DEBUG({
686     for (Instruction *I : Chain) {
687       if (IsLoadChain)
688         assert(isa<LoadInst>(I) &&
689                "All elements of Chain must be loads, or all must be stores.");
690       else
691         assert(isa<StoreInst>(I) &&
692                "All elements of Chain must be loads, or all must be stores.");
693     }
694   });
695 
696   for (Instruction &I : make_range(getBoundaryInstrs(Chain))) {
697     if ((isa<LoadInst>(I) || isa<StoreInst>(I)) && is_contained(Chain, &I)) {
698       ChainInstrs.push_back(&I);
699       continue;
700     }
701     if (I.mayThrow()) {
702       LLVM_DEBUG(dbgs() << "LSV: Found may-throw operation: " << I << '\n');
703       break;
704     }
705     if (I.mayReadOrWriteMemory())
706       MemoryInstrs.push_back(&I);
707   }
708 
709   // Loop until we find an instruction in ChainInstrs that we can't vectorize.
710   unsigned ChainInstrIdx = 0;
711   Instruction *BarrierMemoryInstr = nullptr;
712 
713   for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) {
714     Instruction *ChainInstr = ChainInstrs[ChainInstrIdx];
715 
716     // If a barrier memory instruction was found, chain instructions that follow
717     // will not be added to the valid prefix.
718     if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr))
719       break;
720 
721     // Check (in BB order) if any instruction prevents ChainInstr from being
722     // vectorized. Find and store the first such "conflicting" instruction.
723     for (Instruction *MemInstr : MemoryInstrs) {
724       // If a barrier memory instruction was found, do not check past it.
725       if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr))
726         break;
727 
728       auto *MemLoad = dyn_cast<LoadInst>(MemInstr);
729       auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr);
730       if (MemLoad && ChainLoad)
731         continue;
732 
733       // We can ignore the alias if the we have a load store pair and the load
734       // is known to be invariant. The load cannot be clobbered by the store.
735       auto IsInvariantLoad = [](const LoadInst *LI) -> bool {
736         return LI->hasMetadata(LLVMContext::MD_invariant_load);
737       };
738 
739       if (IsLoadChain) {
740         // We can ignore the alias as long as the load comes before the store,
741         // because that means we won't be moving the load past the store to
742         // vectorize it (the vectorized load is inserted at the location of the
743         // first load in the chain).
744         if (ChainInstr->comesBefore(MemInstr) ||
745             (ChainLoad && IsInvariantLoad(ChainLoad)))
746           continue;
747       } else {
748         // Same case, but in reverse.
749         if (MemInstr->comesBefore(ChainInstr) ||
750             (MemLoad && IsInvariantLoad(MemLoad)))
751           continue;
752       }
753 
754       ModRefInfo MR =
755           AA.getModRefInfo(MemInstr, MemoryLocation::get(ChainInstr));
756       if (IsLoadChain ? isModSet(MR) : isModOrRefSet(MR)) {
757         LLVM_DEBUG({
758           dbgs() << "LSV: Found alias:\n"
759                     "  Aliasing instruction:\n"
760                  << "  " << *MemInstr << '\n'
761                  << "  Aliased instruction and pointer:\n"
762                  << "  " << *ChainInstr << '\n'
763                  << "  " << *getLoadStorePointerOperand(ChainInstr) << '\n';
764         });
765         // Save this aliasing memory instruction as a barrier, but allow other
766         // instructions that precede the barrier to be vectorized with this one.
767         BarrierMemoryInstr = MemInstr;
768         break;
769       }
770     }
771     // Continue the search only for store chains, since vectorizing stores that
772     // precede an aliasing load is valid. Conversely, vectorizing loads is valid
773     // up to an aliasing store, but should not pull loads from further down in
774     // the basic block.
775     if (IsLoadChain && BarrierMemoryInstr) {
776       // The BarrierMemoryInstr is a store that precedes ChainInstr.
