1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 41 #include "llvm/ADT/APInt.h" 42 #include "llvm/ADT/ArrayRef.h" 43 #include "llvm/ADT/MapVector.h" 44 #include "llvm/ADT/PostOrderIterator.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/ADT/iterator_range.h" 50 #include "llvm/Analysis/AliasAnalysis.h" 51 #include "llvm/Analysis/MemoryLocation.h" 52 #include "llvm/Analysis/OrderedBasicBlock.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Transforms/Utils/Local.h" 56 #include "llvm/Analysis/ValueTracking.h" 57 #include "llvm/Analysis/VectorUtils.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/Constants.h" 61 #include "llvm/IR/DataLayout.h" 62 #include "llvm/IR/DerivedTypes.h" 63 #include "llvm/IR/Dominators.h" 64 #include "llvm/IR/Function.h" 65 #include "llvm/IR/IRBuilder.h" 66 #include "llvm/IR/InstrTypes.h" 67 #include "llvm/IR/Instruction.h" 68 #include "llvm/IR/Instructions.h" 69 #include "llvm/IR/IntrinsicInst.h" 70 #include "llvm/IR/Module.h" 71 #include "llvm/IR/Type.h" 72 #include "llvm/IR/User.h" 73 #include "llvm/IR/Value.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Vectorize.h" 81 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdlib> 85 #include <tuple> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "load-store-vectorizer" 91 92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 94 95 // FIXME: Assuming stack alignment of 4 is always good enough 96 static const unsigned StackAdjustedAlignment = 4; 97 98 namespace { 99 100 /// ChainID is an arbitrary token that is allowed to be different only for the 101 /// accesses that are guaranteed to be considered non-consecutive by 102 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 103 /// together and reducing the number of instructions the main search operates on 104 /// at a time, i.e. this is to reduce compile time and nothing else as the main 105 /// search has O(n^2) time complexity. The underlying type of ChainID should not 106 /// be relied upon. 107 using ChainID = const Value *; 108 using InstrList = SmallVector<Instruction *, 8>; 109 using InstrListMap = MapVector<ChainID, InstrList>; 110 111 class Vectorizer { 112 Function &F; 113 AliasAnalysis &AA; 114 DominatorTree &DT; 115 ScalarEvolution &SE; 116 TargetTransformInfo &TTI; 117 const DataLayout &DL; 118 IRBuilder<> Builder; 119 120 public: 121 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 122 ScalarEvolution &SE, TargetTransformInfo &TTI) 123 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 124 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 125 126 bool run(); 127 128 private: 129 unsigned getPointerAddressSpace(Value *I); 130 131 unsigned getAlignment(LoadInst *LI) const { 132 unsigned Align = LI->getAlignment(); 133 if (Align != 0) 134 return Align; 135 136 return DL.getABITypeAlignment(LI->getType()); 137 } 138 139 unsigned getAlignment(StoreInst *SI) const { 140 unsigned Align = SI->getAlignment(); 141 if (Align != 0) 142 return Align; 143 144 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 145 } 146 147 static const unsigned MaxDepth = 3; 148 149 bool isConsecutiveAccess(Value *A, Value *B); 150 bool areConsecutivePointers(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 151 unsigned Depth = 0) const; 152 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 153 unsigned Depth) const; 154 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 155 unsigned Depth) const; 156 157 /// After vectorization, reorder the instructions that I depends on 158 /// (the instructions defining its operands), to ensure they dominate I. 159 void reorder(Instruction *I); 160 161 /// Returns the first and the last instructions in Chain. 162 std::pair<BasicBlock::iterator, BasicBlock::iterator> 163 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 164 165 /// Erases the original instructions after vectorizing. 166 void eraseInstructions(ArrayRef<Instruction *> Chain); 167 168 /// "Legalize" the vector type that would be produced by combining \p 169 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 170 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 171 /// expected to have more than 4 elements. 172 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 173 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 174 175 /// Finds the largest prefix of Chain that's vectorizable, checking for 176 /// intervening instructions which may affect the memory accessed by the 177 /// instructions within Chain. 178 /// 179 /// The elements of \p Chain must be all loads or all stores and must be in 180 /// address order. 181 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 182 183 /// Collects load and store instructions to vectorize. 184 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 185 186 /// Processes the collected instructions, the \p Map. The values of \p Map 187 /// should be all loads or all stores. 188 bool vectorizeChains(InstrListMap &Map); 189 190 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 191 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 192 193 /// Vectorizes the load instructions in Chain. 