1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/AssumptionCache.h" 53 #include "llvm/Analysis/MemoryLocation.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/TargetTransformInfo.h" 56 #include "llvm/Analysis/ValueTracking.h" 57 #include "llvm/Analysis/VectorUtils.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/KnownBits.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Utils/Local.h" 82 #include "llvm/Transforms/Vectorize.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdlib> 86 #include <tuple> 87 #include <utility> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "load-store-vectorizer" 92 93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 95 96 // FIXME: Assuming stack alignment of 4 is always good enough 97 static const unsigned StackAdjustedAlignment = 4; 98 99 namespace { 100 101 /// ChainID is an arbitrary token that is allowed to be different only for the 102 /// accesses that are guaranteed to be considered non-consecutive by 103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 104 /// together and reducing the number of instructions the main search operates on 105 /// at a time, i.e. this is to reduce compile time and nothing else as the main 106 /// search has O(n^2) time complexity. The underlying type of ChainID should not 107 /// be relied upon. 108 using ChainID = const Value *; 109 using InstrList = SmallVector<Instruction *, 8>; 110 using InstrListMap = MapVector<ChainID, InstrList>; 111 112 class Vectorizer { 113 Function &F; 114 AliasAnalysis &AA; 115 AssumptionCache &AC; 116 DominatorTree &DT; 117 ScalarEvolution &SE; 118 TargetTransformInfo &TTI; 119 const DataLayout &DL; 120 IRBuilder<> Builder; 121 122 public: 123 Vectorizer(Function &F, AliasAnalysis &AA, AssumptionCache &AC, 124 DominatorTree &DT, ScalarEvolution &SE, TargetTransformInfo &TTI) 125 : F(F), AA(AA), AC(AC), DT(DT), SE(SE), TTI(TTI), 126 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 127 128 bool run(); 129 130 private: 131 unsigned getPointerAddressSpace(Value *I); 132 133 static const unsigned MaxDepth = 3; 134 135 bool isConsecutiveAccess(Value *A, Value *B); 136 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, 137 unsigned Depth = 0) const; 138 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 139 unsigned Depth) const; 140 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 141 unsigned Depth) const; 142 143 /// After vectorization, reorder the instructions that I depends on 144 /// (the instructions defining its operands), to ensure they dominate I. 145 void reorder(Instruction *I); 146 147 /// Returns the first and the last instructions in Chain. 148 std::pair<BasicBlock::iterator, BasicBlock::iterator> 149 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 150 151 /// Erases the original instructions after vectorizing. 152 void eraseInstructions(ArrayRef<Instruction *> Chain); 153 154 /// "Legalize" the vector type that would be produced by combining \p 155 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 156 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 157 /// expected to have more than 4 elements. 158 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 159 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 160 161 /// Finds the largest prefix of Chain that's vectorizable, checking for 162 /// intervening instructions which may affect the memory accessed by the 163 /// instructions within Chain. 164 /// 165 /// The elements of \p Chain must be all loads or all stores and must be in 166 /// address order. 167 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 168 169 /// Collects load and store instructions to vectorize. 170 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 171 172 /// Processes the collected instructions, the \p Map. The values of \p Map 173 /// should be all loads or all stores. 174 bool vectorizeChains(InstrListMap &Map); 175 176 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 177 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 178 179 /// Vectorizes the load instructions in Chain. 180 bool 181 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 182 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 183 184 /// Vectorizes the store instructions in Chain. 185 bool 186 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 187 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 188 189 /// Check if this load/store access is misaligned accesses. 190 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 191 Align Alignment); 192 }; 193 194 class LoadStoreVectorizerLegacyPass : public FunctionPass { 195 public: 196 static char ID; 197 198 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 199 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnFunction(Function &F) override; 203 204 StringRef getPassName() const override { 205 return "GPU Load and Store Vectorizer"; 206 } 207 208 void getAnalysisUsage(AnalysisUsage &AU) const override { 209 AU.addRequired<AAResultsWrapperPass>(); 210 AU.addRequired<AssumptionCacheTracker>(); 211 AU.addRequired<ScalarEvolutionWrapperPass>(); 212 AU.addRequired<DominatorTreeWrapperPass>(); 213 AU.addRequired<TargetTransformInfoWrapperPass>(); 214 AU.setPreservesCFG(); 215 } 216 }; 217 218 } // end anonymous namespace 219 220 char LoadStoreVectorizerLegacyPass::ID = 0; 221 222 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 223 "Vectorize load and Store instructions", false, false) 224 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker); 226 