777       assert(BarrierMemoryInstr->comesBefore(ChainInstr));
778       break;
779     }
780   }
781 
782   // Find the largest prefix of Chain whose elements are all in
783   // ChainInstrs[0, ChainInstrIdx).  This is the largest vectorizable prefix of
784   // Chain.  (Recall that Chain is in address order, but ChainInstrs is in BB
785   // order.)
786   SmallPtrSet<Instruction *, 8> VectorizableChainInstrs(
787       ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx);
788   unsigned ChainIdx = 0;
789   for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) {
790     if (!VectorizableChainInstrs.count(Chain[ChainIdx]))
791       break;
792   }
793   return Chain.slice(0, ChainIdx);
794 }
795 
796 static ChainID getChainID(const Value *Ptr) {
797   const Value *ObjPtr = getUnderlyingObject(Ptr);
798   if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) {
799     // The select's themselves are distinct instructions even if they share the
800     // same condition and evaluate to consecutive pointers for true and false
801     // values of the condition. Therefore using the select's themselves for
802     // grouping instructions would put consecutive accesses into different lists
803     // and they won't be even checked for being consecutive, and won't be
804     // vectorized.
805     return Sel->getCondition();
806   }
807   return ObjPtr;
808 }
809 
810 std::pair<InstrListMap, InstrListMap>
811 Vectorizer::collectInstructions(BasicBlock *BB) {
812   InstrListMap LoadRefs;
813   InstrListMap StoreRefs;
814 
815   for (Instruction &I : *BB) {
816     if (!I.mayReadOrWriteMemory())
817       continue;
818 
819     if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
820       if (!LI->isSimple())
821         continue;
822 
823       // Skip if it's not legal.
824       if (!TTI.isLegalToVectorizeLoad(LI))
825         continue;
826 
827       Type *Ty = LI->getType();
828       if (!VectorType::isValidElementType(Ty->getScalarType()))
829         continue;
830 
831       // Skip weird non-byte sizes. They probably aren't worth the effort of
832       // handling correctly.
833       unsigned TySize = DL.getTypeSizeInBits(Ty);
834       if ((TySize % 8) != 0)
835         continue;
836 
837       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
838       // functions are currently using an integer type for the vectorized
839       // load/store, and does not support casting between the integer type and a
840       // vector of pointers (e.g. i64 to <2 x i16*>)
841       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
842         continue;
843 
844       Value *Ptr = LI->getPointerOperand();
845       unsigned AS = Ptr->getType()->getPointerAddressSpace();
846       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
847 
848       unsigned VF = VecRegSize / TySize;
849       VectorType *VecTy = dyn_cast<VectorType>(Ty);
850 
851       // No point in looking at these if they're too big to vectorize.
852       if (TySize > VecRegSize / 2 ||
853           (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
854         continue;
855 
856       // Make sure all the users of a vector are constant-index extracts.
857       if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) {
858             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
859             return EEI && isa<ConstantInt>(EEI->getOperand(1));
860           }))
861         continue;
862 
863       // Save the load locations.
864       const ChainID ID = getChainID(Ptr);
865       LoadRefs[ID].push_back(LI);
866     } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) {
867       if (!SI->isSimple())
868         continue;
869 
870       // Skip if it's not legal.
871       if (!TTI.isLegalToVectorizeStore(SI))
872         continue;
873 
874       Type *Ty = SI->getValueOperand()->getType();
875       if (!VectorType::isValidElementType(Ty->getScalarType()))
876         continue;
877 
878       // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain
879       // functions are currently using an integer type for the vectorized
880       // load/store, and does not support casting between the integer type and a
881       // vector of pointers (e.g. i64 to <2 x i16*>)
882       if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy())
883         continue;
884 
885       // Skip weird non-byte sizes. They probably aren't worth the effort of
886       // handling correctly.
887       unsigned TySize = DL.getTypeSizeInBits(Ty);
888       if ((TySize % 8) != 0)
889         continue;
890 
891       Value *Ptr = SI->getPointerOperand();
892       unsigned AS = Ptr->getType()->getPointerAddressSpace();
893       unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
894 
895       unsigned VF = VecRegSize / TySize;
896       VectorType *VecTy = dyn_cast<VectorType>(Ty);
897 
898       // No point in looking at these if they're too big to vectorize.
