1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass merges loads/stores to/from sequential memory addresses into vector 10 // loads/stores. Although there's nothing GPU-specific in here, this pass is 11 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 12 // 13 // (For simplicity below we talk about loads only, but everything also applies 14 // to stores.) 15 // 16 // This pass is intended to be run late in the pipeline, after other 17 // vectorization opportunities have been exploited. So the assumption here is 18 // that immediately following our new vector load we'll need to extract out the 19 // individual elements of the load, so we can operate on them individually. 20 // 21 // On CPUs this transformation is usually not beneficial, because extracting the 22 // elements of a vector register is expensive on most architectures. It's 23 // usually better just to load each element individually into its own scalar 24 // register. 25 // 26 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 27 // "vector load" loads directly into a series of scalar registers. In effect, 28 // extracting the elements of the vector is free. It's therefore always 29 // beneficial to vectorize a sequence of loads on these architectures. 30 // 31 // Vectorizing (perhaps a better name might be "coalescing") loads can have 32 // large performance impacts on GPU kernels, and opportunities for vectorizing 33 // are common in GPU code. This pass tries very hard to find such 34 // opportunities; its runtime is quadratic in the number of loads in a BB. 35 // 36 // Some CPU architectures, such as ARM, have instructions that load into 37 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 38 // could use this pass (with some modifications), but currently it implements 39 // its own pass to do something similar to what we do here. 40 41 #include "llvm/Transforms/Vectorize/LoadStoreVectorizer.h" 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/ScalarEvolution.h" 54 #include "llvm/Analysis/TargetTransformInfo.h" 55 #include "llvm/Analysis/ValueTracking.h" 56 #include "llvm/Analysis/VectorUtils.h" 57 #include "llvm/IR/Attributes.h" 58 #include "llvm/IR/BasicBlock.h" 59 #include "llvm/IR/Constants.h" 60 #include "llvm/IR/DataLayout.h" 61 #include "llvm/IR/DerivedTypes.h" 62 #include "llvm/IR/Dominators.h" 63 #include "llvm/IR/Function.h" 64 #include "llvm/IR/IRBuilder.h" 65 #include "llvm/IR/InstrTypes.h" 66 #include "llvm/IR/Instruction.h" 67 #include "llvm/IR/Instructions.h" 68 #include "llvm/IR/IntrinsicInst.h" 69 #include "llvm/IR/Module.h" 70 #include "llvm/IR/Type.h" 71 #include "llvm/IR/User.h" 72 #include "llvm/IR/Value.h" 73 #include "llvm/InitializePasses.h" 74 #include "llvm/Pass.h" 75 #include "llvm/Support/Casting.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/KnownBits.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Utils/Local.h" 81 #include "llvm/Transforms/Vectorize.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdlib> 85 #include <tuple> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "load-store-vectorizer" 91 92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 94 95 // FIXME: Assuming stack alignment of 4 is always good enough 96 static const unsigned StackAdjustedAlignment = 4; 97 98 namespace { 99 100 /// ChainID is an arbitrary token that is allowed to be different only for the 101 /// accesses that are guaranteed to be considered non-consecutive by 102 /// Vectorizer::isConsecutiveAccess. It's used for grouping instructions 103 /// together and reducing the number of instructions the main search operates on 104 /// at a time, i.e. this is to reduce compile time and nothing else as the main 105 /// search has O(n^2) time complexity. The underlying type of ChainID should not 106 /// be relied upon. 107 using ChainID = const Value *; 108 using InstrList = SmallVector<Instruction *, 8>; 109 using InstrListMap = MapVector<ChainID, InstrList>; 110 111 class Vectorizer { 112 Function &F; 113 AliasAnalysis &AA; 114 DominatorTree &DT; 115 ScalarEvolution &SE; 116 TargetTransformInfo &TTI; 117 const DataLayout &DL; 118 IRBuilder<> Builder; 119 120 public: 121 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 122 ScalarEvolution &SE, TargetTransformInfo &TTI) 123 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 124 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 125 126 bool run(); 127 128 private: 129 unsigned getPointerAddressSpace(Value *I); 130 131 static const unsigned MaxDepth = 3; 132 133 bool isConsecutiveAccess(Value *A, Value *B); 134 bool areConsecutivePointers(Value *PtrA, Value *PtrB, APInt PtrDelta, 135 unsigned Depth = 0) const; 136 bool lookThroughComplexAddresses(Value *PtrA, Value *PtrB, APInt PtrDelta, 137 unsigned Depth) const; 138 bool lookThroughSelects(Value *PtrA, Value *PtrB, const APInt &PtrDelta, 139 unsigned Depth) const; 140 141 /// After vectorization, reorder the instructions that I depends on 142 /// (the instructions defining its operands), to ensure they dominate I. 143 void reorder(Instruction *I); 144 145 /// Returns the first and the last instructions in Chain. 146 std::pair<BasicBlock::iterator, BasicBlock::iterator> 147 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 148 149 /// Erases the original instructions after vectorizing. 150 void eraseInstructions(ArrayRef<Instruction *> Chain); 151 152 /// "Legalize" the vector type that would be produced by combining \p 153 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 154 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 155 /// expected to have more than 4 elements. 