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 228 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 229 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 230 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 231 "Vectorize load and store instructions", false, false) 232 233 Pass *llvm::createLoadStoreVectorizerPass() { 234 return new LoadStoreVectorizerLegacyPass(); 235 } 236 237 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 238 // Don't vectorize when the attribute NoImplicitFloat is used. 239 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 240 return false; 241 242 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 243 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 244 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 245 TargetTransformInfo &TTI = 246 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 247 248 AssumptionCache &AC = 249 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 250 251 Vectorizer V(F, AA, AC, DT, SE, TTI); 252 return V.run(); 253 } 254 255 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 256 // Don't vectorize when the attribute NoImplicitFloat is used. 257 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 258 return PreservedAnalyses::all(); 259 260 AliasAnalysis &AA = AM.getResult<AAManager>(F); 261 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 262 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 263 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 264 AssumptionCache &AC = AM.getResult<AssumptionAnalysis>(F); 265 266 Vectorizer V(F, AA, AC, DT, SE, TTI); 267 bool Changed = V.run(); 268 PreservedAnalyses PA; 269 PA.preserveSet<CFGAnalyses>(); 270 return Changed ? PA : PreservedAnalyses::all(); 271 } 272 273 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 274 // vectors of Instructions. 275 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 276 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 277 propagateMetadata(I, VL); 278 } 279 280 // Vectorizer Implementation 281 bool Vectorizer::run() { 282 bool Changed = false; 283 284 // Scan the blocks in the function in post order. 285 for (BasicBlock *BB : post_order(&F)) { 286 InstrListMap LoadRefs, StoreRefs; 287 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 288 Changed |= vectorizeChains(LoadRefs); 289 Changed |= vectorizeChains(StoreRefs); 290 } 291 292 return Changed; 293 } 294 295 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 296 if (LoadInst *L = dyn_cast<LoadInst>(I)) 297 return L->getPointerAddressSpace(); 298 if (StoreInst *S = dyn_cast<StoreInst>(I)) 299 return S->getPointerAddressSpace(); 300 return -1; 301 } 302 303 // FIXME: Merge with llvm::isConsecutiveAccess 304 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 305 Value *PtrA = getLoadStorePointerOperand(A); 306 Value *PtrB = getLoadStorePointerOperand(B); 307 unsigned ASA = getPointerAddressSpace(A); 308 unsigned ASB = getPointerAddressSpace(B); 309 310 // Check that the address spaces match and that the pointers are valid. 311 if (!PtrA || !PtrB || (ASA != ASB)) 312 return false; 313 314 // Make sure that A and B are different pointers of the same size type. 315 Type *PtrATy = PtrA->getType()->getPointerElementType(); 316 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 317 if (PtrA == PtrB || 318 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 319 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 320 DL.getTypeStoreSize(PtrATy->getScalarType()) != 321 DL.getTypeStoreSize(PtrBTy->getScalarType())) 322 return false; 323 324 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 325 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 326 327 return areConsecutivePointers(PtrA, PtrB, Size); 328 } 329 330 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 331 APInt PtrDelta, unsigned Depth) const { 332 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 333 APInt OffsetA(PtrBitWidth, 0); 334 APInt OffsetB(PtrBitWidth, 0); 335 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 336 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 337 338 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 339 340 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 341 return false; 342 343 // In case if we have to shrink the pointer 344 // stripAndAccumulateInBoundsConstantOffsets should properly handle a 345 // possible overflow and the value should fit into a smallest data type 346 // used in the cast/gep chain. 347 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth && 348 OffsetB.getMinSignedBits() <= NewPtrBitWidth); 349 350 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 351 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 352 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth); 353 354 APInt OffsetDelta = OffsetB - OffsetA; 355 356 // Check if they are based on the same pointer. That makes the offsets 357 // sufficient. 358 if (PtrA == PtrB) 359 return OffsetDelta == PtrDelta; 360 361 // Compute the necessary base pointer delta to have the necessary final delta 362 // equal to the pointer delta requested. 363 APInt BaseDelta = PtrDelta - OffsetDelta; 364 365 // Compute the distance with SCEV between the base pointers. 366 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 367 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 368 const SCEV *C = SE.getConstant(BaseDelta); 369 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 370 if (X == PtrSCEVB) 371 return true; 372 373 // The above check will not catch the cases where one of the pointers is 374 // factorized but the other one is not, such as (C + (S * (A + B))) vs 375 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 376 // and getting the simplified difference. 