899       if (TySize > VecRegSize / 2 ||
900           (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0))
901         continue;
902 
903       if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) {
904             const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U);
905             return EEI && isa<ConstantInt>(EEI->getOperand(1));
906           }))
907         continue;
908 
909       // Save store location.
910       const ChainID ID = getChainID(Ptr);
911       StoreRefs[ID].push_back(SI);
912     }
913   }
914 
915   return {LoadRefs, StoreRefs};
916 }
917 
918 bool Vectorizer::vectorizeChains(InstrListMap &Map) {
919   bool Changed = false;
920 
921   for (const std::pair<ChainID, InstrList> &Chain : Map) {
922     unsigned Size = Chain.second.size();
923     if (Size < 2)
924       continue;
925 
926     LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n");
927 
928     // Process the stores in chunks of 64.
929     for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) {
930       unsigned Len = std::min<unsigned>(CE - CI, 64);
931       ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len);
932       Changed |= vectorizeInstructions(Chunk);
933     }
934   }
935 
936   return Changed;
937 }
938 
939 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) {
940   LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size()
941                     << " instructions.\n");
942   SmallVector<int, 16> Heads, Tails;
943   int ConsecutiveChain[64];
944 
945   // Do a quadratic search on all of the given loads/stores and find all of the
946   // pairs of loads/stores that follow each other.
947   for (int i = 0, e = Instrs.size(); i < e; ++i) {
948     ConsecutiveChain[i] = -1;
949     for (int j = e - 1; j >= 0; --j) {
950       if (i == j)
951         continue;
952 
953       if (isConsecutiveAccess(Instrs[i], Instrs[j])) {
954         if (ConsecutiveChain[i] != -1) {
955           int CurDistance = std::abs(ConsecutiveChain[i] - i);
956           int NewDistance = std::abs(ConsecutiveChain[i] - j);
957           if (j < i || NewDistance > CurDistance)
958             continue; // Should not insert.
959         }
960 
961         Tails.push_back(j);
962         Heads.push_back(i);
963         ConsecutiveChain[i] = j;
964       }
965     }
966   }
967 
968   bool Changed = false;
969   SmallPtrSet<Instruction *, 16> InstructionsProcessed;
970 
971   for (int Head : Heads) {
972     if (InstructionsProcessed.count(Instrs[Head]))
973       continue;
974     bool LongerChainExists = false;
975     for (unsigned TIt = 0; TIt < Tails.size(); TIt++)
976       if (Head == Tails[TIt] &&
977           !InstructionsProcessed.count(Instrs[Heads[TIt]])) {
978         LongerChainExists = true;
979         break;
980       }
981     if (LongerChainExists)
982       continue;
983 
984     // We found an instr that starts a chain. Now follow the chain and try to
985     // vectorize it.
986     SmallVector<Instruction *, 16> Operands;
987     int I = Head;
988     while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) {
989       if (InstructionsProcessed.count(Instrs[I]))
990         break;
991 
992       Operands.push_back(Instrs[I]);
993       I = ConsecutiveChain[I];
994     }
995 
996     bool Vectorized = false;
997     if (isa<LoadInst>(*Operands.begin()))
998       Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed);
999     else
1000       Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed);
1001 
1002     Changed |= Vectorized;
1003   }
1004 
1005   return Changed;
1006 }
1007 
1008 bool Vectorizer::vectorizeStoreChain(
1009     ArrayRef<Instruction *> Chain,
1010     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1011   StoreInst *S0 = cast<StoreInst>(Chain[0]);
1012 
1013   // If the vector has an int element, default to int for the whole store.
