1 //===- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass merges loads/stores to/from sequential memory addresses into vector 11 // loads/stores. Although there's nothing GPU-specific in here, this pass is 12 // motivated by the microarchitectural quirks of nVidia and AMD GPUs. 13 // 14 // (For simplicity below we talk about loads only, but everything also applies 15 // to stores.) 16 // 17 // This pass is intended to be run late in the pipeline, after other 18 // vectorization opportunities have been exploited. So the assumption here is 19 // that immediately following our new vector load we'll need to extract out the 20 // individual elements of the load, so we can operate on them individually. 21 // 22 // On CPUs this transformation is usually not beneficial, because extracting the 23 // elements of a vector register is expensive on most architectures. It's 24 // usually better just to load each element individually into its own scalar 25 // register. 26 // 27 // However, nVidia and AMD GPUs don't have proper vector registers. Instead, a 28 // "vector load" loads directly into a series of scalar registers. In effect, 29 // extracting the elements of the vector is free. It's therefore always 30 // beneficial to vectorize a sequence of loads on these architectures. 31 // 32 // Vectorizing (perhaps a better name might be "coalescing") loads can have 33 // large performance impacts on GPU kernels, and opportunities for vectorizing 34 // are common in GPU code. This pass tries very hard to find such 35 // opportunities; its runtime is quadratic in the number of loads in a BB. 36 // 37 // Some CPU architectures, such as ARM, have instructions that load into 38 // multiple scalar registers, similar to a GPU vectorized load. In theory ARM 39 // could use this pass (with some modifications), but currently it implements 40 // its own pass to do something similar to what we do here. 41 42 #include "llvm/ADT/APInt.h" 43 #include "llvm/ADT/ArrayRef.h" 44 #include "llvm/ADT/MapVector.h" 45 #include "llvm/ADT/PostOrderIterator.h" 46 #include "llvm/ADT/STLExtras.h" 47 #include "llvm/ADT/SmallPtrSet.h" 48 #include "llvm/ADT/SmallVector.h" 49 #include "llvm/ADT/Statistic.h" 50 #include "llvm/ADT/iterator_range.h" 51 #include "llvm/Analysis/AliasAnalysis.h" 52 #include "llvm/Analysis/MemoryLocation.h" 53 #include "llvm/Analysis/OrderedBasicBlock.h" 54 #include "llvm/Analysis/ScalarEvolution.h" 55 #include "llvm/Analysis/TargetTransformInfo.h" 56 #include "llvm/Analysis/Utils/Local.h" 57 #include "llvm/Analysis/ValueTracking.h" 58 #include "llvm/Analysis/VectorUtils.h" 59 #include "llvm/IR/Attributes.h" 60 #include "llvm/IR/BasicBlock.h" 61 #include "llvm/IR/Constants.h" 62 #include "llvm/IR/DataLayout.h" 63 #include "llvm/IR/DerivedTypes.h" 64 #include "llvm/IR/Dominators.h" 65 #include "llvm/IR/Function.h" 66 #include "llvm/IR/IRBuilder.h" 67 #include "llvm/IR/InstrTypes.h" 68 #include "llvm/IR/Instruction.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/IR/IntrinsicInst.h" 71 #include "llvm/IR/Module.h" 72 #include "llvm/IR/Type.h" 73 #include "llvm/IR/User.h" 74 #include "llvm/IR/Value.h" 75 #include "llvm/Pass.h" 76 #include "llvm/Support/Casting.h" 77 #include "llvm/Support/Debug.h" 78 #include "llvm/Support/KnownBits.h" 79 #include "llvm/Support/MathExtras.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include "llvm/Transforms/Vectorize.h" 82 #include <algorithm> 83 #include <cassert> 84 #include <cstdlib> 85 #include <tuple> 86 #include <utility> 87 88 using namespace llvm; 89 90 #define DEBUG_TYPE "load-store-vectorizer" 91 92 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 93 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 94 95 // FIXME: Assuming stack alignment of 4 is always good enough 96 static const unsigned StackAdjustedAlignment = 4; 97 98 namespace { 99 100 using InstrList = SmallVector<Instruction *, 8>; 101 using InstrListMap = MapVector<Value *, InstrList>; 102 103 class Vectorizer { 104 Function &F; 105 AliasAnalysis &AA; 106 DominatorTree &DT; 107 ScalarEvolution &SE; 108 TargetTransformInfo &TTI; 109 const DataLayout &DL; 110 IRBuilder<> Builder; 111 112 public: 113 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 114 ScalarEvolution &SE, TargetTransformInfo &TTI) 115 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 116 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 117 118 bool run(); 119 120 private: 121 GetElementPtrInst *getSourceGEP(Value *Src) const; 122 123 unsigned getPointerAddressSpace(Value *I); 124 125 unsigned getAlignment(LoadInst *LI) const { 126 unsigned Align = LI->getAlignment(); 127 if (Align != 0) 128 return Align; 129 130 return DL.getABITypeAlignment(LI->getType()); 131 } 132 133 unsigned getAlignment(StoreInst *SI) const { 134 unsigned Align = SI->getAlignment(); 135 if (Align != 0) 136 return Align; 137 138 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 139 } 140 141 bool isConsecutiveAccess(Value *A, Value *B); 142 143 /// After vectorization, reorder the instructions that I depends on 144 /// (the instructions defining its operands), to ensure they dominate I. 145 void reorder(Instruction *I); 146 147 /// Returns the first and the last instructions in Chain. 