377 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 378 if (C == Dist) 379 return true; 380 381 // Sometimes even this doesn't work, because SCEV can't always see through 382 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 383 // things the hard way. 384 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 385 } 386 387 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 388 APInt PtrDelta, 389 unsigned Depth) const { 390 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 391 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 392 if (!GEPA || !GEPB) 393 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 394 395 // Look through GEPs after checking they're the same except for the last 396 // index. 397 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 398 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 399 return false; 400 gep_type_iterator GTIA = gep_type_begin(GEPA); 401 gep_type_iterator GTIB = gep_type_begin(GEPB); 402 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 403 if (GTIA.getOperand() != GTIB.getOperand()) 404 return false; 405 ++GTIA; 406 ++GTIB; 407 } 408 409 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 410 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 411 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 412 OpA->getType() != OpB->getType()) 413 return false; 414 415 if (PtrDelta.isNegative()) { 416 if (PtrDelta.isMinSignedValue()) 417 return false; 418 PtrDelta.negate(); 419 std::swap(OpA, OpB); 420 } 421 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 422 if (PtrDelta.urem(Stride) != 0) 423 return false; 424 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 425 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 426 427 // Only look through a ZExt/SExt. 428 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 429 return false; 430 431 bool Signed = isa<SExtInst>(OpA); 432 433 // At this point A could be a function parameter, i.e. not an instruction 434 Value *ValA = OpA->getOperand(0); 435 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 436 if (!OpB || ValA->getType() != OpB->getType()) 437 return false; 438 439 // Now we need to prove that adding IdxDiff to ValA won't overflow. 440 bool Safe = false; 441 auto CheckFlags = [](Instruction *I, bool Signed) { 442 BinaryOperator *BinOpI = cast<BinaryOperator>(I); 443 return (Signed && BinOpI->hasNoSignedWrap()) || 444 (!Signed && BinOpI->hasNoUnsignedWrap()); 445 }; 446 447 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 448 // ValA, we're okay. 449 if (OpB->getOpcode() == Instruction::Add && 450 isa<ConstantInt>(OpB->getOperand(1)) && 451 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue()) && 452 CheckFlags(OpB, Signed)) 453 Safe = true; 454 455 // Second attempt: If both OpA and OpB is an add with NSW/NUW and with 456 // the same LHS operand, we can guarantee that the transformation is safe 457 // if we can prove that OpA won't overflow when IdxDiff added to the RHS 458 // of OpA. 459 // For example: 460 // %tmp7 = add nsw i32 %tmp2, %v0 461 // %tmp8 = sext i32 %tmp7 to i64 462 // ... 463 // %tmp11 = add nsw i32 %v0, 1 464 // %tmp12 = add nsw i32 %tmp2, %tmp11 465 // %tmp13 = sext i32 %tmp12 to i64 466 // 467 // Both %tmp7 and %tmp2 has the nsw flag and the first operand 468 // is %tmp2. It's guaranteed that adding 1 to %tmp7 won't overflow 469 // because %tmp11 adds 1 to %v0 and both %tmp11 and %tmp12 has the 470 // nsw flag. 471 OpA = dyn_cast<Instruction>(ValA); 472 if (!Safe && OpA && OpA->getOpcode() == Instruction::Add && 473 OpB->getOpcode() == Instruction::Add && 474 OpA->getOperand(0) == OpB->getOperand(0) && CheckFlags(OpA, Signed) && 475 CheckFlags(OpB, Signed)) { 476 Value *RHSA = OpA->getOperand(1); 477 Value *RHSB = OpB->getOperand(1); 478 Instruction *OpRHSA = dyn_cast<Instruction>(RHSA); 479 Instruction *OpRHSB = dyn_cast<Instruction>(RHSB); 480 // Match `x +nsw/nuw y` and `x +nsw/nuw (y +nsw/nuw IdxDiff)`. 481 if (OpRHSB && OpRHSB->getOpcode() == Instruction::Add && 482 CheckFlags(OpRHSB, Signed) && isa<ConstantInt>(OpRHSB->getOperand(1))) { 483 int64_t CstVal = cast<ConstantInt>(OpRHSB->getOperand(1))->getSExtValue(); 484 if (OpRHSB->getOperand(0) == RHSA && IdxDiff.getSExtValue() == CstVal) 485 Safe = true; 486 } 487 // Match `x +nsw/nuw (y +nsw/nuw -Idx)` and `x +nsw/nuw (y +nsw/nuw x)`. 488 if (OpRHSA && OpRHSA->getOpcode() == Instruction::Add && 489 CheckFlags(OpRHSA, Signed) && isa<ConstantInt>(OpRHSA->getOperand(1))) { 490 int64_t CstVal = cast<ConstantInt>(OpRHSA->getOperand(1))->getSExtValue(); 491 if (OpRHSA->getOperand(0) == RHSB && IdxDiff.getSExtValue() == -CstVal) 492 Safe = true; 493 } 494 // Match `x +nsw/nuw (y +nsw/nuw c)` and 495 // `x +nsw/nuw (y +nsw/nuw (c + IdxDiff))`. 