1 //===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/ADT/MapVector.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/OrderedBasicBlock.h" 19 #include "llvm/Analysis/ScalarEvolution.h" 20 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Analysis/VectorUtils.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Type.h" 30 #include "llvm/IR/Value.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/Debug.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Transforms/Utils/Local.h" 35 #include "llvm/Transforms/Vectorize.h" 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "load-store-vectorizer" 40 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 41 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 42 43 namespace { 44 45 // FIXME: Assuming stack alignment of 4 is always good enough 46 static const unsigned StackAdjustedAlignment = 4; 47 typedef SmallVector<Instruction *, 8> InstrList; 48 typedef MapVector<Value *, InstrList> InstrListMap; 49 50 class Vectorizer { 51 Function &F; 52 AliasAnalysis &AA; 53 DominatorTree &DT; 54 ScalarEvolution &SE; 55 TargetTransformInfo &TTI; 56 const DataLayout &DL; 57 IRBuilder<> Builder; 58 59 public: 60 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 61 ScalarEvolution &SE, TargetTransformInfo &TTI) 62 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 63 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 64 65 bool run(); 66 67 private: 68 Value *getPointerOperand(Value *I); 69 70 unsigned getPointerAddressSpace(Value *I); 71 72 unsigned getAlignment(LoadInst *LI) const { 73 unsigned Align = LI->getAlignment(); 74 if (Align != 0) 75 return Align; 76 77 return DL.getABITypeAlignment(LI->getType()); 78 } 79 80 unsigned getAlignment(StoreInst *SI) const { 81 unsigned Align = SI->getAlignment(); 82 if (Align != 0) 83 return Align; 84 85 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 86 } 87 88 bool isConsecutiveAccess(Value *A, Value *B); 89 90 /// After vectorization, reorder the instructions that I depends on 91 /// (the instructions defining its operands), to ensure they dominate I. 92 void reorder(Instruction *I); 93 94 /// Returns the first and the last instructions in Chain. 95 std::pair<BasicBlock::iterator, BasicBlock::iterator> 96 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 97 98 /// Erases the original instructions after vectorizing. 99 void eraseInstructions(ArrayRef<Instruction *> Chain); 100 101 /// "Legalize" the vector type that would be produced by combining \p 102 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 103 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 104 /// expected to have more than 4 elements. 105 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 106 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 107 108 /// Finds the largest prefix of Chain that's vectorizable, checking for 109 /// intervening instructions which may affect the memory accessed by the 110 /// instructions within Chain. 111 /// 112 /// The elements of \p Chain must be all loads or all stores and must be in 113 /// address order. 114 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 115 116 /// Collects load and store instructions to vectorize. 117 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 118 119 /// Processes the collected instructions, the \p Map. The values of \p Map 120 /// should be all loads or all stores. 121 bool vectorizeChains(InstrListMap &Map); 122 123 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 124 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 125 126 /// Vectorizes the load instructions in Chain. 127 bool 128 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 129 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 130 131 /// Vectorizes the store instructions in Chain. 132 bool 133 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 134 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 135 136 /// Check if this load/store access is misaligned accesses 137 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 138 unsigned Alignment); 139 }; 140 141 class LoadStoreVectorizer : public FunctionPass { 142 public: 143 static char ID; 144 145 LoadStoreVectorizer() : FunctionPass(ID) { 146 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 147 } 148 149 bool runOnFunction(Function &F) override; 150 151 const char *getPassName() const override { 152 return "GPU Load and Store Vectorizer"; 153 } 154 155 void getAnalysisUsage(AnalysisUsage &AU) const override { 156 AU.addRequired<AAResultsWrapperPass>(); 157 AU.addRequired<ScalarEvolutionWrapperPass>(); 158 AU.addRequired<DominatorTreeWrapperPass>(); 159 AU.addRequired<TargetTransformInfoWrapperPass>(); 160 AU.setPreservesCFG(); 161 } 162 }; 163 } 164 165 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 166 "Vectorize load and Store instructions", false, false) 167 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 169 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 170 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 171 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 172 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 173 "Vectorize load and store instructions", false, false) 174 175 char LoadStoreVectorizer::ID = 0; 176 177 Pass *llvm::createLoadStoreVectorizerPass() { 178 return new LoadStoreVectorizer(); 179 } 180 181 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 182 // vectors of Instructions. 