1 //===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/ADT/MapVector.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/OrderedBasicBlock.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Vectorize.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "load-store-vectorizer" 40 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 41 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 42 43 namespace { 44 45 // FIXME: Assuming stack alignment of 4 is always good enough 46 static const unsigned StackAdjustedAlignment = 4; 47 typedef SmallVector<Instruction *, 8> InstrList; 48 typedef MapVector<Value *, InstrList> InstrListMap; 49 50 class Vectorizer { 51 Function &F; 52 AliasAnalysis &AA; 53 DominatorTree &DT; 54 ScalarEvolution &SE; 55 TargetTransformInfo &TTI; 56 const DataLayout &DL; 57 IRBuilder<> Builder; 58 59 public: 60 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 61 ScalarEvolution &SE, TargetTransformInfo &TTI) 62 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 63 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 64 65 bool run(); 66 67 private: 68 Value *getPointerOperand(Value *I); 69 70 unsigned getPointerAddressSpace(Value *I); 71 72 unsigned getAlignment(LoadInst *LI) const { 73 unsigned Align = LI->getAlignment(); 74 if (Align != 0) 75 return Align; 76 77 return DL.getABITypeAlignment(LI->getType()); 78 } 79 80 unsigned getAlignment(StoreInst *SI) const { 81 unsigned Align = SI->getAlignment(); 82 if (Align != 0) 83 return Align; 84 85 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 86 } 87 88 bool isConsecutiveAccess(Value *A, Value *B); 89 90 /// After vectorization, reorder the instructions that I depends on 91 /// (the instructions defining its operands), to ensure they dominate I. 92 void reorder(Instruction *I); 93 94 /// Returns the first and the last instructions in Chain. 95 std::pair<BasicBlock::iterator, BasicBlock::iterator> 96 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 97 98 /// Erases the original instructions after vectorizing. 99 void eraseInstructions(ArrayRef<Instruction *> Chain); 100 101 /// "Legalize" the vector type that would be produced by combining \p 102 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 103 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 104 /// expected to have more than 4 elements. 105 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 106 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 107 108 /// Finds the largest prefix of Chain that's vectorizable, checking for 109 /// intervening instructions which may affect the memory accessed by the 110 /// instructions within Chain. 111 /// 112 /// The elements of \p Chain must be all loads or all stores and must be in 113 /// address order. 114 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 115 116 /// Collects load and store instructions to vectorize. 117 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 118 119 /// Processes the collected instructions, the \p Map. The values of \p Map 120 /// should be all loads or all stores. 121 bool vectorizeChains(InstrListMap &Map); 122 123 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 124 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 125 126 /// Vectorizes the load instructions in Chain. 127 bool 128 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 129 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 130 131 /// Vectorizes the store instructions in Chain. 132 bool 133 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 134 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 135 136 /// Check if this load/store access is misaligned accesses. 137 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 138 unsigned Alignment); 139 }; 140 141 class LoadStoreVectorizer : public FunctionPass { 142 public: 143 static char ID; 144 145 LoadStoreVectorizer() : FunctionPass(ID) { 146 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 147 } 148 149 bool runOnFunction(Function &F) override; 150 151 StringRef getPassName() const override { 152 return "GPU Load and Store Vectorizer"; 153 } 154 155 void getAnalysisUsage(AnalysisUsage &AU) const override { 156 AU.addRequired<AAResultsWrapperPass>(); 157 AU.addRequired<ScalarEvolutionWrapperPass>(); 158 AU.addRequired<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetTransformInfoWrapperPass>(); 160 AU.setPreservesCFG(); 161 } 162 }; 163 } 164 165 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 166 "Vectorize load and Store instructions", false, false) 167 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 172 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 173 "Vectorize load and store instructions", false, false) 174 175 char LoadStoreVectorizer::ID = 0; 176 177 Pass *llvm::createLoadStoreVectorizerPass() { 178 return new LoadStoreVectorizer(); 179 } 180 181 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 182 // vectors of Instructions. 