496 if (OpRHSA && OpRHSB && OpRHSA->getOpcode() == Instruction::Add && 497 OpRHSB->getOpcode() == Instruction::Add && CheckFlags(OpRHSA, Signed) && 498 CheckFlags(OpRHSB, Signed) && isa<ConstantInt>(OpRHSA->getOperand(1)) && 499 isa<ConstantInt>(OpRHSB->getOperand(1))) { 500 int64_t CstValA = 501 cast<ConstantInt>(OpRHSA->getOperand(1))->getSExtValue(); 502 int64_t CstValB = 503 cast<ConstantInt>(OpRHSB->getOperand(1))->getSExtValue(); 504 if (OpRHSA->getOperand(0) == OpRHSB->getOperand(0) && 505 IdxDiff.getSExtValue() == (CstValB - CstValA)) 506 Safe = true; 507 } 508 } 509 510 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 511 512 // Third attempt: 513 // If all set bits of IdxDiff or any higher order bit other than the sign bit 514 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 515 // overflow of any sort. 516 if (!Safe) { 517 KnownBits Known(BitWidth); 518 computeKnownBits(ValA, Known, DL, 0, &AC, OpB, &DT); 519 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 520 if (Signed) 521 BitsAllowedToBeSet.clearBit(BitWidth - 1); 522 if (BitsAllowedToBeSet.ult(IdxDiff)) 523 return false; 524 } 525 526 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 527 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 528 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 529 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 530 return X == OffsetSCEVB; 531 } 532 533 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 534 const APInt &PtrDelta, 535 unsigned Depth) const { 536 if (Depth++ == MaxDepth) 537 return false; 538 539 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 540 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 541 return SelectA->getCondition() == SelectB->getCondition() && 542 areConsecutivePointers(SelectA->getTrueValue(), 543 SelectB->getTrueValue(), PtrDelta, Depth) && 544 areConsecutivePointers(SelectA->getFalseValue(), 545 SelectB->getFalseValue(), PtrDelta, Depth); 546 } 547 } 548 return false; 549 } 550 551 void Vectorizer::reorder(Instruction *I) { 552 SmallPtrSet<Instruction *, 16> InstructionsToMove; 553 SmallVector<Instruction *, 16> Worklist; 554 555 Worklist.push_back(I); 556 while (!Worklist.empty()) { 557 Instruction *IW = Worklist.pop_back_val(); 558 int NumOperands = IW->getNumOperands(); 559 for (int i = 0; i < NumOperands; i++) { 560 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 561 if (!IM || IM->getOpcode() == Instruction::PHI) 562 continue; 563 564 // If IM is in another BB, no need to move it, because this pass only 565 // vectorizes instructions within one BB. 566 if (IM->getParent() != I->getParent()) 567 continue; 568 569 if (!IM->comesBefore(I)) { 570 InstructionsToMove.insert(IM); 571 Worklist.push_back(IM); 572 } 573 } 574 } 575 576 // All instructions to move should follow I. Start from I, not from begin(). 577 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 578 ++BBI) { 579 if (!InstructionsToMove.count(&*BBI)) 580 continue; 581 Instruction *IM = &*BBI; 582 --BBI; 583 IM->removeFromParent(); 584 IM->insertBefore(I); 585 } 586 } 587 588 std::pair<BasicBlock::iterator, BasicBlock::iterator> 589 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 590 Instruction *C0 = Chain[0]; 591 BasicBlock::iterator FirstInstr = C0->getIterator(); 592 BasicBlock::iterator LastInstr = C0->getIterator(); 593 594 BasicBlock *BB = C0->getParent(); 595 unsigned NumFound = 0; 596 for (Instruction &I : *BB) { 597 if (!is_contained(Chain, &I)) 598 continue; 599 600 ++NumFound; 601 if (NumFound == 1) { 602 FirstInstr = I.getIterator(); 603 } 604 if (NumFound == Chain.size()) { 605 LastInstr = I.getIterator(); 606 break; 607 } 608 } 609 610 // Range is [first, last). 611 return std::make_pair(FirstInstr, ++LastInstr); 612 } 613 614 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 615 SmallVector<Instruction *, 16> Instrs; 616 for (Instruction *I : Chain) { 617 Value *PtrOperand = getLoadStorePointerOperand(I); 618 assert(PtrOperand && "Instruction must have a pointer operand."); 619 Instrs.push_back(I); 620 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 621 Instrs.push_back(GEP); 622 } 623 624 // Erase instructions. 625 for (Instruction *I : Instrs) 626 if (I->use_empty()) 627 I->eraseFromParent(); 628 } 629 630 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 631 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 632 unsigned ElementSizeBits) { 633 unsigned ElementSizeBytes = ElementSizeBits / 8; 634 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 635 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 636 if (NumLeft == Chain.size()) { 637 if ((NumLeft & 1) == 0) 638 NumLeft /= 2; // Split even in half 639 else 640 --NumLeft; // Split off last element 641 } else if (NumLeft == 0) 642 NumLeft = 1; 643 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 644 } 645 646 ArrayRef<Instruction *> 647 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 648 // These are in BB order, unlike Chain, which is in address order. 649 SmallVector<Instruction *, 16> MemoryInstrs; 650 SmallVector<Instruction *, 16> ChainInstrs; 651 652 bool IsLoadChain = isa<LoadInst>(Chain[0]); 653 LLVM_DEBUG({ 654 for (Instruction *I : Chain) { 655 if (IsLoadChain) 656 assert(isa<LoadInst>(I) && 657 "All elements of Chain must be loads, or all must be stores."); 658 else 659 assert(isa<StoreInst>(I) && 660 "All elements of Chain must be loads, or all must be stores."); 661 } 662 }); 663 664 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 665 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 666 if (!is_contained(Chain, &I)) 667 MemoryInstrs.push_back(&I); 668 else 669 ChainInstrs.push_back(&I); 670 } else if (isa<IntrinsicInst>(&I) && 671 cast<IntrinsicInst>(&I)->getIntrinsicID() == 672 Intrinsic::sideeffect) { 673 // Ignore llvm.sideeffect calls. 674 } else if (isa<IntrinsicInst>(&I) && 675 cast<IntrinsicInst>(&I)->getIntrinsicID() == 676 Intrinsic::pseudoprobe) { 677 // Ignore llvm.pseudoprobe calls. 678 } else if (isa<IntrinsicInst>(&I) && 679 cast<IntrinsicInst>(&I)->getIntrinsicID() == Intrinsic::assume) { 680 // Ignore llvm.assume calls. 