1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass merges loads/stores to/from sequential memory addresses into vector 11 // loads/stores. Although there's nothing GPU-specific in here, this pass is 12 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 13 // 14 // (For simplicity below we talk about loads only, but everything also applies 15 // to stores.) 16 // 17 // This pass is intended to be run late in the pipeline, after other 18 // vectorization opportunities have been exploited. So the assumption here is 19 // that immediately following our new vector load we'll need to extract out the 20 // individual elements of the load, so we can operate on them individually. 21 // 22 // On CPUs this transformation is usually not beneficial, because extracting the 23 // elements of a vector register is expensive on most architectures. It's 24 // usually better just to load each element individually into its own scalar 25 // register. 26 // 27 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 28 // "vector load" loads directly into a series of scalar registers. In effect, 29 // extracting the elements of the vector is free. It's therefore always 30 // beneficial to vectorize a sequence of loads on these architectures. 31 // 32 // Vectorizing (perhaps a better name might be "coalescing") loads can have 33 // large performance impacts on GPU kernels, and opportunities for vectorizing 34 // are common in GPU code. This pass tries very hard to find such 35 // opportunities; its runtime is quadratic in the number of loads in a BB. 36 // 37 // Some CPU architectures, such as ARM, have instructions that load into 38 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 39 // could use this pass (with some modifications), but currently it implements 40 // its own pass to do something similar to what we do here. 41 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/OrderedBasicBlock.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/TargetTransformInfo.h" 56 #include "llvm/Analysis/Utils/Local.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/Analysis/VectorUtils.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/InstrTypes.h" 68 #include "llvm/IR/Instruction.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/KnownBits.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Vectorize.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdlib> 85 #include <tuple> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "load-store-vectorizer" 91 92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 94 95 // FIXME: Assuming stack alignment of 4 is always good enough 96 static const unsigned StackAdjustedAlignment = 4; 97 98 namespace { 99 100 using InstrList = SmallVector<Instruction *, 8>; 101 using InstrListMap = MapVector<Value *, InstrList>; 102 103 class Vectorizer { 104 Function &F; 105 AliasAnalysis &AA; 106 DominatorTree &DT; 107 ScalarEvolution &SE; 108 TargetTransformInfo &TTI; 109 const DataLayout &DL; 110 IRBuilder<> Builder; 111 112 public: 113 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 114 ScalarEvolution &SE, TargetTransformInfo &TTI) 115 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 116 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 117 118 bool run(); 119 120 private: 121 GetElementPtrInst *getSourceGEP(Value *Src) const; 122 123 unsigned getPointerAddressSpace(Value *I); 124 125 unsigned getAlignment(LoadInst *LI) const { 126 unsigned Align = LI->getAlignment(); 127 if (Align != 0) 128 return Align; 129 130 return DL.getABITypeAlignment(LI->getType()); 131 } 132 133 unsigned getAlignment(StoreInst *SI) const { 134 unsigned Align = SI->getAlignment(); 135 if (Align != 0) 136 return Align; 137 138 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 139 } 140 141 bool isConsecutiveAccess(Value *A, Value *B); 142 143 /// After vectorization, reorder the instructions that I depends on 144 /// (the instructions defining its operands), to ensure they dominate I. 145 void reorder(Instruction *I); 146 147 /// Returns the first and the last instructions in Chain. 148 std::pair<BasicBlock::iterator, BasicBlock::iterator> 149 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 150 151 /// Erases the original instructions after vectorizing. 152 void eraseInstructions(ArrayRef<Instruction *> Chain); 153 154 /// "Legalize" the vector type that would be produced by combining \p 155 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 156 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 157 /// expected to have more than 4 elements. 158 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 159 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 160 161 /// Finds the largest prefix of Chain that's vectorizable, checking for 162 /// intervening instructions which may affect the memory accessed by the 163 /// instructions within Chain. 