1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/APInt.h" 11 #include "llvm/ADT/ArrayRef.h" 12 #include "llvm/ADT/MapVector.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/STLExtras.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/ADT/iterator_range.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/MemoryLocation.h" 21 #include "llvm/Analysis/OrderedBasicBlock.h" 22 #include "llvm/Analysis/ScalarEvolution.h" 23 #include "llvm/Analysis/TargetTransformInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Dominators.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/IRBuilder.h" 34 #include "llvm/IR/InstrTypes.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/Module.h" 38 #include "llvm/IR/Type.h" 39 #include "llvm/IR/User.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/KnownBits.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include "llvm/Transforms/Utils/Local.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstdlib> 52 #include <tuple> 53 #include <utility> 54 55 using namespace llvm; 56 57 #define DEBUG_TYPE "load-store-vectorizer" 58 59 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 60 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 61 62 // FIXME: Assuming stack alignment of 4 is always good enough 63 static const unsigned StackAdjustedAlignment = 4; 64 65 namespace { 66 67 using InstrList = SmallVector<Instruction *, 8>; 68 using InstrListMap = MapVector<Value *, InstrList>; 69 70 class Vectorizer { 71 Function &F; 72 AliasAnalysis &AA; 73 DominatorTree &DT; 74 ScalarEvolution &SE; 75 TargetTransformInfo &TTI; 76 const DataLayout &DL; 77 IRBuilder<> Builder; 78 79 public: 80 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 81 ScalarEvolution &SE, TargetTransformInfo &TTI) 82 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 83 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 84 85 bool run(); 86 87 private: 88 Value *getPointerOperand(Value *I) const; 89 90 GetElementPtrInst *getSourceGEP(Value *Src) const; 91 92 unsigned getPointerAddressSpace(Value *I); 93 94 unsigned getAlignment(LoadInst *LI) const { 95 unsigned Align = LI->getAlignment(); 96 if (Align != 0) 97 return Align; 98 99 return DL.getABITypeAlignment(LI->getType()); 100 } 101 102 unsigned getAlignment(StoreInst *SI) const { 103 unsigned Align = SI->getAlignment(); 104 if (Align != 0) 105 return Align; 106 107 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 108 } 109 110 bool isConsecutiveAccess(Value *A, Value *B); 111 112 /// After vectorization, reorder the instructions that I depends on 113 /// (the instructions defining its operands), to ensure they dominate I. 114 void reorder(Instruction *I); 115 116 /// Returns the first and the last instructions in Chain. 117 std::pair<BasicBlock::iterator, BasicBlock::iterator> 118 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 119 120 /// Erases the original instructions after vectorizing. 121 void eraseInstructions(ArrayRef<Instruction *> Chain); 122 123 /// "Legalize" the vector type that would be produced by combining \p 124 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 125 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 126 /// expected to have more than 4 elements. 127 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 128 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 129 130 /// Finds the largest prefix of Chain that's vectorizable, checking for 131 /// intervening instructions which may affect the memory accessed by the 132 /// instructions within Chain. 133 /// 134 /// The elements of \p Chain must be all loads or all stores and must be in 135 /// address order. 136 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 137 138 /// Collects load and store instructions to vectorize. 139 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 140 141 /// Processes the collected instructions, the \p Map. The values of \p Map 142 /// should be all loads or all stores. 143 bool vectorizeChains(InstrListMap &Map); 144 145 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 146 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 147 148 /// Vectorizes the load instructions in Chain. 149 bool 150 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 151 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 152 153 /// Vectorizes the store instructions in Chain. 154 bool 155 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 156 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 157 158 /// Check if this load/store access is misaligned accesses. 