148 std::pair<BasicBlock::iterator, BasicBlock::iterator> 149 getBoundaryInstrs(ArrayRef<Instruction *> Chain); 150 151 /// Erases the original instructions after vectorizing. 152 void eraseInstructions(ArrayRef<Instruction *> Chain); 153 154 /// "Legalize" the vector type that would be produced by combining \p 155 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 156 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 157 /// expected to have more than 4 elements. 158 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 159 splitOddVectorElts(ArrayRef<Instruction *> Chain, unsigned ElementSizeBits); 160 161 /// Finds the largest prefix of Chain that's vectorizable, checking for 162 /// intervening instructions which may affect the memory accessed by the 163 /// instructions within Chain. 164 /// 165 /// The elements of \p Chain must be all loads or all stores and must be in 166 /// address order. 167 ArrayRef<Instruction *> getVectorizablePrefix(ArrayRef<Instruction *> Chain); 168 169 /// Collects load and store instructions to vectorize. 170 std::pair<InstrListMap, InstrListMap> collectInstructions(BasicBlock *BB); 171 172 /// Processes the collected instructions, the \p Map. The values of \p Map 173 /// should be all loads or all stores. 174 bool vectorizeChains(InstrListMap &Map); 175 176 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 177 bool vectorizeInstructions(ArrayRef<Instruction *> Instrs); 178 179 /// Vectorizes the load instructions in Chain. 180 bool 181 vectorizeLoadChain(ArrayRef<Instruction *> Chain, 182 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 183 184 /// Vectorizes the store instructions in Chain. 185 bool 186 vectorizeStoreChain(ArrayRef<Instruction *> Chain, 187 SmallPtrSet<Instruction *, 16> *InstructionsProcessed); 188 189 /// Check if this load/store access is misaligned accesses. 190 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 191 unsigned Alignment); 192 }; 193 194 class LoadStoreVectorizer : public FunctionPass { 195 public: 196 static char ID; 197 198 LoadStoreVectorizer() : FunctionPass(ID) { 199 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 200 } 201 202 bool runOnFunction(Function &F) override; 203 204 StringRef getPassName() const override { 205 return "GPU Load and Store Vectorizer"; 206 } 207 208 void getAnalysisUsage(AnalysisUsage &AU) const override { 209 AU.addRequired<AAResultsWrapperPass>(); 210 AU.addRequired<ScalarEvolutionWrapperPass>(); 211 AU.addRequired<DominatorTreeWrapperPass>(); 212 AU.addRequired<TargetTransformInfoWrapperPass>(); 213 AU.setPreservesCFG(); 214 } 215 }; 216 217 } // end anonymous namespace 218 219 char LoadStoreVectorizer::ID = 0; 220 221 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 222 "Vectorize load and Store instructions", false, false) 223 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 224 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 225 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 226 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 227 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 228 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 229 "Vectorize load and store instructions", false, false) 230 231 Pass *llvm::createLoadStoreVectorizerPass() { 232 return new LoadStoreVectorizer(); 233 } 234 235 // The real propagateMetadata expects a SmallVector<Value*>, but we deal in 236 // vectors of Instructions. 237 static void propagateMetadata(Instruction *I, ArrayRef<Instruction *> IL) { 238 SmallVector<Value *, 8> VL(IL.begin(), IL.end()); 239 propagateMetadata(I, VL); 240 } 241 242 bool LoadStoreVectorizer::runOnFunction(Function &F) { 243 // Don't vectorize when the attribute NoImplicitFloat is used. 244 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 245 return false; 246 247 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 248 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 249 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 250 TargetTransformInfo &TTI = 251 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 252 253 Vectorizer V(F, AA, DT, SE, TTI); 254 return V.run(); 255 } 256 257 // Vectorizer Implementation 258 bool Vectorizer::run() { 259 bool Changed = false; 260 261 // Scan the blocks in the function in post order. 262 for (BasicBlock *BB : post_order(&F)) { 263 InstrListMap LoadRefs, StoreRefs; 264 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 265 Changed |= vectorizeChains(LoadRefs); 266 Changed |= vectorizeChains(StoreRefs); 267 } 268 269 return Changed; 270 } 271 272 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 273 if (LoadInst *L = dyn_cast<LoadInst>(I)) 274 return L->getPointerAddressSpace(); 275 if (StoreInst *S = dyn_cast<StoreInst>(I)) 276 return S->getPointerAddressSpace(); 277 return -1; 278 } 279 280 GetElementPtrInst *Vectorizer::getSourceGEP(Value *Src) const { 281 // First strip pointer bitcasts. Make sure pointee size is the same with 282 // and without casts. 