681 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 682 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 683 << '\n'); 684 break; 685 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 686 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 687 << '\n'); 688 break; 689 } 690 } 691 692 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 693 unsigned ChainInstrIdx = 0; 694 Instruction *BarrierMemoryInstr = nullptr; 695 696 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 697 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 698 699 // If a barrier memory instruction was found, chain instructions that follow 700 // will not be added to the valid prefix. 701 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr)) 702 break; 703 704 // Check (in BB order) if any instruction prevents ChainInstr from being 705 // vectorized. Find and store the first such "conflicting" instruction. 706 for (Instruction *MemInstr : MemoryInstrs) { 707 // If a barrier memory instruction was found, do not check past it. 708 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr)) 709 break; 710 711 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 712 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 713 if (MemLoad && ChainLoad) 714 continue; 715 716 // We can ignore the alias if the we have a load store pair and the load 717 // is known to be invariant. The load cannot be clobbered by the store. 718 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 719 return LI->hasMetadata(LLVMContext::MD_invariant_load); 720 }; 721 722 // We can ignore the alias as long as the load comes before the store, 723 // because that means we won't be moving the load past the store to 724 // vectorize it (the vectorized load is inserted at the location of the 725 // first load in the chain). 726 if (isa<StoreInst>(MemInstr) && ChainLoad && 727 (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr))) 728 continue; 729 730 // Same case, but in reverse. 731 if (MemLoad && isa<StoreInst>(ChainInstr) && 732 (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr))) 733 continue; 734 735 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 736 MemoryLocation::get(ChainInstr))) { 737 LLVM_DEBUG({ 738 dbgs() << "LSV: Found alias:\n" 739 " Aliasing instruction and pointer:\n" 740 << " " << *MemInstr << '\n' 741 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 742 << " Aliased instruction and pointer:\n" 743 << " " << *ChainInstr << '\n' 744 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 745 }); 746 // Save this aliasing memory instruction as a barrier, but allow other 747 // instructions that precede the barrier to be vectorized with this one. 748 BarrierMemoryInstr = MemInstr; 749 break; 750 } 751 } 752 // Continue the search only for store chains, since vectorizing stores that 753 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 754 // up to an aliasing store, but should not pull loads from further down in 755 // the basic block. 756 if (IsLoadChain && BarrierMemoryInstr) { 757 // The BarrierMemoryInstr is a store that precedes ChainInstr. 758 assert(BarrierMemoryInstr->comesBefore(ChainInstr)); 759 break; 760 } 761 } 762 763 // Find the largest prefix of Chain whose elements are all in 764 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 765 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 766 // order.) 767 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 768 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 769 unsigned ChainIdx = 0; 770 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 771 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 772 break; 773 } 774 return Chain.slice(0, ChainIdx); 775 } 776 777 static ChainID getChainID(const Value *Ptr) { 778 const Value *ObjPtr = getUnderlyingObject(Ptr); 779 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 780 // The select's themselves are distinct instructions even if they share the 781 // same condition and evaluate to consecutive pointers for true and false 782 // values of the condition. Therefore using the select's themselves for 783 // grouping instructions would put consecutive accesses into different lists 784 // and they won't be even checked for being consecutive, and won't be 785 // vectorized. 786 return Sel->getCondition(); 787 } 788 return ObjPtr; 789 } 790 791 std::pair<InstrListMap, InstrListMap> 792 Vectorizer::collectInstructions(BasicBlock *BB) { 793 InstrListMap LoadRefs; 794 InstrListMap StoreRefs; 795 796 for (Instruction &I : *BB) { 797 if (!I.mayReadOrWriteMemory()) 798 continue; 799 800 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 801 if (!LI->isSimple()) 802 continue; 803 804 // Skip if it's not legal. 805 if (!TTI.isLegalToVectorizeLoad(LI)) 806 continue; 807 808 Type *Ty = LI->getType(); 809 if (!VectorType::isValidElementType(Ty->getScalarType())) 810 continue; 811 812 // Skip weird non-byte sizes. They probably aren't worth the effort of 813 // handling correctly. 814 unsigned TySize = DL.getTypeSizeInBits(Ty); 815 if ((TySize % 8) != 0) 816 continue; 817 818 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 819 // functions are currently using an integer type for the vectorized 820 // load/store, and does not support casting between the integer type and a 821 // vector of pointers (e.g. i64 to <2 x i16*>) 822 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 823 continue; 824 825 Value *Ptr = LI->getPointerOperand(); 826 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 827 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 828 829 unsigned VF = VecRegSize / TySize; 830 VectorType *VecTy = dyn_cast<VectorType>(Ty); 831 832 // No point in looking at these if they're too big to vectorize. 