1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 //===----------------------------------------------------------------------===// 205 // String and Memory Library Call Optimizations 206 //===----------------------------------------------------------------------===// 207 208 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 209 // Extract some information from the instruction 210 Value *Dst = CI->getArgOperand(0); 211 Value *Src = CI->getArgOperand(1); 212 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 213 214 // See if we can get the length of the input string. 215 uint64_t Len = GetStringLength(Src); 216 if (Len) 217 annotateDereferenceableBytes(CI, 1, Len); 218 else 219 return nullptr; 220 --Len; // Unbias length. 221 222 // Handle the simple, do-nothing case: strcat(x, "") -> x 223 if (Len == 0) 224 return Dst; 225 226 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 227 } 228 229 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 230 IRBuilderBase &B) { 231 // We need to find the end of the destination string. That's where the 232 // memory is to be moved to. We just generate a call to strlen. 233 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 234 if (!DstLen) 235 return nullptr; 236 237 // Now that we have the destination's length, we must index into the 238 // destination's pointer to get the actual memcpy destination (end of 239 // the string .. we're concatenating). 240 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 241 242 // We have enough information to now generate the memcpy call to do the 243 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 244 B.CreateMemCpy( 245 CpyDst, Align(1), Src, Align(1), 246 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 247 return Dst; 248 } 249 250 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 251 // Extract some information from the instruction. 252 Value *Dst = CI->getArgOperand(0); 253 Value *Src = CI->getArgOperand(1); 254 Value *Size = CI->getArgOperand(2); 255 uint64_t Len; 256 annotateNonNullNoUndefBasedOnAccess(CI, 0); 257 if (isKnownNonZero(Size, DL)) 258 annotateNonNullNoUndefBasedOnAccess(CI, 1); 259 260 // We don't do anything if length is not constant. 261 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 262 if (LengthArg) { 263 Len = LengthArg->getZExtValue(); 264 // strncat(x, c, 0) -> x 265 if (!Len) 266 return Dst; 267 } else { 268 return nullptr; 269 } 270 271 // See if we can get the length of the input string. 272 uint64_t SrcLen = GetStringLength(Src); 273 if (SrcLen) { 274 annotateDereferenceableBytes(CI, 1, SrcLen); 275 --SrcLen; // Unbias length. 276 } else { 277 return nullptr; 278 } 279 280 // strncat(x, "", c) -> x 281 if (SrcLen == 0) 282 return Dst; 283 284 // We don't optimize this case. 285 if (Len < SrcLen) 286 return nullptr; 287 288 // strncat(x, s, c) -> strcat(x, s) 289 // s is constant so the strcat can be optimized further. 290 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 291 } 292 293 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 294 Function *Callee = CI->getCalledFunction(); 295 FunctionType *FT = Callee->getFunctionType(); 296 Value *SrcStr = CI->getArgOperand(0); 297 annotateNonNullNoUndefBasedOnAccess(CI, 0); 298 299 // If the second operand is non-constant, see if we can compute the length 300 // of the input string and turn this into memchr. 301 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 302 if (!CharC) { 303 uint64_t Len = GetStringLength(SrcStr); 304 if (Len) 305 annotateDereferenceableBytes(CI, 0, Len); 306 else 307 return nullptr; 308 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 309 return nullptr; 310 311 return copyFlags( 312 *CI, 313 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 314 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 315 DL, TLI)); 316 } 317 318 // Otherwise, the character is a constant, see if the first argument is 319 // a string literal. If so, we can constant fold. 320 StringRef Str; 321 if (!getConstantStringInfo(SrcStr, Str)) { 322 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 323 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 324 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 325 return nullptr; 326 } 327 328 // Compute the offset, make sure to handle the case when we're searching for 329 // zero (a weird way to spell strlen). 330 size_t I = (0xFF & CharC->getSExtValue()) == 0 331 ? Str.size() 332 : Str.find(CharC->getSExtValue()); 333 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 334 return Constant::getNullValue(CI->getType()); 335 336 // strchr(s+n,c) -> gep(s+n+i,c) 337 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 338 } 339 340 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 341 Value *SrcStr = CI->getArgOperand(0); 342 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 343 annotateNonNullNoUndefBasedOnAccess(CI, 0); 344 345 // Cannot fold anything if we're not looking for a constant. 346 if (!CharC) 347 return nullptr; 348 349 StringRef Str; 350 if (!getConstantStringInfo(SrcStr, Str)) { 351 // strrchr(s, 0) -> strchr(s, 0) 352 if (CharC->isZero()) 353 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 354 return nullptr; 355 } 356 357 // Compute the offset. 358 size_t I = (0xFF & CharC->getSExtValue()) == 0 359 ? Str.size() 360 : Str.rfind(CharC->getSExtValue()); 361 if (I == StringRef::npos) // Didn't find the char. Return null. 362 return Constant::getNullValue(CI->getType()); 363 364 // strrchr(s+n,c) -> gep(s+n+i,c) 365 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 366 } 367 368 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 369 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 370 if (Str1P == Str2P) // strcmp(x,x) -> 0 371 return ConstantInt::get(CI->getType(), 0); 372 373 StringRef Str1, Str2; 374 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 375 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 376 377 // strcmp(x, y) -> cnst (if both x and y are constant strings) 378 if (HasStr1 && HasStr2) 379 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 380 381 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 382 return B.CreateNeg(B.CreateZExt( 383 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 384 385 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 386 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 387 CI->getType()); 388 389 // strcmp(P, "x") -> memcmp(P, "x", 2) 390 uint64_t Len1 = GetStringLength(Str1P); 391 if (Len1) 392 annotateDereferenceableBytes(CI, 0, Len1); 393 uint64_t Len2 = GetStringLength(Str2P); 394 if (Len2) 395 annotateDereferenceableBytes(CI, 1, Len2); 396 397 if (Len1 && Len2) { 398 return copyFlags( 399 *CI, emitMemCmp(Str1P, Str2P, 400 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 401 std::min(Len1, Len2)), 402 B, DL, TLI)); 403 } 404 405 // strcmp to memcmp 406 if (!HasStr1 && HasStr2) { 407 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 408 return copyFlags( 409 *CI, 410 emitMemCmp(Str1P, Str2P, 411 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 412 B, DL, TLI)); 413 } else if (HasStr1 && !HasStr2) { 414 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 415 return copyFlags( 416 *CI, 417 emitMemCmp(Str1P, Str2P, 418 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 419 B, DL, TLI)); 420 } 421 422 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 423 return nullptr; 424 } 425 426 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 427 Value *Str1P = CI->getArgOperand(0); 428 Value *Str2P = CI->getArgOperand(1); 429 Value *Size = CI->getArgOperand(2); 430 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 431 return ConstantInt::get(CI->getType(), 0); 432 433 if (isKnownNonZero(Size, DL)) 434 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 435 // Get the length argument if it is constant. 436 uint64_t Length; 437 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 438 Length = LengthArg->getZExtValue(); 439 else 440 return nullptr; 441 442 if (Length == 0) // strncmp(x,y,0) -> 0 443 return ConstantInt::get(CI->getType(), 0); 444 445 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 446 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 447 448 StringRef Str1, Str2; 449 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 450 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 451 452 // strncmp(x, y) -> cnst (if both x and y are constant strings) 453 if (HasStr1 && HasStr2) { 454 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 455 StringRef::size_type MinLen1 = std::min((uint64_t)Str1.size(), Length); 456 StringRef::size_type MinLen2 = std::min((uint64_t)Str2.size(), Length); 457 StringRef SubStr1 = Str1.substr(0, MinLen1); 458 StringRef SubStr2 = Str2.substr(0, MinLen2); 459 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 460 } 461 462 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 463 return B.CreateNeg(B.CreateZExt( 464 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 465 466 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 467 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 468 CI->getType()); 469 470 uint64_t Len1 = GetStringLength(Str1P); 471 if (Len1) 472 annotateDereferenceableBytes(CI, 0, Len1); 473 uint64_t Len2 = GetStringLength(Str2P); 474 if (Len2) 475 annotateDereferenceableBytes(CI, 1, Len2); 476 477 // strncmp to memcmp 478 if (!HasStr1 && HasStr2) { 479 Len2 = std::min(Len2, Length); 480 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 481 return copyFlags( 482 *CI, 483 emitMemCmp(Str1P, Str2P, 484 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 485 B, DL, TLI)); 486 } else if (HasStr1 && !HasStr2) { 487 Len1 = std::min(Len1, Length); 488 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 489 return copyFlags( 490 *CI, 491 emitMemCmp(Str1P, Str2P, 492 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 493 B, DL, TLI)); 494 } 495 496 return nullptr; 497 } 498 499 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 500 Value *Src = CI->getArgOperand(0); 501 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 502 uint64_t SrcLen = GetStringLength(Src); 503 if (SrcLen && Size) { 504 annotateDereferenceableBytes(CI, 0, SrcLen); 505 if (SrcLen <= Size->getZExtValue() + 1) 506 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 507 } 508 509 return nullptr; 510 } 511 512 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 513 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 514 if (Dst == Src) // strcpy(x,x) -> x 515 return Src; 516 517 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 518 // See if we can get the length of the input string. 519 uint64_t Len = GetStringLength(Src); 520 if (Len) 521 annotateDereferenceableBytes(CI, 1, Len); 522 else 523 return nullptr; 524 525 // We have enough information to now generate the memcpy call to do the 526 // copy for us. Make a memcpy to copy the nul byte with align = 1. 527 CallInst *NewCI = 528 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 529 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 530 NewCI->setAttributes(CI->getAttributes()); 531 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 532 copyFlags(*CI, NewCI); 533 return Dst; 534 } 535 536 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 537 Function *Callee = CI->getCalledFunction(); 538 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 539 540 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 541 if (CI->use_empty()) 542 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 543 544 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 545 Value *StrLen = emitStrLen(Src, B, DL, TLI); 546 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 547 } 548 549 // See if we can get the length of the input string. 550 uint64_t Len = GetStringLength(Src); 551 if (Len) 552 annotateDereferenceableBytes(CI, 1, Len); 553 else 554 return nullptr; 555 556 Type *PT = Callee->getFunctionType()->getParamType(0); 557 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 558 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 559 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 560 561 // We have enough information to now generate the memcpy call to do the 562 // copy for us. Make a memcpy to copy the nul byte with align = 1. 563 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 564 NewCI->setAttributes(CI->getAttributes()); 565 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 566 copyFlags(*CI, NewCI); 567 return DstEnd; 568 } 569 570 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 571 Function *Callee = CI->getCalledFunction(); 572 Value *Dst = CI->getArgOperand(0); 573 Value *Src = CI->getArgOperand(1); 574 Value *Size = CI->getArgOperand(2); 575 annotateNonNullNoUndefBasedOnAccess(CI, 0); 576 if (isKnownNonZero(Size, DL)) 577 annotateNonNullNoUndefBasedOnAccess(CI, 1); 578 579 uint64_t Len; 580 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 581 Len = LengthArg->getZExtValue(); 582 else 583 return nullptr; 584 585 // strncpy(x, y, 0) -> x 586 if (Len == 0) 587 return Dst; 588 589 // See if we can get the length of the input string. 590 uint64_t SrcLen = GetStringLength(Src); 591 if (SrcLen) { 592 annotateDereferenceableBytes(CI, 1, SrcLen); 593 --SrcLen; // Unbias length. 594 } else { 595 return nullptr; 596 } 597 598 if (SrcLen == 0) { 599 // strncpy(x, "", y) -> memset(x, '\0', y) 600 Align MemSetAlign = 601 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 602 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 603 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 604 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 605 CI->getContext(), 0, ArgAttrs)); 606 copyFlags(*CI, NewCI); 607 return Dst; 608 } 609 610 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 611 if (Len > SrcLen + 1) { 612 if (Len <= 128) { 613 StringRef Str; 614 if (!getConstantStringInfo(Src, Str)) 615 return nullptr; 616 std::string SrcStr = Str.str(); 617 SrcStr.resize(Len, '\0'); 618 Src = B.CreateGlobalString(SrcStr, "str"); 619 } else { 620 return nullptr; 621 } 622 } 623 624 Type *PT = Callee->getFunctionType()->getParamType(0); 625 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 626 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 627 ConstantInt::get(DL.getIntPtrType(PT), Len)); 628 NewCI->setAttributes(CI->getAttributes()); 629 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 630 copyFlags(*CI, NewCI); 631 return Dst; 632 } 633 634 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 635 unsigned CharSize, 636 Value *Bound) { 637 Value *Src = CI->getArgOperand(0); 638 Type *CharTy = B.getIntNTy(CharSize); 639 640 if (Bound) { 641 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 642 if (BoundCst->isZero()) 643 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 644 return ConstantInt::get(CI->getType(), 0); 645 646 if (BoundCst->isOne()) { 647 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 648 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 649 Value *ZeroChar = ConstantInt::get(CharTy, 0); 650 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 651 return B.CreateZExt(Cmp, CI->getType()); 652 } 653 } 654 } 655 656 if (uint64_t Len = GetStringLength(Src, CharSize)) { 657 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 658 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 659 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 660 if (Bound) 661 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 662 return LenC; 663 } 664 665 if (Bound) 666 // Punt for strnlen for now. 667 return nullptr; 668 669 // If s is a constant pointer pointing to a string literal, we can fold 670 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 671 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 672 // We only try to simplify strlen when the pointer s points to an array 673 // of i8. Otherwise, we would need to scale the offset x before doing the 674 // subtraction. This will make the optimization more complex, and it's not 675 // very useful because calling strlen for a pointer of other types is 676 // very uncommon. 