283 // TODO: a stride set by the add instruction below can match the difference 284 // in pointee type size here. Currently it will not be vectorized. 285 Value *SrcPtr = getLoadStorePointerOperand(Src); 286 Value *SrcBase = SrcPtr->stripPointerCasts(); 287 if (DL.getTypeStoreSize(SrcPtr->getType()->getPointerElementType()) == 288 DL.getTypeStoreSize(SrcBase->getType()->getPointerElementType())) 289 SrcPtr = SrcBase; 290 return dyn_cast<GetElementPtrInst>(SrcPtr); 291 } 292 293 // FIXME: Merge with llvm::isConsecutiveAccess 294 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 295 Value *PtrA = getLoadStorePointerOperand(A); 296 Value *PtrB = getLoadStorePointerOperand(B); 297 unsigned ASA = getPointerAddressSpace(A); 298 unsigned ASB = getPointerAddressSpace(B); 299 300 // Check that the address spaces match and that the pointers are valid. 301 if (!PtrA || !PtrB || (ASA != ASB)) 302 return false; 303 304 // Make sure that A and B are different pointers of the same size type. 305 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 306 Type *PtrATy = PtrA->getType()->getPointerElementType(); 307 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 308 if (PtrA == PtrB || 309 PtrATy->isVectorTy() != PtrBTy->isVectorTy() || 310 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 311 DL.getTypeStoreSize(PtrATy->getScalarType()) != 312 DL.getTypeStoreSize(PtrBTy->getScalarType())) 313 return false; 314 315 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 316 317 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 318 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 319 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 320 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 321 322 APInt OffsetDelta = OffsetB - OffsetA; 323 324 // Check if they are based on the same pointer. That makes the offsets 325 // sufficient. 326 if (PtrA == PtrB) 327 return OffsetDelta == Size; 328 329 // Compute the necessary base pointer delta to have the necessary final delta 330 // equal to the size. 331 APInt BaseDelta = Size - OffsetDelta; 332 333 // Compute the distance with SCEV between the base pointers. 334 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 335 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 336 const SCEV *C = SE.getConstant(BaseDelta); 337 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 338 if (X == PtrSCEVB) 339 return true; 340 341 // Sometimes even this doesn't work, because SCEV can't always see through 342 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 343 // things the hard way. 344 345 // Look through GEPs after checking they're the same except for the last 346 // index. 347 GetElementPtrInst *GEPA = getSourceGEP(A); 348 GetElementPtrInst *GEPB = getSourceGEP(B); 349 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 350 return false; 351 unsigned FinalIndex = GEPA->getNumOperands() - 1; 352 for (unsigned i = 0; i < FinalIndex; i++) 353 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 354 return false; 355 356 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 357 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 358 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 359 OpA->getType() != OpB->getType()) 360 return false; 361 362 // Only look through a ZExt/SExt. 363 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 364 return false; 365 366 bool Signed = isa<SExtInst>(OpA); 367 368 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 369 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 370 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 371 return false; 372 373 // Now we need to prove that adding 1 to OpA won't overflow. 374 bool Safe = false; 375 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 376 // we're okay. 377 if (OpB->getOpcode() == Instruction::Add && 378 isa<ConstantInt>(OpB->getOperand(1)) && 379 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 380 if (Signed) 381 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 382 else 383 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 384 } 385 386 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 387 388 // Second attempt: 389 // If any bits are known to be zero other than the sign bit in OpA, we can 390 // add 1 to it while guaranteeing no overflow of any sort. 391 if (!Safe) { 392 KnownBits Known(BitWidth); 393 computeKnownBits(OpA, Known, DL, 0, nullptr, OpA, &DT); 394 if (Known.countMaxTrailingOnes() < (BitWidth - 1)) 395 Safe = true; 396 } 397 398 if (!Safe) 399 return false; 400 401 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 402 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 403 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 404 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 405 return X2 == OffsetSCEVB; 406 } 407 408 void Vectorizer::reorder(Instruction *I) { 409 OrderedBasicBlock OBB(I->getParent()); 410 SmallPtrSet<Instruction *, 16> InstructionsToMove; 411 SmallVector<Instruction *, 16> Worklist; 412 413 Worklist.push_back(I); 414 while (!Worklist.empty()) { 415 Instruction *IW = Worklist.pop_back_val(); 416 int NumOperands = IW->getNumOperands(); 417 for (int i = 0; i < NumOperands; i++) { 418 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 419 if (!IM || IM->getOpcode() == Instruction::PHI) 420 continue; 421 422 // If IM is in another BB, no need to move it, because this pass only 423 // vectorizes instructions within one BB. 424 if (IM->getParent() != I->getParent()) 425 continue; 426 427 if (!OBB.dominates(IM, I)) { 428 InstructionsToMove.insert(IM); 429 Worklist.push_back(IM); 430 } 431 } 432 } 433 434 // All instructions to move should follow I. Start from I, not from begin(). 435 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 436 ++BBI) { 437 if (!InstructionsToMove.count(&*BBI)) 438 continue; 439 Instruction *IM = &*BBI; 440 --BBI; 441 IM->removeFromParent(); 442 IM->insertBefore(I); 443 } 444 } 445 446 std::pair<BasicBlock::iterator, BasicBlock::iterator> 447 Vectorizer::getBoundaryInstrs(ArrayRef<Instruction *> Chain) { 448 Instruction *C0 = Chain[0]; 449 BasicBlock::iterator FirstInstr = C0->getIterator(); 450 BasicBlock::iterator LastInstr = C0->getIterator(); 451 452 BasicBlock *BB = C0->getParent(); 453 unsigned NumFound = 0; 454 for (Instruction &I : *BB) { 455 if (!is_contained(Chain, &I)) 456 continue; 457 458 ++NumFound; 459 if (NumFound == 1) { 460 FirstInstr = I.getIterator(); 461 } 462 if (NumFound == Chain.size()) { 463 LastInstr = I.getIterator(); 464 break; 465 } 466 } 467 468 // Range is [first, last). 469 return std::make_pair(FirstInstr, ++LastInstr); 470 } 471 472 void Vectorizer::eraseInstructions(ArrayRef<Instruction *> Chain) { 473 SmallVector<Instruction *, 16> Instrs; 474 for (Instruction *I : Chain) { 475 Value *PtrOperand = getLoadStorePointerOperand(I); 476 assert(PtrOperand && "Instruction must have a pointer operand."); 477 Instrs.push_back(I); 478 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 479 Instrs.push_back(GEP); 480 } 481 482 // Erase instructions. 483 for (Instruction *I : Instrs) 484 if (I->use_empty()) 485 I->eraseFromParent(); 486 } 487 488 std::pair<ArrayRef<Instruction *>, ArrayRef<Instruction *>> 489 Vectorizer::splitOddVectorElts(ArrayRef<Instruction *> Chain, 490 unsigned ElementSizeBits) { 491 unsigned ElementSizeBytes = ElementSizeBits / 8; 492 unsigned SizeBytes = ElementSizeBytes * Chain.size(); 493 unsigned NumLeft = (SizeBytes - (SizeBytes % 4)) / ElementSizeBytes; 494 if (NumLeft == Chain.size()) { 495 if ((NumLeft & 1) == 0) 496 NumLeft /= 2; // Split even in half 497 else 498 --NumLeft; // Split off last element 499 } else if (NumLeft == 0) 500 NumLeft = 1; 501 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 502 } 503 504 ArrayRef<Instruction *> 505 Vectorizer::getVectorizablePrefix(ArrayRef<Instruction *> Chain) { 506 // These are in BB order, unlike Chain, which is in address order. 507 SmallVector<Instruction *, 16> MemoryInstrs; 508 SmallVector<Instruction *, 16> ChainInstrs; 509 510 bool IsLoadChain = isa<LoadInst>(Chain[0]); 511 DEBUG({ 512 for (Instruction *I : Chain) { 513 if (IsLoadChain) 514 assert(isa<LoadInst>(I) && 515 "All elements of Chain must be loads, or all must be stores."); 516 else 517 assert(isa<StoreInst>(I) && 518 "All elements of Chain must be loads, or all must be stores."); 519 } 520 }); 521 522 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 523 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 524 if (!is_contained(Chain, &I)) 525 MemoryInstrs.push_back(&I); 526 else 527 ChainInstrs.push_back(&I); 528 } else if (isa<IntrinsicInst>(&I) && 529 cast<IntrinsicInst>(&I)->getIntrinsicID() == 530 Intrinsic::sideeffect) { 531 // Ignore llvm.sideeffect calls. 532 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 533 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 534 break; 535 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 536 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 537 << '\n'); 538 break; 539 } 540 } 541 542 OrderedBasicBlock OBB(Chain[0]->getParent()); 543 544 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 545 unsigned ChainInstrIdx = 0; 546 Instruction *BarrierMemoryInstr = nullptr; 547 548 for (unsigned E = ChainInstrs.size(); ChainInstrIdx < E; ++ChainInstrIdx) { 549 Instruction *ChainInstr = ChainInstrs[ChainInstrIdx]; 550 551 // If a barrier memory instruction was found, chain instructions that follow 552 // will not be added to the valid prefix. 553 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, ChainInstr)) 554 break; 555 556 // Check (in BB order) if any instruction prevents ChainInstr from being 557 // vectorized. Find and store the first such "conflicting" instruction. 