1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/OrderedBasicBlock.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/TargetTransformInfo.h" 56 #include "llvm/Analysis/ValueTracking.h" 57 #include "llvm/Analysis/VectorUtils.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/InitializePasses.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/KnownBits.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Utils/Local.h" 82 #include "llvm/Transforms/Vectorize.h" 83 #include <algorithm> 84 #include <cassert> 85 #include <cstdlib> 86 #include <tuple> 87 #include <utility> 88 89 using namespace llvm; 90 91 #define DEBUG_TYPE "load-store-vectorizer" 92 93 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 94 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 95 96 // FIXME: Assuming stack alignment of 4 is always good enough 97 static const unsigned StackAdjustedAlignment = 4; 98 99 namespace { 100 101 /// ChainID is an arbitrary token that is allowed to be different only for the 102 /// accesses that are guaranteed to be considered non-consecutive by 103 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 104 /// together and reducing the number of instructions the main search operates on 105 /// at a time, i.e. this is to reduce compile time and nothing else as the main 106 /// search has O(n^2) time complexity. The underlying type of ChainID should not 107 /// be relied upon. 108 using ChainID = const Value *; 109 using InstrList = SmallVector<Instruction *, 8>; 110 using InstrListMap = MapVector<ChainID, InstrList>; 111 112 class Vectorizer { 113 Function &F; 114 AliasAnalysis &AA; 115 DominatorTree &DT; 116 ScalarEvolution &SE; 117 TargetTransformInfo &TTI; 118 const DataLayout &DL; 119 IRBuilder<> Builder; 120 121 public: 122 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 123 ScalarEvolution &SE, TargetTransformInfo &TTI) 124 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 125 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 126 127 bool run(); 128 129 private: 130 unsigned getPointerAddressSpace(Value *I); 131 132 /// TODO: Remove this function once transition to Align is over. 133 unsigned getAlignment(LoadInst *LI) const { return getAlign(LI).value(); } 134 135 Align getAlign(LoadInst *LI) const { 136 return DL.getValueOrABITypeAlignment(LI->getAlign(), LI->getType()); 137 } 138 139 /// TODO: Remove this function once transition to Align is over. 140 unsigned getAlignment(StoreInst *SI) const { return getAlign(SI).value(); } 141 142 Align getAlign(StoreInst *SI) const { 143 return DL.getValueOrABITypeAlignment(SI->getAlign(), 144 SI->getValueOperand()->getType()); 145 } 146 147 static const unsigned MaxDepth = 3; 148 149 bool isConsecutiveAccess(Value *A, Value *B); 150 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, 151 unsigned Depth = 0) const; 152 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 153 unsigned Depth) const; 154 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 155 unsigned Depth) const; 156 157 /// After vectorization, reorder the instructions that I depends on 158 /// (the instructions defining its operands), to ensure they dominate I. 159 void reorder(Instruction *I); 160 161 /// Returns the first and the last instructions in Chain. 162 std::pair<BasicBlock::iterator, BasicBlock::iterator> 163 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 164 165 /// Erases the original instructions after vectorizing. 166 void eraseInstructions(ArrayRef<Instruction *> Chain); 167 168 /// "Legalize" the vector type that would be produced by combining \p 169 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 170 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 171 /// expected to have more than 4 elements. 172 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 173 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 174 175 /// Finds the largest prefix of Chain that's vectorizable, checking for 176 /// intervening instructions which may affect the memory accessed by the 177 /// instructions within Chain. 178 /// 179 /// The elements of \p Chain must be all loads or all stores and must be in 180 /// address order. 181 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 182 183 /// Collects load and store instructions to vectorize. 184 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 185 186 /// Processes the collected instructions, the \p Map. The values of \p Map 187 /// should be all loads or all stores. 188 bool vectorizeChains(InstrListMap &Map); 189 190 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 191 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 192 193 /// Vectorizes the load instructions in Chain. 194 bool 195 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 196 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 197 198 /// Vectorizes the store instructions in Chain. 199 bool 200 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 201 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 202 203 /// Check if this load/store access is misaligned accesses. 