677 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 678 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 679 return nullptr; 680 681 ConstantDataArraySlice Slice; 682 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 683 uint64_t NullTermIdx; 684 if (Slice.Array == nullptr) { 685 NullTermIdx = 0; 686 } else { 687 NullTermIdx = ~((uint64_t)0); 688 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 689 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 690 NullTermIdx = I; 691 break; 692 } 693 } 694 // If the string does not have '\0', leave it to strlen to compute 695 // its length. 696 if (NullTermIdx == ~((uint64_t)0)) 697 return nullptr; 698 } 699 700 Value *Offset = GEP->getOperand(2); 701 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 702 uint64_t ArrSize = 703 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 704 705 // If Offset is not provably in the range [0, NullTermIdx], we can still 706 // optimize if we can prove that the program has undefined behavior when 707 // Offset is outside that range. That is the case when GEP->getOperand(0) 708 // is a pointer to an object whose memory extent is NullTermIdx+1. 709 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 710 (isa<GlobalVariable>(GEP->getOperand(0)) && 711 NullTermIdx == ArrSize - 1)) { 712 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 713 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 714 Offset); 715 } 716 } 717 } 718 719 // strlen(x?"foo":"bars") --> x ? 3 : 4 720 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 721 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 722 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 723 if (LenTrue && LenFalse) { 724 ORE.emit([&]() { 725 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 726 << "folded strlen(select) to select of constants"; 727 }); 728 return B.CreateSelect(SI->getCondition(), 729 ConstantInt::get(CI->getType(), LenTrue - 1), 730 ConstantInt::get(CI->getType(), LenFalse - 1)); 731 } 732 } 733 734 // strlen(x) != 0 --> *x != 0 735 // strlen(x) == 0 --> *x == 0 736 if (isOnlyUsedInZeroEqualityComparison(CI)) 737 return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), 738 CI->getType()); 739 740 return nullptr; 741 } 742 743 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 744 if (Value *V = optimizeStringLength(CI, B, 8)) 745 return V; 746 annotateNonNullNoUndefBasedOnAccess(CI, 0); 747 return nullptr; 748 } 749 750 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 751 Value *Bound = CI->getArgOperand(1); 752 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 753 return V; 754 755 if (isKnownNonZero(Bound, DL)) 756 annotateNonNullNoUndefBasedOnAccess(CI, 0); 757 return nullptr; 758 } 759 760 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 761 Module &M = *CI->getModule(); 762 unsigned WCharSize = TLI->getWCharSize(M) * 8; 763 // We cannot perform this optimization without wchar_size metadata. 764 if (WCharSize == 0) 765 return nullptr; 766 767 return optimizeStringLength(CI, B, WCharSize); 768 } 769 770 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 771 StringRef S1, S2; 772 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 773 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 774 775 // strpbrk(s, "") -> nullptr 776 // strpbrk("", s) -> nullptr 777 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 778 return Constant::getNullValue(CI->getType()); 779 780 // Constant folding. 781 if (HasS1 && HasS2) { 782 size_t I = S1.find_first_of(S2); 783 if (I == StringRef::npos) // No match. 784 return Constant::getNullValue(CI->getType()); 785 786 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 787 "strpbrk"); 788 } 789 790 // strpbrk(s, "a") -> strchr(s, 'a') 791 if (HasS2 && S2.size() == 1) 792 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 793 794 return nullptr; 795 } 796 797 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 798 Value *EndPtr = CI->getArgOperand(1); 799 if (isa<ConstantPointerNull>(EndPtr)) { 800 // With a null EndPtr, this function won't capture the main argument. 801 // It would be readonly too, except that it still may write to errno. 802 CI->addParamAttr(0, Attribute::NoCapture); 803 } 804 805 return nullptr; 806 } 807 808 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 809 StringRef S1, S2; 810 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 811 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 812 813 // strspn(s, "") -> 0 814 // strspn("", s) -> 0 815 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 816 return Constant::getNullValue(CI->getType()); 817 818 // Constant folding. 819 if (HasS1 && HasS2) { 820 size_t Pos = S1.find_first_not_of(S2); 821 if (Pos == StringRef::npos) 822 Pos = S1.size(); 823 return ConstantInt::get(CI->getType(), Pos); 824 } 825 826 return nullptr; 827 } 828 829 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 830 StringRef S1, S2; 831 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 832 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 833 834 // strcspn("", s) -> 0 835 if (HasS1 && S1.empty()) 836 return Constant::getNullValue(CI->getType()); 837 838 // Constant folding. 839 if (HasS1 && HasS2) { 840 size_t Pos = S1.find_first_of(S2); 841 if (Pos == StringRef::npos) 842 Pos = S1.size(); 843 return ConstantInt::get(CI->getType(), Pos); 844 } 845 846 // strcspn(s, "") -> strlen(s) 847 if (HasS2 && S2.empty()) 848 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 849 850 return nullptr; 851 } 852 853 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 854 // fold strstr(x, x) -> x. 855 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 856 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 857 858 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 859 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 860 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 861 if (!StrLen) 862 return nullptr; 863 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 864 StrLen, B, DL, TLI); 865 if (!StrNCmp) 866 return nullptr; 867 for (User *U : llvm::make_early_inc_range(CI->users())) { 868 ICmpInst *Old = cast<ICmpInst>(U); 869 Value *Cmp = 870 B.CreateICmp(Old->getPredicate(), StrNCmp, 871 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 872 replaceAllUsesWith(Old, Cmp); 873 } 874 return CI; 875 } 876 877 // See if either input string is a constant string. 878 StringRef SearchStr, ToFindStr; 879 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 880 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 881 882 // fold strstr(x, "") -> x. 883 if (HasStr2 && ToFindStr.empty()) 884 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 885 886 // If both strings are known, constant fold it. 887 if (HasStr1 && HasStr2) { 888 size_t Offset = SearchStr.find(ToFindStr); 889 890 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 891 return Constant::getNullValue(CI->getType()); 892 893 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 894 Value *Result = castToCStr(CI->getArgOperand(0), B); 895 Result = 896 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 897 return B.CreateBitCast(Result, CI->getType()); 898 } 899 900 // fold strstr(x, "y") -> strchr(x, 'y'). 901 if (HasStr2 && ToFindStr.size() == 1) { 902 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 903 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 904 } 905 906 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 907 return nullptr; 908 } 909 910 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 911 Value *SrcStr = CI->getArgOperand(0); 912 Value *Size = CI->getArgOperand(2); 913 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 914 Value *CharVal = CI->getArgOperand(1); 915 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 916 Value *NullPtr = Constant::getNullValue(CI->getType()); 917 918 if (LenC) { 919 if (LenC->isZero()) 920 // Fold memrchr(x, y, 0) --> null. 921 return NullPtr; 922 923 if (LenC->isOne()) { 924 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 925 // constant or otherwise. 926 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 927 // Slice off the character's high end bits. 928 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 929 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 930 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 931 } 932 } 933 934 StringRef Str; 935 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 936 return nullptr; 937 938 uint64_t EndOff = UINT64_MAX; 939 if (LenC) { 940 EndOff = LenC->getZExtValue(); 941 if (Str.size() < EndOff) 942 // Punt out-of-bounds accesses to sanitizers and/or libc. 943 return nullptr; 944 } 945 946 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 947 // Fold memrchr(S, C, N) for a constant C. 948 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 949 if (Pos == StringRef::npos) 950 // When the character is not in the source array fold the result 951 // to null regardless of Size. 952 return NullPtr; 953 954 if (LenC) 955 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 956 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 957 958 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 959 // When there is just a single occurrence of C in S, fold 960 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 961 // for nonconstant N. 962 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 963 Pos), 964 "memrchr.cmp"); 965 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 966 "memrchr.ptr_plus"); 967 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 968 } 969 } 970 971 return nullptr; 972 } 973 974 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 975 Value *SrcStr = CI->getArgOperand(0); 976 Value *Size = CI->getArgOperand(2); 977 if (isKnownNonZero(Size, DL)) 978 annotateNonNullNoUndefBasedOnAccess(CI, 0); 979 980 Value *CharVal = CI->getArgOperand(1); 981 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 982 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 983 984 // memchr(x, y, 0) -> null 985 if (LenC) { 986 if (LenC->isZero()) 987 return Constant::getNullValue(CI->getType()); 988 989 if (LenC->isOne()) { 990 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 991 // constant or otherwise. 992 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 993 // Slice off the character's high end bits. 994 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 995 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 996 Value *NullPtr = Constant::getNullValue(CI->getType()); 997 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 998 } 999 } 1000 1001 StringRef Str; 1002 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1003 return nullptr; 1004 1005 if (CharC) { 1006 size_t Pos = Str.find(CharC->getZExtValue()); 1007 if (Pos == StringRef::npos) 1008 // When the character is not in the source array fold the result 1009 // to null regardless of Size. 1010 return Constant::getNullValue(CI->getType()); 1011 1012 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1013 // When the constant Size is less than or equal to the character 1014 // position also fold the result to null. 1015 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1016 "memchr.cmp"); 1017 Value *NullPtr = Constant::getNullValue(CI->getType()); 1018 Value *SrcPlus = 1019 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1020 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1021 } 1022 1023 if (!LenC) 1024 // From now on we need a constant length and constant array. 1025 return nullptr; 1026 1027 // Truncate the string to LenC without slicing when targeting LP64 1028 // on an ILP32 host. 1029 uint64_t EndOff = std::min(LenC->getZExtValue(), (uint64_t)StringRef::npos); 1030 Str = Str.substr(0, EndOff); 1031 1032 // If the char is variable but the input str and length are not we can turn 1033 // this memchr call into a simple bit field test. Of course this only works 1034 // when the return value is only checked against null. 1035 // 1036 // It would be really nice to reuse switch lowering here but we can't change 1037 // the CFG at this point. 1038 // 1039 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1040 // != 0 1041 // after bounds check. 1042 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1043 return nullptr; 1044 1045 unsigned char Max = 1046 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1047 reinterpret_cast<const unsigned char *>(Str.end())); 1048 1049 // Make sure the bit field we're about to create fits in a register on the 1050 // target. 1051 // FIXME: On a 64 bit architecture this prevents us from using the 1052 // interesting range of alpha ascii chars. We could do better by emitting 1053 // two bitfields or shifting the range by 64 if no lower chars are used. 1054 if (!DL.fitsInLegalInteger(Max + 1)) 1055 return nullptr; 1056 1057 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1058 // creating unnecessary illegal types. 1059 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1060 1061 // Now build the bit field. 1062 APInt Bitfield(Width, 0); 1063 for (char C : Str) 1064 Bitfield.setBit((unsigned char)C); 1065 Value *BitfieldC = B.getInt(Bitfield); 1066 1067 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1068 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1069 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1070 1071 // First check that the bit field access is within bounds. 1072 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1073 "memchr.bounds"); 1074 1075 // Create code that checks if the given bit is set in the field. 