1 //===----- LoadStoreVectorizer.cpp - GPU Load & Store Vectorizer ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 //===----------------------------------------------------------------------===// 11 12 #include "llvm/ADT/MapVector.h" 13 #include "llvm/ADT/PostOrderIterator.h" 14 #include "llvm/ADT/SetVector.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/ADT/Triple.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/ScalarEvolution.h" 19 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/Analysis/VectorUtils.h" 23 #include "llvm/IR/DataLayout.h" 24 #include "llvm/IR/Dominators.h" 25 #include "llvm/IR/IRBuilder.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/IR/Value.h" 30 #include "llvm/Support/CommandLine.h" 31 #include "llvm/Support/Debug.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include "llvm/Transforms/Vectorize.h" 34 35 using namespace llvm; 36 37 #define DEBUG_TYPE "load-store-vectorizer" 38 STATISTIC(NumVectorInstructions, "Number of vector accesses generated"); 39 STATISTIC(NumScalarsVectorized, "Number of scalar accesses vectorized"); 40 41 namespace { 42 43 // TODO: Remove this 44 static const unsigned TargetBaseAlign = 4; 45 46 typedef SmallVector<Value *, 8> ValueList; 47 typedef MapVector<Value *, ValueList> ValueListMap; 48 49 class Vectorizer { 50 Function &F; 51 AliasAnalysis &AA; 52 DominatorTree &DT; 53 ScalarEvolution &SE; 54 TargetTransformInfo &TTI; 55 const DataLayout &DL; 56 IRBuilder<> Builder; 57 58 public: 59 Vectorizer(Function &F, AliasAnalysis &AA, DominatorTree &DT, 60 ScalarEvolution &SE, TargetTransformInfo &TTI) 61 : F(F), AA(AA), DT(DT), SE(SE), TTI(TTI), 62 DL(F.getParent()->getDataLayout()), Builder(SE.getContext()) {} 63 64 bool run(); 65 66 private: 67 Value *getPointerOperand(Value *I); 68 69 unsigned getPointerAddressSpace(Value *I); 70 71 unsigned getAlignment(LoadInst *LI) const { 72 unsigned Align = LI->getAlignment(); 73 if (Align != 0) 74 return Align; 75 76 return DL.getABITypeAlignment(LI->getType()); 77 } 78 79 unsigned getAlignment(StoreInst *SI) const { 80 unsigned Align = SI->getAlignment(); 81 if (Align != 0) 82 return Align; 83 84 return DL.getABITypeAlignment(SI->getValueOperand()->getType()); 85 } 86 87 bool isConsecutiveAccess(Value *A, Value *B); 88 89 /// After vectorization, reorder the instructions that I depends on 90 /// (the instructions defining its operands), to ensure they dominate I. 91 void reorder(Instruction *I); 92 93 /// Returns the first and the last instructions in Chain. 94 std::pair<BasicBlock::iterator, BasicBlock::iterator> 95 getBoundaryInstrs(ArrayRef<Value *> Chain); 96 97 /// Erases the original instructions after vectorizing. 98 void eraseInstructions(ArrayRef<Value *> Chain); 99 100 /// "Legalize" the vector type that would be produced by combining \p 101 /// ElementSizeBits elements in \p Chain. Break into two pieces such that the 102 /// total size of each piece is 1, 2 or a multiple of 4 bytes. \p Chain is 103 /// expected to have more than 4 elements. 104 std::pair<ArrayRef<Value *>, ArrayRef<Value *>> 105 splitOddVectorElts(ArrayRef<Value *> Chain, unsigned ElementSizeBits); 106 107 /// Finds the largest prefix of Chain that's vectorizable, checking for 108 /// intervening instructions which may affect the memory accessed by the 109 /// instructions within Chain. 110 /// 111 /// The elements of \p Chain must be all loads or all stores and must be in 112 /// address order. 113 ArrayRef<Value *> getVectorizablePrefix(ArrayRef<Value *> Chain); 114 115 /// Collects load and store instructions to vectorize. 116 std::pair<ValueListMap, ValueListMap> collectInstructions(BasicBlock *BB); 117 118 /// Processes the collected instructions, the \p Map. The elements of \p Map 119 /// should be all loads or all stores. 120 bool vectorizeChains(ValueListMap &Map); 121 122 /// Finds the load/stores to consecutive memory addresses and vectorizes them. 123 bool vectorizeInstructions(ArrayRef<Value *> Instrs); 124 125 /// Vectorizes the load instructions in Chain. 126 bool vectorizeLoadChain(ArrayRef<Value *> Chain, 127 SmallPtrSet<Value *, 16> *InstructionsProcessed); 128 129 /// Vectorizes the store instructions in Chain. 