156 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 157 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 158 159 /// Finds the largest prefix of Chain that's vectorizable, checking for 160 /// intervening instructions which may affect the memory accessed by the 161 /// instructions within Chain. 162 /// 163 /// The elements of \p Chain must be all loads or all stores and must be in 164 /// address order. 165 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 166 167 /// Collects load and store instructions to vectorize. 168 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 169 170 /// Processes the collected instructions, the \p Map. The values of \p Map 171 /// should be all loads or all stores. 172 bool vectorizeChains(InstrListMap &Map); 173 174 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 175 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 176 177 /// Vectorizes the load instructions in Chain. 178 bool 179 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 180 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 181 182 /// Vectorizes the store instructions in Chain. 183 bool 184 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 185 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 186 187 /// Check if this load/store access is misaligned accesses. 188 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 189 unsigned Alignment); 190 }; 191 192 class LoadStoreVectorizerLegacyPass : public FunctionPass { 193 public: 194 static char ID; 195 196 LoadStoreVectorizerLegacyPass() : FunctionPass(ID) { 197 initializeLoadStoreVectorizerLegacyPassPass(*PassRegistry::getPassRegistry()); 198 } 199 200 bool runOnFunction(Function &F) override; 201 202 StringRef getPassName() const override { 203 return "GPU Load and Store Vectorizer"; 204 } 205 206 void getAnalysisUsage(AnalysisUsage &AU) const override { 207 AU.addRequired<AAResultsWrapperPass>(); 208 AU.addRequired<ScalarEvolutionWrapperPass>(); 209 AU.addRequired<DominatorTreeWrapperPass>(); 210 AU.addRequired<TargetTransformInfoWrapperPass>(); 211 AU.setPreservesCFG(); 212 } 213 }; 214 215 } // end anonymous namespace 216 217 char LoadStoreVectorizerLegacyPass::ID = 0; 218 219 INITIALIZE_PASS_BEGIN(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 220 "Vectorize load and Store instructions", false, false) 221 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 222 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 223 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 224 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 226 INITIALIZE_PASS_END(LoadStoreVectorizerLegacyPass, DEBUG_TYPE, 227 "Vectorize load and store instructions", false, false) 228 229 Pass *llvm::createLoadStoreVectorizerPass() { 230 return new LoadStoreVectorizerLegacyPass(); 231 } 232 233 bool LoadStoreVectorizerLegacyPass::runOnFunction(Function &F) { 234 // Don't vectorize when the attribute NoImplicitFloat is used. 235 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 236 return false; 237 238 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 239 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 240 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 241 TargetTransformInfo &TTI = 242 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 243 244 Vectorizer V(F, AA, DT, SE, TTI); 245 return V.run(); 246 } 247 248 PreservedAnalyses LoadStoreVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { 249 // Don't vectorize when the attribute NoImplicitFloat is used. 250 if (F.hasFnAttribute(Attribute::NoImplicitFloat)) 251 return PreservedAnalyses::all(); 252 253 AliasAnalysis &AA = AM.getResult<AAManager>(F); 254 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 255 ScalarEvolution &SE = AM.getResult<ScalarEvolutionAnalysis>(F); 256 TargetTransformInfo &TTI = AM.getResult<TargetIRAnalysis>(F); 257 258 Vectorizer V(F, AA, DT, SE, TTI); 259 bool Changed = V.run(); 260 PreservedAnalyses PA; 261 PA.preserveSet<CFGAnalyses>(); 262 return Changed ? PA : PreservedAnalyses::all(); 263 } 264 265 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 266 // vectors of Instructions. 267 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 268 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 269 propagateMetadata(I, VL); 270 } 271 272 // Vectorizer Implementation 273 bool Vectorizer::run() { 274 bool Changed = false; 275 276 // Scan the blocks in the function in post order. 277 for (BasicBlock *BB : post_order(&F)) { 278 InstrListMap LoadRefs, StoreRefs; 279 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 280 Changed |= vectorizeChains(LoadRefs); 281 Changed |= vectorizeChains(StoreRefs); 282 } 283 284 return Changed; 285 } 286 287 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 288 if (LoadInst *L = dyn_cast<LoadInst>(I)) 289 return L->getPointerAddressSpace(); 290 if (StoreInst *S = dyn_cast<StoreInst>(I)) 291 return S->getPointerAddressSpace(); 292 return -1; 293 } 294 295 // FIXME: Merge with llvm::isConsecutiveAccess 296 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 297 Value *PtrA = getLoadStorePointerOperand(A); 298 Value *PtrB = getLoadStorePointerOperand(B); 299 unsigned ASA = getPointerAddressSpace(A); 300 unsigned ASB = getPointerAddressSpace(B); 301 302 // Check that the address spaces match and that the pointers are valid. 