1076 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1077 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1078 1079 // Finally merge both checks and cast to pointer type. The inttoptr 1080 // implicitly zexts the i1 to intptr type. 1081 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1082 CI->getType()); 1083 } 1084 1085 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1086 uint64_t Len, IRBuilderBase &B, 1087 const DataLayout &DL) { 1088 if (Len == 0) // memcmp(s1,s2,0) -> 0 1089 return Constant::getNullValue(CI->getType()); 1090 1091 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1092 if (Len == 1) { 1093 Value *LHSV = 1094 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1095 CI->getType(), "lhsv"); 1096 Value *RHSV = 1097 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1098 CI->getType(), "rhsv"); 1099 return B.CreateSub(LHSV, RHSV, "chardiff"); 1100 } 1101 1102 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1103 // TODO: The case where both inputs are constants does not need to be limited 1104 // to legal integers or equality comparison. See block below this. 1105 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1106 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1107 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1108 1109 // First, see if we can fold either argument to a constant. 1110 Value *LHSV = nullptr; 1111 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1112 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1113 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1114 } 1115 Value *RHSV = nullptr; 1116 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1117 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1118 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1119 } 1120 1121 // Don't generate unaligned loads. If either source is constant data, 1122 // alignment doesn't matter for that source because there is no load. 1123 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1124 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1125 if (!LHSV) { 1126 Type *LHSPtrTy = 1127 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1128 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1129 } 1130 if (!RHSV) { 1131 Type *RHSPtrTy = 1132 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1133 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1134 } 1135 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1136 } 1137 } 1138 1139 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1140 // TODO: This is limited to i8 arrays. 1141 StringRef LHSStr, RHSStr; 1142 if (getConstantStringInfo(LHS, LHSStr) && 1143 getConstantStringInfo(RHS, RHSStr)) { 1144 // Make sure we're not reading out-of-bounds memory. 1145 if (Len > LHSStr.size() || Len > RHSStr.size()) 1146 return nullptr; 1147 // Fold the memcmp and normalize the result. This way we get consistent 1148 // results across multiple platforms. 1149 uint64_t Ret = 0; 1150 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1151 if (Cmp < 0) 1152 Ret = -1; 1153 else if (Cmp > 0) 1154 Ret = 1; 1155 return ConstantInt::get(CI->getType(), Ret); 1156 } 1157 1158 return nullptr; 1159 } 1160 1161 // Most simplifications for memcmp also apply to bcmp. 1162 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1163 IRBuilderBase &B) { 1164 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1165 Value *Size = CI->getArgOperand(2); 1166 1167 if (LHS == RHS) // memcmp(s,s,x) -> 0 1168 return Constant::getNullValue(CI->getType()); 1169 1170 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1171 // Handle constant lengths. 1172 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1173 if (!LenC) 1174 return nullptr; 1175 1176 // memcmp(d,s,0) -> 0 1177 if (LenC->getZExtValue() == 0) 1178 return Constant::getNullValue(CI->getType()); 1179 1180 if (Value *Res = 1181 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1182 return Res; 1183 return nullptr; 1184 } 1185 1186 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1187 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1188 return V; 1189 1190 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1191 // bcmp can be more efficient than memcmp because it only has to know that 1192 // there is a difference, not how different one is to the other. 1193 if (TLI->has(LibFunc_bcmp) && isOnlyUsedInZeroEqualityComparison(CI)) { 1194 Value *LHS = CI->getArgOperand(0); 1195 Value *RHS = CI->getArgOperand(1); 1196 Value *Size = CI->getArgOperand(2); 1197 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1198 } 1199 1200 return nullptr; 1201 } 1202 1203 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1204 return optimizeMemCmpBCmpCommon(CI, B); 1205 } 1206 1207 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1208 Value *Size = CI->getArgOperand(2); 1209 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1210 if (isa<IntrinsicInst>(CI)) 1211 return nullptr; 1212 1213 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1214 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1215 CI->getArgOperand(1), Align(1), Size); 1216 NewCI->setAttributes(CI->getAttributes()); 1217 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1218 copyFlags(*CI, NewCI); 1219 return CI->getArgOperand(0); 1220 } 1221 1222 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1223 Value *Dst = CI->getArgOperand(0); 1224 Value *Src = CI->getArgOperand(1); 1225 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1226 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1227 StringRef SrcStr; 1228 if (CI->use_empty() && Dst == Src) 1229 return Dst; 1230 // memccpy(d, s, c, 0) -> nullptr 1231 if (N) { 1232 if (N->isNullValue()) 1233 return Constant::getNullValue(CI->getType()); 1234 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1235 /*TrimAtNul=*/false) || 1236 !StopChar) 1237 return nullptr; 1238 } else { 1239 return nullptr; 1240 } 1241 1242 // Wrap arg 'c' of type int to char 1243 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1244 if (Pos == StringRef::npos) { 1245 if (N->getZExtValue() <= SrcStr.size()) { 1246 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1247 CI->getArgOperand(3))); 1248 return Constant::getNullValue(CI->getType()); 1249 } 1250 return nullptr; 1251 } 1252 1253 Value *NewN = 1254 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1255 // memccpy -> llvm.memcpy 1256 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1257 return Pos + 1 <= N->getZExtValue() 1258 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1259 : Constant::getNullValue(CI->getType()); 1260 } 1261 1262 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1263 Value *Dst = CI->getArgOperand(0); 1264 Value *N = CI->getArgOperand(2); 1265 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1266 CallInst *NewCI = 1267 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1268 // Propagate attributes, but memcpy has no return value, so make sure that 1269 // any return attributes are compliant. 1270 // TODO: Attach return value attributes to the 1st operand to preserve them? 1271 NewCI->setAttributes(CI->getAttributes()); 1272 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1273 copyFlags(*CI, NewCI); 1274 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1275 } 1276 1277 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1278 Value *Size = CI->getArgOperand(2); 1279 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1280 if (isa<IntrinsicInst>(CI)) 1281 return nullptr; 1282 1283 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1284 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1285 CI->getArgOperand(1), Align(1), Size); 1286 NewCI->setAttributes(CI->getAttributes()); 1287 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1288 copyFlags(*CI, NewCI); 1289 return CI->getArgOperand(0); 1290 } 1291 1292 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1293 Value *Size = CI->getArgOperand(2); 1294 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1295 if (isa<IntrinsicInst>(CI)) 1296 return nullptr; 1297 1298 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1299 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1300 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1301 NewCI->setAttributes(CI->getAttributes()); 1302 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1303 copyFlags(*CI, NewCI); 1304 return CI->getArgOperand(0); 1305 } 1306 1307 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1308 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1309 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1310 1311 return nullptr; 1312 } 1313 1314 //===----------------------------------------------------------------------===// 1315 // Math Library Optimizations 1316 //===----------------------------------------------------------------------===// 1317 1318 // Replace a libcall \p CI with a call to intrinsic \p IID 1319 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1320 Intrinsic::ID IID) { 1321 // Propagate fast-math flags from the existing call to the new call. 1322 IRBuilderBase::FastMathFlagGuard Guard(B); 1323 B.setFastMathFlags(CI->getFastMathFlags()); 1324 1325 Module *M = CI->getModule(); 1326 Value *V = CI->getArgOperand(0); 1327 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1328 CallInst *NewCall = B.CreateCall(F, V); 1329 NewCall->takeName(CI); 1330 return copyFlags(*CI, NewCall); 1331 } 1332 1333 /// Return a variant of Val with float type. 1334 /// Currently this works in two cases: If Val is an FPExtension of a float 1335 /// value to something bigger, simply return the operand. 1336 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1337 /// loss of precision do so. 1338 static Value *valueHasFloatPrecision(Value *Val) { 1339 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1340 Value *Op = Cast->getOperand(0); 1341 if (Op->getType()->isFloatTy()) 1342 return Op; 1343 } 1344 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1345 APFloat F = Const->getValueAPF(); 1346 bool losesInfo; 1347 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1348 &losesInfo); 1349 if (!losesInfo) 1350 return ConstantFP::get(Const->getContext(), F); 1351 } 1352 return nullptr; 1353 } 1354 1355 /// Shrink double -> float functions. 1356 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1357 bool isBinary, bool isPrecise = false) { 1358 Function *CalleeFn = CI->getCalledFunction(); 1359 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1360 return nullptr; 1361 1362 // If not all the uses of the function are converted to float, then bail out. 1363 // This matters if the precision of the result is more important than the 1364 // precision of the arguments. 1365 if (isPrecise) 1366 for (User *U : CI->users()) { 1367 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1368 if (!Cast || !Cast->getType()->isFloatTy()) 1369 return nullptr; 1370 } 1371 1372 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1373 Value *V[2]; 1374 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1375 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1376 if (!V[0] || (isBinary && !V[1])) 1377 return nullptr; 1378 1379 // If call isn't an intrinsic, check that it isn't within a function with the 1380 // same name as the float version of this call, otherwise the result is an 1381 // infinite loop. For example, from MinGW-w64: 1382 // 1383 // float expf(float val) { return (float) exp((double) val); } 1384 StringRef CalleeName = CalleeFn->getName(); 1385 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1386 if (!IsIntrinsic) { 1387 StringRef CallerName = CI->getFunction()->getName(); 1388 if (!CallerName.empty() && CallerName.back() == 'f' && 1389 CallerName.size() == (CalleeName.size() + 1) && 1390 CallerName.startswith(CalleeName)) 1391 return nullptr; 1392 } 1393 1394 // Propagate the math semantics from the current function to the new function. 1395 IRBuilderBase::FastMathFlagGuard Guard(B); 1396 B.setFastMathFlags(CI->getFastMathFlags()); 1397 1398 // g((double) float) -> (double) gf(float) 1399 Value *R; 1400 if (IsIntrinsic) { 1401 Module *M = CI->getModule(); 1402 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1403 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1404 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1405 } else { 1406 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1407 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeName, B, CalleeAttrs) 1408 : emitUnaryFloatFnCall(V[0], CalleeName, B, CalleeAttrs); 1409 } 1410 return B.CreateFPExt(R, B.getDoubleTy()); 1411 } 1412 1413 /// Shrink double -> float for unary functions. 1414 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1415 bool isPrecise = false) { 1416 return optimizeDoubleFP(CI, B, false, isPrecise); 1417 } 1418 1419 /// Shrink double -> float for binary functions. 1420 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1421 bool isPrecise = false) { 1422 return optimizeDoubleFP(CI, B, true, isPrecise); 1423 } 1424 1425 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1426 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1427 if (!CI->isFast()) 1428 return nullptr; 1429 1430 // Propagate fast-math flags from the existing call to new instructions. 1431 IRBuilderBase::FastMathFlagGuard Guard(B); 1432 B.setFastMathFlags(CI->getFastMathFlags()); 1433 1434 Value *Real, *Imag; 1435 if (CI->arg_size() == 1) { 1436 Value *Op = CI->getArgOperand(0); 1437 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1438 Real = B.CreateExtractValue(Op, 0, "real"); 1439 Imag = B.CreateExtractValue(Op, 1, "imag"); 1440 } else { 1441 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1442 Real = CI->getArgOperand(0); 1443 Imag = CI->getArgOperand(1); 1444 } 1445 1446 Value *RealReal = B.CreateFMul(Real, Real); 1447 Value *ImagImag = B.CreateFMul(Imag, Imag); 1448 1449 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1450 CI->getType()); 1451 return copyFlags( 1452 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1453 } 1454 1455 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1456 IRBuilderBase &B) { 1457 if (!isa<FPMathOperator>(Call)) 1458 return nullptr; 1459 1460 IRBuilderBase::FastMathFlagGuard Guard(B); 1461 B.setFastMathFlags(Call->getFastMathFlags()); 1462 1463 // TODO: Can this be shared to also handle LLVM intrinsics? 1464 Value *X; 1465 switch (Func) { 1466 case LibFunc_sin: 1467 case LibFunc_sinf: 1468 case LibFunc_sinl: 1469 case LibFunc_tan: 1470 case LibFunc_tanf: 1471 case LibFunc_tanl: 1472 // sin(-X) --> -sin(X) 1473 // tan(-X) --> -tan(X) 1474 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1475 return B.CreateFNeg( 1476 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1477 break; 1478 case LibFunc_cos: 1479 case LibFunc_cosf: 1480 case LibFunc_cosl: 1481 // cos(-X) --> cos(X) 1482 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1483 return copyFlags(*Call, 1484 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1485 break; 1486 default: 1487 break; 1488 } 1489 return nullptr; 1490 } 1491 1492 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1493 // Multiplications calculated using Addition Chains. 1494 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1495 1496 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1497 1498 if (InnerChain[Exp]) 1499 return InnerChain[Exp]; 1500 1501 static const unsigned AddChain[33][2] = { 1502 {0, 0}, // Unused. 1503 {0, 0}, // Unused (base case = pow1). 1504 {1, 1}, // Unused (pre-computed). 