833 if (TySize > VecRegSize / 2 || 834 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 835 continue; 836 837 // Make sure all the users of a vector are constant-index extracts. 838 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 839 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 840 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 841 })) 842 continue; 843 844 // Save the load locations. 845 const ChainID ID = getChainID(Ptr); 846 LoadRefs[ID].push_back(LI); 847 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 848 if (!SI->isSimple()) 849 continue; 850 851 // Skip if it's not legal. 852 if (!TTI.isLegalToVectorizeStore(SI)) 853 continue; 854 855 Type *Ty = SI->getValueOperand()->getType(); 856 if (!VectorType::isValidElementType(Ty->getScalarType())) 857 continue; 858 859 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 860 // functions are currently using an integer type for the vectorized 861 // load/store, and does not support casting between the integer type and a 862 // vector of pointers (e.g. i64 to <2 x i16*>) 863 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 864 continue; 865 866 // Skip weird non-byte sizes. They probably aren't worth the effort of 867 // handling correctly. 868 unsigned TySize = DL.getTypeSizeInBits(Ty); 869 if ((TySize % 8) != 0) 870 continue; 871 872 Value *Ptr = SI->getPointerOperand(); 873 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 874 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 875 876 unsigned VF = VecRegSize / TySize; 877 VectorType *VecTy = dyn_cast<VectorType>(Ty); 878 879 // No point in looking at these if they're too big to vectorize. 880 if (TySize > VecRegSize / 2 || 881 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 882 continue; 883 884 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 885 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 886 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 887 })) 888 continue; 889 890 // Save store location. 891 const ChainID ID = getChainID(Ptr); 892 StoreRefs[ID].push_back(SI); 893 } 894 } 895 896 return {LoadRefs, StoreRefs}; 897 } 898 899 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 900 bool Changed = false; 901 902 for (const std::pair<ChainID, InstrList> &Chain : Map) { 903 unsigned Size = Chain.second.size(); 904 if (Size < 2) 905 continue; 906 907 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 908 909 // Process the stores in chunks of 64. 910 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 911 unsigned Len = std::min<unsigned>(CE - CI, 64); 912 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 913 Changed |= vectorizeInstructions(Chunk); 914 } 915 } 916 917 return Changed; 918 } 919 920 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 921 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 922 << " instructions.\n"); 923 SmallVector<int, 16> Heads, Tails; 924 int ConsecutiveChain[64]; 925 926 // Do a quadratic search on all of the given loads/stores and find all of the 927 // pairs of loads/stores that follow each other. 928 for (int i = 0, e = Instrs.size(); i < e; ++i) { 929 ConsecutiveChain[i] = -1; 930 for (int j = e - 1; j >= 0; --j) { 931 if (i == j) 932 continue; 933 934 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 935 if (ConsecutiveChain[i] != -1) { 936 int CurDistance = std::abs(ConsecutiveChain[i] - i); 937 int NewDistance = std::abs(ConsecutiveChain[i] - j); 938 if (j < i || NewDistance > CurDistance) 939 continue; // Should not insert. 940 } 941 942 Tails.push_back(j); 943 Heads.push_back(i); 944 ConsecutiveChain[i] = j; 945 } 946 } 947 } 948 949 bool Changed = false; 950 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 951 952 for (int Head : Heads) { 953 if (InstructionsProcessed.count(Instrs[Head])) 954 continue; 955 bool LongerChainExists = false; 956 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 957 if (Head == Tails[TIt] && 958 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 959 LongerChainExists = true; 960 break; 961 } 962 if (LongerChainExists) 963 continue; 964 965 // We found an instr that starts a chain. Now follow the chain and try to 966 // vectorize it. 967 SmallVector<Instruction *, 16> Operands; 968 int I = Head; 969 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 970 if (InstructionsProcessed.count(Instrs[I])) 971 break; 972 973 Operands.push_back(Instrs[I]); 974 I = ConsecutiveChain[I]; 975 } 976 977 bool Vectorized = false; 978 if (isa<LoadInst>(*Operands.begin())) 979 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 980 else 981 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 982 983 Changed |= Vectorized; 984 } 985 986 return Changed; 987 } 988 989 bool Vectorizer::vectorizeStoreChain( 990 ArrayRef<Instruction *> Chain, 991 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 992 StoreInst *S0 = cast<StoreInst>(Chain[0]); 993 994 // If the vector has an int element, default to int for the whole store. 