183 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 184 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 185 propagateMetadata(I, VL); 186 } 187 188 bool LoadStoreVectorizer::runOnFunction(Function &F) { 189 // Don't vectorize when the attribute NoImplicitFloat is used. 190 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 191 return false; 192 193 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 194 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 195 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 196 TargetTransformInfo &TTI = 197 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 198 199 Vectorizer V(F, AA, DT, SE, TTI); 200 return V.run(); 201 } 202 203 // Vectorizer Implementation 204 bool Vectorizer::run() { 205 bool Changed = false; 206 207 // Scan the blocks in the function in post order. 208 for (BasicBlock *BB : post_order(&F)) { 209 InstrListMap LoadRefs, StoreRefs; 210 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 211 Changed |= vectorizeChains(LoadRefs); 212 Changed |= vectorizeChains(StoreRefs); 213 } 214 215 return Changed; 216 } 217 218 Value *Vectorizer::getPointerOperand(Value *I) { 219 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 220 return LI->getPointerOperand(); 221 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 222 return SI->getPointerOperand(); 223 return nullptr; 224 } 225 226 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 227 if (LoadInst *L = dyn_cast<LoadInst>(I)) 228 return L->getPointerAddressSpace(); 229 if (StoreInst *S = dyn_cast<StoreInst>(I)) 230 return S->getPointerAddressSpace(); 231 return -1; 232 } 233 234 // FIXME: Merge with llvm::isConsecutiveAccess 235 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 236 Value *PtrA = getPointerOperand(A); 237 Value *PtrB = getPointerOperand(B); 238 unsigned ASA = getPointerAddressSpace(A); 239 unsigned ASB = getPointerAddressSpace(B); 240 241 // Check that the address spaces match and that the pointers are valid. 242 if (!PtrA || !PtrB || (ASA != ASB)) 243 return false; 244 245 // Make sure that A and B are different pointers of the same size type. 246 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 247 Type *PtrATy = PtrA->getType()->getPointerElementType(); 248 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 249 if (PtrA == PtrB || 250 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 251 DL.getTypeStoreSize(PtrATy->getScalarType()) != 252 DL.getTypeStoreSize(PtrBTy->getScalarType())) 253 return false; 254 255 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 256 257 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 258 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 259 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 260 261 APInt OffsetDelta = OffsetB - OffsetA; 262 263 // Check if they are based on the same pointer. That makes the offsets 264 // sufficient. 265 if (PtrA == PtrB) 266 return OffsetDelta == Size; 267 268 // Compute the necessary base pointer delta to have the necessary final delta 269 // equal to the size. 270 APInt BaseDelta = Size - OffsetDelta; 271 272 // Compute the distance with SCEV between the base pointers. 273 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 274 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 275 const SCEV *C = SE.getConstant(BaseDelta); 276 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 277 if (X == PtrSCEVB) 278 return true; 279 280 // Sometimes even this doesn't work, because SCEV can't always see through 281 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 282 // things the hard way. 283 284 // Look through GEPs after checking they're the same except for the last 285 // index. 