130 bool vectorizeStoreChain(ArrayRef<Value *> Chain, 131 SmallPtrSet<Value *, 16> *InstructionsProcessed); 132 133 /// Check if this load/store access is misaligned accesses 134 bool accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 135 unsigned Alignment); 136 }; 137 138 class LoadStoreVectorizer : public FunctionPass { 139 public: 140 static char ID; 141 142 LoadStoreVectorizer() : FunctionPass(ID) { 143 initializeLoadStoreVectorizerPass(*PassRegistry::getPassRegistry()); 144 } 145 146 bool runOnFunction(Function &F) override; 147 148 const char *getPassName() const override { 149 return "GPU Load and Store Vectorizer"; 150 } 151 152 void getAnalysisUsage(AnalysisUsage &AU) const override { 153 AU.addRequired<AAResultsWrapperPass>(); 154 AU.addRequired<ScalarEvolutionWrapperPass>(); 155 AU.addRequired<DominatorTreeWrapperPass>(); 156 AU.addRequired<TargetTransformInfoWrapperPass>(); 157 AU.setPreservesCFG(); 158 } 159 }; 160 } 161 162 INITIALIZE_PASS_BEGIN(LoadStoreVectorizer, DEBUG_TYPE, 163 "Vectorize load and Store instructions", false, false) 164 INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) 165 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 166 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 167 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) 168 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 169 INITIALIZE_PASS_END(LoadStoreVectorizer, DEBUG_TYPE, 170 "Vectorize load and store instructions", false, false) 171 172 char LoadStoreVectorizer::ID = 0; 173 174 Pass *llvm::createLoadStoreVectorizerPass() { 175 return new LoadStoreVectorizer(); 176 } 177 178 bool LoadStoreVectorizer::runOnFunction(Function &F) { 179 // Don't vectorize when the attribute NoImplicitFloat is used. 180 if (skipFunction(F) || F.hasFnAttribute(Attribute::NoImplicitFloat)) 181 return false; 182 183 AliasAnalysis &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 184 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 185 ScalarEvolution &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 186 TargetTransformInfo &TTI = 187 getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 188 189 Vectorizer V(F, AA, DT, SE, TTI); 190 return V.run(); 191 } 192 193 // Vectorizer Implementation 194 bool Vectorizer::run() { 195 bool Changed = false; 196 197 // Scan the blocks in the function in post order. 198 for (BasicBlock *BB : post_order(&F)) { 199 ValueListMap LoadRefs, StoreRefs; 200 std::tie(LoadRefs, StoreRefs) = collectInstructions(BB); 201 Changed |= vectorizeChains(LoadRefs); 202 Changed |= vectorizeChains(StoreRefs); 203 } 204 205 return Changed; 206 } 207 208 Value *Vectorizer::getPointerOperand(Value *I) { 209 if (LoadInst *LI = dyn_cast<LoadInst>(I)) 210 return LI->getPointerOperand(); 211 if (StoreInst *SI = dyn_cast<StoreInst>(I)) 212 return SI->getPointerOperand(); 213 return nullptr; 214 } 215 216 unsigned Vectorizer::getPointerAddressSpace(Value *I) { 217 if (LoadInst *L = dyn_cast<LoadInst>(I)) 218 return L->getPointerAddressSpace(); 219 if (StoreInst *S = dyn_cast<StoreInst>(I)) 220 return S->getPointerAddressSpace(); 221 return -1; 222 } 223 224 // FIXME: Merge with llvm::isConsecutiveAccess 225 bool Vectorizer::isConsecutiveAccess(Value *A, Value *B) { 226 Value *PtrA = getPointerOperand(A); 227 Value *PtrB = getPointerOperand(B); 228 unsigned ASA = getPointerAddressSpace(A); 229 unsigned ASB = getPointerAddressSpace(B); 230 231 // Check that the address spaces match and that the pointers are valid. 232 if (!PtrA || !PtrB || (ASA != ASB)) 233 return false; 234 235 // Make sure that A and B are different pointers of the same size type. 236 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA); 237 Type *PtrATy = PtrA->getType()->getPointerElementType(); 238 Type *PtrBTy = PtrB->getType()->getPointerElementType(); 239 if (PtrA == PtrB || 240 DL.getTypeStoreSize(PtrATy) != DL.getTypeStoreSize(PtrBTy) || 241 DL.getTypeStoreSize(PtrATy->getScalarType()) != 242 DL.getTypeStoreSize(PtrBTy->getScalarType())) 243 return false; 244 245 APInt Size(PtrBitWidth, DL.getTypeStoreSize(PtrATy)); 246 247 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0); 248 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 249 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 250 251 APInt OffsetDelta = OffsetB - OffsetA; 252 253 // Check if they are based on the same pointer. That makes the offsets 254 // sufficient. 