194 bool 195 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 196 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 197 198 /// Vectorizes the store instructions in Chain. 199 bool 200 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 201 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 202 203 /// Check if this load/store access is misaligned accesses. 204 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 205 unsigned Alignment); 206 }; 207 208 class LoadStoreVectorizerLegacyPass : public FunctionPass { 209 public: 210 static char ID; 211 212 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 213 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 214 } 215 216 bool runOnFunction(Function &F) override; 217 218 StringRef getPassName() const override { 219 return "GPU Load and Store Vectorizer"; 220 } 221 222 void getAnalysisUsage(AnalysisUsage &AU) const override { 223 AU.addRequired<AAResultsWrapperPass>(); 224 AU.addRequired<ScalarEvolutionWrapperPass>(); 225 AU.addRequired<DominatorTreeWrapperPass>(); 226 AU.addRequired<TargetTransformInfoWrapperPass>(); 227 AU.setPreservesCFG(); 228 } 229 }; 230 231 } // end anonymous namespace 232 233 char LoadStoreVectorizerLegacyPass::ID = 0; 234 235 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 236 "Vectorize load and Store instructions", false, false) 237 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 238 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 239 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 240 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 241 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 242 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 243 "Vectorize load and store instructions", false, false) 244 245 Pass *llvm::createLoadStoreVectorizerPass() { 246 return new LoadStoreVectorizerLegacyPass(); 247 } 248 249 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 250 // Don't vectorize when the attribute NoImplicitFloat is used. 251 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 252 return false; 253 254 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 255 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 256 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 257 TargetTransformInfo &TTI = 258 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 259 260 Vectorizer V(F, AA, DT, SE, TTI); 261 return V.run(); 262 } 263 264 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 265 // Don't vectorize when the attribute NoImplicitFloat is used. 266 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 267 return PreservedAnalyses::all(); 268 269 AliasAnalysis &AA = AM.getResult<AAManager>(F); 270 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 271 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 272 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 273 274 Vectorizer V(F, AA, DT, SE, TTI); 275 bool Changed = V.run(); 276 PreservedAnalyses PA; 277 PA.preserveSet<CFGAnalyses>(); 278 return Changed ? PA : PreservedAnalyses::all(); 279 } 280 281 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 282 // vectors of Instructions. 283 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 284 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 285 propagateMetadata(I, VL); 286 } 287 288 // Vectorizer Implementation 289 bool Vectorizer::run() { 290 bool Changed = false; 291 292 // Scan the blocks in the function in post order. 293 for (BasicBlock *BB : post_order(&F)) { 294 InstrListMap LoadRefs, StoreRefs; 295 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 296 Changed |= vectorizeChains(LoadRefs); 297 Changed |= vectorizeChains(StoreRefs); 298 } 299 300 return Changed; 301 } 302 303 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 304 if (LoadInst *L = dyn_cast<LoadInst>(I)) 305 return L->getPointerAddressSpace(); 306 if (StoreInst *S = dyn_cast<StoreInst>(I)) 307 return S->getPointerAddressSpace(); 308 return -1; 309 } 310 311 // FIXME: Merge with llvm::isConsecutiveAccess 312 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 313 Value *PtrA = getLoadStorePointerOperand(A); 314 Value *PtrB = getLoadStorePointerOperand(B); 315 unsigned ASA = getPointerAddressSpace(A); 316 unsigned ASB = getPointerAddressSpace(B); 317 318 // Check that the address spaces match and that the pointers are valid. 319 if (!PtrA || !PtrB || (ASA != ASB)) 320 return false; 321 322 // Make sure that A and B are different pointers of the same size type. 323 Type *PtrATy = PtrA->getType()->getPointerElementType(); 324 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 325 if (PtrA == PtrB || 326 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 327 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 328 DL.getTypeStoreSize(PtrATy->getScalarType()) != 329 DL.getTypeStoreSize(PtrBTy->getScalarType())) 330 return false; 331 332 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 333 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 334 335 return areConsecutivePointers(PtrA, PtrB, Size); 336 } 337 338 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 339 const APInt &PtrDelta, 340 unsigned Depth) const { 341 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 342 APInt OffsetA(PtrBitWidth, 0); 343 APInt OffsetB(PtrBitWidth, 0); 344 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 345 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 346 347 APInt OffsetDelta = OffsetB - OffsetA; 348 349 // Check if they are based on the same pointer. That makes the offsets 350 // sufficient. 