286 GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A)); 287 GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B)); 288 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 289 return false; 290 unsigned FinalIndex = GEPA->getNumOperands() - 1; 291 for (unsigned i = 0; i < FinalIndex; i++) 292 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 293 return false; 294 295 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 296 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 297 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 298 OpA->getType() != OpB->getType()) 299 return false; 300 301 // Only look through a ZExt/SExt. 302 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 303 return false; 304 305 bool Signed = isa<SExtInst>(OpA); 306 307 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 308 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 309 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 310 return false; 311 312 // Now we need to prove that adding 1 to OpA won't overflow. 313 bool Safe = false; 314 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 315 // we're okay. 316 if (OpB->getOpcode() == Instruction::Add && 317 isa<ConstantInt>(OpB->getOperand(1)) && 318 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 319 if (Signed) 320 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 321 else 322 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 323 } 324 325 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 326 327 // Second attempt: 328 // If any bits are known to be zero other than the sign bit in OpA, we can 329 // add 1 to it while guaranteeing no overflow of any sort. 330 if (!Safe) { 331 APInt KnownZero(BitWidth, 0); 332 APInt KnownOne(BitWidth, 0); 333 computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); 334 KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); 335 if (KnownZero != 0) 336 Safe = true; 337 } 338 339 if (!Safe) 340 return false; 341 342 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 343 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 344 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 345 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 346 return X2 == OffsetSCEVB; 347 } 348 349 void Vectorizer::reorder(Instruction *I) { 350 OrderedBasicBlock OBB(I->getParent()); 351 SmallPtrSet<Instruction *, 16> InstructionsToMove; 352 SmallVector<Instruction *, 16> Worklist; 353 354 Worklist.push_back(I); 355 while (!Worklist.empty()) { 356 Instruction *IW = Worklist.pop_back_val(); 357 int NumOperands = IW->getNumOperands(); 358 for (int i = 0; i < NumOperands; i++) { 359 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 360 if (!IM || IM->getOpcode() == Instruction::PHI) 361 continue; 362 363 // If IM is in another BB, no need to move it, because this pass only 364 // vectorizes instructions within one BB. 365 if (IM->getParent() != I->getParent()) 366 continue; 367 368 if (!OBB.dominates(IM, I)) { 369 InstructionsToMove.insert(IM); 370 Worklist.push_back(IM); 371 } 372 } 373 } 374 375 // All instructions to move should follow I. Start from I, not from begin(). 376 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 377 ++BBI) { 378 if (!InstructionsToMove.count(&*BBI)) 379 continue; 380 Instruction *IM = &*BBI; 381 --BBI; 382 IM->removeFromParent(); 383 IM->insertBefore(I); 384 } 385 } 386 387 std::pair<BasicBlock::iterator, BasicBlock::iterator> 388 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 389 Instruction *C0 = Chain[0]; 390 BasicBlock::iterator FirstInstr = C0->getIterator(); 391 BasicBlock::iterator LastInstr = C0->getIterator(); 392 393 BasicBlock *BB = C0->getParent(); 394 unsigned NumFound = 0; 395 for (Instruction &I : *BB) { 396 if (!is_contained(Chain, &I)) 397 continue; 398 399 ++NumFound; 400 if (NumFound == 1) { 401 FirstInstr = I.getIterator(); 402 } 403 if (NumFound == Chain.size()) { 404 LastInstr = I.getIterator(); 405 break; 406 } 407 } 408 409 // Range is [first, last). 410 return std::make_pair(FirstInstr, ++LastInstr); 411 } 412 413 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 414 SmallVector<Instruction *, 16> Instrs; 415 for (Instruction *I : Chain) { 416 Value *PtrOperand = getPointerOperand(I); 417 assert(PtrOperand && "Instruction must have a pointer operand."); 418 Instrs.push_back(I); 419 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 420 Instrs.push_back(GEP); 421 } 422 423 // Erase instructions. 424 for (Instruction *I : Instrs) 425 if (I->use_empty()) 426 I->eraseFromParent(); 427 } 428 429 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 430 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 431 unsigned ElementSizeBits) { 432 unsigned ElemSizeInBytes = ElementSizeBits / 8; 433 unsigned SizeInBytes = ElemSizeInBytes * Chain.size(); 434 unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes; 435 unsigned NumLeft = Chain.size() - NumRight; 436 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 437 } 438 439 ArrayRef<Instruction *> 440 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 441 // These are in BB order, unlike Chain, which is in address order. 