164 /// 165 /// The elements of \p Chain must be all loads or all stores and must be in 166 /// address order. 167 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 168 169 /// Collects load and store instructions to vectorize. 170 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 171 172 /// Processes the collected instructions, the \p Map. The values of \p Map 173 /// should be all loads or all stores. 174 bool vectorizeChains(InstrListMap &Map); 175 176 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 177 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 178 179 /// Vectorizes the load instructions in Chain. 180 bool 181 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 182 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 183 184 /// Vectorizes the store instructions in Chain. 185 bool 186 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 187 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 188 189 /// Check if this load/store access is misaligned accesses. 190 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 191 unsigned Alignment); 192 }; 193 194 class LoadStoreVectorizer : public FunctionPass { 195 public: 196 static char ID; 197 198 LoadStoreVectorizer() : FunctionPass(ID) { 199 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnFunction(Function &F) override; 203 204 StringRef getPassName() const override { 205 return "GPU Load and Store Vectorizer"; 206 } 207 208 void getAnalysisUsage(AnalysisUsage &AU) const override { 209 AU.addRequired<AAResultsWrapperPass>(); 210 AU.addRequired<ScalarEvolutionWrapperPass>(); 211 AU.addRequired<DominatorTreeWrapperPass>(); 212 AU.addRequired<TargetTransformInfoWrapperPass>(); 213 AU.setPreservesCFG(); 214 } 215 }; 216 217 } // end anonymous namespace 218 219 char LoadStoreVectorizer::ID = 0; 220 221 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 222 "Vectorize load and Store instructions", false, false) 223 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 228 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 229 "Vectorize load and store instructions", false, false) 230 231 Pass *llvm::createLoadStoreVectorizerPass() { 232 return new LoadStoreVectorizer(); 233 } 234 235 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 236 // vectors of Instructions. 237 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 238 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 239 propagateMetadata(I, VL); 240 } 241 242 bool LoadStoreVectorizer::runOnFunction(Function &F) { 243 // Don't vectorize when the attribute NoImplicitFloat is used. 244 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 245 return false; 246 247 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 248 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 249 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 250 TargetTransformInfo &TTI = 251 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 252 253 Vectorizer V(F, AA, DT, SE, TTI); 254 return V.run(); 255 } 256 257 // Vectorizer Implementation 258 bool Vectorizer::run() { 259 bool Changed = false; 260 261 // Scan the blocks in the function in post order. 262 for (BasicBlock *BB : post_order(&F)) { 263 InstrListMap LoadRefs, StoreRefs; 264 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 265 Changed |= vectorizeChains(LoadRefs); 266 Changed |= vectorizeChains(StoreRefs); 267 } 268 269 return Changed; 270 } 271 272 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 273 if (LoadInst *L = dyn_cast<LoadInst>(I)) 274 return L->getPointerAddressSpace(); 275 if (StoreInst *S = dyn_cast<StoreInst>(I)) 276 return S->getPointerAddressSpace(); 277 return -1; 278 } 279 280 GetElementPtrInst *Vectorizer::getSourceGEP(Value *Src) const { 281 // First strip pointer bitcasts. Make sure pointee size is the same with 282 // and without casts. 283 // TODO: a stride set by the add instruction below can match the difference 284 // in pointee type size here. Currently it will not be vectorized. 285 Value *SrcPtr = getLoadStorePointerOperand(Src); 286 Value *SrcBase = SrcPtr->stripPointerCasts(); 287 Type *SrcPtrType = SrcPtr->getType()->getPointerElementType(); 288 Type *SrcBaseType = SrcBase->getType()->getPointerElementType(); 289 if (SrcPtrType->isSized() && SrcBaseType->isSized() && 290 DL.getTypeStoreSize(SrcPtrType) == DL.getTypeStoreSize(SrcBaseType)) 291 SrcPtr = SrcBase; 292 return dyn_cast<GetElementPtrInst>(SrcPtr); 293 } 294 295 // FIXME: Merge with llvm::isConsecutiveAccess 296 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 297 Value *PtrA = getLoadStorePointerOperand(A); 298 Value *PtrB = getLoadStorePointerOperand(B); 299 unsigned ASA = getPointerAddressSpace(A); 300 unsigned ASB = getPointerAddressSpace(B); 301 302 // Check that the address spaces match and that the pointers are valid. 