351 if (PtrA == PtrB) 352 return OffsetDelta == PtrDelta; 353 354 // Compute the necessary base pointer delta to have the necessary final delta 355 // equal to the pointer delta requested. 356 APInt BaseDelta = PtrDelta - OffsetDelta; 357 358 // Compute the distance with SCEV between the base pointers. 359 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 360 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 361 const SCEV *C = SE.getConstant(BaseDelta); 362 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 363 if (X == PtrSCEVB) 364 return true; 365 366 // The above check will not catch the cases where one of the pointers is 367 // factorized but the other one is not, such as (C + (S * (A + B))) vs 368 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 369 // and getting the simplified difference. 370 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 371 if (C == Dist) 372 return true; 373 374 // Sometimes even this doesn't work, because SCEV can't always see through 375 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 376 // things the hard way. 377 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 378 } 379 380 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 381 APInt PtrDelta, 382 unsigned Depth) const { 383 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 384 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 385 if (!GEPA || !GEPB) 386 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 387 388 // Look through GEPs after checking they're the same except for the last 389 // index. 390 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 391 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 392 return false; 393 gep_type_iterator GTIA = gep_type_begin(GEPA); 394 gep_type_iterator GTIB = gep_type_begin(GEPB); 395 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 396 if (GTIA.getOperand() != GTIB.getOperand()) 397 return false; 398 ++GTIA; 399 ++GTIB; 400 } 401 402 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 403 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 404 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 405 OpA->getType() != OpB->getType()) 406 return false; 407 408 if (PtrDelta.isNegative()) { 409 if (PtrDelta.isMinSignedValue()) 410 return false; 411 PtrDelta.negate(); 412 std::swap(OpA, OpB); 413 } 414 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 415 if (PtrDelta.urem(Stride) != 0) 416 return false; 417 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 418 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 419 420 // Only look through a ZExt/SExt. 421 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 422 return false; 423 424 bool Signed = isa<SExtInst>(OpA); 425 426 // At this point A could be a function parameter, i.e. not an instruction 427 Value *ValA = OpA->getOperand(0); 428 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 429 if (!OpB || ValA->getType() != OpB->getType()) 430 return false; 431 432 // Now we need to prove that adding IdxDiff to ValA won't overflow. 433 bool Safe = false; 434 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 435 // ValA, we're okay. 436 if (OpB->getOpcode() == Instruction::Add && 437 isa<ConstantInt>(OpB->getOperand(1)) && 438 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { 439 if (Signed) 440 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 441 else 442 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 443 } 444 445 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 446 447 // Second attempt: 448 // If all set bits of IdxDiff or any higher order bit other than the sign bit 449 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 450 // overflow of any sort. 451 if (!Safe) { 452 OpA = dyn_cast<Instruction>(ValA); 453 if (!OpA) 454 return false; 455 KnownBits Known(BitWidth); 456 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 457 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 458 if (Signed) 459 BitsAllowedToBeSet.clearBit(BitWidth - 1); 460 if (BitsAllowedToBeSet.ult(IdxDiff)) 461 return false; 462 } 463 464 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 465 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 466 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 467 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 468 return X == OffsetSCEVB; 469 } 470 471 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 472 const APInt &PtrDelta, 473 unsigned Depth) const { 474 if (Depth++ == MaxDepth) 475 return false; 476 477 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 478 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 479 return SelectA->getCondition() == SelectB->getCondition() && 480 areConsecutivePointers(SelectA->getTrueValue(), 481 SelectB->getTrueValue(), PtrDelta, Depth) && 482 areConsecutivePointers(SelectA->getFalseValue(), 483 