442 SmallVector<Instruction *, 16> MemoryInstrs; 443 SmallVector<Instruction *, 16> ChainInstrs; 444 445 bool IsLoadChain = isa<LoadInst>(Chain[0]); 446 DEBUG({ 447 for (Instruction *I : Chain) { 448 if (IsLoadChain) 449 assert(isa<LoadInst>(I) && 450 "All elements of Chain must be loads, or all must be stores."); 451 else 452 assert(isa<StoreInst>(I) && 453 "All elements of Chain must be loads, or all must be stores."); 454 } 455 }); 456 457 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 458 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 459 if (!is_contained(Chain, &I)) 460 MemoryInstrs.push_back(&I); 461 else 462 ChainInstrs.push_back(&I); 463 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 464 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 465 break; 466 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 467 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 468 << '\n'); 469 break; 470 } 471 } 472 473 OrderedBasicBlock OBB(Chain[0]->getParent()); 474 475 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 476 unsigned ChainInstrIdx = 0; 477 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 478 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 479 bool AliasFound = false; 480 for (Instruction *MemInstr : MemoryInstrs) { 481 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr)) 482 continue; 483 484 // We can ignore the alias as long as the load comes before the store, 485 // because that means we won't be moving the load past the store to 486 // vectorize it (the vectorized load is inserted at the location of the 487 // first load in the chain). 488 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) && 489 OBB.dominates(ChainInstr, MemInstr)) 490 continue; 491 492 // Same case, but in reverse. 493 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) && 494 OBB.dominates(MemInstr, ChainInstr)) 495 continue; 496 497 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 498 MemoryLocation::get(ChainInstr))) { 499 DEBUG({ 500 dbgs() << "LSV: Found alias:\n" 501 " Aliasing instruction and pointer:\n" 502 << " " << *MemInstr << '\n' 503 << " " << *getPointerOperand(MemInstr) << '\n' 504 << " Aliased instruction and pointer:\n" 505 << " " << *ChainInstr << '\n' 506 << " " << *getPointerOperand(ChainInstr) << '\n'; 507 }); 508 AliasFound = true; 509 break; 510 } 511 } 512 if (AliasFound) 513 break; 514 } 515 516 // Find the largest prefix of Chain whose elements are all in 517 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 518 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 519 // order.) 520 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 521 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 522 unsigned ChainIdx = 0; 523 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 524 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 525 break; 526 } 527 return Chain.slice(0, ChainIdx); 528 } 529 530 std::pair<InstrListMap, InstrListMap> 531 Vectorizer::collectInstructions(BasicBlock *BB) { 532 InstrListMap LoadRefs; 533 InstrListMap StoreRefs; 534 535 for (Instruction &I : *BB) { 536 if (!I.mayReadOrWriteMemory()) 537 continue; 538 539 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 540 if (!LI->isSimple()) 541 continue; 542 543 Type *Ty = LI->getType(); 544 if (!VectorType::isValidElementType(Ty->getScalarType())) 545 continue; 546 547 // Skip weird non-byte sizes. They probably aren't worth the effort of 548 // handling correctly. 549 unsigned TySize = DL.getTypeSizeInBits(Ty); 550 if (TySize < 8) 551 continue; 552 553 Value *Ptr = LI->getPointerOperand(); 554 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 555 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 556 557 // No point in looking at these if they're too big to vectorize. 558 if (TySize > VecRegSize / 2) 559 continue; 560 561 // Make sure all the users of a vector are constant-index extracts. 562 if (isa<VectorType>(Ty) && !all_of(LI->users(), [LI](const User *U) { 563 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 564 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 565 })) 566 continue; 567 568 // TODO: Target hook to filter types. 569 570 // Save the load locations. 571 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 572 LoadRefs[ObjPtr].push_back(LI); 573 574 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 575 if (!SI->isSimple()) 576 continue; 577 578 Type *Ty = SI->getValueOperand()->getType(); 579 if (!VectorType::isValidElementType(Ty->getScalarType())) 580 continue; 581 582 // Skip weird non-byte sizes. They probably aren't worth the effort of 583 // handling correctly. 584 unsigned TySize = DL.getTypeSizeInBits(Ty); 585 if (TySize < 8) 586 continue; 587 588 Value *Ptr = SI->getPointerOperand(); 589 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 590 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 591 if (TySize > VecRegSize / 2) 592 continue; 593 594 if (isa<VectorType>(Ty) && !all_of(SI->users(), [SI](const User *U) { 595 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 596 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 597 })) 598 continue; 599 600 // Save store location. 