303 if (!PtrA || !PtrB || (ASA != ASB)) 304 return false; 305 306 // Make sure that A and B are different pointers of the same size type. 307 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 308 Type *PtrATy = PtrA->getType()->getPointerElementType(); 309 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 310 if (PtrA == PtrB || 311 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 312 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 313 DL.getTypeStoreSize(PtrATy->getScalarType()) != 314 DL.getTypeStoreSize(PtrBTy->getScalarType())) 315 return false; 316 317 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 318 319 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 320 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 321 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 322 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 323 324 APInt OffsetDelta = OffsetB - OffsetA; 325 326 // Check if they are based on the same pointer. That makes the offsets 327 // sufficient. 328 if (PtrA == PtrB) 329 return OffsetDelta == Size; 330 331 // Compute the necessary base pointer delta to have the necessary final delta 332 // equal to the size. 333 APInt BaseDelta = Size - OffsetDelta; 334 335 // Compute the distance with SCEV between the base pointers. 336 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 337 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 338 const SCEV *C = SE.getConstant(BaseDelta); 339 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 340 if (X == PtrSCEVB) 341 return true; 342 343 // Sometimes even this doesn't work, because SCEV can't always see through 344 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 345 // things the hard way. 346 347 // Look through GEPs after checking they're the same except for the last 348 // index. 349 GetElementPtrInst *GEPA = getSourceGEP(A); 350 GetElementPtrInst *GEPB = getSourceGEP(B); 351 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 352 return false; 353 unsigned FinalIndex = GEPA->getNumOperands() - 1; 354 for (unsigned i = 0; i < FinalIndex; i++) 355 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 356 return false; 357 358 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 359 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 360 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 361 OpA->getType() != OpB->getType()) 362 return false; 363 364 // Only look through a ZExt/SExt. 365 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 366 return false; 367 368 bool Signed = isa<SExtInst>(OpA); 369 370 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 371 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 372 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 373 return false; 374 375 // Now we need to prove that adding 1 to OpA won't overflow. 376 bool Safe = false; 377 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 378 // we're okay. 379 if (OpB->getOpcode() == Instruction::Add && 380 isa<ConstantInt>(OpB->getOperand(1)) && 381 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 382 if (Signed) 383 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 384 else 385 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 386 } 387 388 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 389 390 // Second attempt: 391 // If any bits are known to be zero other than the sign bit in OpA, we can 392 // add 1 to it while guaranteeing no overflow of any sort. 393 if (!Safe) { 394 KnownBits Known(BitWidth); 395 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 396 if (Known.countMaxTrailingOnes() < (BitWidth - 1)) 397 Safe = true; 398 } 399 400 if (!Safe) 401 return false; 402 403 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 404 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 405 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 406 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 407 return X2 == OffsetSCEVB; 408 } 409 410 void Vectorizer::reorder(Instruction *I) { 411 OrderedBasicBlock OBB(I->getParent()); 412 SmallPtrSet<Instruction *, 16> InstructionsToMove; 413 SmallVector<Instruction *, 16> Worklist; 414 415 Worklist.push_back(I); 416 while (!Worklist.empty()) { 417 Instruction *IW = Worklist.pop_back_val(); 418 int NumOperands = IW->getNumOperands(); 419 for (int i = 0; i < NumOperands; i++) { 420 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 421 if (!IM || IM->getOpcode() == Instruction::PHI) 422 continue; 423 424 // If IM is in another BB, no need to move it, because this pass only 425 // vectorizes instructions within one BB. 426 if (IM->getParent() != I->getParent()) 427 continue; 428 429 if (!OBB.dominates(IM, I)) { 430 InstructionsToMove.insert(IM); 431 Worklist.push_back(IM); 432 } 433 } 434 } 435 436 // All instructions to move should follow I. Start from I, not from begin(). 