SelectB->getFalseValue(), PtrDelta, Depth); 484 } 485 } 486 return false; 487 } 488 489 void Vectorizer::reorder(Instruction *I) { 490 OrderedBasicBlock OBB(I->getParent()); 491 SmallPtrSet<Instruction *, 16> InstructionsToMove; 492 SmallVector<Instruction *, 16> Worklist; 493 494 Worklist.push_back(I); 495 while (!Worklist.empty()) { 496 Instruction *IW = Worklist.pop_back_val(); 497 int NumOperands = IW->getNumOperands(); 498 for (int i = 0; i < NumOperands; i++) { 499 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 500 if (!IM || IM->getOpcode() == Instruction::PHI) 501 continue; 502 503 // If IM is in another BB, no need to move it, because this pass only 504 // vectorizes instructions within one BB. 505 if (IM->getParent() != I->getParent()) 506 continue; 507 508 if (!OBB.dominates(IM, I)) { 509 InstructionsToMove.insert(IM); 510 Worklist.push_back(IM); 511 } 512 } 513 } 514 515 // All instructions to move should follow I. Start from I, not from begin(). 516 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 517 ++BBI) { 518 if (!InstructionsToMove.count(&*BBI)) 519 continue; 520 Instruction *IM = &*BBI; 521 --BBI; 522 IM->removeFromParent(); 523 IM->insertBefore(I); 524 } 525 } 526 527 std::pair<BasicBlock::iterator, BasicBlock::iterator> 528 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 529 Instruction *C0 = Chain[0]; 530 BasicBlock::iterator FirstInstr = C0->getIterator(); 531 BasicBlock::iterator LastInstr = C0->getIterator(); 532 533 BasicBlock *BB = C0->getParent(); 534 unsigned NumFound = 0; 535 for (Instruction &I : *BB) { 536 if (!is_contained(Chain, &I)) 537 continue; 538 539 ++NumFound; 540 if (NumFound == 1) { 541 FirstInstr = I.getIterator(); 542 } 543 if (NumFound == Chain.size()) { 544 LastInstr = I.getIterator(); 545 break; 546 } 547 } 548 549 // Range is [first, last). 550 return std::make_pair(FirstInstr, ++LastInstr); 551 } 552 553 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 554 SmallVector<Instruction *, 16> Instrs; 555 for (Instruction *I : Chain) { 556 Value *PtrOperand = getLoadStorePointerOperand(I); 557 assert(PtrOperand && "Instruction must have a pointer operand."); 558 Instrs.push_back(I); 559 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 560 Instrs.push_back(GEP); 561 } 562 563 // Erase instructions. 564 for (Instruction *I : Instrs) 565 if (I->use_empty()) 566 I->eraseFromParent(); 567 } 568 569 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 570 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 571 unsigned ElementSizeBits) { 572 unsigned ElementSizeBytes = ElementSizeBits / 8; 573 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 574 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 575 if (NumLeft == Chain.size()) { 576 if ((NumLeft & 1) == 0) 577 NumLeft /= 2; // Split even in half 578 else 579 --NumLeft; // Split off last element 580 } else if (NumLeft == 0) 581 NumLeft = 1; 582 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 583 } 584 585 ArrayRef<Instruction *> 586 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 587 // These are in BB order, unlike Chain, which is in address order. 588 SmallVector<Instruction *, 16> MemoryInstrs; 589 SmallVector<Instruction *, 16> ChainInstrs; 590 591 bool IsLoadChain = isa<LoadInst>(Chain[0]); 592 LLVM_DEBUG({ 593 for (Instruction *I : Chain) { 594 if (IsLoadChain) 595 assert(isa<LoadInst>(I) && 596 "All elements of Chain must be loads, or all must be stores."); 597 else 598 assert(isa<StoreInst>(I) && 599 "All elements of Chain must be loads, or all must be stores."); 600 } 601 }); 602 603 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 604 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 605 if (!is_contained(Chain, &I)) 606 MemoryInstrs.push_back(&I); 607 else 608 ChainInstrs.push_back(&I); 609 } else if (isa<IntrinsicInst>(&I) && 610 cast<IntrinsicInst>(&I)->getIntrinsicID() == 611 Intrinsic::sideeffect) { 612 // Ignore llvm.sideeffect calls. 613 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 614 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 615 << '\n'); 616 break; 617 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 618 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 619 << '\n'); 620 break; 621 } 622 } 623 624 OrderedBasicBlock OBB(Chain[0]->getParent()); 625 626 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 627 unsigned ChainInstrIdx = 0; 628 Instruction *BarrierMemoryInstr = nullptr; 629 630 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 631 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 632 633 // If a barrier memory instruction was found, chain instructions that follow 634 // will not be added to the valid prefix. 635 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 636 break; 637 638 // Check (in BB order) if any instruction prevents ChainInstr from being 639 // vectorized. Find and store the first such "conflicting" instruction. 