1505 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1506 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1507 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1508 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1509 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1510 }; 1511 1512 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1513 getPow(InnerChain, AddChain[Exp][1], B)); 1514 return InnerChain[Exp]; 1515 } 1516 1517 // Return a properly extended integer (DstWidth bits wide) if the operation is 1518 // an itofp. 1519 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1520 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1521 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1522 // Make sure that the exponent fits inside an "int" of size DstWidth, 1523 // thus avoiding any range issues that FP has not. 1524 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1525 if (BitWidth < DstWidth || 1526 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1527 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1528 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1529 } 1530 1531 return nullptr; 1532 } 1533 1534 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1535 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1536 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1537 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1538 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1539 AttributeList Attrs; // Attributes are only meaningful on the original call 1540 Module *Mod = Pow->getModule(); 1541 Type *Ty = Pow->getType(); 1542 bool Ignored; 1543 1544 // Evaluate special cases related to a nested function as the base. 1545 1546 // pow(exp(x), y) -> exp(x * y) 1547 // pow(exp2(x), y) -> exp2(x * y) 1548 // If exp{,2}() is used only once, it is better to fold two transcendental 1549 // math functions into one. If used again, exp{,2}() would still have to be 1550 // called with the original argument, then keep both original transcendental 1551 // functions. However, this transformation is only safe with fully relaxed 1552 // math semantics, since, besides rounding differences, it changes overflow 1553 // and underflow behavior quite dramatically. For example: 1554 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1555 // Whereas: 1556 // exp(1000 * 0.001) = exp(1) 1557 // TODO: Loosen the requirement for fully relaxed math semantics. 1558 // TODO: Handle exp10() when more targets have it available. 1559 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1560 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1561 LibFunc LibFn; 1562 1563 Function *CalleeFn = BaseFn->getCalledFunction(); 1564 if (CalleeFn && 1565 TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { 1566 StringRef ExpName; 1567 Intrinsic::ID ID; 1568 Value *ExpFn; 1569 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1570 1571 switch (LibFn) { 1572 default: 1573 return nullptr; 1574 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1575 ExpName = TLI->getName(LibFunc_exp); 1576 ID = Intrinsic::exp; 1577 LibFnFloat = LibFunc_expf; 1578 LibFnDouble = LibFunc_exp; 1579 LibFnLongDouble = LibFunc_expl; 1580 break; 1581 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1582 ExpName = TLI->getName(LibFunc_exp2); 1583 ID = Intrinsic::exp2; 1584 LibFnFloat = LibFunc_exp2f; 1585 LibFnDouble = LibFunc_exp2; 1586 LibFnLongDouble = LibFunc_exp2l; 1587 break; 1588 } 1589 1590 // Create new exp{,2}() with the product as its argument. 1591 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1592 ExpFn = BaseFn->doesNotAccessMemory() 1593 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1594 FMul, ExpName) 1595 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1596 LibFnLongDouble, B, 1597 BaseFn->getAttributes()); 1598 1599 // Since the new exp{,2}() is different from the original one, dead code 1600 // elimination cannot be trusted to remove it, since it may have side 1601 // effects (e.g., errno). When the only consumer for the original 1602 // exp{,2}() is pow(), then it has to be explicitly erased. 1603 substituteInParent(BaseFn, ExpFn); 1604 return ExpFn; 1605 } 1606 } 1607 1608 // Evaluate special cases related to a constant base. 1609 1610 const APFloat *BaseF; 1611 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1612 return nullptr; 1613 1614 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1615 if (match(Base, m_SpecificFP(2.0)) && 1616 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1617 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1618 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1619 return copyFlags(*Pow, 1620 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1621 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1622 LibFunc_ldexpl, B, Attrs)); 1623 } 1624 1625 // pow(2.0 ** n, x) -> exp2(n * x) 1626 if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1627 APFloat BaseR = APFloat(1.0); 1628 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1629 BaseR = BaseR / *BaseF; 1630 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1631 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1632 APSInt NI(64, false); 1633 if ((IsInteger || IsReciprocal) && 1634 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1635 APFloat::opOK && 1636 NI > 1 && NI.isPowerOf2()) { 1637 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1638 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1639 if (Pow->doesNotAccessMemory()) 1640 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1641 Mod, Intrinsic::exp2, Ty), 1642 FMul, "exp2")); 1643 else 1644 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1645 LibFunc_exp2f, 1646 LibFunc_exp2l, B, Attrs)); 1647 } 1648 } 1649 1650 // pow(10.0, x) -> exp10(x) 1651 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1652 if (match(Base, m_SpecificFP(10.0)) && 1653 hasFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1654 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1655 LibFunc_exp10f, LibFunc_exp10l, 1656 B, Attrs)); 1657 1658 // pow(x, y) -> exp2(log2(x) * y) 1659 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1660 !BaseF->isNegative()) { 1661 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1662 // Luckily optimizePow has already handled the x == 1 case. 1663 assert(!match(Base, m_FPOne()) && 1664 "pow(1.0, y) should have been simplified earlier!"); 1665 1666 Value *Log = nullptr; 1667 if (Ty->isFloatTy()) 1668 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1669 else if (Ty->isDoubleTy()) 1670 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1671 1672 if (Log) { 1673 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1674 if (Pow->doesNotAccessMemory()) 1675 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1676 Mod, Intrinsic::exp2, Ty), 1677 FMul, "exp2")); 1678 else if (hasFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) 1679 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1680 LibFunc_exp2f, 1681 LibFunc_exp2l, B, Attrs)); 1682 } 1683 } 1684 1685 return nullptr; 1686 } 1687 1688 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1689 Module *M, IRBuilderBase &B, 1690 const TargetLibraryInfo *TLI) { 1691 // If errno is never set, then use the intrinsic for sqrt(). 1692 if (NoErrno) { 1693 Function *SqrtFn = 1694 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1695 return B.CreateCall(SqrtFn, V, "sqrt"); 1696 } 1697 1698 // Otherwise, use the libcall for sqrt(). 1699 if (hasFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) 1700 // TODO: We also should check that the target can in fact lower the sqrt() 1701 // libcall. We currently have no way to ask this question, so we ask if 1702 // the target has a sqrt() libcall, which is not exactly the same. 1703 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1704 LibFunc_sqrtl, B, Attrs); 1705 1706 return nullptr; 1707 } 1708 1709 /// Use square root in place of pow(x, +/-0.5). 1710 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1711 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1712 AttributeList Attrs; // Attributes are only meaningful on the original call 1713 Module *Mod = Pow->getModule(); 1714 Type *Ty = Pow->getType(); 1715 1716 const APFloat *ExpoF; 1717 if (!match(Expo, m_APFloat(ExpoF)) || 1718 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1719 return nullptr; 1720 1721 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1722 // so that requires fast-math-flags (afn or reassoc). 1723 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1724 return nullptr; 1725 1726 // If we have a pow() library call (accesses memory) and we can't guarantee 1727 // that the base is not an infinity, give up: 1728 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1729 // errno), but sqrt(-Inf) is required by various standards to set errno. 1730 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1731 !isKnownNeverInfinity(Base, TLI)) 1732 return nullptr; 1733 1734 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1735 if (!Sqrt) 1736 return nullptr; 1737 1738 // Handle signed zero base by expanding to fabs(sqrt(x)). 1739 if (!Pow->hasNoSignedZeros()) { 1740 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1741 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1742 } 1743 1744 Sqrt = copyFlags(*Pow, Sqrt); 1745 1746 // Handle non finite base by expanding to 1747 // (x == -infinity ? +infinity : sqrt(x)). 1748 if (!Pow->hasNoInfs()) { 1749 Value *PosInf = ConstantFP::getInfinity(Ty), 1750 *NegInf = ConstantFP::getInfinity(Ty, true); 1751 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1752 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1753 } 1754 1755 // If the exponent is negative, then get the reciprocal. 1756 if (ExpoF->isNegative()) 1757 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1758 1759 return Sqrt; 1760 } 1761 1762 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1763 IRBuilderBase &B) { 1764 Value *Args[] = {Base, Expo}; 1765 Type *Types[] = {Base->getType(), Expo->getType()}; 1766 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1767 return B.CreateCall(F, Args); 1768 } 1769 1770 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1771 Value *Base = Pow->getArgOperand(0); 1772 Value *Expo = Pow->getArgOperand(1); 1773 Function *Callee = Pow->getCalledFunction(); 1774 StringRef Name = Callee->getName(); 1775 Type *Ty = Pow->getType(); 1776 Module *M = Pow->getModule(); 1777 bool AllowApprox = Pow->hasApproxFunc(); 1778 bool Ignored; 1779 1780 // Propagate the math semantics from the call to any created instructions. 1781 IRBuilderBase::FastMathFlagGuard Guard(B); 1782 B.setFastMathFlags(Pow->getFastMathFlags()); 1783 // Evaluate special cases related to the base. 1784 1785 // pow(1.0, x) -> 1.0 1786 if (match(Base, m_FPOne())) 1787 return Base; 1788 1789 if (Value *Exp = replacePowWithExp(Pow, B)) 1790 return Exp; 1791 1792 // Evaluate special cases related to the exponent. 1793 1794 // pow(x, -1.0) -> 1.0 / x 1795 if (match(Expo, m_SpecificFP(-1.0))) 1796 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1797 1798 // pow(x, +/-0.0) -> 1.0 1799 if (match(Expo, m_AnyZeroFP())) 1800 return ConstantFP::get(Ty, 1.0); 1801 1802 // pow(x, 1.0) -> x 1803 if (match(Expo, m_FPOne())) 1804 return Base; 1805 1806 // pow(x, 2.0) -> x * x 1807 if (match(Expo, m_SpecificFP(2.0))) 1808 return B.CreateFMul(Base, Base, "square"); 1809 1810 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1811 return Sqrt; 1812 1813 // pow(x, n) -> x * x * x * ... 1814 const APFloat *ExpoF; 1815 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1816 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1817 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1818 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1819 // additional fmul. 1820 // TODO: This whole transformation should be backend specific (e.g. some 1821 // backends might prefer libcalls or the limit for the exponent might 1822 // be different) and it should also consider optimizing for size. 1823 APFloat LimF(ExpoF->getSemantics(), 33), 1824 ExpoA(abs(*ExpoF)); 1825 if (ExpoA < LimF) { 1826 // This transformation applies to integer or integer+0.5 exponents only. 1827 // For integer+0.5, we create a sqrt(Base) call. 1828 Value *Sqrt = nullptr; 1829 if (!ExpoA.isInteger()) { 1830 APFloat Expo2 = ExpoA; 1831 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1832 // is no floating point exception and the result is an integer, then 1833 // ExpoA == integer + 0.5 1834 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1835 return nullptr; 1836 1837 if (!Expo2.isInteger()) 1838 return nullptr; 1839 1840 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1841 Pow->doesNotAccessMemory(), M, B, TLI); 1842 if (!Sqrt) 1843 return nullptr; 1844 } 1845 1846 // We will memoize intermediate products of the Addition Chain. 1847 Value *InnerChain[33] = {nullptr}; 1848 InnerChain[1] = Base; 1849 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1850 1851 // We cannot readily convert a non-double type (like float) to a double. 1852 // So we first convert it to something which could be converted to double. 1853 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1854 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1855 1856 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1857 if (Sqrt) 1858 FMul = B.CreateFMul(FMul, Sqrt); 1859 1860 // If the exponent is negative, then get the reciprocal. 1861 if (ExpoF->isNegative()) 1862 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1863 1864 return FMul; 1865 } 1866 1867 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1868 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1869 if (ExpoF->isInteger() && 1870 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1871 APFloat::opOK) { 1872 return copyFlags( 1873 *Pow, 1874 createPowWithIntegerExponent( 1875 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1876 M, B)); 1877 } 1878 } 1879 1880 // powf(x, itofp(y)) -> powi(x, y) 1881 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1882 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1883 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1884 } 1885 1886 // Shrink pow() to powf() if the arguments are single precision, 1887 // unless the result is expected to be double precision. 1888 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1889 hasFloatVersion(Name)) { 1890 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, true)) 1891 return Shrunk; 1892 } 1893 1894 return nullptr; 1895 } 1896 1897 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1898 Function *Callee = CI->getCalledFunction(); 1899 AttributeList Attrs; // Attributes are only meaningful on the original call 1900 StringRef Name = Callee->getName(); 1901 Value *Ret = nullptr; 1902 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1903 hasFloatVersion(Name)) 1904 Ret = optimizeUnaryDoubleFP(CI, B, true); 1905 1906 Type *Ty = CI->getType(); 1907 Value *Op = CI->getArgOperand(0); 1908 1909 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1910 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1911 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1912 hasFloatFn(TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1913 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1914 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1915 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1916 B, Attrs); 1917 } 1918 1919 return Ret; 1920 } 1921 1922 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1923 // If we can shrink the call to a float function rather than a double 1924 // function, do that first. 