255 if (PtrA == PtrB) 256 return OffsetDelta == Size; 257 258 // Compute the necessary base pointer delta to have the necessary final delta 259 // equal to the size. 260 APInt BaseDelta = Size - OffsetDelta; 261 262 // Compute the distance with SCEV between the base pointers. 263 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 264 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 265 const SCEV *C = SE.getConstant(BaseDelta); 266 const SCEV *X = SE.getAddExpr(PtrSCEVA, C); 267 if (X == PtrSCEVB) 268 return true; 269 270 // Sometimes even this doesn't work, because SCEV can't always see through 271 // patterns that look like (gep (ext (add (shl X, C1), C2))). Try checking 272 // things the hard way. 273 274 // Look through GEPs after checking they're the same except for the last 275 // index. 276 GetElementPtrInst *GEPA = dyn_cast<GetElementPtrInst>(getPointerOperand(A)); 277 GetElementPtrInst *GEPB = dyn_cast<GetElementPtrInst>(getPointerOperand(B)); 278 if (!GEPA || !GEPB || GEPA->getNumOperands() != GEPB->getNumOperands()) 279 return false; 280 unsigned FinalIndex = GEPA->getNumOperands() - 1; 281 for (unsigned i = 0; i < FinalIndex; i++) 282 if (GEPA->getOperand(i) != GEPB->getOperand(i)) 283 return false; 284 285 Instruction *OpA = dyn_cast<Instruction>(GEPA->getOperand(FinalIndex)); 286 Instruction *OpB = dyn_cast<Instruction>(GEPB->getOperand(FinalIndex)); 287 if (!OpA || !OpB || OpA->getOpcode() != OpB->getOpcode() || 288 OpA->getType() != OpB->getType()) 289 return false; 290 291 // Only look through a ZExt/SExt. 292 if (!isa<SExtInst>(OpA) && !isa<ZExtInst>(OpA)) 293 return false; 294 295 bool Signed = isa<SExtInst>(OpA); 296 297 OpA = dyn_cast<Instruction>(OpA->getOperand(0)); 298 OpB = dyn_cast<Instruction>(OpB->getOperand(0)); 299 if (!OpA || !OpB || OpA->getType() != OpB->getType()) 300 return false; 301 302 // Now we need to prove that adding 1 to OpA won't overflow. 303 bool Safe = false; 304 // First attempt: if OpB is an add with NSW/NUW, and OpB is 1 added to OpA, 305 // we're okay. 306 if (OpB->getOpcode() == Instruction::Add && 307 isa<ConstantInt>(OpB->getOperand(1)) && 308 cast<ConstantInt>(OpB->getOperand(1))->getSExtValue() > 0) { 309 if (Signed) 310 Safe = cast<BinaryOperator>(OpB)->hasNoSignedWrap(); 311 else 312 Safe = cast<BinaryOperator>(OpB)->hasNoUnsignedWrap(); 313 } 314 315 unsigned BitWidth = OpA->getType()->getScalarSizeInBits(); 316 317 // Second attempt: 318 // If any bits are known to be zero other than the sign bit in OpA, we can 319 // add 1 to it while guaranteeing no overflow of any sort. 320 if (!Safe) { 321 APInt KnownZero(BitWidth, 0); 322 APInt KnownOne(BitWidth, 0); 323 computeKnownBits(OpA, KnownZero, KnownOne, DL, 0, nullptr, OpA, &DT); 324 KnownZero &= ~APInt::getHighBitsSet(BitWidth, 1); 325 if (KnownZero != 0) 326 Safe = true; 327 } 328 329 if (!Safe) 330 return false; 331 332 const SCEV *OffsetSCEVA = SE.getSCEV(OpA); 333 const SCEV *OffsetSCEVB = SE.getSCEV(OpB); 334 const SCEV *One = SE.getConstant(APInt(BitWidth, 1)); 335 const SCEV *X2 = SE.getAddExpr(OffsetSCEVA, One); 336 return X2 == OffsetSCEVB; 337 } 338 339 void Vectorizer::reorder(Instruction *I) { 340 SmallPtrSet<Instruction *, 16> InstructionsToMove; 341 SmallVector<Instruction *, 16> Worklist; 342 343 Worklist.push_back(I); 344 while (!Worklist.empty()) { 345 Instruction *IW = Worklist.pop_back_val(); 346 int NumOperands = IW->getNumOperands(); 347 for (int i = 0; i < NumOperands; i++) { 348 Instruction *IM = dyn_cast<Instruction>(IW->getOperand(i)); 349 if (!IM || IM->getOpcode() == Instruction::PHI) 350 continue; 351 352 if (!DT.dominates(IM, I)) { 353 InstructionsToMove.insert(IM); 354 Worklist.push_back(IM); 355 assert(IM->getParent() == IW->getParent() && 356 "Instructions to move should be in the same basic block"); 357 } 358 } 359 } 360 361 // All instructions to move should follow I. Start from I, not from begin(). 362 for (auto BBI = I->getIterator(), E = I->getParent()->end(); BBI != E; 363 ++BBI) { 364 if (!is_contained(InstructionsToMove, &*BBI)) 365 continue; 366 Instruction *IM = &*BBI; 367 --BBI; 368 IM->removeFromParent(); 369 IM->insertBefore(I); 370 } 371 } 372 373 std::pair<BasicBlock::iterator, BasicBlock::iterator> 374 Vectorizer::getBoundaryInstrs(ArrayRef<Value *> Chain) { 375 Instruction *C0 = cast<Instruction>(Chain[0]); 376 BasicBlock::iterator FirstInstr = C0->getIterator(); 377 BasicBlock::iterator LastInstr = C0->getIterator(); 378 379 BasicBlock *BB = C0->getParent(); 380 unsigned NumFound = 0; 381 for (Instruction &I : *BB) { 382 if (!is_contained(Chain, &I)) 383 continue; 384 385 ++NumFound; 386 if (NumFound == 1) { 387 FirstInstr = I.getIterator(); 388 } 389 if (NumFound == Chain.size()) { 390 LastInstr = I.getIterator(); 391 break; 392 } 393 } 394 395 // Range is [first, last). 