159 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 160 unsigned Alignment); 161 }; 162 163 class LoadStoreVectorizer : public FunctionPass { 164 public: 165 static char ID; 166 167 LoadStoreVectorizer() : FunctionPass(ID) { 168 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 169 } 170 171 bool runOnFunction(Function &F) override; 172 173 StringRef getPassName() const override { 174 return "GPU Load and Store Vectorizer"; 175 } 176 177 void getAnalysisUsage(AnalysisUsage &AU) const override { 178 AU.addRequired<AAResultsWrapperPass>(); 179 AU.addRequired<ScalarEvolutionWrapperPass>(); 180 AU.addRequired<DominatorTreeWrapperPass>(); 181 AU.addRequired<TargetTransformInfoWrapperPass>(); 182 AU.setPreservesCFG(); 183 } 184 }; 185 186 } // end anonymous namespace 187 188 char LoadStoreVectorizer::ID = 0; 189 190 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 191 "Vectorize load and Store instructions", false, false) 192 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 193 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 196 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 197 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 198 "Vectorize load and store instructions", false, false) 199 200 Pass *llvm::createLoadStoreVectorizerPass() { 201 return new LoadStoreVectorizer(); 202 } 203 204 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 205 // vectors of Instructions. 206 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 207 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 208 propagateMetadata(I, VL); 209 } 210 211 bool LoadStoreVectorizer::runOnFunction(Function &F) { 212 // Don't vectorize when the attribute NoImplicitFloat is used. 213 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 214 return false; 215 216 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 217 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 218 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 219 TargetTransformInfo &TTI = 220 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 221 222 Vectorizer V(F, AA, DT, SE, TTI); 223 return V.run(); 224 } 225 226 // Vectorizer Implementation 227 bool Vectorizer::run() { 228 bool Changed = false; 229 230 // Scan the blocks in the function in post order. 231 for (BasicBlock *BB : post_order(&F)) { 232 InstrListMap LoadRefs, StoreRefs; 233 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 234 Changed |= vectorizeChains(LoadRefs); 235 Changed |= vectorizeChains(StoreRefs); 236 } 237 238 return Changed; 239 } 240 241 Value *Vectorizer::getPointerOperand(Value *I) const { 242 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 243 return LI->getPointerOperand(); 244 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 245 return SI->getPointerOperand(); 246 return nullptr; 247 } 248 249 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 250 if (LoadInst *L = dyn_cast<LoadInst>(I)) 251 return L->getPointerAddressSpace(); 252 if (StoreInst *S = dyn_cast<StoreInst>(I)) 253 return S->getPointerAddressSpace(); 254 return -1; 255 } 256 257 GetElementPtrInst *Vectorizer::getSourceGEP(Value *Src) const { 258 // First strip pointer bitcasts. Make sure pointee size is the same with 259 // and without casts. 260 // TODO: a stride set by the add instruction below can match the difference 261 // in pointee type size here. Currently it will not be vectorized. 262 Value *SrcPtr = getPointerOperand(Src); 263 Value *SrcBase = SrcPtr->stripPointerCasts(); 264 if (DL.getTypeStoreSize(SrcPtr->getType()->getPointerElementType()) == 265 DL.getTypeStoreSize(SrcBase->getType()->getPointerElementType())) 266 SrcPtr = SrcBase; 267 return dyn_cast<GetElementPtrInst>(SrcPtr); 268 } 269 270 // FIXME: Merge with llvm::isConsecutiveAccess 271 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 272 Value *PtrA = getPointerOperand(A); 273 Value *PtrB = getPointerOperand(B); 274 unsigned ASA = getPointerAddressSpace(A); 275 unsigned ASB = getPointerAddressSpace(B); 276 277 // Check that the address spaces match and that the pointers are valid. 