558 for (Instruction *MemInstr : MemoryInstrs) { 559 // If a barrier memory instruction was found, do not check past it. 560 if (BarrierMemoryInstr && OBB.dominates(BarrierMemoryInstr, MemInstr)) 561 break; 562 563 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr)) 564 continue; 565 566 // We can ignore the alias as long as the load comes before the store, 567 // because that means we won't be moving the load past the store to 568 // vectorize it (the vectorized load is inserted at the location of the 569 // first load in the chain). 570 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) && 571 OBB.dominates(ChainInstr, MemInstr)) 572 continue; 573 574 // Same case, but in reverse. 575 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) && 576 OBB.dominates(MemInstr, ChainInstr)) 577 continue; 578 579 if (!AA.isNoAlias(MemoryLocation::get(MemInstr), 580 MemoryLocation::get(ChainInstr))) { 581 DEBUG({ 582 dbgs() << "LSV: Found alias:\n" 583 " Aliasing instruction and pointer:\n" 584 << " " << *MemInstr << '\n' 585 << " " << *getLoadStorePointerOperand(MemInstr) << '\n' 586 << " Aliased instruction and pointer:\n" 587 << " " << *ChainInstr << '\n' 588 << " " << *getLoadStorePointerOperand(ChainInstr) << '\n'; 589 }); 590 // Save this aliasing memory instruction as a barrier, but allow other 591 // instructions that precede the barrier to be vectorized with this one. 592 BarrierMemoryInstr = MemInstr; 593 break; 594 } 595 } 596 // Continue the search only for store chains, since vectorizing stores that 597 // precede an aliasing load is valid. Conversely, vectorizing loads is valid 598 // up to an aliasing store, but should not pull loads from further down in 599 // the basic block. 600 if (IsLoadChain && BarrierMemoryInstr) { 601 // The BarrierMemoryInstr is a store that precedes ChainInstr. 602 assert(OBB.dominates(BarrierMemoryInstr, ChainInstr)); 603 break; 604 } 605 } 606 607 // Find the largest prefix of Chain whose elements are all in 608 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 609 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 610 // order.) 611 SmallPtrSet<Instruction *, 8> VectorizableChainInstrs( 612 ChainInstrs.begin(), ChainInstrs.begin() + ChainInstrIdx); 613 unsigned ChainIdx = 0; 614 for (unsigned ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 615 if (!VectorizableChainInstrs.count(Chain[ChainIdx])) 616 break; 617 } 618 return Chain.slice(0, ChainIdx); 619 } 620 621 std::pair<InstrListMap, InstrListMap> 622 Vectorizer::collectInstructions(BasicBlock *BB) { 623 InstrListMap LoadRefs; 624 InstrListMap StoreRefs; 625 626 for (Instruction &I : *BB) { 627 if (!I.mayReadOrWriteMemory()) 628 continue; 629 630 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 631 if (!LI->isSimple()) 632 continue; 633 634 // Skip if it's not legal. 635 if (!TTI.isLegalToVectorizeLoad(LI)) 636 continue; 637 638 Type *Ty = LI->getType(); 639 if (!VectorType::isValidElementType(Ty->getScalarType())) 640 continue; 641 642 // Skip weird non-byte sizes. They probably aren't worth the effort of 643 // handling correctly. 644 unsigned TySize = DL.getTypeSizeInBits(Ty); 645 if ((TySize % 8) != 0) 646 continue; 647 648 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 649 // functions are currently using an integer type for the vectorized 650 // load/store, and does not support casting between the integer type and a 651 // vector of pointers (e.g. i64 to <2 x i16*>) 652 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 653 continue; 654 655 Value *Ptr = LI->getPointerOperand(); 656 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 657 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 658 659 unsigned VF = VecRegSize / TySize; 660 VectorType *VecTy = dyn_cast<VectorType>(Ty); 661 662 // No point in looking at these if they're too big to vectorize. 663 if (TySize > VecRegSize / 2 || 664 (VecTy && TTI.getLoadVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 665 continue; 666 667 // Make sure all the users of a vector are constant-index extracts. 668 if (isa<VectorType>(Ty) && !llvm::all_of(LI->users(), [](const User *U) { 669 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 670 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 671 })) 672 continue; 673 674 // Save the load locations. 675 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 676 LoadRefs[ObjPtr].push_back(LI); 677 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 678 if (!SI->isSimple()) 679 continue; 680 681 // Skip if it's not legal. 682 if (!TTI.isLegalToVectorizeStore(SI)) 683 continue; 684 685 Type *Ty = SI->getValueOperand()->getType(); 686 if (!VectorType::isValidElementType(Ty->getScalarType())) 687 continue; 688 689 // Skip vectors of pointers. The vectorizeLoadChain/vectorizeStoreChain 690 // functions are currently using an integer type for the vectorized 691 // load/store, and does not support casting between the integer type and a 692 // vector of pointers (e.g. i64 to <2 x i16*>) 693 if (Ty->isVectorTy() && Ty->isPtrOrPtrVectorTy()) 694 continue; 695 696 // Skip weird non-byte sizes. They probably aren't worth the effort of 697 // handling correctly. 