1 //===- UnifyLoopExits.cpp - Redirect exiting edges to one block -*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // For each natural loop with multiple exit blocks, this pass creates a new
10 // block N such that all exiting blocks now branch to N, and then control flow
11 // is redistributed to all the original exit blocks.
12 //
13 // Limitation: This assumes that all terminators in the CFG are direct branches
14 //             (the "br" instruction). The presence of any other control flow
15 //             such as indirectbr, switch or callbr will cause an assert.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Transforms/Utils/UnifyLoopExits.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Dominators.h"
24 #include "llvm/InitializePasses.h"
25 #include "llvm/Transforms/Utils.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 
28 #define DEBUG_TYPE "unify-loop-exits"
29 
30 using namespace llvm;
31 
32 namespace {
33 struct UnifyLoopExitsLegacyPass : public FunctionPass {
34   static char ID;
35   UnifyLoopExitsLegacyPass() : FunctionPass(ID) {
36     initializeUnifyLoopExitsLegacyPassPass(*PassRegistry::getPassRegistry());
37   }
38 
39   void getAnalysisUsage(AnalysisUsage &AU) const override {
40     AU.addRequiredID(LowerSwitchID);
41     AU.addRequired<LoopInfoWrapperPass>();
42     AU.addRequired<DominatorTreeWrapperPass>();
43     AU.addPreservedID(LowerSwitchID);
44     AU.addPreserved<LoopInfoWrapperPass>();
45     AU.addPreserved<DominatorTreeWrapperPass>();
46   }
47 
48   bool runOnFunction(Function &F) override;
49 };
50 } // namespace
51 
52 char UnifyLoopExitsLegacyPass::ID = 0;
53 
54 FunctionPass *llvm::createUnifyLoopExitsPass() {
55   return new UnifyLoopExitsLegacyPass();
56 }
57 
58 INITIALIZE_PASS_BEGIN(UnifyLoopExitsLegacyPass, "unify-loop-exits",
59                       "Fixup each natural loop to have a single exit block",
60                       false /* Only looks at CFG */, false /* Analysis Pass */)
61 INITIALIZE_PASS_DEPENDENCY(LowerSwitchLegacyPass)
62 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
63 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
64 INITIALIZE_PASS_END(UnifyLoopExitsLegacyPass, "unify-loop-exits",
65                     "Fixup each natural loop to have a single exit block",
66                     false /* Only looks at CFG */, false /* Analysis Pass */)
67 
68 // The current transform introduces new control flow paths which may break the
69 // SSA requirement that every def must dominate all its uses. For example,
70 // consider a value D defined inside the loop that is used by some instruction
71 // U outside the loop. It follows that D dominates U, since the original
72 // program has valid SSA form. After merging the exits, all paths from D to U
73 // now flow through the unified exit block. In addition, there may be other
74 // paths that do not pass through D, but now reach the unified exit
75 // block. Thus, D no longer dominates U.
76 //
77 // Restore the dominance by creating a phi for each such D at the new unified
78 // loop exit. But when doing this, ignore any uses U that are in the new unified
79 // loop exit, since those were introduced specially when the block was created.
80 //
81 // The use of SSAUpdater seems like overkill for this operation. The location
82 // for creating the new PHI is well-known, and also the set of incoming blocks
83 // to the new PHI.
84 static void restoreSSA(const DominatorTree &DT, const Loop *L,
85                        const SetVector<BasicBlock *> &Incoming,
86                        BasicBlock *LoopExitBlock) {
87   using InstVector = SmallVector<Instruction *, 8>;
88   using IIMap = MapVector<Instruction *, InstVector>;
89   IIMap ExternalUsers;
90   for (auto BB : L->blocks()) {
91     for (auto &I : *BB) {
92       for (auto &U : I.uses()) {
93         auto UserInst = cast<Instruction>(U.getUser());
94         auto UserBlock = UserInst->getParent();
95         if (UserBlock == LoopExitBlock)
96           continue;
97         if (L->contains(UserBlock))
98           continue;
99         LLVM_DEBUG(dbgs() << "added ext use for " << I.getName() << "("
100                           << BB->getName() << ")"
101                           << ": " << UserInst->getName() << "("
102                           << UserBlock->getName() << ")"
103                           << "\n");
104         ExternalUsers[&I].push_back(UserInst);
105       }
106     }
107   }
108 
109   for (auto II : ExternalUsers) {
110     // For each Def used outside the loop, create NewPhi in
111     // LoopExitBlock. NewPhi receives Def only along exiting blocks that
112     // dominate it, while the remaining values are undefined since those paths
113     // didn't exist in the original CFG.