278 if (!PtrA || !PtrB || (ASA != ASB)) 279 return false; 280 281 // Make sure that A and B are different pointers of the same size type. 282 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 283 Type *PtrATy = PtrA->getType()->getPointerElementType(); 284 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 285 if (PtrA == PtrB || 286 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 287 DL.getTypeStoreSize(PtrATy->getScalarType()) != 288 DL.getTypeStoreSize(PtrBTy->getScalarType())) 289 return false; 290 291 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 292 293 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 294 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 295 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 296 297 APInt OffsetDelta = OffsetB - OffsetA; 298 299 // Check if they are based on the same pointer. That makes the offsets 300 // sufficient. 301 if (PtrA == PtrB) 302 return OffsetDelta == Size; 303 304 // Compute the necessary base pointer delta to have the necessary final delta 305 // equal to the size. 306 APInt BaseDelta = Size - OffsetDelta; 307 308 // Compute the distance with SCEV between the base pointers. 309 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 310 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 311 const SCEV *C = SE.getConstant(BaseDelta); 312 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 313 if (X == PtrSCEVB) 314 return true; 315 316 // Sometimes even this doesn't work, because SCEV can't always see through 317 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 318 // things the hard way. 319 320 // Look through GEPs after checking they're the same except for the last 321 // index. 322 GetElementPtrInst *GEPA = getSourceGEP(A); 323 GetElementPtrInst *GEPB = getSourceGEP(B); 324 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 325 return false; 326 unsigned FinalIndex = GEPA->getNumOperands() - 1; 327 for (unsigned i = 0; i < FinalIndex; i++) 328 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 329 return false; 330 331 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 332 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 333 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 334 OpA->getType() != OpB->getType()) 335 return false; 336 337 // Only look through a ZExt/SExt. 338 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 339 return false; 340 341 bool Signed = isa<SExtInst>(OpA); 342 343 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 344 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 345 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 346 return false; 347 348 // Now we need to prove that adding 1 to OpA won't overflow. 349 bool Safe = false; 350 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 351 // we're okay. 352 if (OpB->getOpcode() == Instruction::Add && 353 isa<ConstantInt>(OpB->getOperand(1)) && 354 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 355 if (Signed) 356 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 357 else 358 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 359 } 360 361 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 362 363 // Second attempt: 364 // If any bits are known to be zero other than the sign bit in OpA, we can 365 // add 1 to it while guaranteeing no overflow of any sort. 366 if (!Safe) { 367 KnownBits Known(BitWidth); 368 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 369 if (Known.countMaxTrailingOnes() < (BitWidth - 1)) 370 Safe = true; 371 } 372 373 if (!Safe) 374 return false; 375 376 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 377 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 378 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 379 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 380 return X2 == OffsetSCEVB; 381 } 382 383 void Vectorizer::reorder(Instruction *I) { 384 OrderedBasicBlock OBB(I->getParent()); 385 SmallPtrSet<Instruction *, 16> InstructionsToMove; 386 SmallVector<Instruction *, 16> Worklist; 387 388 Worklist.push_back(I); 389 while (!Worklist.empty()) { 390 Instruction *IW = Worklist.pop_back_val(); 391 int NumOperands = IW->getNumOperands(); 392 for (int i = 0; i < NumOperands; i++) { 393 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 394 if (!IM || IM->getOpcode() == Instruction::PHI) 395 continue; 396 397 // If IM is in another BB, no need to move it, because this pass only 398 // vectorizes instructions within one BB. 399 if (IM->getParent() != I->getParent()) 400 continue; 401 402 if (!OBB.dominates(IM, I)) { 403 InstructionsToMove.insert(IM); 404 Worklist.push_back(IM); 405 } 406 } 407 } 408 409 // All instructions to move should follow I. Start from I, not from begin(). 