1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueTracking.h" 56 #include "llvm/Analysis/VectorUtils.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/IntrinsicInst.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Utils/Local.h" 81 #include "llvm/Transforms/Vectorize.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdlib> 85 #include <tuple> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "load-store-vectorizer" 91 92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 94 95 // FIXME: Assuming stack alignment of 4 is always good enough 96 static const unsigned StackAdjustedAlignment = 4; 97 98 namespace { 99 100 /// ChainID is an arbitrary token that is allowed to be different only for the 101 /// accesses that are guaranteed to be considered non-consecutive by 102 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 103 /// together and reducing the number of instructions the main search operates on 104 /// at a time, i.e. this is to reduce compile time and nothing else as the main 105 /// search has O(n^2) time complexity. The underlying type of ChainID should not 106 /// be relied upon. 107 using ChainID = const Value *; 108 using InstrList = SmallVector<Instruction *, 8>; 109 using InstrListMap = MapVector<ChainID, InstrList>; 110 111 class Vectorizer { 112 Function &F; 113 AliasAnalysis &AA; 114 DominatorTree &DT; 115 ScalarEvolution &SE; 116 TargetTransformInfo &TTI; 117 const DataLayout &DL; 118 IRBuilder<> Builder; 119 120 public: 121 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 122 ScalarEvolution &SE, TargetTransformInfo &TTI) 123 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 124 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 125 126 bool run(); 127 128 private: 129 unsigned getPointerAddressSpace(Value *I); 130 131 Align getAlign(LoadInst *LI) const { 132 return DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType()); 133 } 134 135 Align getAlign(StoreInst *SI) const { 136 return DL.getValueOrABITypeAlignment(SI->getAlign(), 137 SI->getValueOperand()->getType()); 138 } 139 140 static const unsigned MaxDepth = 3; 141 142 bool isConsecutiveAccess(Value *A, Value *B); 143 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, 144 unsigned Depth = 0) const; 145 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 146 unsigned Depth) const; 147 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 148 unsigned Depth) const; 149 150 /// After vectorization, reorder the instructions that I depends on 151 /// (the instructions defining its operands), to ensure they dominate I. 152 void reorder(Instruction *I); 153 154 /// Returns the first and the last instructions in Chain. 155 std::pair<BasicBlock::iterator, BasicBlock::iterator> 156 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 157 158 /// Erases the original instructions after vectorizing. 159 void eraseInstructions(ArrayRef<Instruction *> Chain); 160 161 /// "Legalize" the vector type that would be produced by combining \p 162 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 163 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 164 /// expected to have more than 4 elements. 165 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 166 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 167 168 /// Finds the largest prefix of Chain that's vectorizable, checking for 169 /// intervening instructions which may affect the memory accessed by the 170 /// instructions within Chain. 171 /// 172 /// The elements of \p Chain must be all loads or all stores and must be in 173 /// address order. 174 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 175 176 /// Collects load and store instructions to vectorize. 177 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 178 179 /// Processes the collected instructions, the \p Map. The values of \p Map 180 /// should be all loads or all stores. 181 bool vectorizeChains(InstrListMap &Map); 182 183 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 184 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 185 186 /// Vectorizes the load instructions in Chain. 187 bool 188 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 189 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 190 191 /// Vectorizes the store instructions in Chain. 192 bool 193 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 194 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 195 196 /// Check if this load/store access is misaligned accesses. 