396 return std::make_pair(FirstInstr, ++LastInstr); 397 } 398 399 void Vectorizer::eraseInstructions(ArrayRef<Value *> Chain) { 400 SmallVector<Instruction *, 16> Instrs; 401 for (Value *V : Chain) { 402 Value *PtrOperand = getPointerOperand(V); 403 assert(PtrOperand && "Instruction must have a pointer operand."); 404 Instrs.push_back(cast<Instruction>(V)); 405 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(PtrOperand)) 406 Instrs.push_back(GEP); 407 } 408 409 // Erase instructions. 410 for (Value *V : Instrs) { 411 Instruction *Instr = cast<Instruction>(V); 412 if (Instr->use_empty()) 413 Instr->eraseFromParent(); 414 } 415 } 416 417 std::pair<ArrayRef<Value *>, ArrayRef<Value *>> 418 Vectorizer::splitOddVectorElts(ArrayRef<Value *> Chain, 419 unsigned ElementSizeBits) { 420 unsigned ElemSizeInBytes = ElementSizeBits / 8; 421 unsigned SizeInBytes = ElemSizeInBytes * Chain.size(); 422 unsigned NumRight = (SizeInBytes % 4) / ElemSizeInBytes; 423 unsigned NumLeft = Chain.size() - NumRight; 424 return std::make_pair(Chain.slice(0, NumLeft), Chain.slice(NumLeft)); 425 } 426 427 ArrayRef<Value *> Vectorizer::getVectorizablePrefix(ArrayRef<Value *> Chain) { 428 // These are in BB order, unlike Chain, which is in address order. 429 SmallVector<std::pair<Value *, unsigned>, 16> MemoryInstrs; 430 SmallVector<std::pair<Value *, unsigned>, 16> ChainInstrs; 431 432 bool IsLoadChain = isa<LoadInst>(Chain[0]); 433 DEBUG({ 434 for (Value *V : Chain) { 435 if (IsLoadChain) 436 assert(isa<LoadInst>(V) && 437 "All elements of Chain must be loads, or all must be stores."); 438 else 439 assert(isa<StoreInst>(V) && 440 "All elements of Chain must be loads, or all must be stores."); 441 } 442 }); 443 444 unsigned InstrIdx = 0; 445 for (Instruction &I : make_range(getBoundaryInstrs(Chain))) { 446 ++InstrIdx; 447 if (isa<LoadInst>(I) || isa<StoreInst>(I)) { 448 if (!is_contained(Chain, &I)) 449 MemoryInstrs.push_back({&I, InstrIdx}); 450 else 451 ChainInstrs.push_back({&I, InstrIdx}); 452 } else if (IsLoadChain && (I.mayWriteToMemory() || I.mayThrow())) { 453 DEBUG(dbgs() << "LSV: Found may-write/throw operation: " << I << '\n'); 454 break; 455 } else if (!IsLoadChain && (I.mayReadOrWriteMemory() || I.mayThrow())) { 456 DEBUG(dbgs() << "LSV: Found may-read/write/throw operation: " << I 457 << '\n'); 458 break; 459 } 460 } 461 462 // Loop until we find an instruction in ChainInstrs that we can't vectorize. 463 unsigned ChainInstrIdx, ChainInstrsLen; 464 for (ChainInstrIdx = 0, ChainInstrsLen = ChainInstrs.size(); 465 ChainInstrIdx < ChainInstrsLen; ++ChainInstrIdx) { 466 Value *ChainInstr = ChainInstrs[ChainInstrIdx].first; 467 unsigned ChainInstrLoc = ChainInstrs[ChainInstrIdx].second; 468 bool AliasFound = false; 469 for (auto EntryMem : MemoryInstrs) { 470 Value *MemInstr = EntryMem.first; 471 unsigned MemInstrLoc = EntryMem.second; 472 if (isa<LoadInst>(MemInstr) && isa<LoadInst>(ChainInstr)) 473 continue; 474 475 // We can ignore the alias as long as the load comes before the store, 476 // because that means we won't be moving the load past the store to 477 // vectorize it (the vectorized load is inserted at the location of the 478 // first load in the chain). 479 if (isa<StoreInst>(MemInstr) && isa<LoadInst>(ChainInstr) && 480 ChainInstrLoc < MemInstrLoc) 481 continue; 482 483 // Same case, but in reverse. 484 if (isa<LoadInst>(MemInstr) && isa<StoreInst>(ChainInstr) && 485 ChainInstrLoc > MemInstrLoc) 486 continue; 487 488 Instruction *M0 = cast<Instruction>(MemInstr); 489 Instruction *M1 = cast<Instruction>(ChainInstr); 490 491 if (!AA.isNoAlias(MemoryLocation::get(M0), MemoryLocation::get(M1))) { 492 DEBUG({ 493 Value *Ptr0 = getPointerOperand(M0); 494 Value *Ptr1 = getPointerOperand(M1); 495 dbgs() << "LSV: Found alias:\n" 496 " Aliasing instruction and pointer:\n" 497 << " " << *MemInstr << '\n' 498 << " " << *Ptr0 << '\n' 499 << " Aliased instruction and pointer:\n" 500 << " " << *ChainInstr << '\n' 501 << " " << *Ptr1 << '\n'; 502 }); 503 AliasFound = true; 504 break; 505 } 506 } 507 if (AliasFound) 508 break; 509 } 510 511 // Find the largest prefix of Chain whose elements are all in 512 // ChainInstrs[0, ChainInstrIdx). This is the largest vectorizable prefix of 513 // Chain. (Recall that Chain is in address order, but ChainInstrs is in BB 514 // order.) 