995 Type *StoreTy = nullptr; 996 for (Instruction *I : Chain) { 997 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 998 if (StoreTy->isIntOrIntVectorTy()) 999 break; 1000 1001 if (StoreTy->isPtrOrPtrVectorTy()) { 1002 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 1003 DL.getTypeSizeInBits(StoreTy)); 1004 break; 1005 } 1006 } 1007 assert(StoreTy && "Failed to find store type"); 1008 1009 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 1010 unsigned AS = S0->getPointerAddressSpace(); 1011 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1012 unsigned VF = VecRegSize / Sz; 1013 unsigned ChainSize = Chain.size(); 1014 Align Alignment = S0->getAlign(); 1015 1016 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1017 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1018 return false; 1019 } 1020 1021 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1022 if (NewChain.empty()) { 1023 // No vectorization possible. 1024 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1025 return false; 1026 } 1027 if (NewChain.size() == 1) { 1028 // Failed after the first instruction. Discard it and try the smaller chain. 1029 InstructionsProcessed->insert(NewChain.front()); 1030 return false; 1031 } 1032 1033 // Update Chain to the valid vectorizable subchain. 1034 Chain = NewChain; 1035 ChainSize = Chain.size(); 1036 1037 // Check if it's legal to vectorize this chain. If not, split the chain and 1038 // try again. 1039 unsigned EltSzInBytes = Sz / 8; 1040 unsigned SzInBytes = EltSzInBytes * ChainSize; 1041 1042 FixedVectorType *VecTy; 1043 auto *VecStoreTy = dyn_cast<FixedVectorType>(StoreTy); 1044 if (VecStoreTy) 1045 VecTy = FixedVectorType::get(StoreTy->getScalarType(), 1046 Chain.size() * VecStoreTy->getNumElements()); 1047 else 1048 VecTy = FixedVectorType::get(StoreTy, Chain.size()); 1049 1050 // If it's more than the max vector size or the target has a better 1051 // vector factor, break it into two pieces. 1052 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 1053 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1054 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1055 " Creating two separate arrays.\n"); 1056 return vectorizeStoreChain(Chain.slice(0, TargetVF), 1057 InstructionsProcessed) | 1058 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 1059 } 1060 1061 LLVM_DEBUG({ 1062 dbgs() << "LSV: Stores to vectorize:\n"; 1063 for (Instruction *I : Chain) 1064 dbgs() << " " << *I << "\n"; 1065 }); 1066 1067 // We won't try again to vectorize the elements of the chain, regardless of 1068 // whether we succeed below. 1069 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1070 1071 // If the store is going to be misaligned, don't vectorize it. 1072 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1073 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1074 auto Chains = splitOddVectorElts(Chain, Sz); 1075 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1076 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1077 } 1078 1079 Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1080 Align(StackAdjustedAlignment), 1081 DL, S0, nullptr, &DT); 1082 if (NewAlign >= Alignment) 1083 Alignment = NewAlign; 1084 else 1085 return false; 1086 } 1087 1088 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 1089 auto Chains = splitOddVectorElts(Chain, Sz); 1090 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1091 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1092 } 1093 1094 BasicBlock::iterator First, Last; 1095 std::tie(First, Last) = getBoundaryInstrs(Chain); 1096 Builder.SetInsertPoint(&*Last); 1097 1098 Value *Vec = UndefValue::get(VecTy); 1099 1100 if (VecStoreTy) { 1101 unsigned VecWidth = VecStoreTy->getNumElements(); 1102 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1103 StoreInst *Store = cast<StoreInst>(Chain[I]); 1104 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1105 unsigned NewIdx = J + I * VecWidth; 1106 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1107 Builder.getInt32(J)); 1108 if (Extract->getType() != StoreTy->getScalarType()) 1109 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1110 1111 Value *Insert = 1112 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1113 Vec = Insert; 1114 } 1115 } 1116 } else { 1117 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1118 StoreInst *Store = cast<StoreInst>(Chain[I]); 1119 Value *Extract = Store->getValueOperand(); 1120 if (Extract->getType() != StoreTy->getScalarType()) 1121 Extract = 1122 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1123 1124 Value *Insert = 1125 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1126 Vec = Insert; 1127 } 1128 } 1129 1130 StoreInst *SI = Builder.CreateAlignedStore( 1131 Vec, 1132 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1133 Alignment); 1134 propagateMetadata(SI, Chain); 1135 1136 eraseInstructions(Chain); 1137 ++NumVectorInstructions; 1138 NumScalarsVectorized += Chain.size(); 1139 return true; 1140 } 1141 1142 bool Vectorizer::vectorizeLoadChain( 1143 ArrayRef<Instruction *> Chain, 1144 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1145 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1146 1147 // If the vector has an int element, default to int for the whole load. 1148 Type *LoadTy = nullptr; 1149 for (const auto &V : Chain) { 1150 LoadTy = cast<LoadInst>(V)->getType(); 1151 if (LoadTy->isIntOrIntVectorTy()) 1152 break; 1153 1154 if (LoadTy->isPtrOrPtrVectorTy()) { 1155 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1156 DL.getTypeSizeInBits(LoadTy)); 1157 break; 1158 } 1159 } 1160 assert(LoadTy && "Can't determine LoadInst type from chain"); 1161 1162 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1163 unsigned AS = L0->getPointerAddressSpace(); 1164 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1165 unsigned VF = VecRegSize / Sz; 1166 unsigned ChainSize = Chain.size(); 1167 Align Alignment = L0->getAlign(); 1168 1169 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1170 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1171 return false; 1172 } 1173 1174 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1175 if (NewChain.empty()) { 1176 // No vectorization possible. 