303 if (!PtrA || !PtrB || (ASA != ASB)) 304 return false; 305 306 // Make sure that A and B are different pointers of the same size type. 307 Type *PtrATy = PtrA->getType()->getPointerElementType(); 308 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 309 if (PtrA == PtrB || 310 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 311 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 312 DL.getTypeStoreSize(PtrATy->getScalarType()) != 313 DL.getTypeStoreSize(PtrBTy->getScalarType())) 314 return false; 315 316 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 317 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 318 319 return areConsecutivePointers(PtrA, PtrB, Size); 320 } 321 322 bool Vectorizer::areConsecutivePointers(Value *PtrA, Value *PtrB, 323 APInt PtrDelta, unsigned Depth) const { 324 unsigned PtrBitWidth = DL.getPointerTypeSizeInBits(PtrA->getType()); 325 APInt OffsetA(PtrBitWidth, 0); 326 APInt OffsetB(PtrBitWidth, 0); 327 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 328 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 329 330 unsigned NewPtrBitWidth = DL.getTypeStoreSizeInBits(PtrA->getType()); 331 332 if (NewPtrBitWidth != DL.getTypeStoreSizeInBits(PtrB->getType())) 333 return false; 334 335 // In case if we have to shrink the pointer 336 // stripAndAccumulateInBoundsConstantOffsets should properly handle a 337 // possible overflow and the value should fit into a smallest data type 338 // used in the cast/gep chain. 339 assert(OffsetA.getMinSignedBits() <= NewPtrBitWidth && 340 OffsetB.getMinSignedBits() <= NewPtrBitWidth); 341 342 OffsetA = OffsetA.sextOrTrunc(NewPtrBitWidth); 343 OffsetB = OffsetB.sextOrTrunc(NewPtrBitWidth); 344 PtrDelta = PtrDelta.sextOrTrunc(NewPtrBitWidth); 345 346 APInt OffsetDelta = OffsetB - OffsetA; 347 348 // Check if they are based on the same pointer. That makes the offsets 349 // sufficient. 350 if (PtrA == PtrB) 351 return OffsetDelta == PtrDelta; 352 353 // Compute the necessary base pointer delta to have the necessary final delta 354 // equal to the pointer delta requested. 355 APInt BaseDelta = PtrDelta - OffsetDelta; 356 357 // Compute the distance with SCEV between the base pointers. 358 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 359 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 360 const SCEV *C = SE.getConstant(BaseDelta); 361 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 362 if (X == PtrSCEVB) 363 return true; 364 365 // The above check will not catch the cases where one of the pointers is 366 // factorized but the other one is not, such as (C + (S * (A + B))) vs 367 // (AS + BS). Get the minus scev. That will allow re-combining the expresions 368 // and getting the simplified difference. 369 const SCEV *Dist = SE.getMinusSCEV(PtrSCEVB, PtrSCEVA); 370 if (C == Dist) 371 return true; 372 373 // Sometimes even this doesn't work, because SCEV can't always see through 374 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 375 // things the hard way. 376 return lookThroughComplexAddresses(PtrA, PtrB, BaseDelta, Depth); 377 } 378 379 bool Vectorizer::lookThroughComplexAddresses(Value *PtrA, Value *PtrB, 380 APInt PtrDelta, 381 unsigned Depth) const { 382 auto *GEPA = dyn_cast<GetElementPtrInst>(PtrA); 383 auto *GEPB = dyn_cast<GetElementPtrInst>(PtrB); 384 if (!GEPA || !GEPB) 385 return lookThroughSelects(PtrA, PtrB, PtrDelta, Depth); 386 387 // Look through GEPs after checking they're the same except for the last 388 // index. 389 if (GEPA->getNumOperands() != GEPB->getNumOperands() || 390 GEPA->getPointerOperand() != GEPB->getPointerOperand()) 391 return false; 392 gep_type_iterator GTIA = gep_type_begin(GEPA); 393 gep_type_iterator GTIB = gep_type_begin(GEPB); 394 for (unsigned I = 0, E = GEPA->getNumIndices() - 1; I < E; ++I) { 395 if (GTIA.getOperand() != GTIB.getOperand()) 396 return false; 397 ++GTIA; 398 ++GTIB; 399 } 400 401 Instruction *OpA = dyn_cast<Instruction>(GTIA.getOperand()); 402 Instruction *OpB = dyn_cast<Instruction>(GTIB.getOperand()); 403 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 404 OpA->getType() != OpB->getType()) 405 return false; 406 407 if (PtrDelta.isNegative()) { 408 if (PtrDelta.isMinSignedValue()) 409 return false; 410 PtrDelta.negate(); 411 std::swap(OpA, OpB); 412 } 413 uint64_t Stride = DL.getTypeAllocSize(GTIA.getIndexedType()); 414 if (PtrDelta.urem(Stride) != 0) 415 return false; 416 unsigned IdxBitWidth = OpA->getType()->getScalarSizeInBits(); 417 APInt IdxDiff = PtrDelta.udiv(Stride).zextOrSelf(IdxBitWidth); 418 419 // Only look through a ZExt/SExt. 420 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 421 return false; 422 423 bool Signed = isa<SExtInst>(OpA); 424 425 // At this point A could be a function parameter, i.e. not an instruction 426 Value *ValA = OpA->getOperand(0); 427 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 428 if (!OpB || ValA->getType() != OpB->getType()) 429 return false; 430 431 // Now we need to prove that adding IdxDiff to ValA won't overflow. 