601 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 602 StoreRefs[ObjPtr].push_back(SI); 603 } 604 } 605 606 return {LoadRefs, StoreRefs}; 607 } 608 609 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 610 bool Changed = false; 611 612 for (const std::pair<Value *, InstrList> &Chain : Map) { 613 unsigned Size = Chain.second.size(); 614 if (Size < 2) 615 continue; 616 617 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 618 619 // Process the stores in chunks of 64. 620 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 621 unsigned Len = std::min<unsigned>(CE - CI, 64); 622 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 623 Changed |= vectorizeInstructions(Chunk); 624 } 625 } 626 627 return Changed; 628 } 629 630 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 631 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 632 SmallVector<int, 16> Heads, Tails; 633 int ConsecutiveChain[64]; 634 635 // Do a quadratic search on all of the given stores and find all of the pairs 636 // of stores that follow each other. 637 for (int i = 0, e = Instrs.size(); i < e; ++i) { 638 ConsecutiveChain[i] = -1; 639 for (int j = e - 1; j >= 0; --j) { 640 if (i == j) 641 continue; 642 643 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 644 if (ConsecutiveChain[i] != -1) { 645 int CurDistance = std::abs(ConsecutiveChain[i] - i); 646 int NewDistance = std::abs(ConsecutiveChain[i] - j); 647 if (j < i || NewDistance > CurDistance) 648 continue; // Should not insert. 649 } 650 651 Tails.push_back(j); 652 Heads.push_back(i); 653 ConsecutiveChain[i] = j; 654 } 655 } 656 } 657 658 bool Changed = false; 659 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 660 661 for (int Head : Heads) { 662 if (InstructionsProcessed.count(Instrs[Head])) 663 continue; 664 bool LongerChainExists = false; 665 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 666 if (Head == Tails[TIt] && 667 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 668 LongerChainExists = true; 669 break; 670 } 671 if (LongerChainExists) 672 continue; 673 674 // We found an instr that starts a chain. Now follow the chain and try to 675 // vectorize it. 676 SmallVector<Instruction *, 16> Operands; 677 int I = Head; 678 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 679 if (InstructionsProcessed.count(Instrs[I])) 680 break; 681 682 Operands.push_back(Instrs[I]); 683 I = ConsecutiveChain[I]; 684 } 685 686 bool Vectorized = false; 687 if (isa<LoadInst>(*Operands.begin())) 688 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 689 else 690 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 691 692 Changed |= Vectorized; 693 } 694 695 return Changed; 696 } 697 698 bool Vectorizer::vectorizeStoreChain( 699 ArrayRef<Instruction *> Chain, 700 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 701 StoreInst *S0 = cast<StoreInst>(Chain[0]); 702 703 // If the vector has an int element, default to int for the whole load. 704 Type *StoreTy; 705 for (Instruction *I : Chain) { 706 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 707 if (StoreTy->isIntOrIntVectorTy()) 708 break; 709 710 if (StoreTy->isPtrOrPtrVectorTy()) { 711 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 712 DL.getTypeSizeInBits(StoreTy)); 713 break; 714 } 715 } 716 717 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 718 unsigned AS = S0->getPointerAddressSpace(); 719 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 720 unsigned VF = VecRegSize / Sz; 721 unsigned ChainSize = Chain.size(); 722 723 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 724 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 725 return false; 726 } 727 728 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 729 if (NewChain.empty()) { 730 // No vectorization possible. 731 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 732 return false; 733 } 734 if (NewChain.size() == 1) { 735 // Failed after the first instruction. Discard it and try the smaller chain. 736 InstructionsProcessed->insert(NewChain.front()); 737 return false; 738 } 739 740 // Update Chain to the valid vectorizable subchain. 741 Chain = NewChain; 742 ChainSize = Chain.size(); 743 744 // Store size should be 1B, 2B or multiple of 4B. 745 // TODO: Target hook for size constraint? 746 unsigned EltSzInBytes = Sz / 8; 747 unsigned SzInBytes = EltSzInBytes * ChainSize; 748 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 749 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 750 "or multiple of 4B. Splitting.