410 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 411 ++BBI) { 412 if (!InstructionsToMove.count(&*BBI)) 413 continue; 414 Instruction *IM = &*BBI; 415 --BBI; 416 IM->removeFromParent(); 417 IM->insertBefore(I); 418 } 419 } 420 421 std::pair<BasicBlock::iterator, BasicBlock::iterator> 422 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 423 Instruction *C0 = Chain[0]; 424 BasicBlock::iterator FirstInstr = C0->getIterator(); 425 BasicBlock::iterator LastInstr = C0->getIterator(); 426 427 BasicBlock *BB = C0->getParent(); 428 unsigned NumFound = 0; 429 for (Instruction &I : *BB) { 430 if (!is_contained(Chain, &I)) 431 continue; 432 433 ++NumFound; 434 if (NumFound == 1) { 435 FirstInstr = I.getIterator(); 436 } 437 if (NumFound == Chain.size()) { 438 LastInstr = I.getIterator(); 439 break; 440 } 441 } 442 443 // Range is [first, last). 444 return std::make_pair(FirstInstr, ++LastInstr); 445 } 446 447 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 448 SmallVector<Instruction *, 16> Instrs; 449 for (Instruction *I : Chain) { 450 Value *PtrOperand = getPointerOperand(I); 451 assert(PtrOperand && "Instruction must have a pointer operand."); 452 Instrs.push_back(I); 453 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 454 Instrs.push_back(GEP); 455 } 456 457 // Erase instructions. 458 for (Instruction *I : Instrs) 459 if (I->use_empty()) 460 I->eraseFromParent(); 461 } 462 463 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 464 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 465 unsigned ElementSizeBits) { 466 unsigned ElementSizeBytes = ElementSizeBits / 8; 467 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 468 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 469 if (NumLeft == Chain.size()) { 470 if ((NumLeft & 1) == 0) 471 NumLeft /= 2; // Split even in half 472 else 473 --NumLeft; // Split off last element 474 } else if (NumLeft == 0) 475 NumLeft = 1; 476 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 477 } 478 479 ArrayRef<Instruction *> 480 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 481 // These are in BB order, unlike Chain, which is in address order. 482 SmallVector<Instruction *, 16> MemoryInstrs; 483 SmallVector<Instruction *, 16> ChainInstrs; 484 485 bool IsLoadChain = isa<LoadInst>(Chain[0]); 486 DEBUG({ 487 for (Instruction *I : Chain) { 488 if (IsLoadChain) 489 assert(isa<LoadInst>(I) && 490 "All elements of Chain must be loads, or all must be stores."); 491 else 492 assert(isa<StoreInst>(I) && 493 "All elements of Chain must be loads, or all must be stores."); 494 } 495 }); 496 497 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 498 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 499 if (!is_contained(Chain, &I)) 500 MemoryInstrs.push_back(&I); 501 else 502 ChainInstrs.push_back(&I); 503 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 504 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 505 break; 506 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 507 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 508 << '\n'); 509 break; 510 } 511 } 512 513 OrderedBasicBlock OBB(Chain[0]->getParent()); 514 515 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 516 unsigned ChainInstrIdx = 0; 517 Instruction *BarrierMemoryInstr = nullptr; 518 519 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 520 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 521 522 // If a barrier memory instruction was found, chain instructions that follow 523 // will not be added to the valid prefix. 524 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 525 break; 526 527 // Check (in BB order) if any instruction prevents ChainInstr from being 528 // vectorized. Find and store the first such "conflicting" instruction. 529 for (Instruction *MemInstr : MemoryInstrs) { 530 // If a barrier memory instruction was found, do not check past it. 531 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 532 break; 533 534 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr)) 535 continue; 536 537 // We can ignore the alias as long as the load comes before the store, 538 // because that means we won't be moving the load past the store to 539 // vectorize it (the vectorized load is inserted at the location of the 540 // first load in the chain). 541 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) && 542 OBB.dominates(ChainInstr, MemInstr)) 543 continue; 544 545 // Same case, but in reverse. 