640 for (Instruction *MemInstr : MemoryInstrs) { 641 // If a barrier memory instruction was found, do not check past it. 642 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 643 break; 644 645 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 646 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 647 if (MemLoad && ChainLoad) 648 continue; 649 650 // We can ignore the alias if the we have a load store pair and the load 651 // is known to be invariant. The load cannot be clobbered by the store. 652 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 653 return LI->getMetadata(LLVMContext::MD_invariant_load); 654 }; 655 656 // We can ignore the alias as long as the load comes before the store, 657 // because that means we won't be moving the load past the store to 658 // vectorize it (the vectorized load is inserted at the location of the 659 // first load in the chain). 660 if (isa<StoreInst>(MemInstr) && ChainLoad && 661 (IsInvariantLoad(ChainLoad) || OBB.dominates(ChainLoad, MemInstr))) 662 continue; 663 664 // Same case, but in reverse. 665 if (MemLoad && isa<StoreInst>(ChainInstr) && 666 (IsInvariantLoad(MemLoad) || OBB.dominates(MemLoad, ChainInstr))) 667 continue; 668 669 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 670 MemoryLocation::get(ChainInstr))) { 671 LLVM_DEBUG({ 672 dbgs() << "LSV: Found alias:\n" 673 " Aliasing instruction and pointer:\n" 674 << " " << *MemInstr << '\n' 675 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 676 << " Aliased instruction and pointer:\n" 677 << " " << *ChainInstr << '\n' 678 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 679 }); 680 // Save this aliasing memory instruction as a barrier, but allow other 681 // instructions that precede the barrier to be vectorized with this one. 682 BarrierMemoryInstr = MemInstr; 683 break; 684 } 685 } 686 // Continue the search only for store chains, since vectorizing stores that 687 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 688 // up to an aliasing store, but should not pull loads from further down in 689 // the basic block. 690 if (IsLoadChain && BarrierMemoryInstr) { 691 // The BarrierMemoryInstr is a store that precedes ChainInstr. 692 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 693 break; 694 } 695 } 696 697 // Find the largest prefix of Chain whose elements are all in 698 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 699 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 700 // order.) 701 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 702 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 703 unsigned ChainIdx = 0; 704 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 705 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 706 break; 707 } 708 return Chain.slice(0, ChainIdx); 709 } 710 711 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { 712 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 713 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 714 // The select's themselves are distinct instructions even if they share the 715 // same condition and evaluate to consecutive pointers for true and false 716 // values of the condition. Therefore using the select's themselves for 717 // grouping instructions would put consecutive accesses into different lists 718 // and they won't be even checked for being consecutive, and won't be 719 // vectorized. 720 return Sel->getCondition(); 721 } 722 return ObjPtr; 723 } 724 725 std::pair<InstrListMap, InstrListMap> 726 Vectorizer::collectInstructions(BasicBlock *BB) { 727 InstrListMap LoadRefs; 728 InstrListMap StoreRefs; 729 730 for (Instruction &I : *BB) { 731 if (!I.mayReadOrWriteMemory()) 732 continue; 733 734 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 735 if (!LI->isSimple()) 736 continue; 737 738 // Skip if it's not legal. 739 if (!TTI.isLegalToVectorizeLoad(LI)) 740 continue; 741 742 Type *Ty = LI->getType(); 743 if (!VectorType::isValidElementType(Ty->getScalarType())) 744 continue; 745 746 // Skip weird non-byte sizes. They probably aren't worth the effort of 747 // handling correctly. 748 unsigned TySize = DL.getTypeSizeInBits(Ty); 749 if ((TySize % 8) != 0) 750 continue; 751 752 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 753 // functions are currently using an integer type for the vectorized 754 // load/store, and does not support casting between the integer type and a 755 // vector of pointers (e.g. i64 to <2 x i16*>) 756 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 757 continue; 758 759 Value *Ptr = LI->getPointerOperand(); 760 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 761 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 762 763 unsigned VF = VecRegSize / TySize; 764 VectorType *VecTy = dyn_cast<VectorType>(Ty); 765 766 // No point in looking at these if they're too big to vectorize. 767 if (TySize > VecRegSize / 2 || 768 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 769 continue; 770 771 // Make sure all the users of a vector are constant-index extracts. 772 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 773 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 774 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 775 })) 776 continue; 777 778 // Save the load locations. 779 const ChainID ID = getChainID(Ptr, DL); 780 LoadRefs[ID].push_back(LI); 781 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 782 if (!SI->isSimple()) 783 continue; 784 785 // Skip if it's not legal. 