183 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 184 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 185 propagateMetadata(I, VL); 186 } 187 188 bool LoadStoreVectorizer::runOnFunction(Function &F) { 189 // Don't vectorize when the attribute NoImplicitFloat is used. 190 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 191 return false; 192 193 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 194 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 195 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 196 TargetTransformInfo &TTI = 197 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 198 199 Vectorizer V(F, AA, DT, SE, TTI); 200 return V.run(); 201 } 202 203 // Vectorizer Implementation 204 bool Vectorizer::run() { 205 bool Changed = false; 206 207 // Scan the blocks in the function in post order. 208 for (BasicBlock *BB : post_order(&F)) { 209 InstrListMap LoadRefs, StoreRefs; 210 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 211 Changed |= vectorizeChains(LoadRefs); 212 Changed |= vectorizeChains(StoreRefs); 213 } 214 215 return Changed; 216 } 217 218 Value *Vectorizer::getPointerOperand(Value *I) { 219 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 220 return LI->getPointerOperand(); 221 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 222 return SI->getPointerOperand(); 223 return nullptr; 224 } 225 226 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 227 if (LoadInst *L = dyn_cast<LoadInst>(I)) 228 return L->getPointerAddressSpace(); 229 if (StoreInst *S = dyn_cast<StoreInst>(I)) 230 return S->getPointerAddressSpace(); 231 return -1; 232 } 233 234 // FIXME: Merge with llvm::isConsecutiveAccess 235 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 236 Value *PtrA = getPointerOperand(A); 237 Value *PtrB = getPointerOperand(B); 238 unsigned ASA = getPointerAddressSpace(A); 239 unsigned ASB = getPointerAddressSpace(B); 240 241 // Check that the address spaces match and that the pointers are valid. 242 if (!PtrA || !PtrB || (ASA != ASB)) 243 return false; 244 245 // Make sure that A and B are different pointers of the same size type. 246 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 247 Type *PtrATy = PtrA->getType()->getPointerElementType(); 248 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 249 if (PtrA == PtrB || 250 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 251 DL.getTypeStoreSize(PtrATy->getScalarType()) != 252 DL.getTypeStoreSize(PtrBTy->getScalarType())) 253 return false; 254 255 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 256 257 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 258 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 259 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 260 261 APInt OffsetDelta = OffsetB - OffsetA; 262 263 // Check if they are based on the same pointer. That makes the offsets 264 // sufficient. 265 if (PtrA == PtrB) 266 return OffsetDelta == Size; 267 268 // Compute the necessary base pointer delta to have the necessary final delta 269 // equal to the size. 270 APInt BaseDelta = Size - OffsetDelta; 271 272 // Compute the distance with SCEV between the base pointers. 273 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 274 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 275 const SCEV *C = SE.getConstant(BaseDelta); 276 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 277 if (X == PtrSCEVB) 278 return true; 279 280 // Sometimes even this doesn't work, because SCEV can't always see through 281 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 282 // things the hard way. 283 284 // Look through GEPs after checking they're the same except for the last 285 // index. 286 GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A)); 287 GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B)); 288 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 289 return false; 290 unsigned FinalIndex = GEPA->getNumOperands() - 1; 291 for (unsigned i = 0; i < FinalIndex; i++) 292 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 293 return false; 294 295 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 296 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 297 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 298 OpA->getType() != OpB->getType()) 299 return false; 300 301 // Only look through a ZExt/SExt. 302 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 303 return false; 304 305 bool Signed = isa<SExtInst>(OpA); 306 307 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 308 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 309 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 310 return false; 311 312 // Now we need to prove that adding 1 to OpA won't overflow. 