\n"); 751 if (SzInBytes == 3) 752 return vectorizeStoreChain(Chain.slice(0, ChainSize - 1), 753 InstructionsProcessed); 754 755 auto Chains = splitOddVectorElts(Chain, Sz); 756 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 757 vectorizeStoreChain(Chains.second, InstructionsProcessed); 758 } 759 760 VectorType *VecTy; 761 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 762 if (VecStoreTy) 763 VecTy = VectorType::get(StoreTy->getScalarType(), 764 Chain.size() * VecStoreTy->getNumElements()); 765 else 766 VecTy = VectorType::get(StoreTy, Chain.size()); 767 768 // If it's more than the max vector size, break it into two pieces. 769 // TODO: Target hook to control types to split to. 770 if (ChainSize > VF) { 771 DEBUG(dbgs() << "LSV: Vector factor is too big." 772 " Creating two separate arrays.\n"); 773 return vectorizeStoreChain(Chain.slice(0, VF), InstructionsProcessed) | 774 vectorizeStoreChain(Chain.slice(VF), InstructionsProcessed); 775 } 776 777 DEBUG({ 778 dbgs() << "LSV: Stores to vectorize:\n"; 779 for (Instruction *I : Chain) 780 dbgs() << " " << *I << "\n"; 781 }); 782 783 // We won't try again to vectorize the elements of the chain, regardless of 784 // whether we succeed below. 785 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 786 787 // Check alignment restrictions. 788 unsigned Alignment = getAlignment(S0); 789 790 // If the store is going to be misaligned, don't vectorize it. 791 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 792 if (S0->getPointerAddressSpace() != 0) 793 return false; 794 795 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 796 StackAdjustedAlignment, 797 DL, S0, nullptr, &DT); 798 if (NewAlign < StackAdjustedAlignment) 799 return false; 800 } 801 802 BasicBlock::iterator First, Last; 803 std::tie(First, Last) = getBoundaryInstrs(Chain); 804 Builder.SetInsertPoint(&*Last); 805 806 Value *Vec = UndefValue::get(VecTy); 807 808 if (VecStoreTy) { 809 unsigned VecWidth = VecStoreTy->getNumElements(); 810 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 811 StoreInst *Store = cast<StoreInst>(Chain[I]); 812 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 813 unsigned NewIdx = J + I * VecWidth; 814 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 815 Builder.getInt32(J)); 816 if (Extract->getType() != StoreTy->getScalarType()) 817 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 818 819 Value *Insert = 820 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 821 Vec = Insert; 822 } 823 } 824 } else { 825 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 826 StoreInst *Store = cast<StoreInst>(Chain[I]); 827 Value *Extract = Store->getValueOperand(); 828 if (Extract->getType() != StoreTy->getScalarType()) 829 Extract = 830 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 831 832 Value *Insert = 833 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 834 Vec = Insert; 835 } 836 } 837 838 // This cast is safe because Builder.CreateStore() always creates a bona fide 839 // StoreInst. 840 StoreInst *SI = cast<StoreInst>( 841 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), 842 VecTy->getPointerTo(AS)))); 843 propagateMetadata(SI, Chain); 844 SI->setAlignment(Alignment); 845 846 eraseInstructions(Chain); 847 ++NumVectorInstructions; 848 NumScalarsVectorized += Chain.size(); 849 return true; 850 } 851 852 bool Vectorizer::vectorizeLoadChain( 853 ArrayRef<Instruction *> Chain, 854 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 855 LoadInst *L0 = cast<LoadInst>(Chain[0]); 856 857 // If the vector has an int element, default to int for the whole load. 858 Type *LoadTy; 859 for (const auto &V : Chain) { 860 LoadTy = cast<LoadInst>(V)->getType(); 861 if (LoadTy->isIntOrIntVectorTy()) 862 break; 863 864 if (LoadTy->isPtrOrPtrVectorTy()) { 865 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 866 DL.getTypeSizeInBits(LoadTy)); 867 break; 868 } 869 } 870 871 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 872 unsigned AS = L0->getPointerAddressSpace(); 873 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 874 unsigned VF = VecRegSize / Sz; 875 unsigned ChainSize = Chain.size(); 876 877 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 878 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 879 return false; 880 } 881 882 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 883 if (NewChain.empty()) { 884 // No vectorization possible. 885 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 886 return false; 887 } 888 if (NewChain.size() == 1) { 889 // Failed after the first instruction. Discard it and try the smaller chain. 890 InstructionsProcessed->insert(NewChain.front()); 891 return false; 892 } 893 894 // Update Chain to the valid vectorizable subchain. 