204 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 205 unsigned Alignment); 206 }; 207 208 class LoadStoreVectorizerLegacyPass : public FunctionPass { 209 public: 210 static char ID; 211 212 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 213 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 214 } 215 216 bool runOnFunction(Function &F) override; 217 218 StringRef getPassName() const override { 219 return "GPU Load and Store Vectorizer"; 220 } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 AU.addRequired<AAResultsWrapperPass>(); 224 AU.addRequired<ScalarEvolutionWrapperPass>(); 225 AU.addRequired<DominatorTreeWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.setPreservesCFG(); 228 } 229 }; 230 231 } // end anonymous namespace 232 233 char LoadStoreVectorizerLegacyPass::ID = 0; 234 235 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 236 "Vectorize load and Store instructions", false, false) 237 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 238 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 240 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 241 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 242 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 243 "Vectorize load and store instructions", false, false) 244 245 Pass *llvm::createLoadStoreVectorizerPass() { 246 return new LoadStoreVectorizerLegacyPass(); 247 } 248 249 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 250 // Don't vectorize when the attribute NoImplicitFloat is used. 251 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 252 return false; 253 254 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 255 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 256 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 257 TargetTransformInfo &TTI = 258 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 259 260 Vectorizer V(F, AA, DT, SE, TTI); 261 return V.run(); 262 } 263 264 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 265 // Don't vectorize when the attribute NoImplicitFloat is used. 266 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 267 return PreservedAnalyses::all(); 268 269 AliasAnalysis &AA = AM.getResult<AAManager>(F); 270 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 271 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 272 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 273 274 Vectorizer V(F, AA, DT, SE, TTI); 275 bool Changed = V.run(); 276 PreservedAnalyses PA; 277 PA.preserveSet<CFGAnalyses>(); 278 return Changed ? PA : PreservedAnalyses::all(); 279 } 280 281 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 282 // vectors of Instructions. 283 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 284 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 285 propagateMetadata(I, VL); 286 } 287 288 // Vectorizer Implementation 289 bool Vectorizer::run() { 290 bool Changed = false; 291 292 // Scan the blocks in the function in post order. 293 for (BasicBlock *BB : post_order(&F)) { 294 InstrListMap LoadRefs, StoreRefs; 295 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 296 Changed |= vectorizeChains(LoadRefs); 297 Changed |= vectorizeChains(StoreRefs); 298 } 299 300 return Changed; 301 } 302 303 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 304 if (LoadInst *L = dyn_cast<LoadInst>(I)) 305 return L->getPointerAddressSpace(); 306 if (StoreInst *S = dyn_cast<StoreInst>(I)) 307 return S->getPointerAddressSpace(); 308 return -1; 309 } 310 311 // FIXME: Merge with llvm::isConsecutiveAccess 312 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 313 Value *PtrA = getLoadStorePointerOperand(A); 314 Value *PtrB = getLoadStorePointerOperand(B); 315 unsigned ASA = getPointerAddressSpace(A); 316 unsigned ASB = getPointerAddressSpace(B); 317 318 // Check that the address spaces match and that the pointers are valid. 319 if (!PtrA || !PtrB || (ASA != ASB)) 320 return false; 321 322 // Make sure that A and B are different pointers of the same size type. 323 Type *PtrATy = PtrA->getType()->getPointerElementType(); 324 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 325 if (PtrA == PtrB || 326 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 327 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 328 DL.getTypeStoreSize(PtrATy->getScalarType()) != 329 DL.getTypeStoreSize(PtrBTy->getScalarType())) 330 return false; 331 332 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 333 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 334 335 return areConsecutivePointers(PtrA, PtrB, Size); 336 } 337 338 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 339 APInt PtrDelta, unsigned Depth) const { 340 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 341 APInt OffsetA(PtrBitWidth, 0); 342 APInt OffsetB(PtrBitWidth, 0); 343 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 344 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 345 346 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 347 348 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 349 return false; 350 351 // In case if we have to shrink the pointer 352 // stripAndAccumulateInBoundsConstantOffsets should properly handle a 353 // possible overflow and the value should fit into a smallest data type 354 // used in the cast/gep chain. 