313 bool Safe = false; 314 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 315 // we're okay. 316 if (OpB->getOpcode() == Instruction::Add && 317 isa<ConstantInt>(OpB->getOperand(1)) && 318 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 319 if (Signed) 320 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 321 else 322 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 323 } 324 325 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 326 327 // Second attempt: 328 // If any bits are known to be zero other than the sign bit in OpA, we can 329 // add 1 to it while guaranteeing no overflow of any sort. 330 if (!Safe) { 331 APInt KnownZero(BitWidth, 0); 332 APInt KnownOne(BitWidth, 0); 333 computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); 334 KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); 335 if (KnownZero != 0) 336 Safe = true; 337 } 338 339 if (!Safe) 340 return false; 341 342 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 343 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 344 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 345 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 346 return X2 == OffsetSCEVB; 347 } 348 349 void Vectorizer::reorder(Instruction *I) { 350 OrderedBasicBlock OBB(I->getParent()); 351 SmallPtrSet<Instruction *, 16> InstructionsToMove; 352 SmallVector<Instruction *, 16> Worklist; 353 354 Worklist.push_back(I); 355 while (!Worklist.empty()) { 356 Instruction *IW = Worklist.pop_back_val(); 357 int NumOperands = IW->getNumOperands(); 358 for (int i = 0; i < NumOperands; i++) { 359 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 360 if (!IM || IM->getOpcode() == Instruction::PHI) 361 continue; 362 363 // If IM is in another BB, no need to move it, because this pass only 364 // vectorizes instructions within one BB. 365 if (IM->getParent() != I->getParent()) 366 continue; 367 368 if (!OBB.dominates(IM, I)) { 369 InstructionsToMove.insert(IM); 370 Worklist.push_back(IM); 371 } 372 } 373 } 374 375 // All instructions to move should follow I. Start from I, not from begin(). 376 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 377 ++BBI) { 378 if (!InstructionsToMove.count(&*BBI)) 379 continue; 380 Instruction *IM = &*BBI; 381 --BBI; 382 IM->removeFromParent(); 383 IM->insertBefore(I); 384 } 385 } 386 387 std::pair<BasicBlock::iterator, BasicBlock::iterator> 388 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 389 Instruction *C0 = Chain[0]; 390 BasicBlock::iterator FirstInstr = C0->getIterator(); 391 BasicBlock::iterator LastInstr = C0->getIterator(); 392 393 BasicBlock *BB = C0->getParent(); 394 unsigned NumFound = 0; 395 for (Instruction &I : *BB) { 396 if (!is_contained(Chain, &I)) 397 continue; 398 399 ++NumFound; 400 if (NumFound == 1) { 401 FirstInstr = I.getIterator(); 402 } 403 if (NumFound == Chain.size()) { 404 LastInstr = I.getIterator(); 405 break; 406 } 407 } 408 409 // Range is [first, last). 410 return std::make_pair(FirstInstr, ++LastInstr); 411 } 412 413 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 414 SmallVector<Instruction *, 16> Instrs; 415 for (Instruction *I : Chain) { 416 Value *PtrOperand = getPointerOperand(I); 417 assert(PtrOperand && "Instruction must have a pointer operand."); 418 Instrs.push_back(I); 419 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 420 Instrs.push_back(GEP); 421 } 422 423 // Erase instructions. 424 for (Instruction *I : Instrs) 425 if (I->use_empty()) 426 I->eraseFromParent(); 427 } 428 429 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 430 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 431 unsigned ElementSizeBits) { 432 unsigned ElementSizeBytes = ElementSizeBits / 8; 433 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 434 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 435 if (NumLeft == Chain.size()) 436 --NumLeft; 437 else if (NumLeft == 0) 438 NumLeft = 1; 439 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 440 } 441 442 ArrayRef<Instruction *> 443 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 444 // These are in BB order, unlike Chain, which is in address order. 445 SmallVector<Instruction *, 16> MemoryInstrs; 446 SmallVector<Instruction *, 16> ChainInstrs; 447 448 bool IsLoadChain = isa<LoadInst>(Chain[0]); 449 DEBUG({ 450 for (Instruction *I : Chain) { 451 if (IsLoadChain) 452 assert(isa<LoadInst>(I) && 453 "All elements of Chain must be loads, or all must be stores."); 454 else 455 assert(isa<StoreInst>(I) && 456 "All elements of Chain must be loads, or all must be stores."); 457 } 458 }); 459 460 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 461 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 462 if (!is_contained(Chain, &I)) 463 MemoryInstrs.push_back(&I); 464 else 465 ChainInstrs.push_back(&I); 466 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 467 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 468 break; 469 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 470 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 471 << '\n'); 472 break; 473 } 474 } 475 476 OrderedBasicBlock OBB(Chain[0]->getParent()); 477 478 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 479 unsigned ChainInstrIdx = 0; 480 Instruction *BarrierMemoryInstr = nullptr; 481 482 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 483 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 484 485 // If a barrier memory instruction was found, chain instructions that follow 486 // will not be added to the valid prefix. 