432 bool Safe = false; 433 // First attempt: if OpB is an add with NSW/NUW, and OpB is IdxDiff added to 434 // ValA, we're okay. 435 if (OpB->getOpcode() == Instruction::Add && 436 isa<ConstantInt>(OpB->getOperand(1)) && 437 IdxDiff.sle(cast<ConstantInt>(OpB->getOperand(1))->getSExtValue())) { 438 if (Signed) 439 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 440 else 441 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 442 } 443 444 unsigned BitWidth = ValA->getType()->getScalarSizeInBits(); 445 446 // Second attempt: 447 // If all set bits of IdxDiff or any higher order bit other than the sign bit 448 // are known to be zero in ValA, we can add Diff to it while guaranteeing no 449 // overflow of any sort. 450 if (!Safe) { 451 OpA = dyn_cast<Instruction>(ValA); 452 if (!OpA) 453 return false; 454 KnownBits Known(BitWidth); 455 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 456 APInt BitsAllowedToBeSet = Known.Zero.zext(IdxDiff.getBitWidth()); 457 if (Signed) 458 BitsAllowedToBeSet.clearBit(BitWidth - 1); 459 if (BitsAllowedToBeSet.ult(IdxDiff)) 460 return false; 461 } 462 463 const SCEV *OffsetSCEVA = SE.getSCEV(ValA); 464 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 465 const SCEV *C = SE.getConstant(IdxDiff.trunc(BitWidth)); 466 const SCEV *X = SE.getAddExpr(OffsetSCEVA, C); 467 return X == OffsetSCEVB; 468 } 469 470 bool Vectorizer::lookThroughSelects(Value *PtrA, Value *PtrB, 471 const APInt &PtrDelta, 472 unsigned Depth) const { 473 if (Depth++ == MaxDepth) 474 return false; 475 476 if (auto *SelectA = dyn_cast<SelectInst>(PtrA)) { 477 if (auto *SelectB = dyn_cast<SelectInst>(PtrB)) { 478 return SelectA->getCondition() == SelectB->getCondition() && 479 areConsecutivePointers(SelectA->getTrueValue(), 480 SelectB->getTrueValue(), PtrDelta, Depth) && 481 areConsecutivePointers(SelectA->getFalseValue(), 482 SelectB->getFalseValue(), PtrDelta, Depth); 483 } 484 } 485 return false; 486 } 487 488 void Vectorizer::reorder(Instruction *I) { 489 SmallPtrSet<Instruction *, 16> InstructionsToMove; 490 SmallVector<Instruction *, 16> Worklist; 491 492 Worklist.push_back(I); 493 while (!Worklist.empty()) { 494 Instruction *IW = Worklist.pop_back_val(); 495 int NumOperands = IW->getNumOperands(); 496 for (int i = 0; i < NumOperands; i++) { 497 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 498 if (!IM || IM->getOpcode() == Instruction::PHI) 499 continue; 500 501 // If IM is in another BB, no need to move it, because this pass only 502 // vectorizes instructions within one BB. 503 if (IM->getParent() != I->getParent()) 504 continue; 505 506 if (!IM->comesBefore(I)) { 507 InstructionsToMove.insert(IM); 508 Worklist.push_back(IM); 509 } 510 } 511 } 512 513 // All instructions to move should follow I. Start from I, not from begin(). 514 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 515 ++BBI) { 516 if (!InstructionsToMove.count(&*BBI)) 517 continue; 518 Instruction *IM = &*BBI; 519 --BBI; 520 IM->removeFromParent(); 521 IM->insertBefore(I); 522 } 523 } 524 525 std::pair<BasicBlock::iterator, BasicBlock::iterator> 526 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 527 Instruction *C0 = Chain[0]; 528 BasicBlock::iterator FirstInstr = C0->getIterator(); 529 BasicBlock::iterator LastInstr = C0->getIterator(); 530 531 BasicBlock *BB = C0->getParent(); 532 unsigned NumFound = 0; 533 for (Instruction &I : *BB) { 534 if (!is_contained(Chain, &I)) 535 continue; 536 537 ++NumFound; 538 if (NumFound == 1) { 539 FirstInstr = I.getIterator(); 540 } 541 if (NumFound == Chain.size()) { 542 LastInstr = I.getIterator(); 543 break; 544 } 545 } 546 547 // Range is [first, last). 548 return std::make_pair(FirstInstr, ++LastInstr); 549 } 550 551 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 552 SmallVector<Instruction *, 16> Instrs; 553 for (Instruction *I : Chain) { 554 Value *PtrOperand = getLoadStorePointerOperand(I); 555 assert(PtrOperand && "Instruction must have a pointer operand."); 556 Instrs.push_back(I); 557 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 558 Instrs.push_back(GEP); 559 } 560 561 // Erase instructions. 562 for (Instruction *I : Instrs) 563 if (I->use_empty()) 564 I->eraseFromParent(); 565 } 566 567 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 568 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 569 unsigned ElementSizeBits) { 570 unsigned ElementSizeBytes = ElementSizeBits / 8; 571 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 572 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 573 if (NumLeft == Chain.size()) { 574 if ((NumLeft & 1) == 0) 575 NumLeft /= 2; // Split even in half 576 else 577 --NumLeft; // Split off last element 578 } else if (NumLeft == 0) 579 NumLeft = 1; 580 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 581 } 582 583 ArrayRef<Instruction *> 584 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 585 // These are in BB order, unlike Chain, which is in address order. 586 SmallVector<Instruction *, 16> MemoryInstrs; 587 SmallVector<Instruction *, 16> ChainInstrs; 588 589 bool IsLoadChain = isa<LoadInst>(Chain[0]); 590 LLVM_DEBUG({ 591 for (Instruction *I : Chain) { 592 if (IsLoadChain) 593 assert(isa<LoadInst>(I) && 594 "All elements of Chain must be loads, or all must be stores."); 595 else 596 assert(isa<StoreInst>(I) && 597 "All elements of Chain must be loads, or all must be stores."); 598 } 599 }); 600 601 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 602 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 603 if (!is_contained(Chain, &I)) 604 MemoryInstrs.push_back(&I); 605 else 606 ChainInstrs.push_back(&I); 607 } else if (isa<IntrinsicInst>(&I) && 608 cast<IntrinsicInst>(&I)->getIntrinsicID() == 609 Intrinsic::sideeffect) { 610 // Ignore llvm.sideeffect calls. 