1 //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the library calls simplifier. It does not implement 10 // any pass, but can't be used by other passes to do simplifications. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/Analysis/Loads.h" 20 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Function.h" 24 #include "llvm/IR/IRBuilder.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PatternMatch.h" 29 #include "llvm/Support/CommandLine.h" 30 #include "llvm/Support/KnownBits.h" 31 #include "llvm/Support/MathExtras.h" 32 #include "llvm/Transforms/Utils/BuildLibCalls.h" 33 #include "llvm/Transforms/Utils/Local.h" 34 #include "llvm/Transforms/Utils/SizeOpts.h" 35 36 using namespace llvm; 37 using namespace PatternMatch; 38 39 static cl::opt<bool> 40 EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, 41 cl::init(false), 42 cl::desc("Enable unsafe double to float " 43 "shrinking for math lib calls")); 44 45 //===----------------------------------------------------------------------===// 46 // Helper Functions 47 //===----------------------------------------------------------------------===// 48 49 static bool ignoreCallingConv(LibFunc Func) { 50 return Func == LibFunc_abs || Func == LibFunc_labs || 51 Func == LibFunc_llabs || Func == LibFunc_strlen; 52 } 53 54 /// Return true if it is only used in equality comparisons with With. 55 static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { 56 for (User *U : V->users()) { 57 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 58 if (IC->isEquality() && IC->getOperand(1) == With) 59 continue; 60 // Unknown instruction. 61 return false; 62 } 63 return true; 64 } 65 66 static bool callHasFloatingPointArgument(const CallInst *CI) { 67 return any_of(CI->operands(), [](const Use &OI) { 68 return OI->getType()->isFloatingPointTy(); 69 }); 70 } 71 72 static bool callHasFP128Argument(const CallInst *CI) { 73 return any_of(CI->operands(), [](const Use &OI) { 74 return OI->getType()->isFP128Ty(); 75 }); 76 } 77 78 static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { 79 if (Base < 2 || Base > 36) 80 // handle special zero base 81 if (Base != 0) 82 return nullptr; 83 84 char *End; 85 std::string nptr = Str.str(); 86 errno = 0; 87 long long int Result = strtoll(nptr.c_str(), &End, Base); 88 if (errno) 89 return nullptr; 90 91 // if we assume all possible target locales are ASCII supersets, 92 // then if strtoll successfully parses a number on the host, 93 // it will also successfully parse the same way on the target 94 if (*End != '\0') 95 return nullptr; 96 97 if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) 98 return nullptr; 99 100 return ConstantInt::get(CI->getType(), Result); 101 } 102 103 static bool isOnlyUsedInComparisonWithZero(Value *V) { 104 for (User *U : V->users()) { 105 if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) 106 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 107 if (C->isNullValue()) 108 continue; 109 // Unknown instruction. 110 return false; 111 } 112 return true; 113 } 114 115 static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, 116 const DataLayout &DL) { 117 if (!isOnlyUsedInComparisonWithZero(CI)) 118 return false; 119 120 if (!isDereferenceableAndAlignedPointer(Str, Align(1), APInt(64, Len), DL)) 121 return false; 122 123 if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) 124 return false; 125 126 return true; 127 } 128 129 static void annotateDereferenceableBytes(CallInst *CI, 130 ArrayRef<unsigned> ArgNos, 131 uint64_t DereferenceableBytes) { 132 const Function *F = CI->getCaller(); 133 if (!F) 134 return; 135 for (unsigned ArgNo : ArgNos) { 136 uint64_t DerefBytes = DereferenceableBytes; 137 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 138 if (!llvm::NullPointerIsDefined(F, AS) || 139 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 140 DerefBytes = std::max(CI->getParamDereferenceableOrNullBytes(ArgNo), 141 DereferenceableBytes); 142 143 if (CI->getParamDereferenceableBytes(ArgNo) < DerefBytes) { 144 CI->removeParamAttr(ArgNo, Attribute::Dereferenceable); 145 if (!llvm::NullPointerIsDefined(F, AS) || 146 CI->paramHasAttr(ArgNo, Attribute::NonNull)) 147 CI->removeParamAttr(ArgNo, Attribute::DereferenceableOrNull); 148 CI->addParamAttr(ArgNo, Attribute::getWithDereferenceableBytes( 149 CI->getContext(), DerefBytes)); 150 } 151 } 152 } 153 154 static void annotateNonNullNoUndefBasedOnAccess(CallInst *CI, 155 ArrayRef<unsigned> ArgNos) { 156 Function *F = CI->getCaller(); 157 if (!F) 158 return; 159 160 for (unsigned ArgNo : ArgNos) { 161 if (!CI->paramHasAttr(ArgNo, Attribute::NoUndef)) 162 CI->addParamAttr(ArgNo, Attribute::NoUndef); 163 164 if (CI->paramHasAttr(ArgNo, Attribute::NonNull)) 165 continue; 166 unsigned AS = CI->getArgOperand(ArgNo)->getType()->getPointerAddressSpace(); 167 if (llvm::NullPointerIsDefined(F, AS)) 168 continue; 169 170 CI->addParamAttr(ArgNo, Attribute::NonNull); 171 annotateDereferenceableBytes(CI, ArgNo, 1); 172 } 173 } 174 175 static void annotateNonNullAndDereferenceable(CallInst *CI, ArrayRef<unsigned> ArgNos, 176 Value *Size, const DataLayout &DL) { 177 if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) { 178 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 179 annotateDereferenceableBytes(CI, ArgNos, LenC->getZExtValue()); 180 } else if (isKnownNonZero(Size, DL)) { 181 annotateNonNullNoUndefBasedOnAccess(CI, ArgNos); 182 const APInt *X, *Y; 183 uint64_t DerefMin = 1; 184 if (match(Size, m_Select(m_Value(), m_APInt(X), m_APInt(Y)))) { 185 DerefMin = std::min(X->getZExtValue(), Y->getZExtValue()); 186 annotateDereferenceableBytes(CI, ArgNos, DerefMin); 187 } 188 } 189 } 190 191 // Copy CallInst "flags" like musttail, notail, and tail. Return New param for 192 // easier chaining. Calls to emit* and B.createCall should probably be wrapped 193 // in this function when New is created to replace Old. Callers should take 194 // care to check Old.isMustTailCall() if they aren't replacing Old directly 195 // with New. 196 static Value *copyFlags(const CallInst &Old, Value *New) { 197 assert(!Old.isMustTailCall() && "do not copy musttail call flags"); 198 assert(!Old.isNoTailCall() && "do not copy notail call flags"); 199 if (auto *NewCI = dyn_cast_or_null<CallInst>(New)) 200 NewCI->setTailCallKind(Old.getTailCallKind()); 201 return New; 202 } 203 204 // Helper to avoid truncating the length if size_t is 32-bits. 205 static StringRef substr(StringRef Str, uint64_t Len) { 206 return Len >= Str.size() ? Str : Str.substr(0, Len); 207 } 208 209 //===----------------------------------------------------------------------===// 210 // String and Memory Library Call Optimizations 211 //===----------------------------------------------------------------------===// 212 213 Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilderBase &B) { 214 // Extract some information from the instruction 215 Value *Dst = CI->getArgOperand(0); 216 Value *Src = CI->getArgOperand(1); 217 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 218 219 // See if we can get the length of the input string. 220 uint64_t Len = GetStringLength(Src); 221 if (Len) 222 annotateDereferenceableBytes(CI, 1, Len); 223 else 224 return nullptr; 225 --Len; // Unbias length. 226 227 // Handle the simple, do-nothing case: strcat(x, "") -> x 228 if (Len == 0) 229 return Dst; 230 231 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, Len, B)); 232 } 233 234 Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, 235 IRBuilderBase &B) { 236 // We need to find the end of the destination string. That's where the 237 // memory is to be moved to. We just generate a call to strlen. 238 Value *DstLen = emitStrLen(Dst, B, DL, TLI); 239 if (!DstLen) 240 return nullptr; 241 242 // Now that we have the destination's length, we must index into the 243 // destination's pointer to get the actual memcpy destination (end of 244 // the string .. we're concatenating). 245 Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); 246 247 // We have enough information to now generate the memcpy call to do the 248 // concatenation for us. Make a memcpy to copy the nul byte with align = 1. 