355 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth && 356 OffsetB.getMinSignedBits() <= NewPtrBitWidth); 357 358 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 359 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 360 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth); 361 362 APInt OffsetDelta = OffsetB - OffsetA; 363 364 // Check if they are based on the same pointer. That makes the offsets 365 // sufficient. 366 if (PtrA == PtrB) 367 return OffsetDelta == PtrDelta; 368 369 // Compute the necessary base pointer delta to have the necessary final delta 370 // equal to the pointer delta requested. 371 APInt BaseDelta = PtrDelta - OffsetDelta; 372 373 // Compute the distance with SCEV between the base pointers. 374 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 375 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 376 const SCEV *C = SE.getConstant(BaseDelta); 377 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 378 if (X == PtrSCEVB) 379 return true; 380 381 // The above check will not catch the cases where one of the pointers is 382 // factorized but the other one is not, such as (C + (S * (A + B))) vs 383 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 384 // and getting the simplified difference. 385 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 386 if (C == Dist) 387 return true; 388 389 // Sometimes even this doesn't work, because SCEV can't always see through 390 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 391 // things the hard way. 392 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 393 } 394 395 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 396 APInt PtrDelta, 397 unsigned Depth) const { 398 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 399 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 400 if (!GEPA || !GEPB) 401 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 402 403 // Look through GEPs after checking they're the same except for the last 404 // index. 405 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 406 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 407 return false; 408 gep_type_iterator GTIA = gep_type_begin(GEPA); 409 gep_type_iterator GTIB = gep_type_begin(GEPB); 410 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 411 if (GTIA.getOperand() != GTIB.getOperand()) 412 return false; 413 ++GTIA; 414 ++GTIB; 415 } 416 417 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 418 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 419 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 420 OpA->getType() != OpB->getType()) 421 return false; 422 423 if (PtrDelta.isNegative()) { 424 if (PtrDelta.isMinSignedValue()) 425 return false; 426 PtrDelta.negate(); 427 std::swap(OpA, OpB); 428 } 429 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 430 if (PtrDelta.urem(Stride) != 0) 431 return false; 432 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 433 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 434 435 // Only look through a ZExt/SExt. 436 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 437 return false; 438 439 bool Signed = isa<SExtInst>(OpA); 440 441 // At this point A could be a function parameter, i.e. not an instruction 442 Value *ValA = OpA->getOperand(0); 443 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 444 if (!OpB || ValA->getType() != OpB->getType()) 445 return false; 446 447 // Now we need to prove that adding IdxDiff to ValA won't overflow. 448 bool Safe = false; 449 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 450 // ValA, we're okay. 451 if (OpB->getOpcode() == Instruction::Add && 452 isa<ConstantInt>(OpB->getOperand(1)) && 453 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { 454 if (Signed) 455 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 456 else 457 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 458 } 459 460 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 461 462 // Second attempt: 463 // If all set bits of IdxDiff or any higher order bit other than the sign bit 464 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 465 // overflow of any sort. 466 if (!Safe) { 467 OpA = dyn_cast<Instruction>(ValA); 468 if (!OpA) 469 return false; 470 KnownBits Known(BitWidth); 471 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 472 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 473 if (Signed) 474 BitsAllowedToBeSet.clearBit(BitWidth - 1); 475 if (BitsAllowedToBeSet.ult(IdxDiff)) 476 return false; 477 } 478 479 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 480 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 481 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 482 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 483 return X == OffsetSCEVB; 484 } 485 486 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 487 const APInt &PtrDelta, 488 unsigned Depth) const { 489 if (Depth++ == MaxDepth) 490 return false; 491 492 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 493 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 494 return SelectA->getCondition() == SelectB->getCondition() && 495 areConsecutivePointers(SelectA->getTrueValue(), 496 SelectB->getTrueValue(), PtrDelta, Depth) && 497 