197 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 198 unsigned Alignment); 199 }; 200 201 class LoadStoreVectorizerLegacyPass : public FunctionPass { 202 public: 203 static char ID; 204 205 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 206 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 207 } 208 209 bool runOnFunction(Function &F) override; 210 211 StringRef getPassName() const override { 212 return "GPU Load and Store Vectorizer"; 213 } 214 215 void getAnalysisUsage(AnalysisUsage &AU) const override { 216 AU.addRequired<AAResultsWrapperPass>(); 217 AU.addRequired<ScalarEvolutionWrapperPass>(); 218 AU.addRequired<DominatorTreeWrapperPass>(); 219 AU.addRequired<TargetTransformInfoWrapperPass>(); 220 AU.setPreservesCFG(); 221 } 222 }; 223 224 } // end anonymous namespace 225 226 char LoadStoreVectorizerLegacyPass::ID = 0; 227 228 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 229 "Vectorize load and Store instructions", false, false) 230 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 231 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 232 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 233 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 234 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 235 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 236 "Vectorize load and store instructions", false, false) 237 238 Pass *llvm::createLoadStoreVectorizerPass() { 239 return new LoadStoreVectorizerLegacyPass(); 240 } 241 242 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 243 // Don't vectorize when the attribute NoImplicitFloat is used. 244 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 245 return false; 246 247 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 248 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 249 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 250 TargetTransformInfo &TTI = 251 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 252 253 Vectorizer V(F, AA, DT, SE, TTI); 254 return V.run(); 255 } 256 257 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 258 // Don't vectorize when the attribute NoImplicitFloat is used. 259 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 260 return PreservedAnalyses::all(); 261 262 AliasAnalysis &AA = AM.getResult<AAManager>(F); 263 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 264 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 265 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 266 267 Vectorizer V(F, AA, DT, SE, TTI); 268 bool Changed = V.run(); 269 PreservedAnalyses PA; 270 PA.preserveSet<CFGAnalyses>(); 271 return Changed ? PA : PreservedAnalyses::all(); 272 } 273 274 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 275 // vectors of Instructions. 276 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 277 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 278 propagateMetadata(I, VL); 279 } 280 281 // Vectorizer Implementation 282 bool Vectorizer::run() { 283 bool Changed = false; 284 285 // Scan the blocks in the function in post order. 286 for (BasicBlock *BB : post_order(&F)) { 287 InstrListMap LoadRefs, StoreRefs; 288 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 289 Changed |= vectorizeChains(LoadRefs); 290 Changed |= vectorizeChains(StoreRefs); 291 } 292 293 return Changed; 294 } 295 296 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 297 if (LoadInst *L = dyn_cast<LoadInst>(I)) 298 return L->getPointerAddressSpace(); 299 if (StoreInst *S = dyn_cast<StoreInst>(I)) 300 return S->getPointerAddressSpace(); 301 return -1; 302 } 303 304 // FIXME: Merge with llvm::isConsecutiveAccess 305 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 306 Value *PtrA = getLoadStorePointerOperand(A); 307 Value *PtrB = getLoadStorePointerOperand(B); 308 unsigned ASA = getPointerAddressSpace(A); 309 unsigned ASB = getPointerAddressSpace(B); 310 311 // Check that the address spaces match and that the pointers are valid. 312 if (!PtrA || !PtrB || (ASA != ASB)) 313 return false; 314 315 // Make sure that A and B are different pointers of the same size type. 316 Type *PtrATy = PtrA->getType()->getPointerElementType(); 317 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 318 if (PtrA == PtrB || 319 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 320 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 321 DL.getTypeStoreSize(PtrATy->getScalarType()) != 322 DL.getTypeStoreSize(PtrBTy->getScalarType())) 323 return false; 324 325 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 326 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 327 328 return areConsecutivePointers(PtrA, PtrB, Size); 329 } 330 331 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 332 APInt PtrDelta, unsigned Depth) const { 333 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 334 APInt OffsetA(PtrBitWidth, 0); 335 APInt OffsetB(PtrBitWidth, 0); 336 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 337 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 338 339 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 340 341 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 342 return false; 343 344 // In case if we have to shrink the pointer 345 // stripAndAccumulateInBoundsConstantOffsets should properly handle a 346 // possible overflow and the value should fit into a smallest data type 347 // used in the cast/gep chain. 348 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth && 349 OffsetB.getMinSignedBits() <= NewPtrBitWidth); 350 351 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 352 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 353 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth); 354 355 APInt OffsetDelta = OffsetB - OffsetA; 356 357 // Check if they are based on the same pointer. That makes the offsets 358 // sufficient. 