487 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 488 break; 489 490 // Check (in BB order) if any instruction prevents ChainInstr from being 491 // vectorized. Find and store the first such "conflicting" instruction. 492 for (Instruction *MemInstr : MemoryInstrs) { 493 // If a barrier memory instruction was found, do not check past it. 494 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 495 break; 496 497 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr)) 498 continue; 499 500 // We can ignore the alias as long as the load comes before the store, 501 // because that means we won't be moving the load past the store to 502 // vectorize it (the vectorized load is inserted at the location of the 503 // first load in the chain). 504 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) && 505 OBB.dominates(ChainInstr, MemInstr)) 506 continue; 507 508 // Same case, but in reverse. 509 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) && 510 OBB.dominates(MemInstr, ChainInstr)) 511 continue; 512 513 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 514 MemoryLocation::get(ChainInstr))) { 515 DEBUG({ 516 dbgs() << "LSV: Found alias:\n" 517 " Aliasing instruction and pointer:\n" 518 << " " << *MemInstr << '\n' 519 << " " << *getPointerOperand(MemInstr) << '\n' 520 << " Aliased instruction and pointer:\n" 521 << " " << *ChainInstr << '\n' 522 << " " << *getPointerOperand(ChainInstr) << '\n'; 523 }); 524 // Save this aliasing memory instruction as a barrier, but allow other 525 // instructions that precede the barrier to be vectorized with this one. 526 BarrierMemoryInstr = MemInstr; 527 break; 528 } 529 } 530 // Continue the search only for store chains, since vectorizing stores that 531 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 532 // up to an aliasing store, but should not pull loads from further down in 533 // the basic block. 534 if (IsLoadChain && BarrierMemoryInstr) { 535 // The BarrierMemoryInstr is a store that precedes ChainInstr. 536 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 537 break; 538 } 539 } 540 541 // Find the largest prefix of Chain whose elements are all in 542 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 543 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 544 // order.) 545 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 546 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 547 unsigned ChainIdx = 0; 548 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 549 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 550 break; 551 } 552 return Chain.slice(0, ChainIdx); 553 } 554 555 std::pair<InstrListMap, InstrListMap> 556 Vectorizer::collectInstructions(BasicBlock *BB) { 557 InstrListMap LoadRefs; 558 InstrListMap StoreRefs; 559 560 for (Instruction &I : *BB) { 561 if (!I.mayReadOrWriteMemory()) 562 continue; 563 564 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 565 if (!LI->isSimple()) 566 continue; 567 568 // Skip if it's not legal. 569 if (!TTI.isLegalToVectorizeLoad(LI)) 570 continue; 571 572 Type *Ty = LI->getType(); 573 if (!VectorType::isValidElementType(Ty->getScalarType())) 574 continue; 575 576 // Skip weird non-byte sizes. They probably aren't worth the effort of 577 // handling correctly. 578 unsigned TySize = DL.getTypeSizeInBits(Ty); 579 if (TySize < 8) 580 continue; 581 582 Value *Ptr = LI->getPointerOperand(); 583 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 584 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 585 586 // No point in looking at these if they're too big to vectorize. 587 if (TySize > VecRegSize / 2) 588 continue; 589 590 // Make sure all the users of a vector are constant-index extracts. 591 if (isa<VectorType>(Ty) && !all_of(LI->users(), [LI](const User *U) { 592 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 593 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 594 })) 595 continue; 596 597 // Save the load locations. 598 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 599 LoadRefs[ObjPtr].push_back(LI); 600 601 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 602 if (!SI->isSimple()) 603 continue; 604 605 // Skip if it's not legal. 