515 auto VectorizableChainInstrs = 516 makeArrayRef(ChainInstrs.data(), ChainInstrIdx); 517 unsigned ChainIdx, ChainLen; 518 for (ChainIdx = 0, ChainLen = Chain.size(); ChainIdx < ChainLen; ++ChainIdx) { 519 Value *V = Chain[ChainIdx]; 520 if (!any_of(VectorizableChainInstrs, 521 [V](std::pair<Value *, unsigned> CI) { return V == CI.first; })) 522 break; 523 } 524 return Chain.slice(0, ChainIdx); 525 } 526 527 std::pair<ValueListMap, ValueListMap> 528 Vectorizer::collectInstructions(BasicBlock *BB) { 529 ValueListMap LoadRefs; 530 ValueListMap StoreRefs; 531 532 for (Instruction &I : *BB) { 533 if (!I.mayReadOrWriteMemory()) 534 continue; 535 536 if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { 537 if (!LI->isSimple()) 538 continue; 539 540 Type *Ty = LI->getType(); 541 if (!VectorType::isValidElementType(Ty->getScalarType())) 542 continue; 543 544 // Skip weird non-byte sizes. They probably aren't worth the effort of 545 // handling correctly. 546 unsigned TySize = DL.getTypeSizeInBits(Ty); 547 if (TySize < 8) 548 continue; 549 550 Value *Ptr = LI->getPointerOperand(); 551 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 552 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 553 554 // No point in looking at these if they're too big to vectorize. 555 if (TySize > VecRegSize / 2) 556 continue; 557 558 // Make sure all the users of a vector are constant-index extracts. 559 if (isa<VectorType>(Ty) && !all_of(LI->users(), [LI](const User *U) { 560 const Instruction *UI = cast<Instruction>(U); 561 return isa<ExtractElementInst>(UI) && 562 isa<ConstantInt>(UI->getOperand(1)); 563 })) 564 continue; 565 566 // TODO: Target hook to filter types. 567 568 // Save the load locations. 569 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 570 LoadRefs[ObjPtr].push_back(LI); 571 572 } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { 573 if (!SI->isSimple()) 574 continue; 575 576 Type *Ty = SI->getValueOperand()->getType(); 577 if (!VectorType::isValidElementType(Ty->getScalarType())) 578 continue; 579 580 // Skip weird non-byte sizes. They probably aren't worth the effort of 581 // handling correctly. 582 unsigned TySize = DL.getTypeSizeInBits(Ty); 583 if (TySize < 8) 584 continue; 585 586 Value *Ptr = SI->getPointerOperand(); 587 unsigned AS = Ptr->getType()->getPointerAddressSpace(); 588 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 589 if (TySize > VecRegSize / 2) 590 continue; 591 592 if (isa<VectorType>(Ty) && !all_of(SI->users(), [SI](const User *U) { 593 const Instruction *UI = cast<Instruction>(U); 594 return isa<ExtractElementInst>(UI) && 595 isa<ConstantInt>(UI->getOperand(1)); 596 })) 597 continue; 598 599 // Save store location. 600 Value *ObjPtr = GetUnderlyingObject(Ptr, DL); 601 StoreRefs[ObjPtr].push_back(SI); 602 } 603 } 604 605 return {LoadRefs, StoreRefs}; 606 } 607 608 bool Vectorizer::vectorizeChains(ValueListMap &Map) { 609 bool Changed = false; 610 611 for (const std::pair<Value *, ValueList> &Chain : Map) { 612 unsigned Size = Chain.second.size(); 613 if (Size < 2) 614 continue; 615 616 DEBUG(dbgs() << "LSV: Analyzing a chain of length " << Size << ".\n"); 617 618 // Process the stores in chunks of 64. 619 for (unsigned CI = 0, CE = Size; CI < CE; CI += 64) { 620 unsigned Len = std::min<unsigned>(CE - CI, 64); 621 ArrayRef<Value *> Chunk(&Chain.second[CI], Len); 622 Changed |= vectorizeInstructions(Chunk); 623 } 624 } 625 626 return Changed; 627 } 628 629 bool Vectorizer::vectorizeInstructions(ArrayRef<Value *> Instrs) { 630 DEBUG(dbgs() << "LSV: Vectorizing " << Instrs.size() << " instructions.\n"); 631 SmallSetVector<int, 16> Heads, Tails; 632 int ConsecutiveChain[64]; 633 634 // Do a quadratic search on all of the given stores and find all of the pairs 635 // of stores that follow each other. 636 for (int i = 0, e = Instrs.size(); i < e; ++i) { 637 ConsecutiveChain[i] = -1; 638 for (int j = e - 1; j >= 0; --j) { 639 if (i == j) 640 continue; 641 642 if (isConsecutiveAccess(Instrs[i], Instrs[j])) { 643 if (ConsecutiveChain[i] != -1) { 644 int CurDistance = std::abs(ConsecutiveChain[i] - i); 645 int NewDistance = std::abs(ConsecutiveChain[i] - j); 646 if (j < i || NewDistance > CurDistance) 647 continue; // Should not insert. 