437 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 438 ++BBI) { 439 if (!InstructionsToMove.count(&*BBI)) 440 continue; 441 Instruction *IM = &*BBI; 442 --BBI; 443 IM->removeFromParent(); 444 IM->insertBefore(I); 445 } 446 } 447 448 std::pair<BasicBlock::iterator, BasicBlock::iterator> 449 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 450 Instruction *C0 = Chain[0]; 451 BasicBlock::iterator FirstInstr = C0->getIterator(); 452 BasicBlock::iterator LastInstr = C0->getIterator(); 453 454 BasicBlock *BB = C0->getParent(); 455 unsigned NumFound = 0; 456 for (Instruction &I : *BB) { 457 if (!is_contained(Chain, &I)) 458 continue; 459 460 ++NumFound; 461 if (NumFound == 1) { 462 FirstInstr = I.getIterator(); 463 } 464 if (NumFound == Chain.size()) { 465 LastInstr = I.getIterator(); 466 break; 467 } 468 } 469 470 // Range is [first, last). 471 return std::make_pair(FirstInstr, ++LastInstr); 472 } 473 474 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 475 SmallVector<Instruction *, 16> Instrs; 476 for (Instruction *I : Chain) { 477 Value *PtrOperand = getLoadStorePointerOperand(I); 478 assert(PtrOperand && "Instruction must have a pointer operand."); 479 Instrs.push_back(I); 480 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 481 Instrs.push_back(GEP); 482 } 483 484 // Erase instructions. 485 for (Instruction *I : Instrs) 486 if (I->use_empty()) 487 I->eraseFromParent(); 488 } 489 490 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 491 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 492 unsigned ElementSizeBits) { 493 unsigned ElementSizeBytes = ElementSizeBits / 8; 494 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 495 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 496 if (NumLeft == Chain.size()) { 497 if ((NumLeft & 1) == 0) 498 NumLeft /= 2; // Split even in half 499 else 500 --NumLeft; // Split off last element 501 } else if (NumLeft == 0) 502 NumLeft = 1; 503 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 504 } 505 506 ArrayRef<Instruction *> 507 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 508 // These are in BB order, unlike Chain, which is in address order. 509 SmallVector<Instruction *, 16> MemoryInstrs; 510 SmallVector<Instruction *, 16> ChainInstrs; 511 512 bool IsLoadChain = isa<LoadInst>(Chain[0]); 513 DEBUG({ 514 for (Instruction *I : Chain) { 515 if (IsLoadChain) 516 assert(isa<LoadInst>(I) && 517 "All elements of Chain must be loads, or all must be stores."); 518 else 519 assert(isa<StoreInst>(I) && 520 "All elements of Chain must be loads, or all must be stores."); 521 } 522 }); 523 524 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 525 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 526 if (!is_contained(Chain, &I)) 527 MemoryInstrs.push_back(&I); 528 else 529 ChainInstrs.push_back(&I); 530 } else if (isa<IntrinsicInst>(&I) && 531 cast<IntrinsicInst>(&I)->getIntrinsicID() == 532 Intrinsic::sideeffect) { 533 // Ignore llvm.sideeffect calls. 534 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 535 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 536 break; 537 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 538 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 539 << '\n'); 540 break; 541 } 542 } 543 544 OrderedBasicBlock OBB(Chain[0]->getParent()); 545 546 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 547 unsigned ChainInstrIdx = 0; 548 Instruction *BarrierMemoryInstr = nullptr; 549 550 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 551 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 552 553 // If a barrier memory instruction was found, chain instructions that follow 554 // will not be added to the valid prefix. 555 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 556 break; 557 558 // Check (in BB order) if any instruction prevents ChainInstr from being 559 // vectorized. Find and store the first such "conflicting" instruction. 560 for (Instruction *MemInstr : MemoryInstrs) { 561 // If a barrier memory instruction was found, do not check past it. 562 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 563 break; 564 565 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 566 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 567 if (MemLoad && ChainLoad) 568 continue; 569 570 // We can ignore the alias if the we have a load store pair and the load 571 // is known to be invariant. The load cannot be clobbered by the store. 572 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 573 return LI->getMetadata(LLVMContext::MD_invariant_load); 574 }; 575 576 // We can ignore the alias as long as the load comes before the store, 577 // because that means we won't be moving the load past the store to 578 // vectorize it (the vectorized load is inserted at the location of the 579 // first load in the chain). 