611 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 612 LLVM_DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I 613 << '\n'); 614 break; 615 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 616 LLVM_DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 617 << '\n'); 618 break; 619 } 620 } 621 622 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 623 unsigned ChainInstrIdx = 0; 624 Instruction *BarrierMemoryInstr = nullptr; 625 626 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 627 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 628 629 // If a barrier memory instruction was found, chain instructions that follow 630 // will not be added to the valid prefix. 631 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(ChainInstr)) 632 break; 633 634 // Check (in BB order) if any instruction prevents ChainInstr from being 635 // vectorized. Find and store the first such "conflicting" instruction. 636 for (Instruction *MemInstr : MemoryInstrs) { 637 // If a barrier memory instruction was found, do not check past it. 638 if (BarrierMemoryInstr && BarrierMemoryInstr->comesBefore(MemInstr)) 639 break; 640 641 auto *MemLoad = dyn_cast<LoadInst>(MemInstr); 642 auto *ChainLoad = dyn_cast<LoadInst>(ChainInstr); 643 if (MemLoad && ChainLoad) 644 continue; 645 646 // We can ignore the alias if the we have a load store pair and the load 647 // is known to be invariant. The load cannot be clobbered by the store. 648 auto IsInvariantLoad = [](const LoadInst *LI) -> bool { 649 return LI->hasMetadata(LLVMContext::MD_invariant_load); 650 }; 651 652 // We can ignore the alias as long as the load comes before the store, 653 // because that means we won't be moving the load past the store to 654 // vectorize it (the vectorized load is inserted at the location of the 655 // first load in the chain). 656 if (isa<StoreInst>(MemInstr) && ChainLoad && 657 (IsInvariantLoad(ChainLoad) || ChainLoad->comesBefore(MemInstr))) 658 continue; 659 660 // Same case, but in reverse. 661 if (MemLoad && isa<StoreInst>(ChainInstr) && 662 (IsInvariantLoad(MemLoad) || MemLoad->comesBefore(ChainInstr))) 663 continue; 664 665 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 666 MemoryLocation::get(ChainInstr))) { 667 LLVM_DEBUG({ 668 dbgs() << "LSV: Found alias:\n" 669 " Aliasing instruction and pointer:\n" 670 << " " << *MemInstr << '\n' 671 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 672 << " Aliased instruction and pointer:\n" 673 << " " << *ChainInstr << '\n' 674 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 675 }); 676 // Save this aliasing memory instruction as a barrier, but allow other 677 // instructions that precede the barrier to be vectorized with this one. 678 BarrierMemoryInstr = MemInstr; 679 break; 680 } 681 } 682 // Continue the search only for store chains, since vectorizing stores that 683 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 684 // up to an aliasing store, but should not pull loads from further down in 685 // the basic block. 686 if (IsLoadChain && BarrierMemoryInstr) { 687 // The BarrierMemoryInstr is a store that precedes ChainInstr. 688 assert(BarrierMemoryInstr->comesBefore(ChainInstr)); 689 break; 690 } 691 } 692 693 // Find the largest prefix of Chain whose elements are all in 694 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 695 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 696 // order.) 697 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 698 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 699 unsigned ChainIdx = 0; 700 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 701 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 702 break; 703 } 704 return Chain.slice(0, ChainIdx); 705 } 706 707 static ChainID getChainID(const Value *Ptr, const DataLayout &DL) { 708 const Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 709 if (const auto *Sel = dyn_cast<SelectInst>(ObjPtr)) { 710 // The select's themselves are distinct instructions even if they share the 711 // same condition and evaluate to consecutive pointers for true and false 712 // values of the condition. Therefore using the select's themselves for 713 // grouping instructions would put consecutive accesses into different lists 714 // and they won't be even checked for being consecutive, and won't be 715 // vectorized. 716 return Sel->getCondition(); 717 } 718 return ObjPtr; 719 } 720 721 std::pair<InstrListMap, InstrListMap> 722 Vectorizer::collectInstructions(BasicBlock *BB) { 723 InstrListMap LoadRefs; 724 InstrListMap StoreRefs; 725 726 for (Instruction &I : *BB) { 727 if (!I.mayReadOrWriteMemory()) 728 continue; 729 730 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 731 if (!LI->isSimple()) 732 continue; 733 734 // Skip if it's not legal. 735 if (!TTI.isLegalToVectorizeLoad(LI)) 736 continue; 737 738 Type *Ty = LI->getType(); 739 if (!VectorType::isValidElementType(Ty->getScalarType())) 740 continue; 741 742 // Skip weird non-byte sizes. They probably aren't worth the effort of 743 // handling correctly. 744 unsigned TySize = DL.getTypeSizeInBits(Ty); 745 if ((TySize % 8) != 0) 746 continue; 747 748 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 749 // functions are currently using an integer type for the vectorized 750 // load/store, and does not support casting between the integer type and a 751 // vector of pointers (e.g. i64 to <2 x i16*>) 752 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 753 continue; 754 755 Value *Ptr = LI->getPointerOperand(); 756 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 757 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 758 759 unsigned VF = VecRegSize / TySize; 760 VectorType *VecTy = dyn_cast<VectorType>(Ty); 761 762 // No point in looking at these if they're too big to vectorize. 