areConsecutivePointers(SelectA->getFalseValue(), 498 SelectB->getFalseValue(), PtrDelta, Depth); 499 } 500 } 501 return false; 502 } 503 504 void Vectorizer::reorder(Instruction *I) { 505 OrderedBasicBlock OBB(I->getParent()); 506 SmallPtrSet<Instruction *, 16> InstructionsToMove; 507 SmallVector<Instruction *, 16> Worklist; 508 509 Worklist.push_back(I); 510 while (!Worklist.empty()) { 511 Instruction *IW = Worklist.pop_back_val(); 512 int NumOperands = IW->getNumOperands(); 513 for (int i = 0; i < NumOperands; i++) { 514 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 515 if (!IM || IM->getOpcode() == Instruction::PHI) 516 continue; 517 518 // If IM is in another BB, no need to move it, because this pass only 519 // vectorizes instructions within one BB. 520 if (IM->getParent() != I->getParent()) 521 continue; 522 523 if (!OBB.dominates(IM, I)) { 524 InstructionsToMove.insert(IM); 525 Worklist.push_back(IM); 526 } 527 } 528 } 529 530 // All instructions to move should follow I. Start from I, not from begin(). 531 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 532 ++BBI) { 533 if (!InstructionsToMove.count(&*BBI)) 534 continue; 535 Instruction *IM = &*BBI; 536 --BBI; 537 IM->removeFromParent(); 538 IM->insertBefore(I); 539 } 540 } 541 542 std::pair<BasicBlock::iterator, BasicBlock::iterator> 543 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 544 Instruction *C0 = Chain[0]; 545 BasicBlock::iterator FirstInstr = C0->getIterator(); 546 BasicBlock::iterator LastInstr = C0->getIterator(); 547 548 BasicBlock *BB = C0->getParent(); 549 unsigned NumFound = 0; 550 for (Instruction &I : *BB) { 551 if (!is_contained(Chain, &I)) 552 continue; 553 554 ++NumFound; 555 if (NumFound == 1) { 556 FirstInstr = I.getIterator(); 557 } 558 if (NumFound == Chain.size()) { 559 LastInstr = I.getIterator(); 560 break; 561 } 562 } 563 564 // Range is [first, last). 565 return std::make_pair(FirstInstr, ++LastInstr); 566 } 567 568 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 569 SmallVector<Instruction *, 16> Instrs; 570 for (Instruction *I : Chain) { 571 Value *PtrOperand = getLoadStorePointerOperand(I); 572 assert(PtrOperand && "Instruction must have a pointer operand."); 573 Instrs.push_back(I); 574 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 575 Instrs.push_back(GEP); 576 } 577 578 // Erase instructions. 579 for (Instruction *I : Instrs) 580 if (I->use_empty()) 581 I->eraseFromParent(); 582 } 583 584 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 585 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 586 unsigned ElementSizeBits) { 587 unsigned ElementSizeBytes = ElementSizeBits / 8; 588 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 589 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 590 if (NumLeft == Chain.size()) { 591 if ((NumLeft & 1) == 0) 592 NumLeft /= 2; // Split even in half 593 else 594 --NumLeft; // Split off last element 595 } else if (NumLeft == 0) 596 NumLeft = 1; 597 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 598 } 599 600 ArrayRef<Instruction *> 601 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 602 // These are in BB order, unlike Chain, which is in address order. 603 SmallVector<Instruction *, 16> MemoryInstrs; 604 SmallVector<Instruction *, 16> ChainInstrs; 605 606 bool IsLoadChain = isa<LoadInst>(Chain[0]); 607 LLVM_DEBUG({ 608 for (Instruction *I : Chain) { 609 if (IsLoadChain) 610 assert(isa<LoadInst>(I) && 611 "All elements of Chain must be loads, or all must be stores."); 612 else 613 assert(isa<StoreInst>(I) && 614 "All elements of Chain must be loads, or all must be stores."); 615 } 616 }); 617 618 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 619 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 620 if (!is_contained(Chain, &I)) 621 MemoryInstrs.push_back(&I); 622 else 623 ChainInstrs.push_back(&I); 624 } else if (isa<IntrinsicInst>(&I) && 625 cast<IntrinsicInst>(&I)->getIntrinsicID() == 626 Intrinsic::sideeffect) { 627 // Ignore llvm.sideeffect calls. 628 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 629 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 630 << '\n'); 631 break; 632 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 633 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 634 << '\n'); 635 break; 636 } 637 } 638 639 OrderedBasicBlock OBB(Chain[0]->getParent()); 640 641 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 642 unsigned ChainInstrIdx = 0; 643 Instruction *BarrierMemoryInstr = nullptr; 644 645 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 646 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 647 648 // If a barrier memory instruction was found, chain instructions that follow 649 // will not be added to the valid prefix. 650 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 651 break; 652 653 // Check (in BB order) if any instruction prevents ChainInstr from being 654 // vectorized. Find and store the first such "conflicting" instruction. 