698 unsigned TySize = DL.getTypeSizeInBits(Ty); 699 if ((TySize % 8) != 0) 700 continue; 701 702 Value *Ptr = SI->getPointerOperand(); 703 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 704 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 705 706 unsigned VF = VecRegSize / TySize; 707 VectorType *VecTy = dyn_cast<VectorType>(Ty); 708 709 // No point in looking at these if they're too big to vectorize. 710 if (TySize > VecRegSize / 2 || 711 (VecTy && TTI.getStoreVectorFactor(VF, TySize, TySize / 8, VecTy) == 0)) 712 continue; 713 714 if (isa<VectorType>(Ty) && !llvm::all_of(SI->users(), [](const User *U) { 715 const ExtractElementInst *EEI = dyn_cast<ExtractElementInst>(U); 716 return EEI && isa<ConstantInt>(EEI->getOperand(1)); 717 })) 718 continue; 719 720 // Save store location. 721 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 722 StoreRefs[ObjPtr].push_back(SI); 723 } 724 } 725 726 return {LoadRefs, StoreRefs}; 727 } 728 729 bool Vectorizer::vectorizeChains(InstrListMap &Map) { 730 bool Changed = false; 731 732 for (const std::pair<Value *, InstrList> &Chain : Map) { 733 unsigned Size = Chain.second.size(); 734 if (Size < 2) 735 continue; 736 737 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 738 739 // Process the stores in chunks of 64. 740 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 741 unsigned Len = std::min<unsigned>(CE - CI, 64); 742 ArrayRef<Instruction *> Chunk(&Chain.second[CI], Len); 743 Changed |= vectorizeInstructions(Chunk); 744 } 745 } 746 747 return Changed; 748 } 749 750 bool Vectorizer::vectorizeInstructions(ArrayRef<Instruction *> Instrs) { 751 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 752 SmallVector<int, 16> Heads, Tails; 753 int ConsecutiveChain[64]; 754 755 // Do a quadratic search on all of the given loads/stores and find all of the 756 // pairs of loads/stores that follow each other. 757 for (int i = 0, e = Instrs.size(); i < e; ++i) { 758 ConsecutiveChain[i] = -1; 759 for (int j = e - 1; j >= 0; --j) { 760 if (i == j) 761 continue; 762 763 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 764 if (ConsecutiveChain[i] != -1) { 765 int CurDistance = std::abs(ConsecutiveChain[i] - i); 766 int NewDistance = std::abs(ConsecutiveChain[i] - j); 767 if (j < i || NewDistance > CurDistance) 768 continue; // Should not insert. 769 } 770 771 Tails.push_back(j); 772 Heads.push_back(i); 773 ConsecutiveChain[i] = j; 774 } 775 } 776 } 777 778 bool Changed = false; 779 SmallPtrSet<Instruction *, 16> InstructionsProcessed; 780 781 for (int Head : Heads) { 782 if (InstructionsProcessed.count(Instrs[Head])) 783 continue; 784 bool LongerChainExists = false; 785 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 786 if (Head == Tails[TIt] && 787 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 788 LongerChainExists = true; 789 break; 790 } 791 if (LongerChainExists) 792 continue; 793 794 // We found an instr that starts a chain. Now follow the chain and try to 795 // vectorize it. 796 SmallVector<Instruction *, 16> Operands; 797 int I = Head; 798 while (I != -1 && (is_contained(Tails, I) || is_contained(Heads, I))) { 799 if (InstructionsProcessed.count(Instrs[I])) 800 break; 801 802 Operands.push_back(Instrs[I]); 803 I = ConsecutiveChain[I]; 804 } 805 806 bool Vectorized = false; 807 if (isa<LoadInst>(*Operands.begin())) 808 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 809 else 810 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 811 812 Changed |= Vectorized; 813 } 814 815 return Changed; 816 } 817 818 bool Vectorizer::vectorizeStoreChain( 819 ArrayRef<Instruction *> Chain, 820 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 821 StoreInst *S0 = cast<StoreInst>(Chain[0]); 822 823 // If the vector has an int element, default to int for the whole store. 824 Type *StoreTy; 825 for (Instruction *I : Chain) { 826 StoreTy = cast<StoreInst>(I)->getValueOperand()->getType(); 827 if (StoreTy->isIntOrIntVectorTy()) 828 break; 829 830 if (StoreTy->isPtrOrPtrVectorTy()) { 831 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 832 DL.getTypeSizeInBits(StoreTy)); 833 break; 834 } 835 } 836 837 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 838 unsigned AS = S0->getPointerAddressSpace(); 839 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 840 unsigned VF = VecRegSize / Sz; 841 unsigned ChainSize = Chain.size(); 842 unsigned Alignment = getAlignment(S0); 843 844 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 845 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 846 return false; 847 } 848 849 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 850 if (NewChain.empty()) { 851 // No vectorization possible. 852 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 853 return false; 854 } 855 if (NewChain.size() == 1) { 856 // Failed after the first instruction. Discard it and try the smaller chain. 857 InstructionsProcessed->insert(NewChain.front()); 858 return false; 859 } 860 861 // Update Chain to the valid vectorizable subchain. 