249 B.CreateMemCpy( 250 CpyDst, Align(1), Src, Align(1), 251 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); 252 return Dst; 253 } 254 255 Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilderBase &B) { 256 // Extract some information from the instruction. 257 Value *Dst = CI->getArgOperand(0); 258 Value *Src = CI->getArgOperand(1); 259 Value *Size = CI->getArgOperand(2); 260 uint64_t Len; 261 annotateNonNullNoUndefBasedOnAccess(CI, 0); 262 if (isKnownNonZero(Size, DL)) 263 annotateNonNullNoUndefBasedOnAccess(CI, 1); 264 265 // We don't do anything if length is not constant. 266 ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size); 267 if (LengthArg) { 268 Len = LengthArg->getZExtValue(); 269 // strncat(x, c, 0) -> x 270 if (!Len) 271 return Dst; 272 } else { 273 return nullptr; 274 } 275 276 // See if we can get the length of the input string. 277 uint64_t SrcLen = GetStringLength(Src); 278 if (SrcLen) { 279 annotateDereferenceableBytes(CI, 1, SrcLen); 280 --SrcLen; // Unbias length. 281 } else { 282 return nullptr; 283 } 284 285 // strncat(x, "", c) -> x 286 if (SrcLen == 0) 287 return Dst; 288 289 // We don't optimize this case. 290 if (Len < SrcLen) 291 return nullptr; 292 293 // strncat(x, s, c) -> strcat(x, s) 294 // s is constant so the strcat can be optimized further. 295 return copyFlags(*CI, emitStrLenMemCpy(Src, Dst, SrcLen, B)); 296 } 297 298 Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilderBase &B) { 299 Function *Callee = CI->getCalledFunction(); 300 FunctionType *FT = Callee->getFunctionType(); 301 Value *SrcStr = CI->getArgOperand(0); 302 annotateNonNullNoUndefBasedOnAccess(CI, 0); 303 304 // If the second operand is non-constant, see if we can compute the length 305 // of the input string and turn this into memchr. 306 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 307 if (!CharC) { 308 uint64_t Len = GetStringLength(SrcStr); 309 if (Len) 310 annotateDereferenceableBytes(CI, 0, Len); 311 else 312 return nullptr; 313 if (!FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. 314 return nullptr; 315 316 return copyFlags( 317 *CI, 318 emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. 319 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), B, 320 DL, TLI)); 321 } 322 323 // Otherwise, the character is a constant, see if the first argument is 324 // a string literal. If so, we can constant fold. 325 StringRef Str; 326 if (!getConstantStringInfo(SrcStr, Str)) { 327 if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) 328 if (Value *StrLen = emitStrLen(SrcStr, B, DL, TLI)) 329 return B.CreateGEP(B.getInt8Ty(), SrcStr, StrLen, "strchr"); 330 return nullptr; 331 } 332 333 // Compute the offset, make sure to handle the case when we're searching for 334 // zero (a weird way to spell strlen). 335 size_t I = (0xFF & CharC->getSExtValue()) == 0 336 ? Str.size() 337 : Str.find(CharC->getSExtValue()); 338 if (I == StringRef::npos) // Didn't find the char. strchr returns null. 339 return Constant::getNullValue(CI->getType()); 340 341 // strchr(s+n,c) -> gep(s+n+i,c) 342 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); 343 } 344 345 Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilderBase &B) { 346 Value *SrcStr = CI->getArgOperand(0); 347 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 348 annotateNonNullNoUndefBasedOnAccess(CI, 0); 349 350 // Cannot fold anything if we're not looking for a constant. 351 if (!CharC) 352 return nullptr; 353 354 StringRef Str; 355 if (!getConstantStringInfo(SrcStr, Str)) { 356 // strrchr(s, 0) -> strchr(s, 0) 357 if (CharC->isZero()) 358 return copyFlags(*CI, emitStrChr(SrcStr, '\0', B, TLI)); 359 return nullptr; 360 } 361 362 // Compute the offset. 