546 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) && 547 OBB.dominates(MemInstr, ChainInstr)) 548 continue; 549 550 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 551 MemoryLocation::get(ChainInstr))) { 552 DEBUG({ 553 dbgs() << "LSV: Found alias:\n" 554 " Aliasing instruction and pointer:\n" 555 << " " << *MemInstr << '\n' 556 << " " << *getPointerOperand(MemInstr) << '\n' 557 << " Aliased instruction and pointer:\n" 558 << " " << *ChainInstr << '\n' 559 << " " << *getPointerOperand(ChainInstr) << '\n'; 560 }); 561 // Save this aliasing memory instruction as a barrier, but allow other 562 // instructions that precede the barrier to be vectorized with this one. 563 BarrierMemoryInstr = MemInstr; 564 break; 565 } 566 } 567 // Continue the search only for store chains, since vectorizing stores that 568 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 569 // up to an aliasing store, but should not pull loads from further down in 570 // the basic block. 571 if (IsLoadChain && BarrierMemoryInstr) { 572 // The BarrierMemoryInstr is a store that precedes ChainInstr. 573 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 574 break; 575 } 576 } 577 578 // Find the largest prefix of Chain whose elements are all in 579 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 580 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 581 // order.) 582 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 583 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 584 unsigned ChainIdx = 0; 585 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 586 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 587 break; 588 } 589 return Chain.slice(0, ChainIdx); 590 } 591 592 std::pair<InstrListMap, InstrListMap> 593 Vectorizer::collectInstructions(BasicBlock *BB) { 594 InstrListMap LoadRefs; 595 InstrListMap StoreRefs; 596 597 for (Instruction &I : *BB) { 598 if (!I.mayReadOrWriteMemory()) 599 continue; 600 601 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 602 if (!LI->isSimple()) 603 continue; 604 605 // Skip if it's not legal. 606 if (!TTI.isLegalToVectorizeLoad(LI)) 607 continue; 608 609 Type *Ty = LI->getType(); 610 if (!VectorType::isValidElementType(Ty->getScalarType())) 611 continue; 612 613 // Skip weird non-byte sizes. They probably aren't worth the effort of 614 // handling correctly. 615 unsigned TySize = DL.getTypeSizeInBits(Ty); 616 if (TySize < 8) 617 continue; 618 619 Value *Ptr = LI->getPointerOperand(); 620 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 621 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 622 623 // No point in looking at these if they're too big to vectorize. 624 if (TySize > VecRegSize / 2) 625 continue; 626 627 // Make sure all the users of a vector are constant-index extracts. 628 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 629 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 630 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 631 })) 632 continue; 633 634 // Save the load locations. 635 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 636 LoadRefs[ObjPtr].push_back(LI); 637 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 638 if (!SI->isSimple()) 639 continue; 640 641 // Skip if it's not legal. 642 if (!TTI.isLegalToVectorizeStore(SI)) 643 continue; 644 645 Type *Ty = SI->getValueOperand()->getType(); 646 if (!VectorType::isValidElementType(Ty->getScalarType())) 647 continue; 648 649 // Skip weird non-byte sizes. They probably aren't worth the effort of 650 // handling correctly. 651 unsigned TySize = DL.getTypeSizeInBits(Ty); 652 if (TySize < 8) 653 continue; 654 655 Value *Ptr = SI->getPointerOperand(); 656 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 657 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 658 if (TySize > VecRegSize / 2) 659 continue; 660 661 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 662 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 663 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 664 })) 665 continue; 666 667 // Save store location. 668 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 669 StoreRefs[ObjPtr].push_back(SI); 670 } 671 } 672 673 return {LoadRefs, StoreRefs}; 674 } 675 676 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 677 bool Changed = false; 678 679 for (const std::pair<Value *, InstrList> &Chain : Map) { 680 unsigned Size = Chain.second.size(); 681 if (Size < 2) 682 continue; 683 684 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 685 686 // Process the stores in chunks of 64. 