895 Chain = NewChain; 896 ChainSize = Chain.size(); 897 898 // Load size should be 1B, 2B or multiple of 4B. 899 // TODO: Should size constraint be a target hook? 900 unsigned EltSzInBytes = Sz / 8; 901 unsigned SzInBytes = EltSzInBytes * ChainSize; 902 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 903 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 904 "or multiple of 4B. Splitting.\n"); 905 if (SzInBytes == 3) 906 return vectorizeLoadChain(Chain.slice(0, ChainSize - 1), 907 InstructionsProcessed); 908 auto Chains = splitOddVectorElts(Chain, Sz); 909 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 910 vectorizeLoadChain(Chains.second, InstructionsProcessed); 911 } 912 913 VectorType *VecTy; 914 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 915 if (VecLoadTy) 916 VecTy = VectorType::get(LoadTy->getScalarType(), 917 Chain.size() * VecLoadTy->getNumElements()); 918 else 919 VecTy = VectorType::get(LoadTy, Chain.size()); 920 921 // If it's more than the max vector size, break it into two pieces. 922 // TODO: Target hook to control types to split to. 923 if (ChainSize > VF) { 924 DEBUG(dbgs() << "LSV: Vector factor is too big. " 925 "Creating two separate arrays.\n"); 926 return vectorizeLoadChain(Chain.slice(0, VF), InstructionsProcessed) | 927 vectorizeLoadChain(Chain.slice(VF), InstructionsProcessed); 928 } 929 930 // We won't try again to vectorize the elements of the chain, regardless of 931 // whether we succeed below. 932 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 933 934 // Check alignment restrictions. 935 unsigned Alignment = getAlignment(L0); 936 937 // If the load is going to be misaligned, don't vectorize it. 938 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 939 if (L0->getPointerAddressSpace() != 0) 940 return false; 941 942 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 943 StackAdjustedAlignment, 944 DL, L0, nullptr, &DT); 945 if (NewAlign < StackAdjustedAlignment) 946 return false; 947 948 Alignment = NewAlign; 949 } 950 951 DEBUG({ 952 dbgs() << "LSV: Loads to vectorize:\n"; 953 for (Instruction *I : Chain) 954 I->dump(); 955 }); 956 957 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 958 // Last may have changed since then, but the value of First won't have. If it 959 // matters, we could compute getBoundaryInstrs only once and reuse it here. 960 BasicBlock::iterator First, Last; 961 std::tie(First, Last) = getBoundaryInstrs(Chain); 962 Builder.SetInsertPoint(&*First); 963 964 Value *Bitcast = 965 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 966 // This cast is safe because Builder.CreateLoad always creates a bona fide 967 // LoadInst. 968 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 969 propagateMetadata(LI, Chain); 970 LI->setAlignment(Alignment); 971 972 if (VecLoadTy) { 973 SmallVector<Instruction *, 16> InstrsToErase; 974 975 unsigned VecWidth = VecLoadTy->getNumElements(); 976 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 977 for (auto Use : Chain[I]->users()) { 978 // All users of vector loads are ExtractElement instructions with 979 // constant indices, otherwise we would have bailed before now. 980 Instruction *UI = cast<Instruction>(Use); 981 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 982 unsigned NewIdx = Idx + I * VecWidth; 983 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 984 UI->getName()); 985 if (V->getType() != UI->getType()) 986 V = Builder.CreateBitCast(V, UI->getType()); 987 988 // Replace the old instruction. 989 UI->replaceAllUsesWith(V); 990 InstrsToErase.push_back(UI); 991 } 992 } 993 994 // Bitcast might not be an Instruction, if the value being loaded is a 995 // constant. In that case, no need to reorder anything. 996 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 997 reorder(BitcastInst); 998 999 for (auto I : InstrsToErase) 1000 I->eraseFromParent(); 1001 } else { 1002 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1003 Value *CV = Chain[I]; 1004 Value *V = 1005 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1006 if (V->getType() != CV->getType()) { 1007 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1008 } 1009 1010 // Replace the old instruction. 1011 CV->replaceAllUsesWith(V); 1012 } 1013 1014 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1015 reorder(BitcastInst); 1016 } 1017 1018 eraseInstructions(Chain); 1019 1020 ++NumVectorInstructions; 1021 NumScalarsVectorized += Chain.size(); 1022 return true; 1023 } 1024 1025 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1026 unsigned Alignment) { 1027 if (Alignment % SzInBytes == 0) 1028 return false; 1029 1030 bool Fast = false; 1031 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1032 SzInBytes * 8, AddressSpace, 1033 Alignment, &Fast); 1034 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1035 << " and fast? " << Fast << "\n";); 1036 return !Allows || !Fast; 1037 } 1038