363 size_t I = (0xFF & CharC->getSExtValue()) == 0 364 ? Str.size() 365 : Str.rfind(CharC->getSExtValue()); 366 if (I == StringRef::npos) // Didn't find the char. Return null. 367 return Constant::getNullValue(CI->getType()); 368 369 // strrchr(s+n,c) -> gep(s+n+i,c) 370 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); 371 } 372 373 Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilderBase &B) { 374 Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); 375 if (Str1P == Str2P) // strcmp(x,x) -> 0 376 return ConstantInt::get(CI->getType(), 0); 377 378 StringRef Str1, Str2; 379 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 380 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 381 382 // strcmp(x, y) -> cnst (if both x and y are constant strings) 383 if (HasStr1 && HasStr2) 384 return ConstantInt::get(CI->getType(), Str1.compare(Str2)); 385 386 if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x 387 return B.CreateNeg(B.CreateZExt( 388 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 389 390 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x 391 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 392 CI->getType()); 393 394 // strcmp(P, "x") -> memcmp(P, "x", 2) 395 uint64_t Len1 = GetStringLength(Str1P); 396 if (Len1) 397 annotateDereferenceableBytes(CI, 0, Len1); 398 uint64_t Len2 = GetStringLength(Str2P); 399 if (Len2) 400 annotateDereferenceableBytes(CI, 1, Len2); 401 402 if (Len1 && Len2) { 403 return copyFlags( 404 *CI, emitMemCmp(Str1P, Str2P, 405 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 406 std::min(Len1, Len2)), 407 B, DL, TLI)); 408 } 409 410 // strcmp to memcmp 411 if (!HasStr1 && HasStr2) { 412 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 413 return copyFlags( 414 *CI, 415 emitMemCmp(Str1P, Str2P, 416 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 417 B, DL, TLI)); 418 } else if (HasStr1 && !HasStr2) { 419 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 420 return copyFlags( 421 *CI, 422 emitMemCmp(Str1P, Str2P, 423 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 424 B, DL, TLI)); 425 } 426 427 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 428 return nullptr; 429 } 430 431 Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilderBase &B) { 432 Value *Str1P = CI->getArgOperand(0); 433 Value *Str2P = CI->getArgOperand(1); 434 Value *Size = CI->getArgOperand(2); 435 if (Str1P == Str2P) // strncmp(x,x,n) -> 0 436 return ConstantInt::get(CI->getType(), 0); 437 438 if (isKnownNonZero(Size, DL)) 439 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 440 // Get the length argument if it is constant. 441 uint64_t Length; 442 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 443 Length = LengthArg->getZExtValue(); 444 else 445 return nullptr; 446 447 if (Length == 0) // strncmp(x,y,0) -> 0 448 return ConstantInt::get(CI->getType(), 0); 449 450 if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) 451 return copyFlags(*CI, emitMemCmp(Str1P, Str2P, Size, B, DL, TLI)); 452 453 StringRef Str1, Str2; 454 bool HasStr1 = getConstantStringInfo(Str1P, Str1); 455 bool HasStr2 = getConstantStringInfo(Str2P, Str2); 456 457 // strncmp(x, y) -> cnst (if both x and y are constant strings) 458 if (HasStr1 && HasStr2) { 459 // Avoid truncating the 64-bit Length to 32 bits in ILP32. 460 StringRef SubStr1 = substr(Str1, Length); 461 StringRef SubStr2 = substr(Str2, Length); 462 return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); 463 } 464 465 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x 466 return B.CreateNeg(B.CreateZExt( 467 B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); 468 469 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x 470 return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), 471 CI->getType()); 472 473 uint64_t Len1 = GetStringLength(Str1P); 474 if (Len1) 475 annotateDereferenceableBytes(CI, 0, Len1); 476 uint64_t Len2 = GetStringLength(Str2P); 477 if (Len2) 478 annotateDereferenceableBytes(CI, 1, Len2); 479 480 // strncmp to memcmp 481 if (!HasStr1 && HasStr2) { 482 Len2 = std::min(Len2, Length); 483 if (canTransformToMemCmp(CI, Str1P, Len2, DL)) 484 return copyFlags( 485 *CI, 486 emitMemCmp(Str1P, Str2P, 487 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), 488 B, DL, TLI)); 489 } else if (HasStr1 && !HasStr2) { 490 Len1 = std::min(Len1, Length); 491 if (canTransformToMemCmp(CI, Str2P, Len1, DL)) 492 return copyFlags( 493 *CI, 494 emitMemCmp(Str1P, Str2P, 495 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), 