862 Chain = NewChain; 863 ChainSize = Chain.size(); 864 865 // Check if it's legal to vectorize this chain. If not, split the chain and 866 // try again. 867 unsigned EltSzInBytes = Sz / 8; 868 unsigned SzInBytes = EltSzInBytes * ChainSize; 869 if (!TTI.isLegalToVectorizeStoreChain(SzInBytes, Alignment, AS)) { 870 auto Chains = splitOddVectorElts(Chain, Sz); 871 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 872 vectorizeStoreChain(Chains.second, InstructionsProcessed); 873 } 874 875 VectorType *VecTy; 876 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 877 if (VecStoreTy) 878 VecTy = VectorType::get(StoreTy->getScalarType(), 879 Chain.size() * VecStoreTy->getNumElements()); 880 else 881 VecTy = VectorType::get(StoreTy, Chain.size()); 882 883 // If it's more than the max vector size or the target has a better 884 // vector factor, break it into two pieces. 885 unsigned TargetVF = TTI.getStoreVectorFactor(VF, Sz, SzInBytes, VecTy); 886 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 887 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 888 " Creating two separate arrays.\n"); 889 return vectorizeStoreChain(Chain.slice(0, TargetVF), 890 InstructionsProcessed) | 891 vectorizeStoreChain(Chain.slice(TargetVF), InstructionsProcessed); 892 } 893 894 DEBUG({ 895 dbgs() << "LSV: Stores to vectorize:\n"; 896 for (Instruction *I : Chain) 897 dbgs() << " " << *I << "\n"; 898 }); 899 900 // We won't try again to vectorize the elements of the chain, regardless of 901 // whether we succeed below. 902 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 903 904 // If the store is going to be misaligned, don't vectorize it. 905 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 906 if (S0->getPointerAddressSpace() != 0) 907 return false; 908 909 unsigned NewAlign = getOrEnforceKnownAlignment(S0->getPointerOperand(), 910 StackAdjustedAlignment, 911 DL, S0, nullptr, &DT); 912 if (NewAlign < StackAdjustedAlignment) 913 return false; 914 } 915 916 BasicBlock::iterator First, Last; 917 std::tie(First, Last) = getBoundaryInstrs(Chain); 918 Builder.SetInsertPoint(&*Last); 919 920 Value *Vec = UndefValue::get(VecTy); 921 922 if (VecStoreTy) { 923 unsigned VecWidth = VecStoreTy->getNumElements(); 924 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 925 StoreInst *Store = cast<StoreInst>(Chain[I]); 926 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 927 unsigned NewIdx = J + I * VecWidth; 928 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 929 Builder.getInt32(J)); 930 if (Extract->getType() != StoreTy->getScalarType()) 931 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 932 933 Value *Insert = 934 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 935 Vec = Insert; 936 } 937 } 938 } else { 939 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 940 StoreInst *Store = cast<StoreInst>(Chain[I]); 941 Value *Extract = Store->getValueOperand(); 942 if (Extract->getType() != StoreTy->getScalarType()) 943 Extract = 944 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 945 946 Value *Insert = 947 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 948 Vec = Insert; 949 } 950 } 951 952 // This cast is safe because Builder.CreateStore() always creates a bona fide 953 // StoreInst. 954 StoreInst *SI = cast<StoreInst>( 955 Builder.CreateStore(Vec, Builder.CreateBitCast(S0->getPointerOperand(), 956 VecTy->getPointerTo(AS)))); 957 propagateMetadata(SI, Chain); 958 SI->setAlignment(Alignment); 959 960 eraseInstructions(Chain); 961 ++NumVectorInstructions; 962 NumScalarsVectorized += Chain.size(); 963 return true; 964 } 965 966 bool Vectorizer::vectorizeLoadChain( 967 ArrayRef<Instruction *> Chain, 968 SmallPtrSet<Instruction *, 16> *InstructionsProcessed) { 969 LoadInst *L0 = cast<LoadInst>(Chain[0]); 970 971 // If the vector has an int element, default to int for the whole load. 972 Type *LoadTy; 973 for (const auto &V : Chain) { 974 LoadTy = cast<LoadInst>(V)->getType(); 975 if (LoadTy->isIntOrIntVectorTy()) 976 break; 977 978 if (LoadTy->isPtrOrPtrVectorTy()) { 979 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 980 DL.getTypeSizeInBits(LoadTy)); 981 break; 982 } 983 } 984 985 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 986 unsigned AS = L0->getPointerAddressSpace(); 987 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 988 unsigned VF = VecRegSize / Sz; 989 unsigned ChainSize = Chain.size(); 990 unsigned Alignment = getAlignment(L0); 991 992 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 993 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 994 return false; 995 } 996 997 ArrayRef<Instruction *> NewChain = getVectorizablePrefix(Chain); 998 if (NewChain.empty()) { 999 // No vectorization possible. 1000 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1001 return false; 1002 } 1003 if (NewChain.size() == 1) { 1004 // Failed after the first instruction. Discard it and try the smaller chain. 