359 if (PtrA == PtrB) 360 return OffsetDelta == PtrDelta; 361 362 // Compute the necessary base pointer delta to have the necessary final delta 363 // equal to the pointer delta requested. 364 APInt BaseDelta = PtrDelta - OffsetDelta; 365 366 // Compute the distance with SCEV between the base pointers. 367 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 368 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 369 const SCEV *C = SE.getConstant(BaseDelta); 370 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 371 if (X == PtrSCEVB) 372 return true; 373 374 // The above check will not catch the cases where one of the pointers is 375 // factorized but the other one is not, such as (C + (S * (A + B))) vs 376 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 377 // and getting the simplified difference. 378 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 379 if (C == Dist) 380 return true; 381 382 // Sometimes even this doesn't work, because SCEV can't always see through 383 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 384 // things the hard way. 385 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 386 } 387 388 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 389 APInt PtrDelta, 390 unsigned Depth) const { 391 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 392 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 393 if (!GEPA || !GEPB) 394 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 395 396 // Look through GEPs after checking they're the same except for the last 397 // index. 398 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 399 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 400 return false; 401 gep_type_iterator GTIA = gep_type_begin(GEPA); 402 gep_type_iterator GTIB = gep_type_begin(GEPB); 403 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 404 if (GTIA.getOperand() != GTIB.getOperand()) 405 return false; 406 ++GTIA; 407 ++GTIB; 408 } 409 410 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 411 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 412 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 413 OpA->getType() != OpB->getType()) 414 return false; 415 416 if (PtrDelta.isNegative()) { 417 if (PtrDelta.isMinSignedValue()) 418 return false; 419 PtrDelta.negate(); 420 std::swap(OpA, OpB); 421 } 422 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 423 if (PtrDelta.urem(Stride) != 0) 424 return false; 425 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 426 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 427 428 // Only look through a ZExt/SExt. 429 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 430 return false; 431 432 bool Signed = isa<SExtInst>(OpA); 433 434 // At this point A could be a function parameter, i.e. not an instruction 435 Value *ValA = OpA->getOperand(0); 436 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 437 if (!OpB || ValA->getType() != OpB->getType()) 438 return false; 439 440 // Now we need to prove that adding IdxDiff to ValA won't overflow. 441 bool Safe = false; 442 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 443 // ValA, we're okay. 444 if (OpB->getOpcode() == Instruction::Add && 445 isa<ConstantInt>(OpB->getOperand(1)) && 446 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { 447 if (Signed) 448 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 449 else 450 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 451 } 452 453 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 454 455 // Second attempt: 456 // If all set bits of IdxDiff or any higher order bit other than the sign bit 457 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 458 // overflow of any sort. 459 if (!Safe) { 460 OpA = dyn_cast<Instruction>(ValA); 461 if (!OpA) 462 return false; 463 KnownBits Known(BitWidth); 464 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 465 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 466 if (Signed) 467 BitsAllowedToBeSet.clearBit(BitWidth - 1); 468 if (BitsAllowedToBeSet.ult(IdxDiff)) 469 return false; 470 } 471 472 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 473 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 474 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 475 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 476 return X == OffsetSCEVB; 477 } 478 479 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 480 const APInt &PtrDelta, 481 unsigned Depth) const { 482 if (Depth++ == MaxDepth) 483 return false; 484 485 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 486 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 487 return SelectA->getCondition() == SelectB->getCondition() && 488 areConsecutivePointers(SelectA->getTrueValue(), 489 SelectB->getTrueValue(), PtrDelta, Depth) && 490 areConsecutivePointers(SelectA->getFalseValue(), 491 SelectB->getFalseValue(), PtrDelta, Depth); 492 } 493 } 494 return false; 495 } 496 497 void Vectorizer::reorder(Instruction *I) { 498 SmallPtrSet<Instruction *, 16> InstructionsToMove; 499 SmallVector<Instruction *, 16> Worklist; 500 501 Worklist.push_back(I); 502 while (!Worklist.empty()) { 503 Instruction *IW = Worklist.pop_back_val(); 504 int NumOperands = IW->getNumOperands(); 505 for (int i = 0; i < NumOperands; i++) { 506 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 507 if (!IM || IM->getOpcode() == Instruction::PHI) 508 continue; 509 510 // If IM is in another BB, no need to move it, because this pass only 511 // vectorizes instructions within one BB. 512 if (IM->getParent() != I->getParent()) 513 continue; 514 515 if (!IM->comesBefore(I)) { 516 InstructionsToMove.insert(IM); 517 Worklist.push_back(IM); 518 } 519 } 520 } 521 522 // All instructions to move should follow I. Start from I, not from begin(). 