786 if (!TTI.isLegalToVectorizeStore(SI)) 787 continue; 788 789 Type *Ty = SI->getValueOperand()->getType(); 790 if (!VectorType::isValidElementType(Ty->getScalarType())) 791 continue; 792 793 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 794 // functions are currently using an integer type for the vectorized 795 // load/store, and does not support casting between the integer type and a 796 // vector of pointers (e.g. i64 to <2 x i16*>) 797 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 798 continue; 799 800 // Skip weird non-byte sizes. They probably aren't worth the effort of 801 // handling correctly. 802 unsigned TySize = DL.getTypeSizeInBits(Ty); 803 if ((TySize % 8) != 0) 804 continue; 805 806 Value *Ptr = SI->getPointerOperand(); 807 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 808 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 809 810 unsigned VF = VecRegSize / TySize; 811 VectorType *VecTy = dyn_cast<VectorType>(Ty); 812 813 // No point in looking at these if they're too big to vectorize. 814 if (TySize > VecRegSize / 2 || 815 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 816 continue; 817 818 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 819 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 820 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 821 })) 822 continue; 823 824 // Save store location. 825 const ChainID ID = getChainID(Ptr, DL); 826 StoreRefs[ID].push_back(SI); 827 } 828 } 829 830 return {LoadRefs, StoreRefs}; 831 } 832 833 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 834 bool Changed = false; 835 836 for (const std::pair<ChainID, InstrList> &Chain : Map) { 837 unsigned Size = Chain.second.size(); 838 if (Size < 2) 839 continue; 840 841 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 842 843 // Process the stores in chunks of 64. 844 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 845 unsigned Len = std::min<unsigned>(CE - CI, 64); 846 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 847 Changed |= vectorizeInstructions(Chunk); 848 } 849 } 850 851 return Changed; 852 } 853 854 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 855 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 856 << " instructions.\n"); 857 SmallVector<int, 16> Heads, Tails; 858 int ConsecutiveChain[64]; 859 860 // Do a quadratic search on all of the given loads/stores and find all of the 861 // pairs of loads/stores that follow each other. 862 for (int i = 0, e = Instrs.size(); i < e; ++i) { 863 ConsecutiveChain[i] = -1; 864 for (int j = e - 1; j >= 0; --j) { 865 if (i == j) 866 continue; 867 868 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 869 if (ConsecutiveChain[i] != -1) { 870 int CurDistance = std::abs(ConsecutiveChain[i] - i); 871 int NewDistance = std::abs(ConsecutiveChain[i] - j); 872 if (j < i || NewDistance > CurDistance) 873 continue; // Should not insert. 874 } 875 876 Tails.push_back(j); 877 Heads.push_back(i); 878 ConsecutiveChain[i] = j; 879 } 880 } 881 } 882 883 bool Changed = false; 884 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 885 886 for (int Head : Heads) { 887 if (InstructionsProcessed.count(Instrs[Head])) 888 continue; 889 bool LongerChainExists = false; 890 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 891 if (Head == Tails[TIt] && 892 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 893 LongerChainExists = true; 894 break; 895 } 896 if (LongerChainExists) 897 continue; 898 899 // We found an instr that starts a chain. Now follow the chain and try to 900 // vectorize it. 901 SmallVector<Instruction *, 16> Operands; 902 int I = Head; 903 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 904 if (InstructionsProcessed.count(Instrs[I])) 905 break; 906 907 Operands.push_back(Instrs[I]); 908 I = ConsecutiveChain[I]; 909 } 910 911 bool Vectorized = false; 912 if (isa<LoadInst>(*Operands.begin())) 913 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 914 else 915 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 916 917 Changed |= Vectorized; 918 } 919 920 return Changed; 921 } 922 923 bool Vectorizer::vectorizeStoreChain( 924 ArrayRef<Instruction *> Chain, 925 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 926 StoreInst *S0 = cast<StoreInst>(Chain[0]); 927 928 // If the vector has an int element, default to int for the whole store. 929 Type *StoreTy; 930 for (Instruction *I : Chain) { 931 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 932 if (StoreTy->isIntOrIntVectorTy()) 933 break; 934 935 if (StoreTy->isPtrOrPtrVectorTy()) { 936 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 937 DL.getTypeSizeInBits(StoreTy)); 938 break; 939 } 940 } 941 942 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 943 unsigned AS = S0->getPointerAddressSpace(); 944 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 945 unsigned VF = VecRegSize / Sz; 946 unsigned ChainSize = Chain.size(); 947 unsigned Alignment = getAlignment(S0); 948 949 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 950 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 951 return false; 952 } 953 954 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 955 if (NewChain.empty()) { 956 // No vectorization possible. 