606 if (!TTI.isLegalToVectorizeStore(SI)) 607 continue; 608 609 Type *Ty = SI->getValueOperand()->getType(); 610 if (!VectorType::isValidElementType(Ty->getScalarType())) 611 continue; 612 613 // Skip weird non-byte sizes. They probably aren't worth the effort of 614 // handling correctly. 615 unsigned TySize = DL.getTypeSizeInBits(Ty); 616 if (TySize < 8) 617 continue; 618 619 Value *Ptr = SI->getPointerOperand(); 620 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 621 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 622 if (TySize > VecRegSize / 2) 623 continue; 624 625 if (isa<VectorType>(Ty) && !all_of(SI->users(), [SI](const User *U) { 626 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 627 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 628 })) 629 continue; 630 631 // Save store location. 632 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 633 StoreRefs[ObjPtr].push_back(SI); 634 } 635 } 636 637 return {LoadRefs, StoreRefs}; 638 } 639 640 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 641 bool Changed = false; 642 643 for (const std::pair<Value *, InstrList> &Chain : Map) { 644 unsigned Size = Chain.second.size(); 645 if (Size < 2) 646 continue; 647 648 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 649 650 // Process the stores in chunks of 64. 651 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 652 unsigned Len = std::min<unsigned>(CE - CI, 64); 653 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 654 Changed |= vectorizeInstructions(Chunk); 655 } 656 } 657 658 return Changed; 659 } 660 661 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 662 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 663 SmallVector<int, 16> Heads, Tails; 664 int ConsecutiveChain[64]; 665 666 // Do a quadratic search on all of the given stores and find all of the pairs 667 // of stores that follow each other. 668 for (int i = 0, e = Instrs.size(); i < e; ++i) { 669 ConsecutiveChain[i] = -1; 670 for (int j = e - 1; j >= 0; --j) { 671 if (i == j) 672 continue; 673 674 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 675 if (ConsecutiveChain[i] != -1) { 676 int CurDistance = std::abs(ConsecutiveChain[i] - i); 677 int NewDistance = std::abs(ConsecutiveChain[i] - j); 678 if (j < i || NewDistance > CurDistance) 679 continue; // Should not insert. 680 } 681 682 Tails.push_back(j); 683 Heads.push_back(i); 684 ConsecutiveChain[i] = j; 685 } 686 } 687 } 688 689 bool Changed = false; 690 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 691 692 for (int Head : Heads) { 693 if (InstructionsProcessed.count(Instrs[Head])) 694 continue; 695 bool LongerChainExists = false; 696 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 697 if (Head == Tails[TIt] && 698 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 699 LongerChainExists = true; 700 break; 701 } 702 if (LongerChainExists) 703 continue; 704 705 // We found an instr that starts a chain. Now follow the chain and try to 706 // vectorize it. 707 SmallVector<Instruction *, 16> Operands; 708 int I = Head; 709 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 710 if (InstructionsProcessed.count(Instrs[I])) 711 break; 712 713 Operands.push_back(Instrs[I]); 714 I = ConsecutiveChain[I]; 715 } 716 717 bool Vectorized = false; 718 if (isa<LoadInst>(*Operands.begin())) 719 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 720 else 721 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 722 723 Changed |= Vectorized; 724 } 725 726 return Changed; 727 } 728 729 bool Vectorizer::vectorizeStoreChain( 730 ArrayRef<Instruction *> Chain, 731 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 732 StoreInst *S0 = cast<StoreInst>(Chain[0]); 733 734 // If the vector has an int element, default to int for the whole load. 735 Type *StoreTy; 736 for (Instruction *I : Chain) { 737 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 738 if (StoreTy->isIntOrIntVectorTy()) 739 break; 740 741 if (StoreTy->isPtrOrPtrVectorTy()) { 742 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 743 DL.getTypeSizeInBits(StoreTy)); 744 break; 745 } 746 } 747 748 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 749 unsigned AS = S0->getPointerAddressSpace(); 750 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 751 unsigned VF = VecRegSize / Sz; 752 unsigned ChainSize = Chain.size(); 753 unsigned Alignment = getAlignment(S0); 754 755 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 756 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 757 return false; 758 } 759 760 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 761 if (NewChain.empty()) { 762 // No vectorization possible. 763 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 764 return false; 765 } 766 if (NewChain.size() == 1) { 767 // Failed after the first instruction. Discard it and try the smaller chain. 768 InstructionsProcessed->insert(NewChain.front()); 769 return false; 770 } 771 772 // Update Chain to the valid vectorizable subchain. 