655 for (Instruction *MemInstr : MemoryInstrs) { 656 // If a barrier memory instruction was found, do not check past it. 657 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 658 break; 659 660 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 661 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 662 if (MemLoad && ChainLoad) 663 continue; 664 665 // We can ignore the alias if the we have a load store pair and the load 666 // is known to be invariant. The load cannot be clobbered by the store. 667 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 668 return LI->hasMetadata(LLVMContext::MD_invariant_load); 669 }; 670 671 // We can ignore the alias as long as the load comes before the store, 672 // because that means we won't be moving the load past the store to 673 // vectorize it (the vectorized load is inserted at the location of the 674 // first load in the chain). 675 if (isa<StoreInst>(MemInstr) && ChainLoad && 676 (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr))) 677 continue; 678 679 // Same case, but in reverse. 680 if (MemLoad && isa<StoreInst>(ChainInstr) && 681 (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr))) 682 continue; 683 684 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 685 MemoryLocation::get(ChainInstr))) { 686 LLVM_DEBUG({ 687 dbgs() << "LSV: Found alias:\n" 688 " Aliasing instruction and pointer:\n" 689 << " " << *MemInstr << '\n' 690 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 691 << " Aliased instruction and pointer:\n" 692 << " " << *ChainInstr << '\n' 693 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 694 }); 695 // Save this aliasing memory instruction as a barrier, but allow other 696 // instructions that precede the barrier to be vectorized with this one. 697 BarrierMemoryInstr = MemInstr; 698 break; 699 } 700 } 701 // Continue the search only for store chains, since vectorizing stores that 702 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 703 // up to an aliasing store, but should not pull loads from further down in 704 // the basic block. 705 if (IsLoadChain && BarrierMemoryInstr) { 706 // The BarrierMemoryInstr is a store that precedes ChainInstr. 707 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 708 break; 709 } 710 } 711 712 // Find the largest prefix of Chain whose elements are all in 713 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 714 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 715 // order.) 716 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 717 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 718 unsigned ChainIdx = 0; 719 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 720 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 721 break; 722 } 723 return Chain.slice(0, ChainIdx); 724 } 725 726 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { 727 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 728 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 729 // The select's themselves are distinct instructions even if they share the 730 // same condition and evaluate to consecutive pointers for true and false 731 // values of the condition. Therefore using the select's themselves for 732 // grouping instructions would put consecutive accesses into different lists 733 // and they won't be even checked for being consecutive, and won't be 734 // vectorized. 735 return Sel->getCondition(); 736 } 737 return ObjPtr; 738 } 739 740 std::pair<InstrListMap, InstrListMap> 741 Vectorizer::collectInstructions(BasicBlock *BB) { 742 InstrListMap LoadRefs; 743 InstrListMap StoreRefs; 744 745 for (Instruction &I : *BB) { 746 if (!I.mayReadOrWriteMemory()) 747 continue; 748 749 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 750 if (!LI->isSimple()) 751 continue; 752 753 // Skip if it's not legal. 754 if (!TTI.isLegalToVectorizeLoad(LI)) 755 continue; 756 757 Type *Ty = LI->getType(); 758 if (!VectorType::isValidElementType(Ty->getScalarType())) 759 continue; 760 761 // Skip weird non-byte sizes. They probably aren't worth the effort of 762 // handling correctly. 763 unsigned TySize = DL.getTypeSizeInBits(Ty); 764 if ((TySize % 8) != 0) 765 continue; 766 767 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 768 // functions are currently using an integer type for the vectorized 769 // load/store, and does not support casting between the integer type and a 770 // vector of pointers (e.g. i64 to <2 x i16*>) 771 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 772 continue; 773 774 Value *Ptr = LI->getPointerOperand(); 775 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 776 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 777 778 unsigned VF = VecRegSize / TySize; 779 VectorType *VecTy = dyn_cast<VectorType>(Ty); 780 781 // No point in looking at these if they're too big to vectorize. 782 if (TySize > VecRegSize / 2 || 783 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 784 continue; 785 786 // Make sure all the users of a vector are constant-index extracts. 787 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 788 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 789 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 790 })) 791 continue; 792 793 // Save the load locations. 794 const ChainID ID = getChainID(Ptr, DL); 795 LoadRefs[ID].push_back(LI); 796 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 797 if (!SI->isSimple()) 798 continue; 799 800 // Skip if it's not legal. 