957 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 958 return false; 959 } 960 if (NewChain.size() == 1) { 961 // Failed after the first instruction. Discard it and try the smaller chain. 962 InstructionsProcessed->insert(NewChain.front()); 963 return false; 964 } 965 966 // Update Chain to the valid vectorizable subchain. 967 Chain = NewChain; 968 ChainSize = Chain.size(); 969 970 // Check if it's legal to vectorize this chain. If not, split the chain and 971 // try again. 972 unsigned EltSzInBytes = Sz / 8; 973 unsigned SzInBytes = EltSzInBytes * ChainSize; 974 975 VectorType *VecTy; 976 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 977 if (VecStoreTy) 978 VecTy = VectorType::get(StoreTy->getScalarType(), 979 Chain.size() * VecStoreTy->getNumElements()); 980 else 981 VecTy = VectorType::get(StoreTy, Chain.size()); 982 983 // If it's more than the max vector size or the target has a better 984 // vector factor, break it into two pieces. 985 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 986 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 987 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 988 " Creating two separate arrays.\n"); 989 return vectorizeStoreChain(Chain.slice(0, TargetVF), 990 InstructionsProcessed) | 991 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 992 } 993 994 LLVM_DEBUG({ 995 dbgs() << "LSV: Stores to vectorize:\n"; 996 for (Instruction *I : Chain) 997 dbgs() << " " << *I << "\n"; 998 }); 999 1000 // We won't try again to vectorize the elements of the chain, regardless of 1001 // whether we succeed below. 1002 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1003 1004 // If the store is going to be misaligned, don't vectorize it. 1005 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1006 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1007 auto Chains = splitOddVectorElts(Chain, Sz); 1008 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1009 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1010 } 1011 1012 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1013 StackAdjustedAlignment, 1014 DL, S0, nullptr, &DT); 1015 if (NewAlign != 0) 1016 Alignment = NewAlign; 1017 } 1018 1019 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 1020 auto Chains = splitOddVectorElts(Chain, Sz); 1021 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1022 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1023 } 1024 1025 BasicBlock::iterator First, Last; 1026 std::tie(First, Last) = getBoundaryInstrs(Chain); 1027 Builder.SetInsertPoint(&*Last); 1028 1029 Value *Vec = UndefValue::get(VecTy); 1030 1031 if (VecStoreTy) { 1032 unsigned VecWidth = VecStoreTy->getNumElements(); 1033 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1034 StoreInst *Store = cast<StoreInst>(Chain[I]); 1035 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1036 unsigned NewIdx = J + I * VecWidth; 1037 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1038 Builder.getInt32(J)); 1039 if (Extract->getType() != StoreTy->getScalarType()) 1040 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1041 1042 Value *Insert = 1043 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1044 Vec = Insert; 1045 } 1046 } 1047 } else { 1048 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1049 StoreInst *Store = cast<StoreInst>(Chain[I]); 1050 Value *Extract = Store->getValueOperand(); 1051 if (Extract->getType() != StoreTy->getScalarType()) 1052 Extract = 1053 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1054 1055 Value *Insert = 1056 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1057 Vec = Insert; 1058 } 1059 } 1060 1061 StoreInst *SI = Builder.CreateAlignedStore( 1062 Vec, 1063 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1064 Alignment); 1065 propagateMetadata(SI, Chain); 1066 1067 eraseInstructions(Chain); 1068 ++NumVectorInstructions; 1069 NumScalarsVectorized += Chain.size(); 1070 return true; 1071 } 1072 1073 bool Vectorizer::vectorizeLoadChain( 1074 ArrayRef<Instruction *> Chain, 1075 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1076 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1077 1078 // If the vector has an int element, default to int for the whole load. 1079 Type *LoadTy; 1080 for (const auto &V : Chain) { 1081 LoadTy = cast<LoadInst>(V)->getType(); 1082 if (LoadTy->isIntOrIntVectorTy()) 1083 break; 1084 1085 if (LoadTy->isPtrOrPtrVectorTy()) { 1086 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1087 DL.getTypeSizeInBits(LoadTy)); 1088 break; 1089 } 1090 } 1091 1092 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1093 unsigned AS = L0->getPointerAddressSpace(); 1094 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1095 unsigned VF = VecRegSize / Sz; 1096 unsigned ChainSize = Chain.size(); 1097 unsigned Alignment = getAlignment(L0); 1098 1099 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1100 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1101 return false; 1102 } 1103 1104 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1105 if (NewChain.empty()) { 1106 // No vectorization possible. 