523 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 524 ++BBI) { 525 if (!InstructionsToMove.count(&*BBI)) 526 continue; 527 Instruction *IM = &*BBI; 528 --BBI; 529 IM->removeFromParent(); 530 IM->insertBefore(I); 531 } 532 } 533 534 std::pair<BasicBlock::iterator, BasicBlock::iterator> 535 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 536 Instruction *C0 = Chain[0]; 537 BasicBlock::iterator FirstInstr = C0->getIterator(); 538 BasicBlock::iterator LastInstr = C0->getIterator(); 539 540 BasicBlock *BB = C0->getParent(); 541 unsigned NumFound = 0; 542 for (Instruction &I : *BB) { 543 if (!is_contained(Chain, &I)) 544 continue; 545 546 ++NumFound; 547 if (NumFound == 1) { 548 FirstInstr = I.getIterator(); 549 } 550 if (NumFound == Chain.size()) { 551 LastInstr = I.getIterator(); 552 break; 553 } 554 } 555 556 // Range is [first, last). 557 return std::make_pair(FirstInstr, ++LastInstr); 558 } 559 560 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 561 SmallVector<Instruction *, 16> Instrs; 562 for (Instruction *I : Chain) { 563 Value *PtrOperand = getLoadStorePointerOperand(I); 564 assert(PtrOperand && "Instruction must have a pointer operand."); 565 Instrs.push_back(I); 566 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 567 Instrs.push_back(GEP); 568 } 569 570 // Erase instructions. 571 for (Instruction *I : Instrs) 572 if (I->use_empty()) 573 I->eraseFromParent(); 574 } 575 576 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 577 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 578 unsigned ElementSizeBits) { 579 unsigned ElementSizeBytes = ElementSizeBits / 8; 580 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 581 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 582 if (NumLeft == Chain.size()) { 583 if ((NumLeft & 1) == 0) 584 NumLeft /= 2; // Split even in half 585 else 586 --NumLeft; // Split off last element 587 } else if (NumLeft == 0) 588 NumLeft = 1; 589 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 590 } 591 592 ArrayRef<Instruction *> 593 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 594 // These are in BB order, unlike Chain, which is in address order. 595 SmallVector<Instruction *, 16> MemoryInstrs; 596 SmallVector<Instruction *, 16> ChainInstrs; 597 598 bool IsLoadChain = isa<LoadInst>(Chain[0]); 599 LLVM_DEBUG({ 600 for (Instruction *I : Chain) { 601 if (IsLoadChain) 602 assert(isa<LoadInst>(I) && 603 "All elements of Chain must be loads, or all must be stores."); 604 else 605 assert(isa<StoreInst>(I) && 606 "All elements of Chain must be loads, or all must be stores."); 607 } 608 }); 609 610 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 611 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 612 if (!is_contained(Chain, &I)) 613 MemoryInstrs.push_back(&I); 614 else 615 ChainInstrs.push_back(&I); 616 } else if (isa<IntrinsicInst>(&I) && 617 cast<IntrinsicInst>(&I)->getIntrinsicID() == 618 Intrinsic::sideeffect) { 619 // Ignore llvm.sideeffect calls. 620 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 621 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 622 << '\n'); 623 break; 624 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 625 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 626 << '\n'); 627 break; 628 } 629 } 630 631 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 632 unsigned ChainInstrIdx = 0; 633 Instruction *BarrierMemoryInstr = nullptr; 634 635 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 636 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 637 638 // If a barrier memory instruction was found, chain instructions that follow 639 // will not be added to the valid prefix. 640 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr)) 641 break; 642 643 // Check (in BB order) if any instruction prevents ChainInstr from being 644 // vectorized. Find and store the first such "conflicting" instruction. 645 for (Instruction *MemInstr : MemoryInstrs) { 646 // If a barrier memory instruction was found, do not check past it. 647 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr)) 648 break; 649 650 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 651 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 652 if (MemLoad && ChainLoad) 653 continue; 654 655 // We can ignore the alias if the we have a load store pair and the load 656 // is known to be invariant. The load cannot be clobbered by the store. 