763 if (TySize > VecRegSize / 2 || 764 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 765 continue; 766 767 // Make sure all the users of a vector are constant-index extracts. 768 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 769 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 770 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 771 })) 772 continue; 773 774 // Save the load locations. 775 const ChainID ID = getChainID(Ptr, DL); 776 LoadRefs[ID].push_back(LI); 777 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 778 if (!SI->isSimple()) 779 continue; 780 781 // Skip if it's not legal. 782 if (!TTI.isLegalToVectorizeStore(SI)) 783 continue; 784 785 Type *Ty = SI->getValueOperand()->getType(); 786 if (!VectorType::isValidElementType(Ty->getScalarType())) 787 continue; 788 789 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 790 // functions are currently using an integer type for the vectorized 791 // load/store, and does not support casting between the integer type and a 792 // vector of pointers (e.g. i64 to <2 x i16*>) 793 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 794 continue; 795 796 // Skip weird non-byte sizes. They probably aren't worth the effort of 797 // handling correctly. 798 unsigned TySize = DL.getTypeSizeInBits(Ty); 799 if ((TySize % 8) != 0) 800 continue; 801 802 Value *Ptr = SI->getPointerOperand(); 803 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 804 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 805 806 unsigned VF = VecRegSize / TySize; 807 VectorType *VecTy = dyn_cast<VectorType>(Ty); 808 809 // No point in looking at these if they're too big to vectorize. 810 if (TySize > VecRegSize / 2 || 811 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 812 continue; 813 814 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 815 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 816 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 817 })) 818 continue; 819 820 // Save store location. 821 const ChainID ID = getChainID(Ptr, DL); 822 StoreRefs[ID].push_back(SI); 823 } 824 } 825 826 return {LoadRefs, StoreRefs}; 827 } 828 829 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 830 bool Changed = false; 831 832 for (const std::pair<ChainID, InstrList> &Chain : Map) { 833 unsigned Size = Chain.second.size(); 834 if (Size < 2) 835 continue; 836 837 LLVM_DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 838 839 // Process the stores in chunks of 64. 840 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 841 unsigned Len = std::min<unsigned>(CE - CI, 64); 842 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 843 Changed |= vectorizeInstructions(Chunk); 844 } 845 } 846 847 return Changed; 848 } 849 850 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 851 LLVM_DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() 852 << " instructions.\n"); 853 SmallVector<int, 16> Heads, Tails; 854 int ConsecutiveChain[64]; 855 856 // Do a quadratic search on all of the given loads/stores and find all of the 857 // pairs of loads/stores that follow each other. 858 for (int i = 0, e = Instrs.size(); i < e; ++i) { 859 ConsecutiveChain[i] = -1; 860 for (int j = e - 1; j >= 0; --j) { 861 if (i == j) 862 continue; 863 864 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 865 if (ConsecutiveChain[i] != -1) { 866 int CurDistance = std::abs(ConsecutiveChain[i] - i); 867 int NewDistance = std::abs(ConsecutiveChain[i] - j); 868 if (j < i || NewDistance > CurDistance) 869 continue; // Should not insert. 870 } 871 872 Tails.push_back(j); 873 Heads.push_back(i); 874 ConsecutiveChain[i] = j; 875 } 876 } 877 } 878 879 bool Changed = false; 880 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 881 882 for (int Head : Heads) { 883 if (InstructionsProcessed.count(Instrs[Head])) 884 continue; 885 bool LongerChainExists = false; 886 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 887 if (Head == Tails[TIt] && 888 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 889 LongerChainExists = true; 890 break; 891 } 892 if (LongerChainExists) 893 continue; 894 895 // We found an instr that starts a chain. Now follow the chain and try to 896 // vectorize it. 897 SmallVector<Instruction *, 16> Operands; 898 int I = Head; 899 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 900 if (InstructionsProcessed.count(Instrs[I])) 901 break; 902 903 Operands.push_back(Instrs[I]); 904 I = ConsecutiveChain[I]; 905 } 906 907 bool Vectorized = false; 908 if (isa<LoadInst>(*Operands.begin())) 909 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 910 else 911 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 912 913 Changed |= Vectorized; 914 } 915 916 return Changed; 917 } 918 919 bool Vectorizer::vectorizeStoreChain( 920 ArrayRef<Instruction *> Chain, 921 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 922 StoreInst *S0 = cast<StoreInst>(Chain[0]); 923 924 // If the vector has an int element, default to int for the whole store. 