648 } 649 650 Tails.insert(j); 651 Heads.insert(i); 652 ConsecutiveChain[i] = j; 653 } 654 } 655 } 656 657 bool Changed = false; 658 SmallPtrSet<Value *, 16> InstructionsProcessed; 659 660 for (int Head : Heads) { 661 if (InstructionsProcessed.count(Instrs[Head])) 662 continue; 663 bool longerChainExists = false; 664 for (unsigned TIt = 0; TIt < Tails.size(); TIt++) 665 if (Head == Tails[TIt] && 666 !InstructionsProcessed.count(Instrs[Heads[TIt]])) { 667 longerChainExists = true; 668 break; 669 } 670 if (longerChainExists) 671 continue; 672 673 // We found an instr that starts a chain. Now follow the chain and try to 674 // vectorize it. 675 SmallVector<Value *, 16> Operands; 676 int I = Head; 677 while (I != -1 && (Tails.count(I) || Heads.count(I))) { 678 if (InstructionsProcessed.count(Instrs[I])) 679 break; 680 681 Operands.push_back(Instrs[I]); 682 I = ConsecutiveChain[I]; 683 } 684 685 bool Vectorized = false; 686 if (isa<LoadInst>(*Operands.begin())) 687 Vectorized = vectorizeLoadChain(Operands, &InstructionsProcessed); 688 else 689 Vectorized = vectorizeStoreChain(Operands, &InstructionsProcessed); 690 691 Changed |= Vectorized; 692 } 693 694 return Changed; 695 } 696 697 bool Vectorizer::vectorizeStoreChain( 698 ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) { 699 StoreInst *S0 = cast<StoreInst>(Chain[0]); 700 701 // If the vector has an int element, default to int for the whole load. 702 Type *StoreTy; 703 for (const auto &V : Chain) { 704 StoreTy = cast<StoreInst>(V)->getValueOperand()->getType(); 705 if (StoreTy->isIntOrIntVectorTy()) 706 break; 707 708 if (StoreTy->isPtrOrPtrVectorTy()) { 709 StoreTy = Type::getIntNTy(F.getParent()->getContext(), 710 DL.getTypeSizeInBits(StoreTy)); 711 break; 712 } 713 } 714 715 unsigned Sz = DL.getTypeSizeInBits(StoreTy); 716 unsigned AS = S0->getPointerAddressSpace(); 717 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 718 unsigned VF = VecRegSize / Sz; 719 unsigned ChainSize = Chain.size(); 720 721 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 722 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 723 return false; 724 } 725 726 ArrayRef<Value *> NewChain = getVectorizablePrefix(Chain); 727 if (NewChain.empty()) { 728 // No vectorization possible. 729 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 730 return false; 731 } 732 if (NewChain.size() == 1) { 733 // Failed after the first instruction. Discard it and try the smaller chain. 734 InstructionsProcessed->insert(NewChain.front()); 735 return false; 736 } 737 738 // Update Chain to the valid vectorizable subchain. 739 Chain = NewChain; 740 ChainSize = Chain.size(); 741 742 // Store size should be 1B, 2B or multiple of 4B. 743 // TODO: Target hook for size constraint? 744 unsigned SzInBytes = (Sz / 8) * ChainSize; 745 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 746 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 747 "or multiple of 4B. Splitting.\n"); 748 if (SzInBytes == 3) 749 return vectorizeStoreChain(Chain.slice(0, ChainSize - 1), 750 InstructionsProcessed); 751 752 auto Chains = splitOddVectorElts(Chain, Sz); 753 return vectorizeStoreChain(Chains.first, InstructionsProcessed) | 754 vectorizeStoreChain(Chains.second, InstructionsProcessed); 755 } 756 757 VectorType *VecTy; 758 VectorType *VecStoreTy = dyn_cast<VectorType>(StoreTy); 759 if (VecStoreTy) 760 VecTy = VectorType::get(StoreTy->getScalarType(), 761 Chain.size() * VecStoreTy->getNumElements()); 762 else 763 VecTy = VectorType::get(StoreTy, Chain.size()); 764 765 // If it's more than the max vector size, break it into two pieces. 766 // TODO: Target hook to control types to split to. 767 if (ChainSize > VF) { 768 DEBUG(dbgs() << "LSV: Vector factor is too big." 769 " Creating two separate arrays.\n"); 770 return vectorizeStoreChain(Chain.slice(0, VF), InstructionsProcessed) | 771 vectorizeStoreChain(Chain.slice(VF), InstructionsProcessed); 772 } 773 774 DEBUG({ 775 dbgs() << "LSV: Stores to vectorize:\n"; 776 for (Value *V : Chain) 777 dbgs() << " " << *V << "\n"; 778 }); 779 780 // We won't try again to vectorize the elements of the chain, regardless of 781 // whether we succeed below. 782 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 783 784 // Check alignment restrictions. 