773 Chain = NewChain; 774 ChainSize = Chain.size(); 775 776 // Check if it's legal to vectorize this chain. If not, split the chain and 777 // try again. 778 unsigned EltSzInBytes = Sz / 8; 779 unsigned SzInBytes = EltSzInBytes * ChainSize; 780 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 781 auto Chains = splitOddVectorElts(Chain, Sz); 782 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 783 vectorizeStoreChain(Chains.second, InstructionsProcessed); 784 } 785 786 VectorType *VecTy; 787 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 788 if (VecStoreTy) 789 VecTy = VectorType::get(StoreTy->getScalarType(), 790 Chain.size() * VecStoreTy->getNumElements()); 791 else 792 VecTy = VectorType::get(StoreTy, Chain.size()); 793 794 // If it's more than the max vector size or the target has a better 795 // vector factor, break it into two pieces. 796 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 797 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 798 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 799 " Creating two separate arrays.\n"); 800 return vectorizeStoreChain(Chain.slice(0, TargetVF), 801 InstructionsProcessed) | 802 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 803 } 804 805 DEBUG({ 806 dbgs() << "LSV: Stores to vectorize:\n"; 807 for (Instruction *I : Chain) 808 dbgs() << " " << *I << "\n"; 809 }); 810 811 // We won't try again to vectorize the elements of the chain, regardless of 812 // whether we succeed below. 813 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 814 815 // If the store is going to be misaligned, don't vectorize it. 816 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 817 if (S0->getPointerAddressSpace() != 0) 818 return false; 819 820 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 821 StackAdjustedAlignment, 822 DL, S0, nullptr, &DT); 823 if (NewAlign < StackAdjustedAlignment) 824 return false; 825 } 826 827 BasicBlock::iterator First, Last; 828 std::tie(First, Last) = getBoundaryInstrs(Chain); 829 Builder.SetInsertPoint(&*Last); 830 831 Value *Vec = UndefValue::get(VecTy); 832 833 if (VecStoreTy) { 834 unsigned VecWidth = VecStoreTy->getNumElements(); 835 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 836 StoreInst *Store = cast<StoreInst>(Chain[I]); 837 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 838 unsigned NewIdx = J + I * VecWidth; 839 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 840 Builder.getInt32(J)); 841 if (Extract->getType() != StoreTy->getScalarType()) 842 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 843 844 Value *Insert = 845 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 846 Vec = Insert; 847 } 848 } 849 } else { 850 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 851 StoreInst *Store = cast<StoreInst>(Chain[I]); 852 Value *Extract = Store->getValueOperand(); 853 if (Extract->getType() != StoreTy->getScalarType()) 854 Extract = 855 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 856 857 Value *Insert = 858 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 859 Vec = Insert; 860 } 861 } 862 863 // This cast is safe because Builder.CreateStore() always creates a bona fide 864 // StoreInst. 865 StoreInst *SI = cast<StoreInst>( 866 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), 867 VecTy->getPointerTo(AS)))); 868 propagateMetadata(SI, Chain); 869 SI->setAlignment(Alignment); 870 871 eraseInstructions(Chain); 872 ++NumVectorInstructions; 873 NumScalarsVectorized += Chain.size(); 874 return true; 875 } 876 877 bool Vectorizer::vectorizeLoadChain( 878 ArrayRef<Instruction *> Chain, 879 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 880 LoadInst *L0 = cast<LoadInst>(Chain[0]); 881 882 // If the vector has an int element, default to int for the whole load. 883 Type *LoadTy; 884 for (const auto &V : Chain) { 885 LoadTy = cast<LoadInst>(V)->getType(); 886 if (LoadTy->isIntOrIntVectorTy()) 887 break; 888 889 if (LoadTy->isPtrOrPtrVectorTy()) { 890 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 891 DL.getTypeSizeInBits(LoadTy)); 892 break; 893 } 894 } 895 896 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 897 unsigned AS = L0->getPointerAddressSpace(); 898 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 899 unsigned VF = VecRegSize / Sz; 900 unsigned ChainSize = Chain.size(); 901 unsigned Alignment = getAlignment(L0); 902 903 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 904 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 905 return false; 906 } 907 908 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 909 if (NewChain.empty()) { 910 // No vectorization possible. 911 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 912 return false; 913 } 914 if (NewChain.size() == 1) { 915 // Failed after the first instruction. Discard it and try the smaller chain. 