1005 InstructionsProcessed->insert(NewChain.front()); 1006 return false; 1007 } 1008 1009 // Update Chain to the valid vectorizable subchain. 1010 Chain = NewChain; 1011 ChainSize = Chain.size(); 1012 1013 // Check if it's legal to vectorize this chain. If not, split the chain and 1014 // try again. 1015 unsigned EltSzInBytes = Sz / 8; 1016 unsigned SzInBytes = EltSzInBytes * ChainSize; 1017 if (!TTI.isLegalToVectorizeLoadChain(SzInBytes, Alignment, AS)) { 1018 auto Chains = splitOddVectorElts(Chain, Sz); 1019 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 1020 vectorizeLoadChain(Chains.second, InstructionsProcessed); 1021 } 1022 1023 VectorType *VecTy; 1024 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 1025 if (VecLoadTy) 1026 VecTy = VectorType::get(LoadTy->getScalarType(), 1027 Chain.size() * VecLoadTy->getNumElements()); 1028 else 1029 VecTy = VectorType::get(LoadTy, Chain.size()); 1030 1031 // If it's more than the max vector size or the target has a better 1032 // vector factor, break it into two pieces. 1033 unsigned TargetVF = TTI.getLoadVectorFactor(VF, Sz, SzInBytes, VecTy); 1034 if (ChainSize > VF || (VF != TargetVF && TargetVF < ChainSize)) { 1035 DEBUG(dbgs() << "LSV: Chain doesn't match with the vector factor." 1036 " Creating two separate arrays.\n"); 1037 return vectorizeLoadChain(Chain.slice(0, TargetVF), InstructionsProcessed) | 1038 vectorizeLoadChain(Chain.slice(TargetVF), InstructionsProcessed); 1039 } 1040 1041 // We won't try again to vectorize the elements of the chain, regardless of 1042 // whether we succeed below. 1043 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 1044 1045 // If the load is going to be misaligned, don't vectorize it. 1046 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 1047 if (L0->getPointerAddressSpace() != 0) 1048 return false; 1049 1050 unsigned NewAlign = getOrEnforceKnownAlignment(L0->getPointerOperand(), 1051 StackAdjustedAlignment, 1052 DL, L0, nullptr, &DT); 1053 if (NewAlign < StackAdjustedAlignment) 1054 return false; 1055 1056 Alignment = NewAlign; 1057 } 1058 1059 DEBUG({ 1060 dbgs() << "LSV: Loads to vectorize:\n"; 1061 for (Instruction *I : Chain) 1062 I->dump(); 1063 }); 1064 1065 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 1066 // Last may have changed since then, but the value of First won't have. If it 1067 // matters, we could compute getBoundaryInstrs only once and reuse it here. 1068 BasicBlock::iterator First, Last; 1069 std::tie(First, Last) = getBoundaryInstrs(Chain); 1070 Builder.SetInsertPoint(&*First); 1071 1072 Value *Bitcast = 1073 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 1074 // This cast is safe because Builder.CreateLoad always creates a bona fide 1075 // LoadInst. 1076 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 1077 propagateMetadata(LI, Chain); 1078 LI->setAlignment(Alignment); 1079 1080 if (VecLoadTy) { 1081 SmallVector<Instruction *, 16> InstrsToErase; 1082 1083 unsigned VecWidth = VecLoadTy->getNumElements(); 1084 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1085 for (auto Use : Chain[I]->users()) { 1086 // All users of vector loads are ExtractElement instructions with 1087 // constant indices, otherwise we would have bailed before now. 1088 Instruction *UI = cast<Instruction>(Use); 1089 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 1090 unsigned NewIdx = Idx + I * VecWidth; 1091 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx), 1092 UI->getName()); 1093 if (V->getType() != UI->getType()) 1094 V = Builder.CreateBitCast(V, UI->getType()); 1095 1096 // Replace the old instruction. 1097 UI->replaceAllUsesWith(V); 1098 InstrsToErase.push_back(UI); 1099 } 1100 } 1101 1102 // Bitcast might not be an Instruction, if the value being loaded is a 1103 // constant. In that case, no need to reorder anything. 1104 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1105 reorder(BitcastInst); 1106 1107 for (auto I : InstrsToErase) 1108 I->eraseFromParent(); 1109 } else { 1110 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1111 Value *CV = Chain[I]; 1112 Value *V = 1113 Builder.CreateExtractElement(LI, Builder.getInt32(I), CV->getName()); 1114 if (V->getType() != CV->getType()) { 1115 V = Builder.CreateBitOrPointerCast(V, CV->getType()); 1116 } 1117 1118 // Replace the old instruction. 1119 CV->replaceAllUsesWith(V); 1120 } 1121 1122 if (Instruction *BitcastInst = dyn_cast<Instruction>(Bitcast)) 1123 reorder(BitcastInst); 1124 } 1125 1126 eraseInstructions(Chain); 1127 1128 ++NumVectorInstructions; 1129 NumScalarsVectorized += Chain.size(); 1130 return true; 1131 } 1132 1133 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1134 unsigned Alignment) { 1135 if (Alignment % SzInBytes == 0) 1136 return false; 1137 1138 bool Fast = false; 1139 bool Allows = TTI.allowsMisalignedMemoryAccesses(F.getParent()->getContext(), 1140 SzInBytes * 8, AddressSpace, 1141 Alignment, &Fast); 1142 DEBUG(dbgs() << "LSV: Target said misaligned is allowed? " << Allows 1143 << " and fast? " << Fast << "\n";); 1144 return !Allows || !Fast; 1145 } 1146