114     auto Def = II.first;
115     LLVM_DEBUG(dbgs() << "externally used: " << Def->getName() << "\n");
116     auto NewPhi = PHINode::Create(Def->getType(), Incoming.size(),
117                                   Def->getName() + ".moved",
118                                   LoopExitBlock->getTerminator());
119     for (auto In : Incoming) {
120       LLVM_DEBUG(dbgs() << "predecessor " << In->getName() << ": ");
121       if (Def->getParent() == In || DT.dominates(Def, In)) {
122         LLVM_DEBUG(dbgs() << "dominated\n");
123         NewPhi->addIncoming(Def, In);
124       } else {
125         LLVM_DEBUG(dbgs() << "not dominated\n");
126         NewPhi->addIncoming(UndefValue::get(Def->getType()), In);
127       }
128     }
129 
130     LLVM_DEBUG(dbgs() << "external users:");
131     for (auto U : II.second) {
132       LLVM_DEBUG(dbgs() << " " << U->getName());
133       U->replaceUsesOfWith(Def, NewPhi);
134     }
135     LLVM_DEBUG(dbgs() << "\n");
136   }
137 }
138 
139 static bool unifyLoopExits(DominatorTree &DT, LoopInfo &LI, Loop *L) {
140   // To unify the loop exits, we need a list of the exiting blocks as
141   // well as exit blocks. The functions for locating these lists both
142   // traverse the entire loop body. It is more efficient to first
143   // locate the exiting blocks and then examine their successors to
144   // locate the exit blocks.
145   SetVector<BasicBlock *> ExitingBlocks;
146   SetVector<BasicBlock *> Exits;
147 
148   // We need SetVectors, but the Loop API takes a vector, so we use a temporary.
149   SmallVector<BasicBlock *, 8> Temp;
150   L->getExitingBlocks(Temp);
151   for (auto BB : Temp) {
152     ExitingBlocks.insert(BB);
153     for (auto S : successors(BB)) {
154       auto SL = LI.getLoopFor(S);
155       // A successor is not an exit if it is directly or indirectly in the
156       // current loop.
157       if (SL == L || L->contains(SL))
158         continue;
159       Exits.insert(S);
160     }
161   }
162 
163   LLVM_DEBUG(
164       dbgs() << "Found exit blocks:";
165       for (auto Exit : Exits) {
166         dbgs() << " " << Exit->getName();
167       }
168       dbgs() << "\n";
169 
170       dbgs() << "Found exiting blocks:";
171       for (auto EB : ExitingBlocks) {
172         dbgs() << " " << EB->getName();
173       }
174       dbgs() << "\n";);
175 
176   if (Exits.size() <= 1) {
177     LLVM_DEBUG(dbgs() << "loop does not have multiple exits; nothing to do\n");
178     return false;
179   }
180 
181   SmallVector<BasicBlock *, 8> GuardBlocks;
182   DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
183   auto LoopExitBlock = CreateControlFlowHub(&DTU, GuardBlocks, ExitingBlocks,
184                                             Exits, "loop.exit");
185 
186   restoreSSA(DT, L, ExitingBlocks, LoopExitBlock);
187 
188 #if defined(EXPENSIVE_CHECKS)
189   assert(DT.verify(DominatorTree::VerificationLevel::Full));
190 #else
191   assert(DT.verify(DominatorTree::VerificationLevel::Fast));
192 #endif // EXPENSIVE_CHECKS
193   L->verifyLoop();
194 
195   // The guard blocks were created outside the loop, so they need to become
196   // members of the parent loop.
197   if (auto ParentLoop = L->getParentLoop()) {
198     for (auto G : GuardBlocks) {
199       ParentLoop->addBasicBlockToLoop(G, LI);
200     }
201     ParentLoop->verifyLoop();
202   }
203 
204 #if defined(EXPENSIVE_CHECKS)
205   LI.verify(DT);
206 #endif // EXPENSIVE_CHECKS
207 
208   return true;
209 }
210 
211 static bool runImpl(LoopInfo &LI, DominatorTree &DT) {
212 
213   bool Changed = false;
214   auto Loops = LI.getLoopsInPreorder();
215   for (auto L : Loops) {
216     LLVM_DEBUG(dbgs() << "Loop: " << L->getHeader()->getName() << " (depth: "
217                       << LI.getLoopDepth(L->getHeader()) << ")\n");
218     Changed |= unifyLoopExits(DT, LI, L);
219   }
220   return Changed;
221 }
222 
223 bool UnifyLoopExitsLegacyPass::runOnFunction(Function &F) {
224   LLVM_DEBUG(dbgs() << "===== Unifying loop exits in function " << F.getName()
225                     << "\n");
226   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
227   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
228 
229   return runImpl(LI, DT);
230 }
231 
232 namespace llvm {
233 
234 PreservedAnalyses UnifyLoopExitsPass::run(Function &F,
235                                           FunctionAnalysisManager &AM) {
236   auto &LI = AM.getResult<LoopAnalysis>(F);
237   auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
238 
239   if (!runImpl(LI, DT))
240     return PreservedAnalyses::all();
241   PreservedAnalyses PA;
242   PA.preserve<LoopAnalysis>();
243   PA.preserve<DominatorTreeAnalysis>();
244   return PA;
245 }
246 } // namespace llvm
247