687 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 688 unsigned Len = std::min<unsigned>(CE - CI, 64); 689 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 690 Changed |= vectorizeInstructions(Chunk); 691 } 692 } 693 694 return Changed; 695 } 696 697 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 698 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 699 SmallVector<int, 16> Heads, Tails; 700 int ConsecutiveChain[64]; 701 702 // Do a quadratic search on all of the given stores and find all of the pairs 703 // of stores that follow each other. 704 for (int i = 0, e = Instrs.size(); i < e; ++i) { 705 ConsecutiveChain[i] = -1; 706 for (int j = e - 1; j >= 0; --j) { 707 if (i == j) 708 continue; 709 710 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 711 if (ConsecutiveChain[i] != -1) { 712 int CurDistance = std::abs(ConsecutiveChain[i] - i); 713 int NewDistance = std::abs(ConsecutiveChain[i] - j); 714 if (j < i || NewDistance > CurDistance) 715 continue; // Should not insert. 716 } 717 718 Tails.push_back(j); 719 Heads.push_back(i); 720 ConsecutiveChain[i] = j; 721 } 722 } 723 } 724 725 bool Changed = false; 726 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 727 728 for (int Head : Heads) { 729 if (InstructionsProcessed.count(Instrs[Head])) 730 continue; 731 bool LongerChainExists = false; 732 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 733 if (Head == Tails[TIt] && 734 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 735 LongerChainExists = true; 736 break; 737 } 738 if (LongerChainExists) 739 continue; 740 741 // We found an instr that starts a chain. Now follow the chain and try to 742 // vectorize it. 743 SmallVector<Instruction *, 16> Operands; 744 int I = Head; 745 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 746 if (InstructionsProcessed.count(Instrs[I])) 747 break; 748 749 Operands.push_back(Instrs[I]); 750 I = ConsecutiveChain[I]; 751 } 752 753 bool Vectorized = false; 754 if (isa<LoadInst>(*Operands.begin())) 755 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 756 else 757 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 758 759 Changed |= Vectorized; 760 } 761 762 return Changed; 763 } 764 765 bool Vectorizer::vectorizeStoreChain( 766 ArrayRef<Instruction *> Chain, 767 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 768 StoreInst *S0 = cast<StoreInst>(Chain[0]); 769 770 // If the vector has an int element, default to int for the whole load. 771 Type *StoreTy; 772 for (Instruction *I : Chain) { 773 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 774 if (StoreTy->isIntOrIntVectorTy()) 775 break; 776 777 if (StoreTy->isPtrOrPtrVectorTy()) { 778 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 779 DL.getTypeSizeInBits(StoreTy)); 780 break; 781 } 782 } 783 784 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 785 unsigned AS = S0->getPointerAddressSpace(); 786 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 787 unsigned VF = VecRegSize / Sz; 788 unsigned ChainSize = Chain.size(); 789 unsigned Alignment = getAlignment(S0); 790 791 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 792 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 793 return false; 794 } 795 796 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 797 if (NewChain.empty()) { 798 // No vectorization possible. 799 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 800 return false; 801 } 802 if (NewChain.size() == 1) { 803 // Failed after the first instruction. Discard it and try the smaller chain. 804 InstructionsProcessed->insert(NewChain.front()); 805 return false; 806 } 807 808 // Update Chain to the valid vectorizable subchain. 809 Chain = NewChain; 810 ChainSize = Chain.size(); 811 812 // Check if it's legal to vectorize this chain. If not, split the chain and 813 // try again. 814 unsigned EltSzInBytes = Sz / 8; 815 unsigned SzInBytes = EltSzInBytes * ChainSize; 816 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 817 auto Chains = splitOddVectorElts(Chain, Sz); 818 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 819 vectorizeStoreChain(Chains.second, InstructionsProcessed); 820 } 821 822 VectorType *VecTy; 823 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 824 if (VecStoreTy) 825 VecTy = VectorType::get(StoreTy->getScalarType(), 826 Chain.size() * VecStoreTy->getNumElements()); 827 else 828 VecTy = VectorType::get(StoreTy, Chain.size()); 829 830 // If it's more than the max vector size or the target has a better 831 // vector factor, break it into two pieces. 