496 B, DL, TLI)); 497 } 498 499 return nullptr; 500 } 501 502 Value *LibCallSimplifier::optimizeStrNDup(CallInst *CI, IRBuilderBase &B) { 503 Value *Src = CI->getArgOperand(0); 504 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 505 uint64_t SrcLen = GetStringLength(Src); 506 if (SrcLen && Size) { 507 annotateDereferenceableBytes(CI, 0, SrcLen); 508 if (SrcLen <= Size->getZExtValue() + 1) 509 return copyFlags(*CI, emitStrDup(Src, B, TLI)); 510 } 511 512 return nullptr; 513 } 514 515 Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilderBase &B) { 516 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 517 if (Dst == Src) // strcpy(x,x) -> x 518 return Src; 519 520 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 521 // See if we can get the length of the input string. 522 uint64_t Len = GetStringLength(Src); 523 if (Len) 524 annotateDereferenceableBytes(CI, 1, Len); 525 else 526 return nullptr; 527 528 // We have enough information to now generate the memcpy call to do the 529 // copy for us. Make a memcpy to copy the nul byte with align = 1. 530 CallInst *NewCI = 531 B.CreateMemCpy(Dst, Align(1), Src, Align(1), 532 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); 533 NewCI->setAttributes(CI->getAttributes()); 534 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 535 copyFlags(*CI, NewCI); 536 return Dst; 537 } 538 539 Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilderBase &B) { 540 Function *Callee = CI->getCalledFunction(); 541 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); 542 543 // stpcpy(d,s) -> strcpy(d,s) if the result is not used. 544 if (CI->use_empty()) 545 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 546 547 if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) 548 Value *StrLen = emitStrLen(Src, B, DL, TLI); 549 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 550 } 551 552 // See if we can get the length of the input string. 553 uint64_t Len = GetStringLength(Src); 554 if (Len) 555 annotateDereferenceableBytes(CI, 1, Len); 556 else 557 return nullptr; 558 559 Type *PT = Callee->getFunctionType()->getParamType(0); 560 Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); 561 Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, 562 ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); 563 564 // We have enough information to now generate the memcpy call to do the 565 // copy for us. Make a memcpy to copy the nul byte with align = 1. 566 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), LenV); 567 NewCI->setAttributes(CI->getAttributes()); 568 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 569 copyFlags(*CI, NewCI); 570 return DstEnd; 571 } 572 573 Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilderBase &B) { 574 Function *Callee = CI->getCalledFunction(); 575 Value *Dst = CI->getArgOperand(0); 576 Value *Src = CI->getArgOperand(1); 577 Value *Size = CI->getArgOperand(2); 578 annotateNonNullNoUndefBasedOnAccess(CI, 0); 579 if (isKnownNonZero(Size, DL)) 580 annotateNonNullNoUndefBasedOnAccess(CI, 1); 581 582 uint64_t Len; 583 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(Size)) 584 Len = LengthArg->getZExtValue(); 585 else 586 return nullptr; 587 588 // strncpy(x, y, 0) -> x 589 if (Len == 0) 590 return Dst; 591 592 // See if we can get the length of the input string. 593 uint64_t SrcLen = GetStringLength(Src); 594 if (SrcLen) { 595 annotateDereferenceableBytes(CI, 1, SrcLen); 596 --SrcLen; // Unbias length. 