916 InstructionsProcessed->insert(NewChain.front()); 917 return false; 918 } 919 920 // Update Chain to the valid vectorizable subchain. 921 Chain = NewChain; 922 ChainSize = Chain.size(); 923 924 // Check if it's legal to vectorize this chain. If not, split the chain and 925 // try again. 926 unsigned EltSzInBytes = Sz / 8; 927 unsigned SzInBytes = EltSzInBytes * ChainSize; 928 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 929 auto Chains = splitOddVectorElts(Chain, Sz); 930 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 931 vectorizeLoadChain(Chains.second, InstructionsProcessed); 932 } 933 934 VectorType *VecTy; 935 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 936 if (VecLoadTy) 937 VecTy = VectorType::get(LoadTy->getScalarType(), 938 Chain.size() * VecLoadTy->getNumElements()); 939 else 940 VecTy = VectorType::get(LoadTy, Chain.size()); 941 942 // If it's more than the max vector size or the target has a better 943 // vector factor, break it into two pieces. 944 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 945 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 946 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 947 " Creating two separate arrays.\n"); 948 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 949 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 950 } 951 952 // We won't try again to vectorize the elements of the chain, regardless of 953 // whether we succeed below. 954 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 955 956 // If the load is going to be misaligned, don't vectorize it. 957 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 958 if (L0->getPointerAddressSpace() != 0) 959 return false; 960 961 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 962 StackAdjustedAlignment, 963 DL, L0, nullptr, &DT); 964 if (NewAlign < StackAdjustedAlignment) 965 return false; 966 967 Alignment = NewAlign; 968 } 969 970 DEBUG({ 971 dbgs() << "LSV: Loads to vectorize:\n"; 972 for (Instruction *I : Chain) 973 I->dump(); 974 }); 975 976 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 977 // Last may have changed since then, but the value of First won't have. If it 978 // matters, we could compute getBoundaryInstrs only once and reuse it here. 979 BasicBlock::iterator First, Last; 980 std::tie(First, Last) = getBoundaryInstrs(Chain); 981 Builder.SetInsertPoint(&*First); 982 983 Value *Bitcast = 984 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 985 // This cast is safe because Builder.CreateLoad always creates a bona fide 986 // LoadInst. 987 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 988 propagateMetadata(LI, Chain); 989 LI->setAlignment(Alignment); 990 991 if (VecLoadTy) { 992 SmallVector<Instruction *, 16> InstrsToErase; 993 994 unsigned VecWidth = VecLoadTy->getNumElements(); 995 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 996 for (auto Use : Chain[I]->users()) { 997 // All users of vector loads are ExtractElement instructions with 998 // constant indices, otherwise we would have bailed before now. 999 Instruction *UI = cast<Instruction>(Use); 1000 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1001 unsigned NewIdx = Idx + I * VecWidth; 1002 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1003 UI->getName()); 1004 if (V->getType() != UI->getType()) 1005 V = Builder.CreateBitCast(V, UI->getType()); 1006 1007 // Replace the old instruction. 1008 UI->replaceAllUsesWith(V); 1009 InstrsToErase.push_back(UI); 1010 } 1011 } 1012 1013 // Bitcast might not be an Instruction, if the value being loaded is a 1014 // constant. In that case, no need to reorder anything. 1015 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1016 reorder(BitcastInst); 1017 1018 for (auto I : InstrsToErase) 1019 I->eraseFromParent(); 1020 } else { 1021 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1022 Value *CV = Chain[I]; 1023 Value *V = 1024 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1025 if (V->getType() != CV->getType()) { 1026 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1027 } 1028 1029 // Replace the old instruction. 1030 CV->replaceAllUsesWith(V); 1031 } 1032 1033 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1034 reorder(BitcastInst); 1035 } 1036 1037 eraseInstructions(Chain); 1038 1039 ++NumVectorInstructions; 1040 NumScalarsVectorized += Chain.size(); 1041 return true; 1042 } 1043 1044 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1045 unsigned Alignment) { 1046 if (Alignment % SzInBytes == 0) 1047 return false; 1048 1049 bool Fast = false; 1050 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1051 SzInBytes * 8, AddressSpace, 1052 Alignment, &Fast); 1053 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1054 << " and fast? " << Fast << "\n";); 1055 return !Allows || !Fast; 1056 } 1057