1925 Function *Callee = CI->getCalledFunction(); 1926 StringRef Name = Callee->getName(); 1927 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) 1928 if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) 1929 return Ret; 1930 1931 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 1932 // the intrinsics for improved optimization (for example, vectorization). 1933 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 1934 // From the C standard draft WG14/N1256: 1935 // "Ideally, fmax would be sensitive to the sign of zero, for example 1936 // fmax(-0.0, +0.0) would return +0; however, implementation in software 1937 // might be impractical." 1938 IRBuilderBase::FastMathFlagGuard Guard(B); 1939 FastMathFlags FMF = CI->getFastMathFlags(); 1940 FMF.setNoSignedZeros(); 1941 B.setFastMathFlags(FMF); 1942 1943 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 1944 : Intrinsic::maxnum; 1945 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 1946 return copyFlags( 1947 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 1948 } 1949 1950 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 1951 Function *LogFn = Log->getCalledFunction(); 1952 AttributeList Attrs; // Attributes are only meaningful on the original call 1953 StringRef LogNm = LogFn->getName(); 1954 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 1955 Module *Mod = Log->getModule(); 1956 Type *Ty = Log->getType(); 1957 Value *Ret = nullptr; 1958 1959 if (UnsafeFPShrink && hasFloatVersion(LogNm)) 1960 Ret = optimizeUnaryDoubleFP(Log, B, true); 1961 1962 // The earlier call must also be 'fast' in order to do these transforms. 1963 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 1964 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 1965 return Ret; 1966 1967 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 1968 1969 // This is only applicable to log(), log2(), log10(). 1970 if (TLI->getLibFunc(LogNm, LogLb)) 1971 switch (LogLb) { 1972 case LibFunc_logf: 1973 LogID = Intrinsic::log; 1974 ExpLb = LibFunc_expf; 1975 Exp2Lb = LibFunc_exp2f; 1976 Exp10Lb = LibFunc_exp10f; 1977 PowLb = LibFunc_powf; 1978 break; 1979 case LibFunc_log: 1980 LogID = Intrinsic::log; 1981 ExpLb = LibFunc_exp; 1982 Exp2Lb = LibFunc_exp2; 1983 Exp10Lb = LibFunc_exp10; 1984 PowLb = LibFunc_pow; 1985 break; 1986 case LibFunc_logl: 1987 LogID = Intrinsic::log; 1988 ExpLb = LibFunc_expl; 1989 Exp2Lb = LibFunc_exp2l; 1990 Exp10Lb = LibFunc_exp10l; 1991 PowLb = LibFunc_powl; 1992 break; 1993 case LibFunc_log2f: 1994 LogID = Intrinsic::log2; 1995 ExpLb = LibFunc_expf; 1996 Exp2Lb = LibFunc_exp2f; 1997 Exp10Lb = LibFunc_exp10f; 1998 PowLb = LibFunc_powf; 1999 break; 2000 case LibFunc_log2: 2001 LogID = Intrinsic::log2; 2002 ExpLb = LibFunc_exp; 2003 Exp2Lb = LibFunc_exp2; 2004 Exp10Lb = LibFunc_exp10; 2005 PowLb = LibFunc_pow; 2006 break; 2007 case LibFunc_log2l: 2008 LogID = Intrinsic::log2; 2009 ExpLb = LibFunc_expl; 2010 Exp2Lb = LibFunc_exp2l; 2011 Exp10Lb = LibFunc_exp10l; 2012 PowLb = LibFunc_powl; 2013 break; 2014 case LibFunc_log10f: 2015 LogID = Intrinsic::log10; 2016 ExpLb = LibFunc_expf; 2017 Exp2Lb = LibFunc_exp2f; 2018 Exp10Lb = LibFunc_exp10f; 2019 PowLb = LibFunc_powf; 2020 break; 2021 case LibFunc_log10: 2022 LogID = Intrinsic::log10; 2023 ExpLb = LibFunc_exp; 2024 Exp2Lb = LibFunc_exp2; 2025 Exp10Lb = LibFunc_exp10; 2026 PowLb = LibFunc_pow; 2027 break; 2028 case LibFunc_log10l: 2029 LogID = Intrinsic::log10; 2030 ExpLb = LibFunc_expl; 2031 Exp2Lb = LibFunc_exp2l; 2032 Exp10Lb = LibFunc_exp10l; 2033 PowLb = LibFunc_powl; 2034 break; 2035 default: 2036 return Ret; 2037 } 2038 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2039 LogID == Intrinsic::log10) { 2040 if (Ty->getScalarType()->isFloatTy()) { 2041 ExpLb = LibFunc_expf; 2042 Exp2Lb = LibFunc_exp2f; 2043 Exp10Lb = LibFunc_exp10f; 2044 PowLb = LibFunc_powf; 2045 } else if (Ty->getScalarType()->isDoubleTy()) { 2046 ExpLb = LibFunc_exp; 2047 Exp2Lb = LibFunc_exp2; 2048 Exp10Lb = LibFunc_exp10; 2049 PowLb = LibFunc_pow; 2050 } else 2051 return Ret; 2052 } else 2053 return Ret; 2054 2055 IRBuilderBase::FastMathFlagGuard Guard(B); 2056 B.setFastMathFlags(FastMathFlags::getFast()); 2057 2058 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2059 LibFunc ArgLb = NotLibFunc; 2060 TLI->getLibFunc(*Arg, ArgLb); 2061 2062 // log(pow(x,y)) -> y*log(x) 2063 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2064 Value *LogX = 2065 Log->doesNotAccessMemory() 2066 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2067 Arg->getOperand(0), "log") 2068 : emitUnaryFloatFnCall(Arg->getOperand(0), LogNm, B, Attrs); 2069 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2070 // Since pow() may have side effects, e.g. errno, 2071 // dead code elimination may not be trusted to remove it. 2072 substituteInParent(Arg, MulY); 2073 return MulY; 2074 } 2075 2076 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2077 // TODO: There is no exp10() intrinsic yet. 2078 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2079 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2080 Constant *Eul; 2081 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2082 // FIXME: Add more precise value of e for long double. 2083 Eul = ConstantFP::get(Log->getType(), numbers::e); 2084 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2085 Eul = ConstantFP::get(Log->getType(), 2.0); 2086 else 2087 Eul = ConstantFP::get(Log->getType(), 10.0); 2088 Value *LogE = Log->doesNotAccessMemory() 2089 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2090 Eul, "log") 2091 : emitUnaryFloatFnCall(Eul, LogNm, B, Attrs); 2092 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2093 // Since exp() may have side effects, e.g. errno, 2094 // dead code elimination may not be trusted to remove it. 2095 substituteInParent(Arg, MulY); 2096 return MulY; 2097 } 2098 2099 return Ret; 2100 } 2101 2102 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2103 Function *Callee = CI->getCalledFunction(); 2104 Value *Ret = nullptr; 2105 // TODO: Once we have a way (other than checking for the existince of the 2106 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2107 // condition below. 2108 if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || 2109 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2110 Ret = optimizeUnaryDoubleFP(CI, B, true); 2111 2112 if (!CI->isFast()) 2113 return Ret; 2114 2115 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2116 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2117 return Ret; 2118 2119 // We're looking for a repeated factor in a multiplication tree, 2120 // so we can do this fold: sqrt(x * x) -> fabs(x); 2121 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2122 Value *Op0 = I->getOperand(0); 2123 Value *Op1 = I->getOperand(1); 2124 Value *RepeatOp = nullptr; 2125 Value *OtherOp = nullptr; 2126 if (Op0 == Op1) { 2127 // Simple match: the operands of the multiply are identical. 2128 RepeatOp = Op0; 2129 } else { 2130 // Look for a more complicated pattern: one of the operands is itself 2131 // a multiply, so search for a common factor in that multiply. 2132 // Note: We don't bother looking any deeper than this first level or for 2133 // variations of this pattern because instcombine's visitFMUL and/or the 2134 // reassociation pass should give us this form. 2135 Value *OtherMul0, *OtherMul1; 2136 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2137 // Pattern: sqrt((x * y) * z) 2138 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2139 // Matched: sqrt((x * x) * z) 2140 RepeatOp = OtherMul0; 2141 OtherOp = Op1; 2142 } 2143 } 2144 } 2145 if (!RepeatOp) 2146 return Ret; 2147 2148 // Fast math flags for any created instructions should match the sqrt 2149 // and multiply. 2150 IRBuilderBase::FastMathFlagGuard Guard(B); 2151 B.setFastMathFlags(I->getFastMathFlags()); 2152 2153 // If we found a repeated factor, hoist it out of the square root and 2154 // replace it with the fabs of that factor. 2155 Module *M = Callee->getParent(); 2156 Type *ArgType = I->getType(); 2157 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2158 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2159 if (OtherOp) { 2160 // If we found a non-repeated factor, we still need to get its square 2161 // root. We then multiply that by the value that was simplified out 2162 // of the square root calculation. 2163 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2164 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2165 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2166 } 2167 return copyFlags(*CI, FabsCall); 2168 } 2169 2170 // TODO: Generalize to handle any trig function and its inverse. 2171 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2172 Function *Callee = CI->getCalledFunction(); 2173 Value *Ret = nullptr; 2174 StringRef Name = Callee->getName(); 2175 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) 2176 Ret = optimizeUnaryDoubleFP(CI, B, true); 2177 2178 Value *Op1 = CI->getArgOperand(0); 2179 auto *OpC = dyn_cast<CallInst>(Op1); 2180 if (!OpC) 2181 return Ret; 2182 2183 // Both calls must be 'fast' in order to remove them. 2184 if (!CI->isFast() || !OpC->isFast()) 2185 return Ret; 2186 2187 // tan(atan(x)) -> x 2188 // tanf(atanf(x)) -> x 2189 // tanl(atanl(x)) -> x 2190 LibFunc Func; 2191 Function *F = OpC->getCalledFunction(); 2192 if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && 2193 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2194 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2195 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2196 Ret = OpC->getArgOperand(0); 2197 return Ret; 2198 } 2199 2200 static bool isTrigLibCall(CallInst *CI) { 2201 // We can only hope to do anything useful if we can ignore things like errno 2202 // and floating-point exceptions. 2203 // We already checked the prototype. 2204 return CI->hasFnAttr(Attribute::NoUnwind) && 2205 CI->hasFnAttr(Attribute::ReadNone); 2206 } 2207 2208 static void insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2209 bool UseFloat, Value *&Sin, Value *&Cos, 2210 Value *&SinCos) { 2211 Type *ArgTy = Arg->getType(); 2212 Type *ResTy; 2213 StringRef Name; 2214 2215 Triple T(OrigCallee->getParent()->getTargetTriple()); 2216 if (UseFloat) { 2217 Name = "__sincospif_stret"; 2218 2219 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2220 // x86_64 can't use {float, float} since that would be returned in both 2221 // xmm0 and xmm1, which isn't what a real struct would do. 2222 ResTy = T.getArch() == Triple::x86_64 2223 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2224 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2225 } else { 2226 Name = "__sincospi_stret"; 2227 ResTy = StructType::get(ArgTy, ArgTy); 2228 } 2229 2230 Module *M = OrigCallee->getParent(); 2231 FunctionCallee Callee = 2232 M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); 2233 2234 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2235 // If the argument is an instruction, it must dominate all uses so put our 2236 // sincos call there. 2237 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2238 } else { 2239 // Otherwise (e.g. for a constant) the beginning of the function is as 2240 // good a place as any. 2241 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2242 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2243 } 2244 2245 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2246 2247 if (SinCos->getType()->isStructTy()) { 2248 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2249 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2250 } else { 2251 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2252 "sinpi"); 2253 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2254 "cospi"); 2255 } 2256 } 2257 2258 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2259 // Make sure the prototype is as expected, otherwise the rest of the 2260 // function is probably invalid and likely to abort. 2261 if (!isTrigLibCall(CI)) 2262 return nullptr; 2263 2264 Value *Arg = CI->getArgOperand(0); 2265 SmallVector<CallInst *, 1> SinCalls; 2266 SmallVector<CallInst *, 1> CosCalls; 2267 SmallVector<CallInst *, 1> SinCosCalls; 2268 2269 bool IsFloat = Arg->getType()->isFloatTy(); 2270 2271 // Look for all compatible sinpi, cospi and sincospi calls with the same 2272 // argument. If there are enough (in some sense) we can make the 2273 // substitution. 2274 Function *F = CI->getFunction(); 2275 for (User *U : Arg->users()) 2276 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2277 2278 // It's only worthwhile if both sinpi and cospi are actually used. 2279 if (SinCalls.empty() || CosCalls.empty()) 2280 return nullptr; 2281 2282 Value *Sin, *Cos, *SinCos; 2283 insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); 2284 2285 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2286 Value *Res) { 2287 for (CallInst *C : Calls) 2288 replaceAllUsesWith(C, Res); 2289 }; 2290 2291 replaceTrigInsts(SinCalls, Sin); 2292 replaceTrigInsts(CosCalls, Cos); 2293 replaceTrigInsts(SinCosCalls, SinCos); 2294 2295 return nullptr; 2296 } 2297 2298 void LibCallSimplifier::classifyArgUse( 2299 Value *Val, Function *F, bool IsFloat, 2300 SmallVectorImpl<CallInst *> &SinCalls, 2301 SmallVectorImpl<CallInst *> &CosCalls, 2302 SmallVectorImpl<CallInst *> &SinCosCalls) { 2303 CallInst *CI = dyn_cast<CallInst>(Val); 2304 2305 if (!CI || CI->use_empty()) 2306 return; 2307 2308 // Don't consider calls in other functions. 2309 if (CI->getFunction() != F) 2310 return; 2311 2312 Function *Callee = CI->getCalledFunction(); 2313 LibFunc Func; 2314 if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || 2315 !isTrigLibCall(CI)) 2316 return; 2317 2318 if (IsFloat) { 2319 if (Func == LibFunc_sinpif) 2320 SinCalls.push_back(CI); 2321 else if (Func == LibFunc_cospif) 2322 CosCalls.push_back(CI); 2323 else if (Func == LibFunc_sincospif_stret) 2324 SinCosCalls.push_back(CI); 2325 } else { 2326 if (Func == LibFunc_sinpi) 2327 SinCalls.push_back(CI); 2328 else if (Func == LibFunc_cospi) 2329 CosCalls.push_back(CI); 2330 else if (Func == LibFunc_sincospi_stret) 2331 SinCosCalls.push_back(CI); 2332 } 2333 } 2334 2335 //===----------------------------------------------------------------------===// 2336 // Integer Library Call Optimizations 2337 //===----------------------------------------------------------------------===// 2338 2339 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2340 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2341 Value *Op = CI->getArgOperand(0); 2342 Type *ArgType = Op->getType(); 2343 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2344 Intrinsic::cttz, ArgType); 2345 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2346 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2347 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2348 2349 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2350 return B.CreateSelect(Cond, V, B.getInt32(0)); 2351 } 2352 2353 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2354 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2355 Value *Op = CI->getArgOperand(0); 2356 Type *ArgType = Op->getType(); 2357 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2358 Intrinsic::ctlz, ArgType); 2359 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2360 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2361 V); 2362 return B.CreateIntCast(V, CI->getType(), false); 2363 } 2364 2365 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2366 // abs(x) -> x <s 0 ? -x : x 2367 // The negation has 'nsw' because abs of INT_MIN is undefined. 