1014   Type *StoreTy = nullptr;
1015   for (Instruction *I : Chain) {
1016     StoreTy = cast<StoreInst>(I)->getValueOperand()->getType();
1017     if (StoreTy->isIntOrIntVectorTy())
1018       break;
1019 
1020     if (StoreTy->isPtrOrPtrVectorTy()) {
1021       StoreTy = Type::getIntNTy(F.getParent()->getContext(),
1022                                 DL.getTypeSizeInBits(StoreTy));
1023       break;
1024     }
1025   }
1026   assert(StoreTy && "Failed to find store type");
1027 
1028   unsigned Sz = DL.getTypeSizeInBits(StoreTy);
1029   unsigned AS = S0->getPointerAddressSpace();
1030   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1031   unsigned VF = VecRegSize / Sz;
1032   unsigned ChainSize = Chain.size();
1033   Align Alignment = S0->getAlign();
1034 
1035   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1036     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1037     return false;
1038   }
1039 
1040   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1041   if (NewChain.empty()) {
1042     // No vectorization possible.
1043     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1044     return false;
1045   }
1046   if (NewChain.size() == 1) {
1047     // Failed after the first instruction. Discard it and try the smaller chain.
1048     InstructionsProcessed->insert(NewChain.front());
1049     return false;
1050   }
1051 
1052   // Update Chain to the valid vectorizable subchain.
1053   Chain = NewChain;
1054   ChainSize = Chain.size();
1055 
1056   // Check if it's legal to vectorize this chain. If not, split the chain and
1057   // try again.
1058   unsigned EltSzInBytes = Sz / 8;
1059   unsigned SzInBytes = EltSzInBytes * ChainSize;
1060 
1061   FixedVectorType *VecTy;
1062   auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy);
1063   if (VecStoreTy)
1064     VecTy = FixedVectorType::get(StoreTy->getScalarType(),
1065                                  Chain.size() * VecStoreTy->getNumElements());
1066   else
1067     VecTy = FixedVectorType::get(StoreTy, Chain.size());
1068 
1069   // If it's more than the max vector size or the target has a better
1070   // vector factor, break it into two pieces.
1071   unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy);
1072   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1073     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1074                          " Creating two separate arrays.\n");
1075     bool Vectorized = false;
1076     Vectorized |=
1077         vectorizeStoreChain(Chain.slice(0, TargetVF), InstructionsProcessed);
1078     Vectorized |=
1079         vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed);
1080     return Vectorized;
1081   }
1082 
1083   LLVM_DEBUG({
1084     dbgs() << "LSV: Stores to vectorize:\n";
1085     for (Instruction *I : Chain)
1086       dbgs() << "  " << *I << "\n";
1087   });
1088 
1089   // We won't try again to vectorize the elements of the chain, regardless of
1090   // whether we succeed below.
1091   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1092 
1093   // If the store is going to be misaligned, don't vectorize it.
1094   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1095     if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1096       auto Chains = splitOddVectorElts(Chain, Sz);
1097       bool Vectorized = false;
1098       Vectorized |= vectorizeStoreChain(Chains.first, InstructionsProcessed);
1099       Vectorized |= vectorizeStoreChain(Chains.second, InstructionsProcessed);
1100       return Vectorized;
1101     }
1102 
1103     Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(),
1104                                                 Align(StackAdjustedAlignment),
1105                                                 DL, S0, nullptr, &DT);
1106     if (NewAlign >= Alignment)
1107       Alignment = NewAlign;
1108     else
1109       return false;
1110   }
1111 
1112   if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) {
1113     auto Chains = splitOddVectorElts(Chain, Sz);
1114     bool Vectorized = false;
1115     Vectorized |= vectorizeStoreChain(Chains.first, InstructionsProcessed);
1116     Vectorized |= vectorizeStoreChain(Chains.second, InstructionsProcessed);
1117     return Vectorized;
1118   }
1119 
1120   BasicBlock::iterator First, Last;
1121   std::tie(First, Last) = getBoundaryInstrs(Chain);
1122   Builder.SetInsertPoint(&*Last);
1123 
1124   Value *Vec = PoisonValue::get(VecTy);
1125 
1126   if (VecStoreTy) {
1127     unsigned VecWidth = VecStoreTy->getNumElements();
1128     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1129       StoreInst *Store = cast<StoreInst>(Chain[I]);