657 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 658 return LI->hasMetadata(LLVMContext::MD_invariant_load); 659 }; 660 661 // We can ignore the alias as long as the load comes before the store, 662 // because that means we won't be moving the load past the store to 663 // vectorize it (the vectorized load is inserted at the location of the 664 // first load in the chain). 665 if (isa<StoreInst>(MemInstr) && ChainLoad && 666 (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr))) 667 continue; 668 669 // Same case, but in reverse. 670 if (MemLoad && isa<StoreInst>(ChainInstr) && 671 (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr))) 672 continue; 673 674 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 675 MemoryLocation::get(ChainInstr))) { 676 LLVM_DEBUG({ 677 dbgs() << "LSV: Found alias:\n" 678 " Aliasing instruction and pointer:\n" 679 << " " << *MemInstr << '\n' 680 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 681 << " Aliased instruction and pointer:\n" 682 << " " << *ChainInstr << '\n' 683 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 684 }); 685 // Save this aliasing memory instruction as a barrier, but allow other 686 // instructions that precede the barrier to be vectorized with this one. 687 BarrierMemoryInstr = MemInstr; 688 break; 689 } 690 } 691 // Continue the search only for store chains, since vectorizing stores that 692 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 693 // up to an aliasing store, but should not pull loads from further down in 694 // the basic block. 695 if (IsLoadChain && BarrierMemoryInstr) { 696 // The BarrierMemoryInstr is a store that precedes ChainInstr. 697 assert(BarrierMemoryInstr->comesBefore(ChainInstr)); 698 break; 699 } 700 } 701 702 // Find the largest prefix of Chain whose elements are all in 703 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 704 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 705 // order.) 706 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 707 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 708 unsigned ChainIdx = 0; 709 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 710 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 711 break; 712 } 713 return Chain.slice(0, ChainIdx); 714 } 715 716 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { 717 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 718 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 719 // The select's themselves are distinct instructions even if they share the 720 // same condition and evaluate to consecutive pointers for true and false 721 // values of the condition. Therefore using the select's themselves for 722 // grouping instructions would put consecutive accesses into different lists 723 // and they won't be even checked for being consecutive, and won't be 724 // vectorized. 725 return Sel->getCondition(); 726 } 727 return ObjPtr; 728 } 729 730 std::pair<InstrListMap, InstrListMap> 731 Vectorizer::collectInstructions(BasicBlock *BB) { 732 InstrListMap LoadRefs; 733 InstrListMap StoreRefs; 734 735 for (Instruction &I : *BB) { 736 if (!I.mayReadOrWriteMemory()) 737 continue; 738 739 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 740 if (!LI->isSimple()) 741 continue; 742 743 // Skip if it's not legal. 744 if (!TTI.isLegalToVectorizeLoad(LI)) 745 continue; 746 747 Type *Ty = LI->getType(); 748 if (!VectorType::isValidElementType(Ty->getScalarType())) 749 continue; 750 751 // Skip weird non-byte sizes. They probably aren't worth the effort of 752 // handling correctly. 753 unsigned TySize = DL.getTypeSizeInBits(Ty); 754 if ((TySize % 8) != 0) 755 continue; 756 757 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 758 // functions are currently using an integer type for the vectorized 759 // load/store, and does not support casting between the integer type and a 760 // vector of pointers (e.g. i64 to <2 x i16*>) 761 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 762 continue; 763 764 Value *Ptr = LI->getPointerOperand(); 765 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 766 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 767 768 unsigned VF = VecRegSize / TySize; 769 VectorType *VecTy = dyn_cast<VectorType>(Ty); 770 771 // No point in looking at these if they're too big to vectorize. 772 if (TySize > VecRegSize / 2 || 773 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 774 continue; 775 776 // Make sure all the users of a vector are constant-index extracts. 777 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 778 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 779 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 780 })) 781 continue; 782 783 // Save the load locations. 784 const ChainID ID = getChainID(Ptr, DL); 785 LoadRefs[ID].push_back(LI); 786 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 787 if (!SI->isSimple()) 788 continue; 789 790 // Skip if it's not legal. 