2368 Value *X = CI->getArgOperand(0); 2369 Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); 2370 Value *NegX = B.CreateNSWNeg(X, "neg"); 2371 return B.CreateSelect(IsNeg, NegX, X); 2372 } 2373 2374 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2375 // isdigit(c) -> (c-'0') <u 10 2376 Value *Op = CI->getArgOperand(0); 2377 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2378 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2379 return B.CreateZExt(Op, CI->getType()); 2380 } 2381 2382 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2383 // isascii(c) -> c <u 128 2384 Value *Op = CI->getArgOperand(0); 2385 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2386 return B.CreateZExt(Op, CI->getType()); 2387 } 2388 2389 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2390 // toascii(c) -> c & 0x7f 2391 return B.CreateAnd(CI->getArgOperand(0), 2392 ConstantInt::get(CI->getType(), 0x7F)); 2393 } 2394 2395 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2396 StringRef Str; 2397 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2398 return nullptr; 2399 2400 return convertStrToNumber(CI, Str, 10); 2401 } 2402 2403 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2404 StringRef Str; 2405 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2406 return nullptr; 2407 2408 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2409 return nullptr; 2410 2411 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2412 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2413 } 2414 2415 return nullptr; 2416 } 2417 2418 //===----------------------------------------------------------------------===// 2419 // Formatting and IO Library Call Optimizations 2420 //===----------------------------------------------------------------------===// 2421 2422 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2423 2424 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2425 int StreamArg) { 2426 Function *Callee = CI->getCalledFunction(); 2427 // Error reporting calls should be cold, mark them as such. 2428 // This applies even to non-builtin calls: it is only a hint and applies to 2429 // functions that the frontend might not understand as builtins. 2430 2431 // This heuristic was suggested in: 2432 // Improving Static Branch Prediction in a Compiler 2433 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2434 // Proceedings of PACT'98, Oct. 1998, IEEE 2435 if (!CI->hasFnAttr(Attribute::Cold) && 2436 isReportingError(Callee, CI, StreamArg)) { 2437 CI->addFnAttr(Attribute::Cold); 2438 } 2439 2440 return nullptr; 2441 } 2442 2443 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2444 if (!Callee || !Callee->isDeclaration()) 2445 return false; 2446 2447 if (StreamArg < 0) 2448 return true; 2449 2450 // These functions might be considered cold, but only if their stream 2451 // argument is stderr. 2452 2453 if (StreamArg >= (int)CI->arg_size()) 2454 return false; 2455 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2456 if (!LI) 2457 return false; 2458 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2459 if (!GV || !GV->isDeclaration()) 2460 return false; 2461 return GV->getName() == "stderr"; 2462 } 2463 2464 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2465 // Check for a fixed format string. 2466 StringRef FormatStr; 2467 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2468 return nullptr; 2469 2470 // Empty format string -> noop. 2471 if (FormatStr.empty()) // Tolerate printf's declared void. 2472 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2473 2474 // Do not do any of the following transformations if the printf return value 2475 // is used, in general the printf return value is not compatible with either 2476 // putchar() or puts(). 2477 if (!CI->use_empty()) 2478 return nullptr; 2479 2480 // printf("x") -> putchar('x'), even for "%" and "%%". 2481 if (FormatStr.size() == 1 || FormatStr == "%%") 2482 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2483 2484 // Try to remove call or emit putchar/puts. 2485 if (FormatStr == "%s" && CI->arg_size() > 1) { 2486 StringRef OperandStr; 2487 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2488 return nullptr; 2489 // printf("%s", "") --> NOP 2490 if (OperandStr.empty()) 2491 return (Value *)CI; 2492 // printf("%s", "a") --> putchar('a') 2493 if (OperandStr.size() == 1) 2494 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2495 // printf("%s", str"\n") --> puts(str) 2496 if (OperandStr.back() == '\n') { 2497 OperandStr = OperandStr.drop_back(); 2498 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2499 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2500 } 2501 return nullptr; 2502 } 2503 2504 // printf("foo\n") --> puts("foo") 2505 if (FormatStr.back() == '\n' && 2506 !FormatStr.contains('%')) { // No format characters. 2507 // Create a string literal with no \n on it. We expect the constant merge 2508 // pass to be run after this pass, to merge duplicate strings. 2509 FormatStr = FormatStr.drop_back(); 2510 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2511 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2512 } 2513 2514 // Optimize specific format strings. 2515 // printf("%c", chr) --> putchar(chr) 2516 if (FormatStr == "%c" && CI->arg_size() > 1 && 2517 CI->getArgOperand(1)->getType()->isIntegerTy()) 2518 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2519 2520 // printf("%s\n", str) --> puts(str) 2521 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2522 CI->getArgOperand(1)->getType()->isPointerTy()) 2523 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2524 return nullptr; 2525 } 2526 2527 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2528 2529 Function *Callee = CI->getCalledFunction(); 2530 FunctionType *FT = Callee->getFunctionType(); 2531 if (Value *V = optimizePrintFString(CI, B)) { 2532 return V; 2533 } 2534 2535 // printf(format, ...) -> iprintf(format, ...) if no floating point 2536 // arguments. 2537 if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { 2538 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2539 FunctionCallee IPrintFFn = 2540 M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); 2541 CallInst *New = cast<CallInst>(CI->clone()); 2542 New->setCalledFunction(IPrintFFn); 2543 B.Insert(New); 2544 return New; 2545 } 2546 2547 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2548 // arguments. 2549 if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { 2550 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2551 auto SmallPrintFFn = 2552 M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), 2553 FT, Callee->getAttributes()); 2554 CallInst *New = cast<CallInst>(CI->clone()); 2555 New->setCalledFunction(SmallPrintFFn); 2556 B.Insert(New); 2557 return New; 2558 } 2559 2560 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2561 return nullptr; 2562 } 2563 2564 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2565 IRBuilderBase &B) { 2566 // Check for a fixed format string. 2567 StringRef FormatStr; 2568 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2569 return nullptr; 2570 2571 // If we just have a format string (nothing else crazy) transform it. 2572 Value *Dest = CI->getArgOperand(0); 2573 if (CI->arg_size() == 2) { 2574 // Make sure there's no % in the constant array. We could try to handle 2575 // %% -> % in the future if we cared. 2576 if (FormatStr.contains('%')) 2577 return nullptr; // we found a format specifier, bail out. 2578 2579 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2580 B.CreateMemCpy( 2581 Dest, Align(1), CI->getArgOperand(1), Align(1), 2582 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2583 FormatStr.size() + 1)); // Copy the null byte. 2584 return ConstantInt::get(CI->getType(), FormatStr.size()); 2585 } 2586 2587 // The remaining optimizations require the format string to be "%s" or "%c" 2588 // and have an extra operand. 2589 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2590 return nullptr; 2591 2592 // Decode the second character of the format string. 2593 if (FormatStr[1] == 'c') { 2594 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2595 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2596 return nullptr; 2597 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2598 Value *Ptr = castToCStr(Dest, B); 2599 B.CreateStore(V, Ptr); 2600 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2601 B.CreateStore(B.getInt8(0), Ptr); 2602 2603 return ConstantInt::get(CI->getType(), 1); 2604 } 2605 2606 if (FormatStr[1] == 's') { 2607 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2608 // strlen(str)+1) 2609 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2610 return nullptr; 2611 2612 if (CI->use_empty()) 2613 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2614 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2615 2616 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2617 if (SrcLen) { 2618 B.CreateMemCpy( 2619 Dest, Align(1), CI->getArgOperand(2), Align(1), 2620 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2621 // Returns total number of characters written without null-character. 2622 return ConstantInt::get(CI->getType(), SrcLen - 1); 2623 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2624 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2625 // Handle mismatched pointer types (goes away with typeless pointers?). 2626 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2627 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2628 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2629 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2630 } 2631 2632 bool OptForSize = CI->getFunction()->hasOptSize() || 2633 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2634 PGSOQueryType::IRPass); 2635 if (OptForSize) 2636 return nullptr; 2637 2638 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2639 if (!Len) 2640 return nullptr; 2641 Value *IncLen = 2642 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2643 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2644 2645 // The sprintf result is the unincremented number of bytes in the string. 2646 return B.CreateIntCast(Len, CI->getType(), false); 2647 } 2648 return nullptr; 2649 } 2650 2651 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2652 Function *Callee = CI->getCalledFunction(); 2653 FunctionType *FT = Callee->getFunctionType(); 2654 if (Value *V = optimizeSPrintFString(CI, B)) { 2655 return V; 2656 } 2657 2658 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2659 // point arguments. 2660 if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { 2661 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2662 FunctionCallee SIPrintFFn = 2663 M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); 2664 CallInst *New = cast<CallInst>(CI->clone()); 2665 New->setCalledFunction(SIPrintFFn); 2666 B.Insert(New); 2667 return New; 2668 } 2669 2670 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2671 // floating point arguments. 2672 if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { 2673 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2674 auto SmallSPrintFFn = 2675 M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), 2676 FT, Callee->getAttributes()); 2677 CallInst *New = cast<CallInst>(CI->clone()); 2678 New->setCalledFunction(SmallSPrintFFn); 2679 B.Insert(New); 2680 return New; 2681 } 2682 2683 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2684 return nullptr; 2685 } 2686 2687 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2688 IRBuilderBase &B) { 2689 // Check for size 2690 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2691 if (!Size) 2692 return nullptr; 2693 2694 uint64_t N = Size->getZExtValue(); 2695 // Check for a fixed format string. 2696 StringRef FormatStr; 2697 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2698 return nullptr; 2699 2700 // If we just have a format string (nothing else crazy) transform it. 2701 if (CI->arg_size() == 3) { 2702 // Make sure there's no % in the constant array. We could try to handle 2703 // %% -> % in the future if we cared. 2704 if (FormatStr.contains('%')) 2705 return nullptr; // we found a format specifier, bail out. 2706 2707 if (N == 0) 2708 return ConstantInt::get(CI->getType(), FormatStr.size()); 2709 else if (N < FormatStr.size() + 1) 2710 return nullptr; 2711 2712 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2713 // strlen(fmt)+1) 2714 copyFlags( 2715 *CI, 2716 B.CreateMemCpy( 2717 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2718 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2719 FormatStr.size() + 1))); // Copy the null byte. 2720 return ConstantInt::get(CI->getType(), FormatStr.size()); 2721 } 2722 2723 // The remaining optimizations require the format string to be "%s" or "%c" 2724 // and have an extra operand. 2725 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2726 2727 // Decode the second character of the format string. 2728 if (FormatStr[1] == 'c') { 2729 if (N == 0) 2730 return ConstantInt::get(CI->getType(), 1); 2731 else if (N == 1) 2732 return nullptr; 2733 2734 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2735 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2736 return nullptr; 2737 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2738 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2739 B.CreateStore(V, Ptr); 2740 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2741 B.CreateStore(B.getInt8(0), Ptr); 2742 2743 return ConstantInt::get(CI->getType(), 1); 2744 } 2745 2746 if (FormatStr[1] == 's') { 2747 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2748 StringRef Str; 2749 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2750 return nullptr; 2751 2752 if (N == 0) 2753 return ConstantInt::get(CI->getType(), Str.size()); 2754 else if (N < Str.size() + 1) 2755 return nullptr; 2756 2757 copyFlags( 2758 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2759 CI->getArgOperand(3), Align(1), 2760 ConstantInt::get(CI->getType(), Str.size() + 1))); 2761 2762 // The snprintf result is the unincremented number of bytes in the string. 