1177 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1178 return false; 1179 } 1180 if (NewChain.size() == 1) { 1181 // Failed after the first instruction. Discard it and try the smaller chain. 1182 InstructionsProcessed->insert(NewChain.front()); 1183 return false; 1184 } 1185 1186 // Update Chain to the valid vectorizable subchain. 1187 Chain = NewChain; 1188 ChainSize = Chain.size(); 1189 1190 // Check if it's legal to vectorize this chain. If not, split the chain and 1191 // try again. 1192 unsigned EltSzInBytes = Sz / 8; 1193 unsigned SzInBytes = EltSzInBytes * ChainSize; 1194 VectorType *VecTy; 1195 auto *VecLoadTy = dyn_cast<FixedVectorType>(LoadTy); 1196 if (VecLoadTy) 1197 VecTy = FixedVectorType::get(LoadTy->getScalarType(), 1198 Chain.size() * VecLoadTy->getNumElements()); 1199 else 1200 VecTy = FixedVectorType::get(LoadTy, Chain.size()); 1201 1202 // If it's more than the max vector size or the target has a better 1203 // vector factor, break it into two pieces. 1204 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1205 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1206 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1207 " Creating two separate arrays.\n"); 1208 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1209 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1210 } 1211 1212 // We won't try again to vectorize the elements of the chain, regardless of 1213 // whether we succeed below. 1214 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1215 1216 // If the load is going to be misaligned, don't vectorize it. 1217 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1218 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1219 auto Chains = splitOddVectorElts(Chain, Sz); 1220 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1221 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1222 } 1223 1224 Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1225 Align(StackAdjustedAlignment), 1226 DL, L0, nullptr, &DT); 1227 if (NewAlign >= Alignment) 1228 Alignment = NewAlign; 1229 else 1230 return false; 1231 } 1232 1233 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1234 auto Chains = splitOddVectorElts(Chain, Sz); 1235 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1236 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1237 } 1238 1239 LLVM_DEBUG({ 1240 dbgs() << "LSV: Loads to vectorize:\n"; 1241 for (Instruction *I : Chain) 1242 I->dump(); 1243 }); 1244 1245 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1246 // Last may have changed since then, but the value of First won't have. If it 1247 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1248 BasicBlock::iterator First, Last; 1249 std::tie(First, Last) = getBoundaryInstrs(Chain); 1250 Builder.SetInsertPoint(&*First); 1251 1252 Value *Bitcast = 1253 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1254 LoadInst *LI = 1255 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment)); 1256 propagateMetadata(LI, Chain); 1257 1258 if (VecLoadTy) { 1259 SmallVector<Instruction *, 16> InstrsToErase; 1260 1261 unsigned VecWidth = VecLoadTy->getNumElements(); 1262 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1263 for (auto Use : Chain[I]->users()) { 1264 // All users of vector loads are ExtractElement instructions with 1265 // constant indices, otherwise we would have bailed before now. 1266 Instruction *UI = cast<Instruction>(Use); 1267 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1268 unsigned NewIdx = Idx + I * VecWidth; 1269 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1270 UI->getName()); 1271 if (V->getType() != UI->getType()) 1272 V = Builder.CreateBitCast(V, UI->getType()); 1273 1274 // Replace the old instruction. 1275 UI->replaceAllUsesWith(V); 1276 InstrsToErase.push_back(UI); 1277 } 1278 } 1279 1280 // Bitcast might not be an Instruction, if the value being loaded is a 1281 // constant. In that case, no need to reorder anything. 1282 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1283 reorder(BitcastInst); 1284 1285 for (auto I : InstrsToErase) 1286 I->eraseFromParent(); 1287 } else { 1288 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1289 Value *CV = Chain[I]; 1290 Value *V = 1291 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1292 if (V->getType() != CV->getType()) { 1293 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1294 } 1295 1296 // Replace the old instruction. 1297 CV->replaceAllUsesWith(V); 1298 } 1299 1300 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1301 reorder(BitcastInst); 1302 } 1303 1304 eraseInstructions(Chain); 1305 1306 ++NumVectorInstructions; 1307 NumScalarsVectorized += Chain.size(); 1308 return true; 1309 } 1310 1311 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1312 Align Alignment) { 1313 if (Alignment.value() % SzInBytes == 0) 1314 return false; 1315 1316 bool Fast = false; 1317 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1318 SzInBytes * 8, AddressSpace, 1319 Alignment, &Fast); 1320 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1321 << " and fast? " << Fast << "\n";); 1322 return !Allows || !Fast; 1323 } 1324