801 if (!TTI.isLegalToVectorizeStore(SI)) 802 continue; 803 804 Type *Ty = SI->getValueOperand()->getType(); 805 if (!VectorType::isValidElementType(Ty->getScalarType())) 806 continue; 807 808 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 809 // functions are currently using an integer type for the vectorized 810 // load/store, and does not support casting between the integer type and a 811 // vector of pointers (e.g. i64 to <2 x i16*>) 812 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 813 continue; 814 815 // Skip weird non-byte sizes. They probably aren't worth the effort of 816 // handling correctly. 817 unsigned TySize = DL.getTypeSizeInBits(Ty); 818 if ((TySize % 8) != 0) 819 continue; 820 821 Value *Ptr = SI->getPointerOperand(); 822 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 823 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 824 825 unsigned VF = VecRegSize / TySize; 826 VectorType *VecTy = dyn_cast<VectorType>(Ty); 827 828 // No point in looking at these if they're too big to vectorize. 829 if (TySize > VecRegSize / 2 || 830 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 831 continue; 832 833 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 834 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 835 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 836 })) 837 continue; 838 839 // Save store location. 840 const ChainID ID = getChainID(Ptr, DL); 841 StoreRefs[ID].push_back(SI); 842 } 843 } 844 845 return {LoadRefs, StoreRefs}; 846 } 847 848 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 849 bool Changed = false; 850 851 for (const std::pair<ChainID, InstrList> &Chain : Map) { 852 unsigned Size = Chain.second.size(); 853 if (Size < 2) 854 continue; 855 856 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 857 858 // Process the stores in chunks of 64. 859 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 860 unsigned Len = std::min<unsigned>(CE - CI, 64); 861 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 862 Changed |= vectorizeInstructions(Chunk); 863 } 864 } 865 866 return Changed; 867 } 868 869 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 870 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 871 << " instructions.\n"); 872 SmallVector<int, 16> Heads, Tails; 873 int ConsecutiveChain[64]; 874 875 // Do a quadratic search on all of the given loads/stores and find all of the 876 // pairs of loads/stores that follow each other. 877 for (int i = 0, e = Instrs.size(); i < e; ++i) { 878 ConsecutiveChain[i] = -1; 879 for (int j = e - 1; j >= 0; --j) { 880 if (i == j) 881 continue; 882 883 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 884 if (ConsecutiveChain[i] != -1) { 885 int CurDistance = std::abs(ConsecutiveChain[i] - i); 886 int NewDistance = std::abs(ConsecutiveChain[i] - j); 887 if (j < i || NewDistance > CurDistance) 888 continue; // Should not insert. 889 } 890 891 Tails.push_back(j); 892 Heads.push_back(i); 893 ConsecutiveChain[i] = j; 894 } 895 } 896 } 897 898 bool Changed = false; 899 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 900 901 for (int Head : Heads) { 902 if (InstructionsProcessed.count(Instrs[Head])) 903 continue; 904 bool LongerChainExists = false; 905 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 906 if (Head == Tails[TIt] && 907 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 908 LongerChainExists = true; 909 break; 910 } 911 if (LongerChainExists) 912 continue; 913 914 // We found an instr that starts a chain. Now follow the chain and try to 915 // vectorize it. 916 SmallVector<Instruction *, 16> Operands; 917 int I = Head; 918 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 919 if (InstructionsProcessed.count(Instrs[I])) 920 break; 921 922 Operands.push_back(Instrs[I]); 923 I = ConsecutiveChain[I]; 924 } 925 926 bool Vectorized = false; 927 if (isa<LoadInst>(*Operands.begin())) 928 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 929 else 930 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 931 932 Changed |= Vectorized; 933 } 934 935 return Changed; 936 } 937 938 bool Vectorizer::vectorizeStoreChain( 939 ArrayRef<Instruction *> Chain, 940 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 941 StoreInst *S0 = cast<StoreInst>(Chain[0]); 942 943 // If the vector has an int element, default to int for the whole store. 944 Type *StoreTy = nullptr; 945 for (Instruction *I : Chain) { 946 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 947 if (StoreTy->isIntOrIntVectorTy()) 948 break; 949 950 if (StoreTy->isPtrOrPtrVectorTy()) { 951 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 952 DL.getTypeSizeInBits(StoreTy)); 953 break; 954 } 955 } 956 assert(StoreTy && "Failed to find store type"); 957 958 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 959 unsigned AS = S0->getPointerAddressSpace(); 960 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 961 unsigned VF = VecRegSize / Sz; 962 unsigned ChainSize = Chain.size(); 963 Align Alignment = getAlign(S0); 964 965 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 966 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 967 return false; 968 } 969 970 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 971 if (NewChain.empty()) { 972 // No vectorization possible. 