580 if (isa<StoreInst>(MemInstr) && ChainLoad && 581 (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr))) 582 continue; 583 584 // Same case, but in reverse. 585 if (MemLoad && isa<StoreInst>(ChainInstr) && 586 (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr))) 587 continue; 588 589 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 590 MemoryLocation::get(ChainInstr))) { 591 DEBUG({ 592 dbgs() << "LSV: Found alias:\n" 593 " Aliasing instruction and pointer:\n" 594 << " " << *MemInstr << '\n' 595 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 596 << " Aliased instruction and pointer:\n" 597 << " " << *ChainInstr << '\n' 598 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 599 }); 600 // Save this aliasing memory instruction as a barrier, but allow other 601 // instructions that precede the barrier to be vectorized with this one. 602 BarrierMemoryInstr = MemInstr; 603 break; 604 } 605 } 606 // Continue the search only for store chains, since vectorizing stores that 607 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 608 // up to an aliasing store, but should not pull loads from further down in 609 // the basic block. 610 if (IsLoadChain && BarrierMemoryInstr) { 611 // The BarrierMemoryInstr is a store that precedes ChainInstr. 612 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 613 break; 614 } 615 } 616 617 // Find the largest prefix of Chain whose elements are all in 618 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 619 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 620 // order.) 621 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 622 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 623 unsigned ChainIdx = 0; 624 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 625 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 626 break; 627 } 628 return Chain.slice(0, ChainIdx); 629 } 630 631 std::pair<InstrListMap, InstrListMap> 632 Vectorizer::collectInstructions(BasicBlock *BB) { 633 InstrListMap LoadRefs; 634 InstrListMap StoreRefs; 635 636 for (Instruction &I : *BB) { 637 if (!I.mayReadOrWriteMemory()) 638 continue; 639 640 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 641 if (!LI->isSimple()) 642 continue; 643 644 // Skip if it's not legal. 645 if (!TTI.isLegalToVectorizeLoad(LI)) 646 continue; 647 648 Type *Ty = LI->getType(); 649 if (!VectorType::isValidElementType(Ty->getScalarType())) 650 continue; 651 652 // Skip weird non-byte sizes. They probably aren't worth the effort of 653 // handling correctly. 654 unsigned TySize = DL.getTypeSizeInBits(Ty); 655 if ((TySize % 8) != 0) 656 continue; 657 658 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 659 // functions are currently using an integer type for the vectorized 660 // load/store, and does not support casting between the integer type and a 661 // vector of pointers (e.g. i64 to <2 x i16*>) 662 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 663 continue; 664 665 Value *Ptr = LI->getPointerOperand(); 666 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 667 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 668 669 unsigned VF = VecRegSize / TySize; 670 VectorType *VecTy = dyn_cast<VectorType>(Ty); 671 672 // No point in looking at these if they're too big to vectorize. 673 if (TySize > VecRegSize / 2 || 674 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 675 continue; 676 677 // Make sure all the users of a vector are constant-index extracts. 678 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 679 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 680 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 681 })) 682 continue; 683 684 // Save the load locations. 685 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 686 LoadRefs[ObjPtr].push_back(LI); 687 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 688 if (!SI->isSimple()) 689 continue; 690 691 // Skip if it's not legal. 692 if (!TTI.isLegalToVectorizeStore(SI)) 693 continue; 694 695 Type *Ty = SI->getValueOperand()->getType(); 696 if (!VectorType::isValidElementType(Ty->getScalarType())) 697 continue; 698 699 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 700 // functions are currently using an integer type for the vectorized 701 // load/store, and does not support casting between the integer type and a 702 // vector of pointers (e.g. i64 to <2 x i16*>) 703 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 704 continue; 705 706 // Skip weird non-byte sizes. They probably aren't worth the effort of 707 // handling correctly. 