791 if (!TTI.isLegalToVectorizeStore(SI)) 792 continue; 793 794 Type *Ty = SI->getValueOperand()->getType(); 795 if (!VectorType::isValidElementType(Ty->getScalarType())) 796 continue; 797 798 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 799 // functions are currently using an integer type for the vectorized 800 // load/store, and does not support casting between the integer type and a 801 // vector of pointers (e.g. i64 to <2 x i16*>) 802 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 803 continue; 804 805 // Skip weird non-byte sizes. They probably aren't worth the effort of 806 // handling correctly. 807 unsigned TySize = DL.getTypeSizeInBits(Ty); 808 if ((TySize % 8) != 0) 809 continue; 810 811 Value *Ptr = SI->getPointerOperand(); 812 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 813 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 814 815 unsigned VF = VecRegSize / TySize; 816 VectorType *VecTy = dyn_cast<VectorType>(Ty); 817 818 // No point in looking at these if they're too big to vectorize. 819 if (TySize > VecRegSize / 2 || 820 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 821 continue; 822 823 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 824 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 825 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 826 })) 827 continue; 828 829 // Save store location. 830 const ChainID ID = getChainID(Ptr, DL); 831 StoreRefs[ID].push_back(SI); 832 } 833 } 834 835 return {LoadRefs, StoreRefs}; 836 } 837 838 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 839 bool Changed = false; 840 841 for (const std::pair<ChainID, InstrList> &Chain : Map) { 842 unsigned Size = Chain.second.size(); 843 if (Size < 2) 844 continue; 845 846 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 847 848 // Process the stores in chunks of 64. 849 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 850 unsigned Len = std::min<unsigned>(CE - CI, 64); 851 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 852 Changed |= vectorizeInstructions(Chunk); 853 } 854 } 855 856 return Changed; 857 } 858 859 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 860 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 861 << " instructions.\n"); 862 SmallVector<int, 16> Heads, Tails; 863 int ConsecutiveChain[64]; 864 865 // Do a quadratic search on all of the given loads/stores and find all of the 866 // pairs of loads/stores that follow each other. 867 for (int i = 0, e = Instrs.size(); i < e; ++i) { 868 ConsecutiveChain[i] = -1; 869 for (int j = e - 1; j >= 0; --j) { 870 if (i == j) 871 continue; 872 873 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 874 if (ConsecutiveChain[i] != -1) { 875 int CurDistance = std::abs(ConsecutiveChain[i] - i); 876 int NewDistance = std::abs(ConsecutiveChain[i] - j); 877 if (j < i || NewDistance > CurDistance) 878 continue; // Should not insert. 879 } 880 881 Tails.push_back(j); 882 Heads.push_back(i); 883 ConsecutiveChain[i] = j; 884 } 885 } 886 } 887 888 bool Changed = false; 889 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 890 891 for (int Head : Heads) { 892 if (InstructionsProcessed.count(Instrs[Head])) 893 continue; 894 bool LongerChainExists = false; 895 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 896 if (Head == Tails[TIt] && 897 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 898 LongerChainExists = true; 899 break; 900 } 901 if (LongerChainExists) 902 continue; 903 904 // We found an instr that starts a chain. Now follow the chain and try to 905 // vectorize it. 906 SmallVector<Instruction *, 16> Operands; 907 int I = Head; 908 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 909 if (InstructionsProcessed.count(Instrs[I])) 910 break; 911 912 Operands.push_back(Instrs[I]); 913 I = ConsecutiveChain[I]; 914 } 915 916 bool Vectorized = false; 917 if (isa<LoadInst>(*Operands.begin())) 918 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 919 else 920 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 921 922 Changed |= Vectorized; 923 } 924 925 return Changed; 926 } 927 928 bool Vectorizer::vectorizeStoreChain( 929 ArrayRef<Instruction *> Chain, 930 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 931 StoreInst *S0 = cast<StoreInst>(Chain[0]); 932 933 // If the vector has an int element, default to int for the whole store. 934 Type *StoreTy = nullptr; 935 for (Instruction *I : Chain) { 936 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 937 if (StoreTy->isIntOrIntVectorTy()) 938 break; 939 940 if (StoreTy->isPtrOrPtrVectorTy()) { 941 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 942 DL.getTypeSizeInBits(StoreTy)); 943 break; 944 } 945 } 946 assert(StoreTy && "Failed to find store type"); 947 948 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 949 unsigned AS = S0->getPointerAddressSpace(); 950 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 951 unsigned VF = VecRegSize / Sz; 952 unsigned ChainSize = Chain.size(); 953 Align Alignment = getAlign(S0); 954 955 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 956 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 957 return false; 958 } 959 960 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 961 if (NewChain.empty()) { 962 // No vectorization possible. 963 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 964 return false; 965 } 966 if (NewChain.size() == 1) { 967 // Failed after the first instruction. Discard it and try the smaller chain. 