785 unsigned Alignment = getAlignment(S0); 786 787 // If the store is going to be misaligned, don't vectorize it. 788 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 789 if (S0->getPointerAddressSpace() != 0) 790 return false; 791 792 // If we're storing to an object on the stack, we control its alignment, 793 // so we can cheat and change it! 794 Value *V = GetUnderlyingObject(S0->getPointerOperand(), DL); 795 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { 796 AI->setAlignment(TargetBaseAlign); 797 Alignment = TargetBaseAlign; 798 } else { 799 return false; 800 } 801 } 802 803 BasicBlock::iterator First, Last; 804 std::tie(First, Last) = getBoundaryInstrs(Chain); 805 Builder.SetInsertPoint(&*Last); 806 807 Value *Vec = UndefValue::get(VecTy); 808 809 if (VecStoreTy) { 810 unsigned VecWidth = VecStoreTy->getNumElements(); 811 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 812 StoreInst *Store = cast<StoreInst>(Chain[I]); 813 for (unsigned J = 0, NE = VecStoreTy->getNumElements(); J != NE; ++J) { 814 unsigned NewIdx = J + I * VecWidth; 815 Value *Extract = Builder.CreateExtractElement(Store->getValueOperand(), 816 Builder.getInt32(J)); 817 if (Extract->getType() != StoreTy->getScalarType()) 818 Extract = Builder.CreateBitCast(Extract, StoreTy->getScalarType()); 819 820 Value *Insert = 821 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(NewIdx)); 822 Vec = Insert; 823 } 824 } 825 } else { 826 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 827 StoreInst *Store = cast<StoreInst>(Chain[I]); 828 Value *Extract = Store->getValueOperand(); 829 if (Extract->getType() != StoreTy->getScalarType()) 830 Extract = 831 Builder.CreateBitOrPointerCast(Extract, StoreTy->getScalarType()); 832 833 Value *Insert = 834 Builder.CreateInsertElement(Vec, Extract, Builder.getInt32(I)); 835 Vec = Insert; 836 } 837 } 838 839 Value *Bitcast = 840 Builder.CreateBitCast(S0->getPointerOperand(), VecTy->getPointerTo(AS)); 841 StoreInst *SI = cast<StoreInst>(Builder.CreateStore(Vec, Bitcast)); 842 propagateMetadata(SI, Chain); 843 SI->setAlignment(Alignment); 844 845 eraseInstructions(Chain); 846 ++NumVectorInstructions; 847 NumScalarsVectorized += Chain.size(); 848 return true; 849 } 850 851 bool Vectorizer::vectorizeLoadChain( 852 ArrayRef<Value *> Chain, SmallPtrSet<Value *, 16> *InstructionsProcessed) { 853 LoadInst *L0 = cast<LoadInst>(Chain[0]); 854 855 // If the vector has an int element, default to int for the whole load. 856 Type *LoadTy; 857 for (const auto &V : Chain) { 858 LoadTy = cast<LoadInst>(V)->getType(); 859 if (LoadTy->isIntOrIntVectorTy()) 860 break; 861 862 if (LoadTy->isPtrOrPtrVectorTy()) { 863 LoadTy = Type::getIntNTy(F.getParent()->getContext(), 864 DL.getTypeSizeInBits(LoadTy)); 865 break; 866 } 867 } 868 869 unsigned Sz = DL.getTypeSizeInBits(LoadTy); 870 unsigned AS = L0->getPointerAddressSpace(); 871 unsigned VecRegSize = TTI.getLoadStoreVecRegBitWidth(AS); 872 unsigned VF = VecRegSize / Sz; 873 unsigned ChainSize = Chain.size(); 874 875 if (!isPowerOf2_32(Sz) || VF < 2 || ChainSize < 2) { 876 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 877 return false; 878 } 879 880 ArrayRef<Value *> NewChain = getVectorizablePrefix(Chain); 881 if (NewChain.empty()) { 882 // No vectorization possible. 883 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 884 return false; 885 } 886 if (NewChain.size() == 1) { 887 // Failed after the first instruction. Discard it and try the smaller chain. 888 InstructionsProcessed->insert(NewChain.front()); 889 return false; 890 } 891 892 // Update Chain to the valid vectorizable subchain. 893 Chain = NewChain; 894 ChainSize = Chain.size(); 895 896 // Load size should be 1B, 2B or multiple of 4B. 897 // TODO: Should size constraint be a target hook? 898 unsigned SzInBytes = (Sz / 8) * ChainSize; 899 if (SzInBytes > 2 && SzInBytes % 4 != 0) { 900 DEBUG(dbgs() << "LSV: Size should be 1B, 2B " 901 "or multiple of 4B. Splitting.\n"); 902 if (SzInBytes == 3) 903 return vectorizeLoadChain(Chain.slice(0, ChainSize - 1), 904 InstructionsProcessed); 905 auto Chains = splitOddVectorElts(Chain, Sz); 906 return vectorizeLoadChain(Chains.first, InstructionsProcessed) | 907 vectorizeLoadChain(Chains.second, InstructionsProcessed); 908 } 909 910 VectorType *VecTy; 911 VectorType *VecLoadTy = dyn_cast<VectorType>(LoadTy); 912 if (VecLoadTy) 913 VecTy = VectorType::get(LoadTy->getScalarType(), 914 Chain.size() * VecLoadTy->getNumElements()); 915 else 916 VecTy = VectorType::get(LoadTy, Chain.size()); 917 918 // If it's more than the max vector size, break it into two pieces. 