708 unsigned TySize = DL.getTypeSizeInBits(Ty); 709 if ((TySize % 8) != 0) 710 continue; 711 712 Value *Ptr = SI->getPointerOperand(); 713 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 714 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 715 716 unsigned VF = VecRegSize / TySize; 717 VectorType *VecTy = dyn_cast<VectorType>(Ty); 718 719 // No point in looking at these if they're too big to vectorize. 720 if (TySize > VecRegSize / 2 || 721 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 722 continue; 723 724 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 725 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 726 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 727 })) 728 continue; 729 730 // Save store location. 731 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 732 StoreRefs[ObjPtr].push_back(SI); 733 } 734 } 735 736 return {LoadRefs, StoreRefs}; 737 } 738 739 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 740 bool Changed = false; 741 742 for (const std::pair<Value *, InstrList> &Chain : Map) { 743 unsigned Size = Chain.second.size(); 744 if (Size < 2) 745 continue; 746 747 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 748 749 // Process the stores in chunks of 64. 750 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 751 unsigned Len = std::min<unsigned>(CE - CI, 64); 752 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 753 Changed |= vectorizeInstructions(Chunk); 754 } 755 } 756 757 return Changed; 758 } 759 760 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 761 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 762 SmallVector<int, 16> Heads, Tails; 763 int ConsecutiveChain[64]; 764 765 // Do a quadratic search on all of the given loads/stores and find all of the 766 // pairs of loads/stores that follow each other. 767 for (int i = 0, e = Instrs.size(); i < e; ++i) { 768 ConsecutiveChain[i] = -1; 769 for (int j = e - 1; j >= 0; --j) { 770 if (i == j) 771 continue; 772 773 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 774 if (ConsecutiveChain[i] != -1) { 775 int CurDistance = std::abs(ConsecutiveChain[i] - i); 776 int NewDistance = std::abs(ConsecutiveChain[i] - j); 777 if (j < i || NewDistance > CurDistance) 778 continue; // Should not insert. 779 } 780 781 Tails.push_back(j); 782 Heads.push_back(i); 783 ConsecutiveChain[i] = j; 784 } 785 } 786 } 787 788 bool Changed = false; 789 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 790 791 for (int Head : Heads) { 792 if (InstructionsProcessed.count(Instrs[Head])) 793 continue; 794 bool LongerChainExists = false; 795 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 796 if (Head == Tails[TIt] && 797 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 798 LongerChainExists = true; 799 break; 800 } 801 if (LongerChainExists) 802 continue; 803 804 // We found an instr that starts a chain. Now follow the chain and try to 805 // vectorize it. 806 SmallVector<Instruction *, 16> Operands; 807 int I = Head; 808 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 809 if (InstructionsProcessed.count(Instrs[I])) 810 break; 811 812 Operands.push_back(Instrs[I]); 813 I = ConsecutiveChain[I]; 814 } 815 816 bool Vectorized = false; 817 if (isa<LoadInst>(*Operands.begin())) 818 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 819 else 820 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 821 822 Changed |= Vectorized; 823 } 824 825 return Changed; 826 } 827 828 bool Vectorizer::vectorizeStoreChain( 829 ArrayRef<Instruction *> Chain, 830 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 831 StoreInst *S0 = cast<StoreInst>(Chain[0]); 832 833 // If the vector has an int element, default to int for the whole store. 834 Type *StoreTy; 835 for (Instruction *I : Chain) { 836 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 837 if (StoreTy->isIntOrIntVectorTy()) 838 break; 839 840 if (StoreTy->isPtrOrPtrVectorTy()) { 841 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 842 DL.getTypeSizeInBits(StoreTy)); 843 break; 844 } 845 } 846 847 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 848 unsigned AS = S0->getPointerAddressSpace(); 849 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 850 unsigned VF = VecRegSize / Sz; 851 unsigned ChainSize = Chain.size(); 852 unsigned Alignment = getAlignment(S0); 853 854 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 855 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 856 return false; 857 } 858 859 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 860 if (NewChain.empty()) { 861 // No vectorization possible. 862 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 863 return false; 864 } 865 if (NewChain.size() == 1) { 866 // Failed after the first instruction. Discard it and try the smaller chain. 867 InstructionsProcessed->insert(NewChain.front()); 868 return false; 869 } 870 871 // Update Chain to the valid vectorizable subchain. 