2763 return ConstantInt::get(CI->getType(), Str.size()); 2764 } 2765 } 2766 return nullptr; 2767 } 2768 2769 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2770 if (Value *V = optimizeSnPrintFString(CI, B)) { 2771 return V; 2772 } 2773 2774 if (isKnownNonZero(CI->getOperand(1), DL)) 2775 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2776 return nullptr; 2777 } 2778 2779 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2780 IRBuilderBase &B) { 2781 optimizeErrorReporting(CI, B, 0); 2782 2783 // All the optimizations depend on the format string. 2784 StringRef FormatStr; 2785 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2786 return nullptr; 2787 2788 // Do not do any of the following transformations if the fprintf return 2789 // value is used, in general the fprintf return value is not compatible 2790 // with fwrite(), fputc() or fputs(). 2791 if (!CI->use_empty()) 2792 return nullptr; 2793 2794 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2795 if (CI->arg_size() == 2) { 2796 // Could handle %% -> % if we cared. 2797 if (FormatStr.contains('%')) 2798 return nullptr; // We found a format specifier. 2799 2800 return copyFlags( 2801 *CI, emitFWrite(CI->getArgOperand(1), 2802 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2803 FormatStr.size()), 2804 CI->getArgOperand(0), B, DL, TLI)); 2805 } 2806 2807 // The remaining optimizations require the format string to be "%s" or "%c" 2808 // and have an extra operand. 2809 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2810 return nullptr; 2811 2812 // Decode the second character of the format string. 2813 if (FormatStr[1] == 'c') { 2814 // fprintf(F, "%c", chr) --> fputc(chr, F) 2815 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2816 return nullptr; 2817 return copyFlags( 2818 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2819 } 2820 2821 if (FormatStr[1] == 's') { 2822 // fprintf(F, "%s", str) --> fputs(str, F) 2823 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2824 return nullptr; 2825 return copyFlags( 2826 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2827 } 2828 return nullptr; 2829 } 2830 2831 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2832 Function *Callee = CI->getCalledFunction(); 2833 FunctionType *FT = Callee->getFunctionType(); 2834 if (Value *V = optimizeFPrintFString(CI, B)) { 2835 return V; 2836 } 2837 2838 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2839 // floating point arguments. 2840 if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { 2841 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2842 FunctionCallee FIPrintFFn = 2843 M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); 2844 CallInst *New = cast<CallInst>(CI->clone()); 2845 New->setCalledFunction(FIPrintFFn); 2846 B.Insert(New); 2847 return New; 2848 } 2849 2850 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2851 // 128-bit floating point arguments. 2852 if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { 2853 Module *M = B.GetInsertBlock()->getParent()->getParent(); 2854 auto SmallFPrintFFn = 2855 M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), 2856 FT, Callee->getAttributes()); 2857 CallInst *New = cast<CallInst>(CI->clone()); 2858 New->setCalledFunction(SmallFPrintFFn); 2859 B.Insert(New); 2860 return New; 2861 } 2862 2863 return nullptr; 2864 } 2865 2866 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2867 optimizeErrorReporting(CI, B, 3); 2868 2869 // Get the element size and count. 2870 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2871 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2872 if (SizeC && CountC) { 2873 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2874 2875 // If this is writing zero records, remove the call (it's a noop). 2876 if (Bytes == 0) 2877 return ConstantInt::get(CI->getType(), 0); 2878 2879 // If this is writing one byte, turn it into fputc. 2880 // This optimisation is only valid, if the return value is unused. 2881 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2882 Value *Char = B.CreateLoad(B.getInt8Ty(), 2883 castToCStr(CI->getArgOperand(0), B), "char"); 2884 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2885 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2886 } 2887 } 2888 2889 return nullptr; 2890 } 2891 2892 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2893 optimizeErrorReporting(CI, B, 1); 2894 2895 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2896 // requires more arguments and thus extra MOVs are required. 2897 bool OptForSize = CI->getFunction()->hasOptSize() || 2898 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2899 PGSOQueryType::IRPass); 2900 if (OptForSize) 2901 return nullptr; 2902 2903 // We can't optimize if return value is used. 2904 if (!CI->use_empty()) 2905 return nullptr; 2906 2907 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2908 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2909 if (!Len) 2910 return nullptr; 2911 2912 // Known to have no uses (see above). 2913 return copyFlags( 2914 *CI, 2915 emitFWrite(CI->getArgOperand(0), 2916 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 2917 CI->getArgOperand(1), B, DL, TLI)); 2918 } 2919 2920 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 2921 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2922 if (!CI->use_empty()) 2923 return nullptr; 2924 2925 // Check for a constant string. 2926 // puts("") -> putchar('\n') 2927 StringRef Str; 2928 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 2929 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 2930 2931 return nullptr; 2932 } 2933 2934 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 2935 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 2936 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 2937 CI->getArgOperand(0), Align(1), 2938 CI->getArgOperand(2))); 2939 } 2940 2941 bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { 2942 LibFunc Func; 2943 SmallString<20> FloatFuncName = FuncName; 2944 FloatFuncName += 'f'; 2945 if (TLI->getLibFunc(FloatFuncName, Func)) 2946 return TLI->has(Func); 2947 return false; 2948 } 2949 2950 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 2951 IRBuilderBase &Builder) { 2952 LibFunc Func; 2953 Function *Callee = CI->getCalledFunction(); 2954 // Check for string/memory library functions. 2955 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 2956 // Make sure we never change the calling convention. 2957 assert( 2958 (ignoreCallingConv(Func) || 2959 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 2960 "Optimizing string/memory libcall would change the calling convention"); 2961 switch (Func) { 2962 case LibFunc_strcat: 2963 return optimizeStrCat(CI, Builder); 2964 case LibFunc_strncat: 2965 return optimizeStrNCat(CI, Builder); 2966 case LibFunc_strchr: 2967 return optimizeStrChr(CI, Builder); 2968 case LibFunc_strrchr: 2969 return optimizeStrRChr(CI, Builder); 2970 case LibFunc_strcmp: 2971 return optimizeStrCmp(CI, Builder); 2972 case LibFunc_strncmp: 2973 return optimizeStrNCmp(CI, Builder); 2974 case LibFunc_strcpy: 2975 return optimizeStrCpy(CI, Builder); 2976 case LibFunc_stpcpy: 2977 return optimizeStpCpy(CI, Builder); 2978 case LibFunc_strncpy: 2979 return optimizeStrNCpy(CI, Builder); 2980 case LibFunc_strlen: 2981 return optimizeStrLen(CI, Builder); 2982 case LibFunc_strnlen: 2983 return optimizeStrNLen(CI, Builder); 2984 case LibFunc_strpbrk: 2985 return optimizeStrPBrk(CI, Builder); 2986 case LibFunc_strndup: 2987 return optimizeStrNDup(CI, Builder); 2988 case LibFunc_strtol: 2989 case LibFunc_strtod: 2990 case LibFunc_strtof: 2991 case LibFunc_strtoul: 2992 case LibFunc_strtoll: 2993 case LibFunc_strtold: 2994 case LibFunc_strtoull: 2995 return optimizeStrTo(CI, Builder); 2996 case LibFunc_strspn: 2997 return optimizeStrSpn(CI, Builder); 2998 case LibFunc_strcspn: 2999 return optimizeStrCSpn(CI, Builder); 3000 case LibFunc_strstr: 3001 return optimizeStrStr(CI, Builder); 3002 case LibFunc_memchr: 3003 return optimizeMemChr(CI, Builder); 3004 case LibFunc_memrchr: 3005 return optimizeMemRChr(CI, Builder); 3006 case LibFunc_bcmp: 3007 return optimizeBCmp(CI, Builder); 3008 case LibFunc_memcmp: 3009 return optimizeMemCmp(CI, Builder); 3010 case LibFunc_memcpy: 3011 return optimizeMemCpy(CI, Builder); 3012 case LibFunc_memccpy: 3013 return optimizeMemCCpy(CI, Builder); 3014 case LibFunc_mempcpy: 3015 return optimizeMemPCpy(CI, Builder); 3016 case LibFunc_memmove: 3017 return optimizeMemMove(CI, Builder); 3018 case LibFunc_memset: 3019 return optimizeMemSet(CI, Builder); 3020 case LibFunc_realloc: 3021 return optimizeRealloc(CI, Builder); 3022 case LibFunc_wcslen: 3023 return optimizeWcslen(CI, Builder); 3024 case LibFunc_bcopy: 3025 return optimizeBCopy(CI, Builder); 3026 default: 3027 break; 3028 } 3029 } 3030 return nullptr; 3031 } 3032 3033 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3034 LibFunc Func, 3035 IRBuilderBase &Builder) { 3036 // Don't optimize calls that require strict floating point semantics. 3037 if (CI->isStrictFP()) 3038 return nullptr; 3039 3040 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3041 return V; 3042 3043 switch (Func) { 3044 case LibFunc_sinpif: 3045 case LibFunc_sinpi: 3046 case LibFunc_cospif: 3047 case LibFunc_cospi: 3048 return optimizeSinCosPi(CI, Builder); 3049 case LibFunc_powf: 3050 case LibFunc_pow: 3051 case LibFunc_powl: 3052 return optimizePow(CI, Builder); 3053 case LibFunc_exp2l: 3054 case LibFunc_exp2: 3055 case LibFunc_exp2f: 3056 return optimizeExp2(CI, Builder); 3057 case LibFunc_fabsf: 3058 case LibFunc_fabs: 3059 case LibFunc_fabsl: 3060 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3061 case LibFunc_sqrtf: 3062 case LibFunc_sqrt: 3063 case LibFunc_sqrtl: 3064 return optimizeSqrt(CI, Builder); 3065 case LibFunc_logf: 3066 case LibFunc_log: 3067 case LibFunc_logl: 3068 case LibFunc_log10f: 3069 case LibFunc_log10: 3070 case LibFunc_log10l: 3071 case LibFunc_log1pf: 3072 case LibFunc_log1p: 3073 case LibFunc_log1pl: 3074 case LibFunc_log2f: 3075 case LibFunc_log2: 3076 case LibFunc_log2l: 3077 case LibFunc_logbf: 3078 case LibFunc_logb: 3079 case LibFunc_logbl: 3080 return optimizeLog(CI, Builder); 3081 case LibFunc_tan: 3082 case LibFunc_tanf: 3083 case LibFunc_tanl: 3084 return optimizeTan(CI, Builder); 3085 case LibFunc_ceil: 3086 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3087 case LibFunc_floor: 3088 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3089 case LibFunc_round: 3090 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3091 case LibFunc_roundeven: 3092 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3093 case LibFunc_nearbyint: 3094 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3095 case LibFunc_rint: 3096 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3097 case LibFunc_trunc: 3098 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3099 case LibFunc_acos: 3100 case LibFunc_acosh: 3101 case LibFunc_asin: 3102 case LibFunc_asinh: 3103 case LibFunc_atan: 3104 case LibFunc_atanh: 3105 case LibFunc_cbrt: 3106 case LibFunc_cosh: 3107 case LibFunc_exp: 3108 case LibFunc_exp10: 3109 case LibFunc_expm1: 3110 case LibFunc_cos: 3111 case LibFunc_sin: 3112 case LibFunc_sinh: 3113 case LibFunc_tanh: 3114 if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) 3115 return optimizeUnaryDoubleFP(CI, Builder, true); 3116 return nullptr; 3117 case LibFunc_copysign: 3118 if (hasFloatVersion(CI->getCalledFunction()->getName())) 3119 return optimizeBinaryDoubleFP(CI, Builder); 3120 return nullptr; 3121 case LibFunc_fminf: 3122 case LibFunc_fmin: 3123 case LibFunc_fminl: 3124 case LibFunc_fmaxf: 3125 case LibFunc_fmax: 3126 case LibFunc_fmaxl: 3127 return optimizeFMinFMax(CI, Builder); 3128 case LibFunc_cabs: 3129 case LibFunc_cabsf: 3130 case LibFunc_cabsl: 3131 return optimizeCAbs(CI, Builder); 3132 default: 3133 return nullptr; 3134 } 3135 } 3136 3137 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3138 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3139 3140 // TODO: Split out the code below that operates on FP calls so that 3141 // we can all non-FP calls with the StrictFP attribute to be 3142 // optimized. 3143 if (CI->isNoBuiltin()) 3144 return nullptr; 3145 3146 LibFunc Func; 3147 Function *Callee = CI->getCalledFunction(); 3148 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3149 3150 SmallVector<OperandBundleDef, 2> OpBundles; 3151 CI->getOperandBundlesAsDefs(OpBundles); 3152 3153 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3154 Builder.setDefaultOperandBundles(OpBundles); 3155 3156 // Command-line parameter overrides instruction attribute. 3157 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3158 // used by the intrinsic optimizations. 3159 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3160 UnsafeFPShrink = EnableUnsafeFPShrink; 3161 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3162 UnsafeFPShrink = true; 3163 3164 // First, check for intrinsics. 3165 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3166 if (!IsCallingConvC) 3167 return nullptr; 3168 // The FP intrinsics have corresponding constrained versions so we don't 3169 // need to check for the StrictFP attribute here. 3170 switch (II->getIntrinsicID()) { 3171 case Intrinsic::pow: 3172 return optimizePow(CI, Builder); 3173 case Intrinsic::exp2: 3174 return optimizeExp2(CI, Builder); 3175 case Intrinsic::log: 3176 case Intrinsic::log2: 3177 case Intrinsic::log10: 3178 return optimizeLog(CI, Builder); 3179 case Intrinsic::sqrt: 3180 return optimizeSqrt(CI, Builder); 3181 case Intrinsic::memset: 3182 return optimizeMemSet(CI, Builder); 3183 case Intrinsic::memcpy: 3184 return optimizeMemCpy(CI, Builder); 3185 case Intrinsic::memmove: 3186 return optimizeMemMove(CI, Builder); 3187 default: 3188 return nullptr; 3189 } 3190 } 3191 3192 // Also try to simplify calls to fortified library functions. 3193 if (Value *SimplifiedFortifiedCI = 3194 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3195 // Try to further simplify the result. 3196 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3197 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3198 // Ensure that SimplifiedCI's uses are complete, since some calls have 3199 // their uses analyzed. 3200 replaceAllUsesWith(CI, SimplifiedCI); 3201 3202 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3203 // we might replace later on. 3204 IRBuilderBase::InsertPointGuard Guard(Builder); 3205 Builder.SetInsertPoint(SimplifiedCI); 3206 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3207 // If we were able to further simplify, remove the now redundant call. 3208 substituteInParent(SimplifiedCI, V); 3209 return V; 3210 } 3211 } 3212 return SimplifiedFortifiedCI; 3213 } 3214 3215 // Then check for known library functions. 3216 if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { 3217 // We never change the calling convention. 