973 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 974 return false; 975 } 976 if (NewChain.size() == 1) { 977 // Failed after the first instruction. Discard it and try the smaller chain. 978 InstructionsProcessed->insert(NewChain.front()); 979 return false; 980 } 981 982 // Update Chain to the valid vectorizable subchain. 983 Chain = NewChain; 984 ChainSize = Chain.size(); 985 986 // Check if it's legal to vectorize this chain. If not, split the chain and 987 // try again. 988 unsigned EltSzInBytes = Sz / 8; 989 unsigned SzInBytes = EltSzInBytes * ChainSize; 990 991 VectorType *VecTy; 992 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 993 if (VecStoreTy) 994 VecTy = VectorType::get(StoreTy->getScalarType(), 995 Chain.size() * VecStoreTy->getNumElements()); 996 else 997 VecTy = VectorType::get(StoreTy, Chain.size()); 998 999 // If it's more than the max vector size or the target has a better 1000 // vector factor, break it into two pieces. 1001 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 1002 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1003 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1004 " Creating two separate arrays.\n"); 1005 return vectorizeStoreChain(Chain.slice(0, TargetVF), 1006 InstructionsProcessed) | 1007 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 1008 } 1009 1010 LLVM_DEBUG({ 1011 dbgs() << "LSV: Stores to vectorize:\n"; 1012 for (Instruction *I : Chain) 1013 dbgs() << " " << *I << "\n"; 1014 }); 1015 1016 // We won't try again to vectorize the elements of the chain, regardless of 1017 // whether we succeed below. 1018 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1019 1020 // If the store is going to be misaligned, don't vectorize it. 1021 if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { 1022 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1023 auto Chains = splitOddVectorElts(Chain, Sz); 1024 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1025 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1026 } 1027 1028 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1029 StackAdjustedAlignment, 1030 DL, S0, nullptr, &DT); 1031 if (NewAlign != 0) 1032 Alignment = Align(NewAlign); 1033 } 1034 1035 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment.value(), AS)) { 1036 auto Chains = splitOddVectorElts(Chain, Sz); 1037 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1038 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1039 } 1040 1041 BasicBlock::iterator First, Last; 1042 std::tie(First, Last) = getBoundaryInstrs(Chain); 1043 Builder.SetInsertPoint(&*Last); 1044 1045 Value *Vec = UndefValue::get(VecTy); 1046 1047 if (VecStoreTy) { 1048 unsigned VecWidth = VecStoreTy->getNumElements(); 1049 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1050 StoreInst *Store = cast<StoreInst>(Chain[I]); 1051 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1052 unsigned NewIdx = J + I * VecWidth; 1053 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1054 Builder.getInt32(J)); 1055 if (Extract->getType() != StoreTy->getScalarType()) 1056 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1057 1058 Value *Insert = 1059 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1060 Vec = Insert; 1061 } 1062 } 1063 } else { 1064 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1065 StoreInst *Store = cast<StoreInst>(Chain[I]); 1066 Value *Extract = Store->getValueOperand(); 1067 if (Extract->getType() != StoreTy->getScalarType()) 1068 Extract = 1069 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1070 1071 Value *Insert = 1072 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1073 Vec = Insert; 1074 } 1075 } 1076 1077 StoreInst *SI = Builder.CreateAlignedStore( 1078 Vec, 1079 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1080 Alignment); 1081 propagateMetadata(SI, Chain); 1082 1083 eraseInstructions(Chain); 1084 ++NumVectorInstructions; 1085 NumScalarsVectorized += Chain.size(); 1086 return true; 1087 } 1088 1089 bool Vectorizer::vectorizeLoadChain( 1090 ArrayRef<Instruction *> Chain, 1091 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1092 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1093 1094 // If the vector has an int element, default to int for the whole load. 1095 Type *LoadTy = nullptr; 1096 for (const auto &V : Chain) { 1097 LoadTy = cast<LoadInst>(V)->getType(); 1098 if (LoadTy->isIntOrIntVectorTy()) 1099 break; 1100 1101 if (LoadTy->isPtrOrPtrVectorTy()) { 1102 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1103 DL.getTypeSizeInBits(LoadTy)); 1104 break; 1105 } 1106 } 1107 assert(LoadTy && "Can't determine LoadInst type from chain"); 1108 1109 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1110 unsigned AS = L0->getPointerAddressSpace(); 1111 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1112 unsigned VF = VecRegSize / Sz; 1113 unsigned ChainSize = Chain.size(); 1114 unsigned Alignment = getAlignment(L0); 1115 1116 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1117 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1118 return false; 1119 } 1120 1121 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1122 if (NewChain.empty()) { 1123 // No vectorization possible. 