872 Chain = NewChain; 873 ChainSize = Chain.size(); 874 875 // Check if it's legal to vectorize this chain. If not, split the chain and 876 // try again. 877 unsigned EltSzInBytes = Sz / 8; 878 unsigned SzInBytes = EltSzInBytes * ChainSize; 879 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 880 auto Chains = splitOddVectorElts(Chain, Sz); 881 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 882 vectorizeStoreChain(Chains.second, InstructionsProcessed); 883 } 884 885 VectorType *VecTy; 886 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 887 if (VecStoreTy) 888 VecTy = VectorType::get(StoreTy->getScalarType(), 889 Chain.size() * VecStoreTy->getNumElements()); 890 else 891 VecTy = VectorType::get(StoreTy, Chain.size()); 892 893 // If it's more than the max vector size or the target has a better 894 // vector factor, break it into two pieces. 895 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 896 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 897 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 898 " Creating two separate arrays.\n"); 899 return vectorizeStoreChain(Chain.slice(0, TargetVF), 900 InstructionsProcessed) | 901 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 902 } 903 904 DEBUG({ 905 dbgs() << "LSV: Stores to vectorize:\n"; 906 for (Instruction *I : Chain) 907 dbgs() << " " << *I << "\n"; 908 }); 909 910 // We won't try again to vectorize the elements of the chain, regardless of 911 // whether we succeed below. 912 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 913 914 // If the store is going to be misaligned, don't vectorize it. 915 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 916 if (S0->getPointerAddressSpace() != 0) 917 return false; 918 919 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 920 StackAdjustedAlignment, 921 DL, S0, nullptr, &DT); 922 if (NewAlign < StackAdjustedAlignment) 923 return false; 924 } 925 926 BasicBlock::iterator First, Last; 927 std::tie(First, Last) = getBoundaryInstrs(Chain); 928 Builder.SetInsertPoint(&*Last); 929 930 Value *Vec = UndefValue::get(VecTy); 931 932 if (VecStoreTy) { 933 unsigned VecWidth = VecStoreTy->getNumElements(); 934 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 935 StoreInst *Store = cast<StoreInst>(Chain[I]); 936 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 937 unsigned NewIdx = J + I * VecWidth; 938 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 939 Builder.getInt32(J)); 940 if (Extract->getType() != StoreTy->getScalarType()) 941 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 942 943 Value *Insert = 944 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 945 Vec = Insert; 946 } 947 } 948 } else { 949 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 950 StoreInst *Store = cast<StoreInst>(Chain[I]); 951 Value *Extract = Store->getValueOperand(); 952 if (Extract->getType() != StoreTy->getScalarType()) 953 Extract = 954 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 955 956 Value *Insert = 957 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 958 Vec = Insert; 959 } 960 } 961 962 // This cast is safe because Builder.CreateStore() always creates a bona fide 963 // StoreInst. 964 StoreInst *SI = cast<StoreInst>( 965 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), 966 VecTy->getPointerTo(AS)))); 967 propagateMetadata(SI, Chain); 968 SI->setAlignment(Alignment); 969 970 eraseInstructions(Chain); 971 ++NumVectorInstructions; 972 NumScalarsVectorized += Chain.size(); 973 return true; 974 } 975 976 bool Vectorizer::vectorizeLoadChain( 977 ArrayRef<Instruction *> Chain, 978 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 979 LoadInst *L0 = cast<LoadInst>(Chain[0]); 980 981 // If the vector has an int element, default to int for the whole load. 982 Type *LoadTy; 983 for (const auto &V : Chain) { 984 LoadTy = cast<LoadInst>(V)->getType(); 985 if (LoadTy->isIntOrIntVectorTy()) 986 break; 987 988 if (LoadTy->isPtrOrPtrVectorTy()) { 989 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 990 DL.getTypeSizeInBits(LoadTy)); 991 break; 992 } 993 } 994 995 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 996 unsigned AS = L0->getPointerAddressSpace(); 997 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 998 unsigned VF = VecRegSize / Sz; 999 unsigned ChainSize = Chain.size(); 1000 unsigned Alignment = getAlignment(L0); 1001 1002 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1003 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1004 return false; 1005 } 1006 1007 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1008 if (NewChain.empty()) { 1009 // No vectorization possible. 1010 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1011 return false; 1012 } 1013 if (NewChain.size() == 1) { 1014 // Failed after the first instruction. Discard it and try the smaller chain. 