968 InstructionsProcessed->insert(NewChain.front()); 969 return false; 970 } 971 972 // Update Chain to the valid vectorizable subchain. 973 Chain = NewChain; 974 ChainSize = Chain.size(); 975 976 // Check if it's legal to vectorize this chain. If not, split the chain and 977 // try again. 978 unsigned EltSzInBytes = Sz / 8; 979 unsigned SzInBytes = EltSzInBytes * ChainSize; 980 981 VectorType *VecTy; 982 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 983 if (VecStoreTy) 984 VecTy = VectorType::get(StoreTy->getScalarType(), 985 Chain.size() * VecStoreTy->getNumElements()); 986 else 987 VecTy = VectorType::get(StoreTy, Chain.size()); 988 989 // If it's more than the max vector size or the target has a better 990 // vector factor, break it into two pieces. 991 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 992 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 993 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 994 " Creating two separate arrays.\n"); 995 return vectorizeStoreChain(Chain.slice(0, TargetVF), 996 InstructionsProcessed) | 997 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 998 } 999 1000 LLVM_DEBUG({ 1001 dbgs() << "LSV: Stores to vectorize:\n"; 1002 for (Instruction *I : Chain) 1003 dbgs() << " " << *I << "\n"; 1004 }); 1005 1006 // We won't try again to vectorize the elements of the chain, regardless of 1007 // whether we succeed below. 1008 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1009 1010 // If the store is going to be misaligned, don't vectorize it. 1011 if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { 1012 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1013 auto Chains = splitOddVectorElts(Chain, Sz); 1014 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1015 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1016 } 1017 1018 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1019 StackAdjustedAlignment, 1020 DL, S0, nullptr, &DT); 1021 if (NewAlign >= Alignment.value()) 1022 Alignment = Align(NewAlign); 1023 else 1024 return false; 1025 } 1026 1027 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment.value(), AS)) { 1028 auto Chains = splitOddVectorElts(Chain, Sz); 1029 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1030 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1031 } 1032 1033 BasicBlock::iterator First, Last; 1034 std::tie(First, Last) = getBoundaryInstrs(Chain); 1035 Builder.SetInsertPoint(&*Last); 1036 1037 Value *Vec = UndefValue::get(VecTy); 1038 1039 if (VecStoreTy) { 1040 unsigned VecWidth = VecStoreTy->getNumElements(); 1041 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1042 StoreInst *Store = cast<StoreInst>(Chain[I]); 1043 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1044 unsigned NewIdx = J + I * VecWidth; 1045 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1046 Builder.getInt32(J)); 1047 if (Extract->getType() != StoreTy->getScalarType()) 1048 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1049 1050 Value *Insert = 1051 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1052 Vec = Insert; 1053 } 1054 } 1055 } else { 1056 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1057 StoreInst *Store = cast<StoreInst>(Chain[I]); 1058 Value *Extract = Store->getValueOperand(); 1059 if (Extract->getType() != StoreTy->getScalarType()) 1060 Extract = 1061 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1062 1063 Value *Insert = 1064 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1065 Vec = Insert; 1066 } 1067 } 1068 1069 StoreInst *SI = Builder.CreateAlignedStore( 1070 Vec, 1071 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1072 Alignment); 1073 propagateMetadata(SI, Chain); 1074 1075 eraseInstructions(Chain); 1076 ++NumVectorInstructions; 1077 NumScalarsVectorized += Chain.size(); 1078 return true; 1079 } 1080 1081 bool Vectorizer::vectorizeLoadChain( 1082 ArrayRef<Instruction *> Chain, 1083 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1084 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1085 1086 // If the vector has an int element, default to int for the whole load. 1087 Type *LoadTy = nullptr; 1088 for (const auto &V : Chain) { 1089 LoadTy = cast<LoadInst>(V)->getType(); 1090 if (LoadTy->isIntOrIntVectorTy()) 1091 break; 1092 1093 if (LoadTy->isPtrOrPtrVectorTy()) { 1094 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1095 DL.getTypeSizeInBits(LoadTy)); 1096 break; 1097 } 1098 } 1099 assert(LoadTy && "Can't determine LoadInst type from chain"); 1100 1101 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1102 unsigned AS = L0->getPointerAddressSpace(); 1103 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1104 unsigned VF = VecRegSize / Sz; 1105 unsigned ChainSize = Chain.size(); 1106 Align Alignment = getAlign(L0); 1107 1108 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1109 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1110 return false; 1111 } 1112 1113 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1114 if (NewChain.empty()) { 1115 // No vectorization possible. 