832 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 833 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 834 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 835 " Creating two separate arrays.\n"); 836 return vectorizeStoreChain(Chain.slice(0, TargetVF), 837 InstructionsProcessed) | 838 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 839 } 840 841 DEBUG({ 842 dbgs() << "LSV: Stores to vectorize:\n"; 843 for (Instruction *I : Chain) 844 dbgs() << " " << *I << "\n"; 845 }); 846 847 // We won't try again to vectorize the elements of the chain, regardless of 848 // whether we succeed below. 849 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 850 851 // If the store is going to be misaligned, don't vectorize it. 852 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 853 if (S0->getPointerAddressSpace() != 0) 854 return false; 855 856 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 857 StackAdjustedAlignment, 858 DL, S0, nullptr, &DT); 859 if (NewAlign < StackAdjustedAlignment) 860 return false; 861 } 862 863 BasicBlock::iterator First, Last; 864 std::tie(First, Last) = getBoundaryInstrs(Chain); 865 Builder.SetInsertPoint(&*Last); 866 867 Value *Vec = UndefValue::get(VecTy); 868 869 if (VecStoreTy) { 870 unsigned VecWidth = VecStoreTy->getNumElements(); 871 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 872 StoreInst *Store = cast<StoreInst>(Chain[I]); 873 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 874 unsigned NewIdx = J + I * VecWidth; 875 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 876 Builder.getInt32(J)); 877 if (Extract->getType() != StoreTy->getScalarType()) 878 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 879 880 Value *Insert = 881 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 882 Vec = Insert; 883 } 884 } 885 } else { 886 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 887 StoreInst *Store = cast<StoreInst>(Chain[I]); 888 Value *Extract = Store->getValueOperand(); 889 if (Extract->getType() != StoreTy->getScalarType()) 890 Extract = 891 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 892 893 Value *Insert = 894 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 895 Vec = Insert; 896 } 897 } 898 899 // This cast is safe because Builder.CreateStore() always creates a bona fide 900 // StoreInst. 901 StoreInst *SI = cast<StoreInst>( 902 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), 903 VecTy->getPointerTo(AS)))); 904 propagateMetadata(SI, Chain); 905 SI->setAlignment(Alignment); 906 907 eraseInstructions(Chain); 908 ++NumVectorInstructions; 909 NumScalarsVectorized += Chain.size(); 910 return true; 911 } 912 913 bool Vectorizer::vectorizeLoadChain( 914 ArrayRef<Instruction *> Chain, 915 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 916 LoadInst *L0 = cast<LoadInst>(Chain[0]); 917 918 // If the vector has an int element, default to int for the whole load. 919 Type *LoadTy; 920 for (const auto &V : Chain) { 921 LoadTy = cast<LoadInst>(V)->getType(); 922 if (LoadTy->isIntOrIntVectorTy()) 923 break; 924 925 if (LoadTy->isPtrOrPtrVectorTy()) { 926 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 927 DL.getTypeSizeInBits(LoadTy)); 928 break; 929 } 930 } 931 932 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 933 unsigned AS = L0->getPointerAddressSpace(); 934 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 935 unsigned VF = VecRegSize / Sz; 936 unsigned ChainSize = Chain.size(); 937 unsigned Alignment = getAlignment(L0); 938 939 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 940 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 941 return false; 942 } 943 944 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 945 if (NewChain.empty()) { 946 // No vectorization possible. 947 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 948 return false; 949 } 950 if (NewChain.size() == 1) { 951 // Failed after the first instruction. Discard it and try the smaller chain. 952 InstructionsProcessed->insert(NewChain.front()); 953 return false; 954 } 955 956 // Update Chain to the valid vectorizable subchain. 957 Chain = NewChain; 958 ChainSize = Chain.size(); 959 960 // Check if it's legal to vectorize this chain. If not, split the chain and 961 // try again. 