1130       for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) {
1131         unsigned NewIdx = J + I * VecWidth;
1132         Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(),
1133                                                       Builder.getInt32(J));
1134         if (Extract->getType() != StoreTy->getScalarType())
1135           Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType());
1136 
1137         Value *Insert =
1138             Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx));
1139         Vec = Insert;
1140       }
1141     }
1142   } else {
1143     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1144       StoreInst *Store = cast<StoreInst>(Chain[I]);
1145       Value *Extract = Store->getValueOperand();
1146       if (Extract->getType() != StoreTy->getScalarType())
1147         Extract =
1148             Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType());
1149 
1150       Value *Insert =
1151           Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I));
1152       Vec = Insert;
1153     }
1154   }
1155 
1156   StoreInst *SI = Builder.CreateAlignedStore(
1157     Vec,
1158     Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)),
1159     Alignment);
1160   propagateMetadata(SI, Chain);
1161 
1162   eraseInstructions(Chain);
1163   ++NumVectorInstructions;
1164   NumScalarsVectorized += Chain.size();
1165   return true;
1166 }
1167 
1168 bool Vectorizer::vectorizeLoadChain(
1169     ArrayRef<Instruction *> Chain,
1170     SmallPtrSet<Instruction *, 16> *InstructionsProcessed) {
1171   LoadInst *L0 = cast<LoadInst>(Chain[0]);
1172 
1173   // If the vector has an int element, default to int for the whole load.
1174   Type *LoadTy = nullptr;
1175   for (const auto &V : Chain) {
1176     LoadTy = cast<LoadInst>(V)->getType();
1177     if (LoadTy->isIntOrIntVectorTy())
1178       break;
1179 
1180     if (LoadTy->isPtrOrPtrVectorTy()) {
1181       LoadTy = Type::getIntNTy(F.getParent()->getContext(),
1182                                DL.getTypeSizeInBits(LoadTy));
1183       break;
1184     }
1185   }
1186   assert(LoadTy && "Can't determine LoadInst type from chain");
1187 
1188   unsigned Sz = DL.getTypeSizeInBits(LoadTy);
1189   unsigned AS = L0->getPointerAddressSpace();
1190   unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS);
1191   unsigned VF = VecRegSize / Sz;
1192   unsigned ChainSize = Chain.size();
1193   Align Alignment = L0->getAlign();
1194 
1195   if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) {
1196     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1197     return false;
1198   }
1199 
1200   ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain);
1201   if (NewChain.empty()) {
1202     // No vectorization possible.
1203     InstructionsProcessed->insert(Chain.begin(), Chain.end());
1204     return false;
1205   }
1206   if (NewChain.size() == 1) {
1207     // Failed after the first instruction. Discard it and try the smaller chain.
1208     InstructionsProcessed->insert(NewChain.front());
1209     return false;
1210   }
1211 
1212   // Update Chain to the valid vectorizable subchain.
1213   Chain = NewChain;
1214   ChainSize = Chain.size();
1215 
1216   // Check if it's legal to vectorize this chain. If not, split the chain and
1217   // try again.
1218   unsigned EltSzInBytes = Sz / 8;
1219   unsigned SzInBytes = EltSzInBytes * ChainSize;
1220   VectorType *VecTy;
1221   auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy);
1222   if (VecLoadTy)
1223     VecTy = FixedVectorType::get(LoadTy->getScalarType(),
1224                                  Chain.size() * VecLoadTy->getNumElements());
1225   else
1226     VecTy = FixedVectorType::get(LoadTy, Chain.size());
1227 
1228   // If it's more than the max vector size or the target has a better
1229   // vector factor, break it into two pieces.
1230   unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy);
1231   if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) {
1232     LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor."
1233                          " Creating two separate arrays.\n");
1234     bool Vectorized = false;
1235     Vectorized |=
1236         vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed);
1237     Vectorized |=
1238         vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed);
1239     return Vectorized;
1240   }
1241 
1242   // We won't try again to vectorize the elements of the chain, regardless of
1243   // whether we succeed below.
1244   InstructionsProcessed->insert(Chain.begin(), Chain.end());
1245 
1246   // If the load is going to be misaligned, don't vectorize it.