1116 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1117 return false; 1118 } 1119 if (NewChain.size() == 1) { 1120 // Failed after the first instruction. Discard it and try the smaller chain. 1121 InstructionsProcessed->insert(NewChain.front()); 1122 return false; 1123 } 1124 1125 // Update Chain to the valid vectorizable subchain. 1126 Chain = NewChain; 1127 ChainSize = Chain.size(); 1128 1129 // Check if it's legal to vectorize this chain. If not, split the chain and 1130 // try again. 1131 unsigned EltSzInBytes = Sz / 8; 1132 unsigned SzInBytes = EltSzInBytes * ChainSize; 1133 VectorType *VecTy; 1134 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1135 if (VecLoadTy) 1136 VecTy = VectorType::get(LoadTy->getScalarType(), 1137 Chain.size() * VecLoadTy->getNumElements()); 1138 else 1139 VecTy = VectorType::get(LoadTy, Chain.size()); 1140 1141 // If it's more than the max vector size or the target has a better 1142 // vector factor, break it into two pieces. 1143 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1144 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1145 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1146 " Creating two separate arrays.\n"); 1147 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1148 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1149 } 1150 1151 // We won't try again to vectorize the elements of the chain, regardless of 1152 // whether we succeed below. 1153 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1154 1155 // If the load is going to be misaligned, don't vectorize it. 1156 if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { 1157 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1158 auto Chains = splitOddVectorElts(Chain, Sz); 1159 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1160 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1161 } 1162 1163 unsigned NewAlign = getOrEnforceKnownAlignment( 1164 L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT); 1165 if (NewAlign >= Alignment.value()) 1166 Alignment = Align(NewAlign); 1167 else 1168 return false; 1169 } 1170 1171 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment.value(), AS)) { 1172 auto Chains = splitOddVectorElts(Chain, Sz); 1173 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1174 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1175 } 1176 1177 LLVM_DEBUG({ 1178 dbgs() << "LSV: Loads to vectorize:\n"; 1179 for (Instruction *I : Chain) 1180 I->dump(); 1181 }); 1182 1183 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1184 // Last may have changed since then, but the value of First won't have. If it 1185 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1186 BasicBlock::iterator First, Last; 1187 std::tie(First, Last) = getBoundaryInstrs(Chain); 1188 Builder.SetInsertPoint(&*First); 1189 1190 Value *Bitcast = 1191 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1192 LoadInst *LI = 1193 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment)); 1194 propagateMetadata(LI, Chain); 1195 1196 if (VecLoadTy) { 1197 SmallVector<Instruction *, 16> InstrsToErase; 1198 1199 unsigned VecWidth = VecLoadTy->getNumElements(); 1200 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1201 for (auto Use : Chain[I]->users()) { 1202 // All users of vector loads are ExtractElement instructions with 1203 // constant indices, otherwise we would have bailed before now. 1204 Instruction *UI = cast<Instruction>(Use); 1205 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1206 unsigned NewIdx = Idx + I * VecWidth; 1207 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1208 UI->getName()); 1209 if (V->getType() != UI->getType()) 1210 V = Builder.CreateBitCast(V, UI->getType()); 1211 1212 // Replace the old instruction. 1213 UI->replaceAllUsesWith(V); 1214 InstrsToErase.push_back(UI); 1215 } 1216 } 1217 1218 // Bitcast might not be an Instruction, if the value being loaded is a 1219 // constant. In that case, no need to reorder anything. 1220 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1221 reorder(BitcastInst); 1222 1223 for (auto I : InstrsToErase) 1224 I->eraseFromParent(); 1225 } else { 1226 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1227 Value *CV = Chain[I]; 1228 Value *V = 1229 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1230 if (V->getType() != CV->getType()) { 1231 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1232 } 1233 1234 // Replace the old instruction. 1235 CV->replaceAllUsesWith(V); 1236 } 1237 1238 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1239 reorder(BitcastInst); 1240 } 1241 1242 eraseInstructions(Chain); 1243 1244 ++NumVectorInstructions; 1245 NumScalarsVectorized += Chain.size(); 1246 return true; 1247 } 1248 1249 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1250 unsigned Alignment) { 1251 if (Alignment % SzInBytes == 0) 1252 return false; 1253 1254 bool Fast = false; 1255 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1256 SzInBytes * 8, AddressSpace, 1257 Alignment, &Fast); 1258 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1259 << " and fast? " << Fast << "\n";); 1260 return !Allows || !Fast; 1261 } 1262