3218 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3219 return nullptr; 3220 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3221 return V; 3222 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3223 return V; 3224 switch (Func) { 3225 case LibFunc_ffs: 3226 case LibFunc_ffsl: 3227 case LibFunc_ffsll: 3228 return optimizeFFS(CI, Builder); 3229 case LibFunc_fls: 3230 case LibFunc_flsl: 3231 case LibFunc_flsll: 3232 return optimizeFls(CI, Builder); 3233 case LibFunc_abs: 3234 case LibFunc_labs: 3235 case LibFunc_llabs: 3236 return optimizeAbs(CI, Builder); 3237 case LibFunc_isdigit: 3238 return optimizeIsDigit(CI, Builder); 3239 case LibFunc_isascii: 3240 return optimizeIsAscii(CI, Builder); 3241 case LibFunc_toascii: 3242 return optimizeToAscii(CI, Builder); 3243 case LibFunc_atoi: 3244 case LibFunc_atol: 3245 case LibFunc_atoll: 3246 return optimizeAtoi(CI, Builder); 3247 case LibFunc_strtol: 3248 case LibFunc_strtoll: 3249 return optimizeStrtol(CI, Builder); 3250 case LibFunc_printf: 3251 return optimizePrintF(CI, Builder); 3252 case LibFunc_sprintf: 3253 return optimizeSPrintF(CI, Builder); 3254 case LibFunc_snprintf: 3255 return optimizeSnPrintF(CI, Builder); 3256 case LibFunc_fprintf: 3257 return optimizeFPrintF(CI, Builder); 3258 case LibFunc_fwrite: 3259 return optimizeFWrite(CI, Builder); 3260 case LibFunc_fputs: 3261 return optimizeFPuts(CI, Builder); 3262 case LibFunc_puts: 3263 return optimizePuts(CI, Builder); 3264 case LibFunc_perror: 3265 return optimizeErrorReporting(CI, Builder); 3266 case LibFunc_vfprintf: 3267 case LibFunc_fiprintf: 3268 return optimizeErrorReporting(CI, Builder, 0); 3269 default: 3270 return nullptr; 3271 } 3272 } 3273 return nullptr; 3274 } 3275 3276 LibCallSimplifier::LibCallSimplifier( 3277 const DataLayout &DL, const TargetLibraryInfo *TLI, 3278 OptimizationRemarkEmitter &ORE, 3279 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3280 function_ref<void(Instruction *, Value *)> Replacer, 3281 function_ref<void(Instruction *)> Eraser) 3282 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3283 Replacer(Replacer), Eraser(Eraser) {} 3284 3285 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3286 // Indirect through the replacer used in this instance. 3287 Replacer(I, With); 3288 } 3289 3290 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3291 Eraser(I); 3292 } 3293 3294 // TODO: 3295 // Additional cases that we need to add to this file: 3296 // 3297 // cbrt: 3298 // * cbrt(expN(X)) -> expN(x/3) 3299 // * cbrt(sqrt(x)) -> pow(x,1/6) 3300 // * cbrt(cbrt(x)) -> pow(x,1/9) 3301 // 3302 // exp, expf, expl: 3303 // * exp(log(x)) -> x 3304 // 3305 // log, logf, logl: 3306 // * log(exp(x)) -> x 3307 // * log(exp(y)) -> y*log(e) 3308 // * log(exp10(y)) -> y*log(10) 3309 // * log(sqrt(x)) -> 0.5*log(x) 3310 // 3311 // pow, powf, powl: 3312 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3313 // * pow(pow(x,y),z)-> pow(x,y*z) 3314 // 3315 // signbit: 3316 // * signbit(cnst) -> cnst' 3317 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3318 // 3319 // sqrt, sqrtf, sqrtl: 3320 // * sqrt(expN(x)) -> expN(x*0.5) 3321 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3322 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3323 // 3324 3325 //===----------------------------------------------------------------------===// 3326 // Fortified Library Call Optimizations 3327 //===----------------------------------------------------------------------===// 3328 3329 bool 3330 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3331 unsigned ObjSizeOp, 3332 Optional<unsigned> SizeOp, 3333 Optional<unsigned> StrOp, 3334 Optional<unsigned> FlagOp) { 3335 // If this function takes a flag argument, the implementation may use it to 3336 // perform extra checks. Don't fold into the non-checking variant. 3337 if (FlagOp) { 3338 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3339 if (!Flag || !Flag->isZero()) 3340 return false; 3341 } 3342 3343 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3344 return true; 3345 3346 if (ConstantInt *ObjSizeCI = 3347 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3348 if (ObjSizeCI->isMinusOne()) 3349 return true; 3350 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3351 if (OnlyLowerUnknownSize) 3352 return false; 3353 if (StrOp) { 3354 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3355 // If the length is 0 we don't know how long it is and so we can't 3356 // remove the check. 3357 if (Len) 3358 annotateDereferenceableBytes(CI, *StrOp, Len); 3359 else 3360 return false; 3361 return ObjSizeCI->getZExtValue() >= Len; 3362 } 3363 3364 if (SizeOp) { 3365 if (ConstantInt *SizeCI = 3366 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3367 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3368 } 3369 } 3370 return false; 3371 } 3372 3373 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3374 IRBuilderBase &B) { 3375 if (isFortifiedCallFoldable(CI, 3, 2)) { 3376 CallInst *NewCI = 3377 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3378 Align(1), CI->getArgOperand(2)); 3379 NewCI->setAttributes(CI->getAttributes()); 3380 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3381 copyFlags(*CI, NewCI); 3382 return CI->getArgOperand(0); 3383 } 3384 return nullptr; 3385 } 3386 3387 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3388 IRBuilderBase &B) { 3389 if (isFortifiedCallFoldable(CI, 3, 2)) { 3390 CallInst *NewCI = 3391 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3392 Align(1), CI->getArgOperand(2)); 3393 NewCI->setAttributes(CI->getAttributes()); 3394 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3395 copyFlags(*CI, NewCI); 3396 return CI->getArgOperand(0); 3397 } 3398 return nullptr; 3399 } 3400 3401 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3402 IRBuilderBase &B) { 3403 if (isFortifiedCallFoldable(CI, 3, 2)) { 3404 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3405 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3406 CI->getArgOperand(2), Align(1)); 3407 NewCI->setAttributes(CI->getAttributes()); 3408 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3409 copyFlags(*CI, NewCI); 3410 return CI->getArgOperand(0); 3411 } 3412 return nullptr; 3413 } 3414 3415 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3416 IRBuilderBase &B) { 3417 const DataLayout &DL = CI->getModule()->getDataLayout(); 3418 if (isFortifiedCallFoldable(CI, 3, 2)) 3419 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3420 CI->getArgOperand(2), B, DL, TLI)) { 3421 CallInst *NewCI = cast<CallInst>(Call); 3422 NewCI->setAttributes(CI->getAttributes()); 3423 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3424 return copyFlags(*CI, NewCI); 3425 } 3426 return nullptr; 3427 } 3428 3429 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3430 IRBuilderBase &B, 3431 LibFunc Func) { 3432 const DataLayout &DL = CI->getModule()->getDataLayout(); 3433 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3434 *ObjSize = CI->getArgOperand(2); 3435 3436 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3437 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3438 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3439 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3440 } 3441 3442 // If a) we don't have any length information, or b) we know this will 3443 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3444 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3445 // TODO: It might be nice to get a maximum length out of the possible 3446 // string lengths for varying. 3447 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3448 if (Func == LibFunc_strcpy_chk) 3449 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3450 else 3451 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3452 } 3453 3454 if (OnlyLowerUnknownSize) 3455 return nullptr; 3456 3457 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3458 uint64_t Len = GetStringLength(Src); 3459 if (Len) 3460 annotateDereferenceableBytes(CI, 1, Len); 3461 else 3462 return nullptr; 3463 3464 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3465 // sizeof(int*) for every target. So the assumption used here to derive the 3466 // SizeTBits based on the size of an integer pointer in address space zero 3467 // isn't always valid. 3468 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3469 Value *LenV = ConstantInt::get(SizeTTy, Len); 3470 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3471 // If the function was an __stpcpy_chk, and we were able to fold it into 3472 // a __memcpy_chk, we still need to return the correct end pointer. 3473 if (Ret && Func == LibFunc_stpcpy_chk) 3474 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3475 return copyFlags(*CI, cast<CallInst>(Ret)); 3476 } 3477 3478 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3479 IRBuilderBase &B) { 3480 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3481 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3482 CI->getModule()->getDataLayout(), TLI)); 3483 return nullptr; 3484 } 3485 3486 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3487 IRBuilderBase &B, 3488 LibFunc Func) { 3489 if (isFortifiedCallFoldable(CI, 3, 2)) { 3490 if (Func == LibFunc_strncpy_chk) 3491 return copyFlags(*CI, 3492 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3493 CI->getArgOperand(2), B, TLI)); 3494 else 3495 return copyFlags(*CI, 3496 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3497 CI->getArgOperand(2), B, TLI)); 3498 } 3499 3500 return nullptr; 3501 } 3502 3503 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3504 IRBuilderBase &B) { 3505 if (isFortifiedCallFoldable(CI, 4, 3)) 3506 return copyFlags( 3507 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3508 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3509 3510 return nullptr; 3511 } 3512 3513 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3514 IRBuilderBase &B) { 3515 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3516 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3517 return copyFlags(*CI, 3518 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3519 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3520 } 3521 3522 return nullptr; 3523 } 3524 3525 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3526 IRBuilderBase &B) { 3527 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3528 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3529 return copyFlags(*CI, 3530 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3531 VariadicArgs, B, TLI)); 3532 } 3533 3534 return nullptr; 3535 } 3536 3537 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3538 IRBuilderBase &B) { 3539 if (isFortifiedCallFoldable(CI, 2)) 3540 return copyFlags( 3541 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3542 3543 return nullptr; 3544 } 3545 3546 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3547 IRBuilderBase &B) { 3548 if (isFortifiedCallFoldable(CI, 3)) 3549 return copyFlags(*CI, 3550 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3551 CI->getArgOperand(2), B, TLI)); 3552 3553 return nullptr; 3554 } 3555 3556 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3557 IRBuilderBase &B) { 3558 if (isFortifiedCallFoldable(CI, 3)) 3559 return copyFlags(*CI, 3560 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3561 CI->getArgOperand(2), B, TLI)); 3562 3563 return nullptr; 3564 } 3565 3566 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3567 IRBuilderBase &B) { 3568 if (isFortifiedCallFoldable(CI, 3)) 3569 return copyFlags(*CI, 3570 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3571 CI->getArgOperand(2), B, TLI)); 3572 3573 return nullptr; 3574 } 3575 3576 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3577 IRBuilderBase &B) { 3578 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3579 return copyFlags( 3580 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3581 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3582 3583 return nullptr; 3584 } 3585 3586 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3587 IRBuilderBase &B) { 3588 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3589 return copyFlags(*CI, 3590 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3591 CI->getArgOperand(4), B, TLI)); 3592 3593 return nullptr; 3594 } 3595 3596 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3597 IRBuilderBase &Builder) { 3598 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3599 // Some clang users checked for _chk libcall availability using: 3600 // __has_builtin(__builtin___memcpy_chk) 3601 // When compiling with -fno-builtin, this is always true. 3602 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3603 // end up with fortified libcalls, which isn't acceptable in a freestanding 3604 // environment which only provides their non-fortified counterparts. 3605 // 3606 // Until we change clang and/or teach external users to check for availability 3607 // differently, disregard the "nobuiltin" attribute and TLI::has. 3608 // 3609 // PR23093. 3610 3611 LibFunc Func; 3612 Function *Callee = CI->getCalledFunction(); 3613 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3614 3615 SmallVector<OperandBundleDef, 2> OpBundles; 3616 CI->getOperandBundlesAsDefs(OpBundles); 3617 3618 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3619 Builder.setDefaultOperandBundles(OpBundles); 3620 3621 // First, check that this is a known library functions and that the prototype 3622 // is correct. 3623 if (!TLI->getLibFunc(*Callee, Func)) 3624 return nullptr; 3625 3626 // We never change the calling convention. 3627 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3628 return nullptr; 3629 3630 switch (Func) { 3631 case LibFunc_memcpy_chk: 3632 return optimizeMemCpyChk(CI, Builder); 3633 case LibFunc_mempcpy_chk: 3634 return optimizeMemPCpyChk(CI, Builder); 3635 case LibFunc_memmove_chk: 3636 return optimizeMemMoveChk(CI, Builder); 3637 case LibFunc_memset_chk: 3638 return optimizeMemSetChk(CI, Builder); 3639 case LibFunc_stpcpy_chk: 3640 case LibFunc_strcpy_chk: 3641 return optimizeStrpCpyChk(CI, Builder, Func); 3642 case LibFunc_strlen_chk: 3643 return optimizeStrLenChk(CI, Builder); 3644 case LibFunc_stpncpy_chk: 3645 case LibFunc_strncpy_chk: 3646 return optimizeStrpNCpyChk(CI, Builder, Func); 3647 case LibFunc_memccpy_chk: 3648 return optimizeMemCCpyChk(CI, Builder); 3649 case LibFunc_snprintf_chk: 3650 return optimizeSNPrintfChk(CI, Builder); 3651 case LibFunc_sprintf_chk: 3652 return optimizeSPrintfChk(CI, Builder); 3653 case LibFunc_strcat_chk: 3654 return optimizeStrCatChk(CI, Builder); 3655 case LibFunc_strlcat_chk: 3656 return optimizeStrLCat(CI, Builder); 3657 case LibFunc_strncat_chk: 3658 return optimizeStrNCatChk(CI, Builder); 3659 case LibFunc_strlcpy_chk: 3660 return optimizeStrLCpyChk(CI, Builder); 3661 case LibFunc_vsnprintf_chk: 3662 return optimizeVSNPrintfChk(CI, Builder); 3663 case LibFunc_vsprintf_chk: 3664 return optimizeVSPrintfChk(CI, Builder); 3665 default: 3666 break; 3667 } 3668 return nullptr; 3669 } 3670 3671 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3672 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3673 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3674