1107 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1108 return false; 1109 } 1110 if (NewChain.size() == 1) { 1111 // Failed after the first instruction. Discard it and try the smaller chain. 1112 InstructionsProcessed->insert(NewChain.front()); 1113 return false; 1114 } 1115 1116 // Update Chain to the valid vectorizable subchain. 1117 Chain = NewChain; 1118 ChainSize = Chain.size(); 1119 1120 // Check if it's legal to vectorize this chain. If not, split the chain and 1121 // try again. 1122 unsigned EltSzInBytes = Sz / 8; 1123 unsigned SzInBytes = EltSzInBytes * ChainSize; 1124 VectorType *VecTy; 1125 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1126 if (VecLoadTy) 1127 VecTy = VectorType::get(LoadTy->getScalarType(), 1128 Chain.size() * VecLoadTy->getNumElements()); 1129 else 1130 VecTy = VectorType::get(LoadTy, Chain.size()); 1131 1132 // If it's more than the max vector size or the target has a better 1133 // vector factor, break it into two pieces. 1134 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1135 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1136 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1137 " Creating two separate arrays.\n"); 1138 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1139 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1140 } 1141 1142 // We won't try again to vectorize the elements of the chain, regardless of 1143 // whether we succeed below. 1144 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1145 1146 // If the load is going to be misaligned, don't vectorize it. 1147 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1148 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1149 auto Chains = splitOddVectorElts(Chain, Sz); 1150 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1151 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1152 } 1153 1154 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1155 StackAdjustedAlignment, 1156 DL, L0, nullptr, &DT); 1157 if (NewAlign != 0) 1158 Alignment = NewAlign; 1159 1160 Alignment = NewAlign; 1161 } 1162 1163 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1164 auto Chains = splitOddVectorElts(Chain, Sz); 1165 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1166 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1167 } 1168 1169 LLVM_DEBUG({ 1170 dbgs() << "LSV: Loads to vectorize:\n"; 1171 for (Instruction *I : Chain) 1172 I->dump(); 1173 }); 1174 1175 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1176 // Last may have changed since then, but the value of First won't have. If it 1177 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1178 BasicBlock::iterator First, Last; 1179 std::tie(First, Last) = getBoundaryInstrs(Chain); 1180 Builder.SetInsertPoint(&*First); 1181 1182 Value *Bitcast = 1183 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1184 LoadInst *LI = Builder.CreateAlignedLoad(Bitcast, Alignment); 1185 propagateMetadata(LI, Chain); 1186 1187 if (VecLoadTy) { 1188 SmallVector<Instruction *, 16> InstrsToErase; 1189 1190 unsigned VecWidth = VecLoadTy->getNumElements(); 1191 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1192 for (auto Use : Chain[I]->users()) { 1193 // All users of vector loads are ExtractElement instructions with 1194 // constant indices, otherwise we would have bailed before now. 1195 Instruction *UI = cast<Instruction>(Use); 1196 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1197 unsigned NewIdx = Idx + I * VecWidth; 1198 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1199 UI->getName()); 1200 if (V->getType() != UI->getType()) 1201 V = Builder.CreateBitCast(V, UI->getType()); 1202 1203 // Replace the old instruction. 1204 UI->replaceAllUsesWith(V); 1205 InstrsToErase.push_back(UI); 1206 } 1207 } 1208 1209 // Bitcast might not be an Instruction, if the value being loaded is a 1210 // constant. In that case, no need to reorder anything. 1211 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1212 reorder(BitcastInst); 1213 1214 for (auto I : InstrsToErase) 1215 I->eraseFromParent(); 1216 } else { 1217 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1218 Value *CV = Chain[I]; 1219 Value *V = 1220 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1221 if (V->getType() != CV->getType()) { 1222 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1223 } 1224 1225 // Replace the old instruction. 1226 CV->replaceAllUsesWith(V); 1227 } 1228 1229 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1230 reorder(BitcastInst); 1231 } 1232 1233 eraseInstructions(Chain); 1234 1235 ++NumVectorInstructions; 1236 NumScalarsVectorized += Chain.size(); 1237 return true; 1238 } 1239 1240 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1241 unsigned Alignment) { 1242 if (Alignment % SzInBytes == 0) 1243 return false; 1244 1245 bool Fast = false; 1246 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1247 SzInBytes * 8, AddressSpace, 1248 Alignment, &Fast); 1249 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1250 << " and fast? " << Fast << "\n";); 1251 return !Allows || !Fast; 1252 } 1253