1124 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1125 return false; 1126 } 1127 if (NewChain.size() == 1) { 1128 // Failed after the first instruction. Discard it and try the smaller chain. 1129 InstructionsProcessed->insert(NewChain.front()); 1130 return false; 1131 } 1132 1133 // Update Chain to the valid vectorizable subchain. 1134 Chain = NewChain; 1135 ChainSize = Chain.size(); 1136 1137 // Check if it's legal to vectorize this chain. If not, split the chain and 1138 // try again. 1139 unsigned EltSzInBytes = Sz / 8; 1140 unsigned SzInBytes = EltSzInBytes * ChainSize; 1141 VectorType *VecTy; 1142 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1143 if (VecLoadTy) 1144 VecTy = VectorType::get(LoadTy->getScalarType(), 1145 Chain.size() * VecLoadTy->getNumElements()); 1146 else 1147 VecTy = VectorType::get(LoadTy, Chain.size()); 1148 1149 // If it's more than the max vector size or the target has a better 1150 // vector factor, break it into two pieces. 1151 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1152 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1153 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1154 " Creating two separate arrays.\n"); 1155 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1156 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1157 } 1158 1159 // We won't try again to vectorize the elements of the chain, regardless of 1160 // whether we succeed below. 1161 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1162 1163 // If the load is going to be misaligned, don't vectorize it. 1164 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1165 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1166 auto Chains = splitOddVectorElts(Chain, Sz); 1167 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1168 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1169 } 1170 1171 Alignment = getOrEnforceKnownAlignment( 1172 L0->getPointerOperand(), StackAdjustedAlignment, DL, L0, nullptr, &DT); 1173 } 1174 1175 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1176 auto Chains = splitOddVectorElts(Chain, Sz); 1177 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1178 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1179 } 1180 1181 LLVM_DEBUG({ 1182 dbgs() << "LSV: Loads to vectorize:\n"; 1183 for (Instruction *I : Chain) 1184 I->dump(); 1185 }); 1186 1187 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1188 // Last may have changed since then, but the value of First won't have. If it 1189 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1190 BasicBlock::iterator First, Last; 1191 std::tie(First, Last) = getBoundaryInstrs(Chain); 1192 Builder.SetInsertPoint(&*First); 1193 1194 Value *Bitcast = 1195 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1196 LoadInst *LI = 1197 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment)); 1198 propagateMetadata(LI, Chain); 1199 1200 if (VecLoadTy) { 1201 SmallVector<Instruction *, 16> InstrsToErase; 1202 1203 unsigned VecWidth = VecLoadTy->getNumElements(); 1204 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1205 for (auto Use : Chain[I]->users()) { 1206 // All users of vector loads are ExtractElement instructions with 1207 // constant indices, otherwise we would have bailed before now. 1208 Instruction *UI = cast<Instruction>(Use); 1209 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1210 unsigned NewIdx = Idx + I * VecWidth; 1211 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1212 UI->getName()); 1213 if (V->getType() != UI->getType()) 1214 V = Builder.CreateBitCast(V, UI->getType()); 1215 1216 // Replace the old instruction. 1217 UI->replaceAllUsesWith(V); 1218 InstrsToErase.push_back(UI); 1219 } 1220 } 1221 1222 // Bitcast might not be an Instruction, if the value being loaded is a 1223 // constant. In that case, no need to reorder anything. 1224 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1225 reorder(BitcastInst); 1226 1227 for (auto I : InstrsToErase) 1228 I->eraseFromParent(); 1229 } else { 1230 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1231 Value *CV = Chain[I]; 1232 Value *V = 1233 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1234 if (V->getType() != CV->getType()) { 1235 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1236 } 1237 1238 // Replace the old instruction. 1239 CV->replaceAllUsesWith(V); 1240 } 1241 1242 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1243 reorder(BitcastInst); 1244 } 1245 1246 eraseInstructions(Chain); 1247 1248 ++NumVectorInstructions; 1249 NumScalarsVectorized += Chain.size(); 1250 return true; 1251 } 1252 1253 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1254 unsigned Alignment) { 1255 if (Alignment % SzInBytes == 0) 1256 return false; 1257 1258 bool Fast = false; 1259 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1260 SzInBytes * 8, AddressSpace, 1261 Alignment, &Fast); 1262 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1263 << " and fast? " << Fast << "\n";); 1264 return !Allows || !Fast; 1265 } 1266