1247   if (accessIsMisaligned(SzInBytes, AS, Alignment)) {
1248     if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) {
1249       auto Chains = splitOddVectorElts(Chain, Sz);
1250       bool Vectorized = false;
1251       Vectorized |= vectorizeLoadChain(Chains.first, InstructionsProcessed);
1252       Vectorized |= vectorizeLoadChain(Chains.second, InstructionsProcessed);
1253       return Vectorized;
1254     }
1255 
1256     Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(),
1257                                                 Align(StackAdjustedAlignment),
1258                                                 DL, L0, nullptr, &DT);
1259     if (NewAlign >= Alignment)
1260       Alignment = NewAlign;
1261     else
1262       return false;
1263   }
1264 
1265   if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) {
1266     auto Chains = splitOddVectorElts(Chain, Sz);
1267     bool Vectorized = false;
1268     Vectorized |= vectorizeLoadChain(Chains.first, InstructionsProcessed);
1269     Vectorized |= vectorizeLoadChain(Chains.second, InstructionsProcessed);
1270     return Vectorized;
1271   }
1272 
1273   LLVM_DEBUG({
1274     dbgs() << "LSV: Loads to vectorize:\n";
1275     for (Instruction *I : Chain)
1276       I->dump();
1277   });
1278 
1279   // getVectorizablePrefix already computed getBoundaryInstrs.  The value of
1280   // Last may have changed since then, but the value of First won't have.  If it
1281   // matters, we could compute getBoundaryInstrs only once and reuse it here.
1282   BasicBlock::iterator First, Last;
1283   std::tie(First, Last) = getBoundaryInstrs(Chain);
1284   Builder.SetInsertPoint(&*First);
1285 
1286   Value *Bitcast =
1287       Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS));
1288   LoadInst *LI =
1289       Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment));
1290   propagateMetadata(LI, Chain);
1291 
1292   if (VecLoadTy) {
1293     SmallVector<Instruction *, 16> InstrsToErase;
1294 
1295     unsigned VecWidth = VecLoadTy->getNumElements();
1296     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1297       for (auto Use : Chain[I]->users()) {
1298         // All users of vector loads are ExtractElement instructions with
1299         // constant indices, otherwise we would have bailed before now.
1300         Instruction *UI = cast<Instruction>(Use);
1301         unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue();
1302         unsigned NewIdx = Idx + I * VecWidth;
1303         Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx),
1304                                                 UI->getName());
1305         if (V->getType() != UI->getType())
1306           V = Builder.CreateBitCast(V, UI->getType());
1307 
1308         // Replace the old instruction.
1309         UI->replaceAllUsesWith(V);
1310         InstrsToErase.push_back(UI);
1311       }
1312     }
1313 
1314     // Bitcast might not be an Instruction, if the value being loaded is a
1315     // constant.  In that case, no need to reorder anything.
1316     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1317       reorder(BitcastInst);
1318 
1319     for (auto I : InstrsToErase)
1320       I->eraseFromParent();
1321   } else {
1322     for (unsigned I = 0, E = Chain.size(); I != E; ++I) {
1323       Value *CV = Chain[I];
1324       Value *V =
1325           Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName());
1326       if (V->getType() != CV->getType()) {
1327         V = Builder.CreateBitOrPointerCast(V, CV->getType());
1328       }
1329 
1330       // Replace the old instruction.
1331       CV->replaceAllUsesWith(V);
1332     }
1333 
1334     if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast))
1335       reorder(BitcastInst);
1336   }
1337 
1338   eraseInstructions(Chain);
1339 
1340   ++NumVectorInstructions;
1341   NumScalarsVectorized += Chain.size();
1342   return true;
1343 }
1344 
1345 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace,
1346                                     Align Alignment) {
1347   if (Alignment.value() % SzInBytes == 0)
1348     return false;
1349 
1350   bool Fast = false;
1351   bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(),
1352                                                    SzInBytes * 8, AddressSpace,
1353                                                    Alignment, &Fast);
1354   LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows
1355                     << " and fast? " << Fast << "\n";);
1356   return !Allows || !Fast;
1357 }
1358