925 Type *StoreTy = nullptr; 926 for (Instruction *I : Chain) { 927 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 928 if (StoreTy->isIntOrIntVectorTy()) 929 break; 930 931 if (StoreTy->isPtrOrPtrVectorTy()) { 932 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 933 DL.getTypeSizeInBits(StoreTy)); 934 break; 935 } 936 } 937 assert(StoreTy && "Failed to find store type"); 938 939 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 940 unsigned AS = S0->getPointerAddressSpace(); 941 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 942 unsigned VF = VecRegSize / Sz; 943 unsigned ChainSize = Chain.size(); 944 Align Alignment = S0->getAlign(); 945 946 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 947 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 948 return false; 949 } 950 951 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 952 if (NewChain.empty()) { 953 // No vectorization possible. 954 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 955 return false; 956 } 957 if (NewChain.size() == 1) { 958 // Failed after the first instruction. Discard it and try the smaller chain. 959 InstructionsProcessed->insert(NewChain.front()); 960 return false; 961 } 962 963 // Update Chain to the valid vectorizable subchain. 964 Chain = NewChain; 965 ChainSize = Chain.size(); 966 967 // Check if it's legal to vectorize this chain. If not, split the chain and 968 // try again. 969 unsigned EltSzInBytes = Sz / 8; 970 unsigned SzInBytes = EltSzInBytes * ChainSize; 971 972 VectorType *VecTy; 973 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 974 if (VecStoreTy) 975 VecTy = VectorType::get(StoreTy->getScalarType(), 976 Chain.size() * VecStoreTy->getNumElements()); 977 else 978 VecTy = VectorType::get(StoreTy, Chain.size()); 979 980 // If it's more than the max vector size or the target has a better 981 // vector factor, break it into two pieces. 982 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 983 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 984 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 985 " Creating two separate arrays.\n"); 986 return vectorizeStoreChain(Chain.slice(0, TargetVF), 987 InstructionsProcessed) | 988 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 989 } 990 991 LLVM_DEBUG({ 992 dbgs() << "LSV: Stores to vectorize:\n"; 993 for (Instruction *I : Chain) 994 dbgs() << " " << *I << "\n"; 995 }); 996 997 // We won't try again to vectorize the elements of the chain, regardless of 998 // whether we succeed below. 999 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1000 1001 // If the store is going to be misaligned, don't vectorize it. 1002 if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { 1003 if (S0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1004 auto Chains = splitOddVectorElts(Chain, Sz); 1005 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1006 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1007 } 1008 1009 Align NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 1010 Align(StackAdjustedAlignment), 1011 DL, S0, nullptr, &DT); 1012 if (NewAlign >= Alignment) 1013 Alignment = NewAlign; 1014 else 1015 return false; 1016 } 1017 1018 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment.value(), AS)) { 1019 auto Chains = splitOddVectorElts(Chain, Sz); 1020 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 1021 vectorizeStoreChain(Chains.second, InstructionsProcessed); 1022 } 1023 1024 BasicBlock::iterator First, Last; 1025 std::tie(First, Last) = getBoundaryInstrs(Chain); 1026 Builder.SetInsertPoint(&*Last); 1027 1028 Value *Vec = UndefValue::get(VecTy); 1029 1030 if (VecStoreTy) { 1031 unsigned VecWidth = VecStoreTy->getNumElements(); 1032 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1033 StoreInst *Store = cast<StoreInst>(Chain[I]); 1034 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 1035 unsigned NewIdx = J + I * VecWidth; 1036 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 1037 Builder.getInt32(J)); 1038 if (Extract->getType() != StoreTy->getScalarType()) 1039 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 1040 1041 Value *Insert = 1042 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 1043 Vec = Insert; 1044 } 1045 } 1046 } else { 1047 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1048 StoreInst *Store = cast<StoreInst>(Chain[I]); 1049 Value *Extract = Store->getValueOperand(); 1050 if (Extract->getType() != StoreTy->getScalarType()) 1051 Extract = 1052 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 1053 1054 Value *Insert = 1055 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 1056 Vec = Insert; 1057 } 1058 } 1059 1060 StoreInst *SI = Builder.CreateAlignedStore( 1061 Vec, 1062 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)), 1063 Alignment); 1064 propagateMetadata(SI, Chain); 1065 1066 eraseInstructions(Chain); 1067 ++NumVectorInstructions; 1068 NumScalarsVectorized += Chain.size(); 1069 return true; 1070 } 1071 1072 bool Vectorizer::vectorizeLoadChain( 1073 ArrayRef<Instruction *> Chain, 1074 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 1075 LoadInst *L0 = cast<LoadInst>(Chain[0]); 1076 1077 // If the vector has an int element, default to int for the whole load. 1078 Type *LoadTy = nullptr; 1079 for (const auto &V : Chain) { 1080 LoadTy = cast<LoadInst>(V)->getType(); 1081 if (LoadTy->isIntOrIntVectorTy()) 1082 break; 1083 1084 if (LoadTy->isPtrOrPtrVectorTy()) { 1085 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 1086 DL.getTypeSizeInBits(LoadTy)); 1087 break; 1088 } 1089 } 1090 assert(LoadTy && "Can't determine LoadInst type from chain"); 1091 1092 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 1093 unsigned AS = L0->getPointerAddressSpace(); 1094 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 1095 unsigned VF = VecRegSize / Sz; 1096 unsigned ChainSize = Chain.size(); 1097 Align Alignment = L0->getAlign(); 1098 1099 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 1100 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1101 return false; 1102 } 1103 1104 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 1105 if (NewChain.empty()) { 1106 // No vectorization possible. 