962 unsigned EltSzInBytes = Sz / 8; 963 unsigned SzInBytes = EltSzInBytes * ChainSize; 964 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 965 auto Chains = splitOddVectorElts(Chain, Sz); 966 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 967 vectorizeLoadChain(Chains.second, InstructionsProcessed); 968 } 969 970 VectorType *VecTy; 971 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 972 if (VecLoadTy) 973 VecTy = VectorType::get(LoadTy->getScalarType(), 974 Chain.size() * VecLoadTy->getNumElements()); 975 else 976 VecTy = VectorType::get(LoadTy, Chain.size()); 977 978 // If it's more than the max vector size or the target has a better 979 // vector factor, break it into two pieces. 980 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 981 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 982 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 983 " Creating two separate arrays.\n"); 984 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 985 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 986 } 987 988 // We won't try again to vectorize the elements of the chain, regardless of 989 // whether we succeed below. 990 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 991 992 // If the load is going to be misaligned, don't vectorize it. 993 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 994 if (L0->getPointerAddressSpace() != 0) 995 return false; 996 997 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 998 StackAdjustedAlignment, 999 DL, L0, nullptr, &DT); 1000 if (NewAlign < StackAdjustedAlignment) 1001 return false; 1002 1003 Alignment = NewAlign; 1004 } 1005 1006 DEBUG({ 1007 dbgs() << "LSV: Loads to vectorize:\n"; 1008 for (Instruction *I : Chain) 1009 I->dump(); 1010 }); 1011 1012 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1013 // Last may have changed since then, but the value of First won't have. If it 1014 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1015 BasicBlock::iterator First, Last; 1016 std::tie(First, Last) = getBoundaryInstrs(Chain); 1017 Builder.SetInsertPoint(&*First); 1018 1019 Value *Bitcast = 1020 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1021 // This cast is safe because Builder.CreateLoad always creates a bona fide 1022 // LoadInst. 1023 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 1024 propagateMetadata(LI, Chain); 1025 LI->setAlignment(Alignment); 1026 1027 if (VecLoadTy) { 1028 SmallVector<Instruction *, 16> InstrsToErase; 1029 1030 unsigned VecWidth = VecLoadTy->getNumElements(); 1031 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1032 for (auto Use : Chain[I]->users()) { 1033 // All users of vector loads are ExtractElement instructions with 1034 // constant indices, otherwise we would have bailed before now. 1035 Instruction *UI = cast<Instruction>(Use); 1036 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1037 unsigned NewIdx = Idx + I * VecWidth; 1038 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1039 UI->getName()); 1040 if (V->getType() != UI->getType()) 1041 V = Builder.CreateBitCast(V, UI->getType()); 1042 1043 // Replace the old instruction. 1044 UI->replaceAllUsesWith(V); 1045 InstrsToErase.push_back(UI); 1046 } 1047 } 1048 1049 // Bitcast might not be an Instruction, if the value being loaded is a 1050 // constant. In that case, no need to reorder anything. 1051 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1052 reorder(BitcastInst); 1053 1054 for (auto I : InstrsToErase) 1055 I->eraseFromParent(); 1056 } else { 1057 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1058 Value *CV = Chain[I]; 1059 Value *V = 1060 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1061 if (V->getType() != CV->getType()) { 1062 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1063 } 1064 1065 // Replace the old instruction. 1066 CV->replaceAllUsesWith(V); 1067 } 1068 1069 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1070 reorder(BitcastInst); 1071 } 1072 1073 eraseInstructions(Chain); 1074 1075 ++NumVectorInstructions; 1076 NumScalarsVectorized += Chain.size(); 1077 return true; 1078 } 1079 1080 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1081 unsigned Alignment) { 1082 if (Alignment % SzInBytes == 0) 1083 return false; 1084 1085 bool Fast = false; 1086 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1087 SzInBytes * 8, AddressSpace, 1088 Alignment, &Fast); 1089 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1090 << " and fast? " << Fast << "\n";); 1091 return !Allows || !Fast; 1092 } 1093