919 // TODO: Target hook to control types to split to. 920 if (ChainSize > VF) { 921 DEBUG(dbgs() << "LSV: Vector factor is too big. " 922 "Creating two separate arrays.\n"); 923 return vectorizeLoadChain(Chain.slice(0, VF), InstructionsProcessed) | 924 vectorizeLoadChain(Chain.slice(VF), InstructionsProcessed); 925 } 926 927 // We won't try again to vectorize the elements of the chain, regardless of 928 // whether we succeed below. 929 InstructionsProcessed->insert(Chain.begin(), Chain.end()); 930 931 // Check alignment restrictions. 932 unsigned Alignment = getAlignment(L0); 933 934 // If the load is going to be misaligned, don't vectorize it. 935 if (accessIsMisaligned(SzInBytes, AS, Alignment)) { 936 if (L0->getPointerAddressSpace() != 0) 937 return false; 938 939 // If we're loading from an object on the stack, we control its alignment, 940 // so we can cheat and change it! 941 Value *V = GetUnderlyingObject(L0->getPointerOperand(), DL); 942 if (AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V)) { 943 AI->setAlignment(TargetBaseAlign); 944 Alignment = TargetBaseAlign; 945 } else { 946 return false; 947 } 948 } 949 950 DEBUG({ 951 dbgs() << "LSV: Loads to vectorize:\n"; 952 for (Value *V : Chain) 953 V->dump(); 954 }); 955 956 // getVectorizablePrefix already computed getBoundaryInstrs. The value of 957 // Last may have changed since then, but the value of First won't have. If it 958 // matters, we could compute getBoundaryInstrs only once and reuse it here. 959 BasicBlock::iterator First, Last; 960 std::tie(First, Last) = getBoundaryInstrs(Chain); 961 Builder.SetInsertPoint(&*First); 962 963 Value *Bitcast = 964 Builder.CreateBitCast(L0->getPointerOperand(), VecTy->getPointerTo(AS)); 965 966 LoadInst *LI = cast<LoadInst>(Builder.CreateLoad(Bitcast)); 967 propagateMetadata(LI, Chain); 968 LI->setAlignment(Alignment); 969 970 if (VecLoadTy) { 971 SmallVector<Instruction *, 16> InstrsToErase; 972 SmallVector<Instruction *, 16> InstrsToReorder; 973 InstrsToReorder.push_back(cast<Instruction>(Bitcast)); 974 975 unsigned VecWidth = VecLoadTy->getNumElements(); 976 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 977 for (auto Use : Chain[I]->users()) { 978 Instruction *UI = cast<Instruction>(Use); 979 unsigned Idx = cast<ConstantInt>(UI->getOperand(1))->getZExtValue(); 980 unsigned NewIdx = Idx + I * VecWidth; 981 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(NewIdx)); 982 Instruction *Extracted = cast<Instruction>(V); 983 if (Extracted->getType() != UI->getType()) 984 Extracted = cast<Instruction>( 985 Builder.CreateBitCast(Extracted, UI->getType())); 986 987 // Replace the old instruction. 988 UI->replaceAllUsesWith(Extracted); 989 InstrsToErase.push_back(UI); 990 } 991 } 992 993 for (Instruction *ModUser : InstrsToReorder) 994 reorder(ModUser); 995 996 for (auto I : InstrsToErase) 997 I->eraseFromParent(); 998 } else { 999 SmallVector<Instruction *, 16> InstrsToReorder; 1000 InstrsToReorder.push_back(cast<Instruction>(Bitcast)); 1001 1002 for (unsigned I = 0, E = Chain.size(); I != E; ++I) { 1003 Value *V = Builder.CreateExtractElement(LI, Builder.getInt32(I)); 1004 Instruction *Extracted = cast<Instruction>(V); 1005 Instruction *UI = cast<Instruction>(Chain[I]); 1006 if (Extracted->getType() != UI->getType()) { 1007 Extracted = cast<Instruction>( 1008 Builder.CreateBitOrPointerCast(Extracted, UI->getType())); 1009 } 1010 1011 // Replace the old instruction. 1012 UI->replaceAllUsesWith(Extracted); 1013 } 1014 1015 for (Instruction *ModUser : InstrsToReorder) 1016 reorder(ModUser); 1017 } 1018 1019 eraseInstructions(Chain); 1020 1021 ++NumVectorInstructions; 1022 NumScalarsVectorized += Chain.size(); 1023 return true; 1024 } 1025 1026 bool Vectorizer::accessIsMisaligned(unsigned SzInBytes, unsigned AddressSpace, 1027 unsigned Alignment) { 1028 bool Fast = false; 1029 bool Allows = TTI.allowsMisalignedMemoryAccesses(SzInBytes * 8, AddressSpace, 1030 Alignment, &Fast); 1031 // TODO: Remove TargetBaseAlign 1032 return !(Allows && Fast) && (Alignment % SzInBytes) != 0 && 1033 (Alignment % TargetBaseAlign) != 0; 1034 } 1035