1107 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1108 return false; 1109 } 1110 if (NewChain.size() == 1) { 1111 // Failed after the first instruction. Discard it and try the smaller chain. 1112 InstructionsProcessed->insert(NewChain.front()); 1113 return false; 1114 } 1115 1116 // Update Chain to the valid vectorizable subchain. 1117 Chain = NewChain; 1118 ChainSize = Chain.size(); 1119 1120 // Check if it's legal to vectorize this chain. If not, split the chain and 1121 // try again. 1122 unsigned EltSzInBytes = Sz / 8; 1123 unsigned SzInBytes = EltSzInBytes * ChainSize; 1124 VectorType *VecTy; 1125 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1126 if (VecLoadTy) 1127 VecTy = VectorType::get(LoadTy->getScalarType(), 1128 Chain.size() * VecLoadTy->getNumElements()); 1129 else 1130 VecTy = VectorType::get(LoadTy, Chain.size()); 1131 1132 // If it's more than the max vector size or the target has a better 1133 // vector factor, break it into two pieces. 1134 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1135 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1136 LLVM_DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1137 " Creating two separate arrays.\n"); 1138 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1139 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1140 } 1141 1142 // We won't try again to vectorize the elements of the chain, regardless of 1143 // whether we succeed below. 1144 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1145 1146 // If the load is going to be misaligned, don't vectorize it. 1147 if (accessIsMisaligned(SzInBytes, AS, Alignment.value())) { 1148 if (L0->getPointerAddressSpace() != DL.getAllocaAddrSpace()) { 1149 auto Chains = splitOddVectorElts(Chain, Sz); 1150 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1151 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1152 } 1153 1154 Align NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1155 Align(StackAdjustedAlignment), 1156 DL, L0, nullptr, &DT); 1157 if (NewAlign >= Alignment) 1158 Alignment = NewAlign; 1159 else 1160 return false; 1161 } 1162 1163 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment.value(), AS)) { 1164 auto Chains = splitOddVectorElts(Chain, Sz); 1165 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1166 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1167 } 1168 1169 LLVM_DEBUG({ 1170 dbgs() << "LSV: Loads to vectorize:\n"; 1171 for (Instruction *I : Chain) 1172 I->dump(); 1173 }); 1174 1175 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1176 // Last may have changed since then, but the value of First won't have. If it 1177 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1178 BasicBlock::iterator First, Last; 1179 std::tie(First, Last) = getBoundaryInstrs(Chain); 1180 Builder.SetInsertPoint(&*First); 1181 1182 Value *Bitcast = 1183 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1184 LoadInst *LI = 1185 Builder.CreateAlignedLoad(VecTy, Bitcast, MaybeAlign(Alignment)); 1186 propagateMetadata(LI, Chain); 1187 1188 if (VecLoadTy) { 1189 SmallVector<Instruction *, 16> InstrsToErase; 1190 1191 unsigned VecWidth = VecLoadTy->getNumElements(); 1192 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1193 for (auto Use : Chain[I]->users()) { 1194 // All users of vector loads are ExtractElement instructions with 1195 // constant indices, otherwise we would have bailed before now. 1196 Instruction *UI = cast<Instruction>(Use); 1197 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1198 unsigned NewIdx = Idx + I * VecWidth; 1199 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1200 UI->getName()); 1201 if (V->getType() != UI->getType()) 1202 V = Builder.CreateBitCast(V, UI->getType()); 1203 1204 // Replace the old instruction. 1205 UI->replaceAllUsesWith(V); 1206 InstrsToErase.push_back(UI); 1207 } 1208 } 1209 1210 // Bitcast might not be an Instruction, if the value being loaded is a 1211 // constant. In that case, no need to reorder anything. 1212 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1213 reorder(BitcastInst); 1214 1215 for (auto I : InstrsToErase) 1216 I->eraseFromParent(); 1217 } else { 1218 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1219 Value *CV = Chain[I]; 1220 Value *V = 1221 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1222 if (V->getType() != CV->getType()) { 1223 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1224 } 1225 1226 // Replace the old instruction. 1227 CV->replaceAllUsesWith(V); 1228 } 1229 1230 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1231 reorder(BitcastInst); 1232 } 1233 1234 eraseInstructions(Chain); 1235 1236 ++NumVectorInstructions; 1237 NumScalarsVectorized += Chain.size(); 1238 return true; 1239 } 1240 1241 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1242 unsigned Alignment) { 1243 if (Alignment % SzInBytes == 0) 1244 return false; 1245 1246 bool Fast = false; 1247 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1248 SzInBytes * 8, AddressSpace, 1249 Alignment, &Fast); 1250 LLVM_DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1251 << " and fast? " << Fast << "\n";); 1252 return !Allows || !Fast; 1253 } 1254