1015 InstructionsProcessed->insert(NewChain.front()); 1016 return false; 1017 } 1018 1019 // Update Chain to the valid vectorizable subchain. 1020 Chain = NewChain; 1021 ChainSize = Chain.size(); 1022 1023 // Check if it's legal to vectorize this chain. If not, split the chain and 1024 // try again. 1025 unsigned EltSzInBytes = Sz / 8; 1026 unsigned SzInBytes = EltSzInBytes * ChainSize; 1027 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1028 auto Chains = splitOddVectorElts(Chain, Sz); 1029 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1030 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1031 } 1032 1033 VectorType *VecTy; 1034 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1035 if (VecLoadTy) 1036 VecTy = VectorType::get(LoadTy->getScalarType(), 1037 Chain.size() * VecLoadTy->getNumElements()); 1038 else 1039 VecTy = VectorType::get(LoadTy, Chain.size()); 1040 1041 // If it's more than the max vector size or the target has a better 1042 // vector factor, break it into two pieces. 1043 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1044 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1045 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1046 " Creating two separate arrays.\n"); 1047 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1048 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1049 } 1050 1051 // We won't try again to vectorize the elements of the chain, regardless of 1052 // whether we succeed below. 1053 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1054 1055 // If the load is going to be misaligned, don't vectorize it. 1056 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1057 if (L0->getPointerAddressSpace() != 0) 1058 return false; 1059 1060 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1061 StackAdjustedAlignment, 1062 DL, L0, nullptr, &DT); 1063 if (NewAlign < StackAdjustedAlignment) 1064 return false; 1065 1066 Alignment = NewAlign; 1067 } 1068 1069 DEBUG({ 1070 dbgs() << "LSV: Loads to vectorize:\n"; 1071 for (Instruction *I : Chain) 1072 I->dump(); 1073 }); 1074 1075 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1076 // Last may have changed since then, but the value of First won't have. If it 1077 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1078 BasicBlock::iterator First, Last; 1079 std::tie(First, Last) = getBoundaryInstrs(Chain); 1080 Builder.SetInsertPoint(&*First); 1081 1082 Value *Bitcast = 1083 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1084 // This cast is safe because Builder.CreateLoad always creates a bona fide 1085 // LoadInst. 1086 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 1087 propagateMetadata(LI, Chain); 1088 LI->setAlignment(Alignment); 1089 1090 if (VecLoadTy) { 1091 SmallVector<Instruction *, 16> InstrsToErase; 1092 1093 unsigned VecWidth = VecLoadTy->getNumElements(); 1094 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1095 for (auto Use : Chain[I]->users()) { 1096 // All users of vector loads are ExtractElement instructions with 1097 // constant indices, otherwise we would have bailed before now. 1098 Instruction *UI = cast<Instruction>(Use); 1099 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1100 unsigned NewIdx = Idx + I * VecWidth; 1101 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1102 UI->getName()); 1103 if (V->getType() != UI->getType()) 1104 V = Builder.CreateBitCast(V, UI->getType()); 1105 1106 // Replace the old instruction. 1107 UI->replaceAllUsesWith(V); 1108 InstrsToErase.push_back(UI); 1109 } 1110 } 1111 1112 // Bitcast might not be an Instruction, if the value being loaded is a 1113 // constant. In that case, no need to reorder anything. 1114 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1115 reorder(BitcastInst); 1116 1117 for (auto I : InstrsToErase) 1118 I->eraseFromParent(); 1119 } else { 1120 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1121 Value *CV = Chain[I]; 1122 Value *V = 1123 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1124 if (V->getType() != CV->getType()) { 1125 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1126 } 1127 1128 // Replace the old instruction. 1129 CV->replaceAllUsesWith(V); 1130 } 1131 1132 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1133 reorder(BitcastInst); 1134 } 1135 1136 eraseInstructions(Chain); 1137 1138 ++NumVectorInstructions; 1139 NumScalarsVectorized += Chain.size(); 1140 return true; 1141 } 1142 1143 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1144 unsigned Alignment) { 1145 if (Alignment % SzInBytes == 0) 1146 return false; 1147 1148 bool Fast = false; 1149 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1150 SzInBytes * 8, AddressSpace, 1151 Alignment, &Fast); 1152 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1153 << " and fast? " << Fast << "\n";); 1154 return !Allows || !Fast; 1155 } 1156