597 } else { 598 return nullptr; 599 } 600 601 if (SrcLen == 0) { 602 // strncpy(x, "", y) -> memset(x, '\0', y) 603 Align MemSetAlign = 604 CI->getAttributes().getParamAttrs(0).getAlignment().valueOrOne(); 605 CallInst *NewCI = B.CreateMemSet(Dst, B.getInt8('\0'), Size, MemSetAlign); 606 AttrBuilder ArgAttrs(CI->getContext(), CI->getAttributes().getParamAttrs(0)); 607 NewCI->setAttributes(NewCI->getAttributes().addParamAttributes( 608 CI->getContext(), 0, ArgAttrs)); 609 copyFlags(*CI, NewCI); 610 return Dst; 611 } 612 613 // strncpy(a, "a", 4) - > memcpy(a, "a\0\0\0", 4) 614 if (Len > SrcLen + 1) { 615 if (Len <= 128) { 616 StringRef Str; 617 if (!getConstantStringInfo(Src, Str)) 618 return nullptr; 619 std::string SrcStr = Str.str(); 620 SrcStr.resize(Len, '\0'); 621 Src = B.CreateGlobalString(SrcStr, "str"); 622 } else { 623 return nullptr; 624 } 625 } 626 627 Type *PT = Callee->getFunctionType()->getParamType(0); 628 // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] 629 CallInst *NewCI = B.CreateMemCpy(Dst, Align(1), Src, Align(1), 630 ConstantInt::get(DL.getIntPtrType(PT), Len)); 631 NewCI->setAttributes(CI->getAttributes()); 632 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 633 copyFlags(*CI, NewCI); 634 return Dst; 635 } 636 637 Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilderBase &B, 638 unsigned CharSize, 639 Value *Bound) { 640 Value *Src = CI->getArgOperand(0); 641 Type *CharTy = B.getIntNTy(CharSize); 642 643 if (isOnlyUsedInZeroEqualityComparison(CI) && 644 (!Bound || isKnownNonZero(Bound, DL))) { 645 // Fold strlen: 646 // strlen(x) != 0 --> *x != 0 647 // strlen(x) == 0 --> *x == 0 648 // and likewise strnlen with constant N > 0: 649 // strnlen(x, N) != 0 --> *x != 0 650 // strnlen(x, N) == 0 --> *x == 0 651 return B.CreateZExt(B.CreateLoad(CharTy, Src, "char0"), 652 CI->getType()); 653 } 654 655 if (Bound) { 656 if (ConstantInt *BoundCst = dyn_cast<ConstantInt>(Bound)) { 657 if (BoundCst->isZero()) 658 // Fold strnlen(s, 0) -> 0 for any s, constant or otherwise. 659 return ConstantInt::get(CI->getType(), 0); 660 661 if (BoundCst->isOne()) { 662 // Fold strnlen(s, 1) -> *s ? 1 : 0 for any s. 663 Value *CharVal = B.CreateLoad(CharTy, Src, "strnlen.char0"); 664 Value *ZeroChar = ConstantInt::get(CharTy, 0); 665 Value *Cmp = B.CreateICmpNE(CharVal, ZeroChar, "strnlen.char0cmp"); 666 return B.CreateZExt(Cmp, CI->getType()); 667 } 668 } 669 } 670 671 if (uint64_t Len = GetStringLength(Src, CharSize)) { 672 Value *LenC = ConstantInt::get(CI->getType(), Len - 1); 673 // Fold strlen("xyz") -> 3 and strnlen("xyz", 2) -> 2 674 // and strnlen("xyz", Bound) -> min(3, Bound) for nonconstant Bound. 675 if (Bound) 676 return B.CreateBinaryIntrinsic(Intrinsic::umin, LenC, Bound); 677 return LenC; 678 } 679 680 if (Bound) 681 // Punt for strnlen for now. 682 return nullptr; 683 684 // If s is a constant pointer pointing to a string literal, we can fold 685 // strlen(s + x) to strlen(s) - x, when x is known to be in the range 686 // [0, strlen(s)] or the string has a single null terminator '\0' at the end. 687 // We only try to simplify strlen when the pointer s points to an array 688 // of i8. Otherwise, we would need to scale the offset x before doing the 689 // subtraction. This will make the optimization more complex, and it's not 690 // very useful because calling strlen for a pointer of other types is 691 // very uncommon. 692 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { 693 if (!isGEPBasedOnPointerToString(GEP, CharSize)) 694 return nullptr; 695 696 ConstantDataArraySlice Slice; 697 if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { 698 uint64_t NullTermIdx; 699 if (Slice.Array == nullptr) { 700 NullTermIdx = 0; 701 } else { 702 NullTermIdx = ~((uint64_t)0); 703 for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { 704 if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { 705 NullTermIdx = I; 706 break; 707 } 708 } 709 // If the string does not have '\0', leave it to strlen to compute 710 // its length. 711 if (NullTermIdx == ~((uint64_t)0)) 712 return nullptr; 713 } 714 715 Value *Offset = GEP->getOperand(2); 716 KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); 717 uint64_t ArrSize = 718 cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); 719 720 // If Offset is not provably in the range [0, NullTermIdx], we can still 721 // optimize if we can prove that the program has undefined behavior when 722 // Offset is outside that range. That is the case when GEP->getOperand(0) 723 // is a pointer to an object whose memory extent is NullTermIdx+1. 724 if ((Known.isNonNegative() && Known.getMaxValue().ule(NullTermIdx)) || 725 (isa<GlobalVariable>(GEP->getOperand(0)) && 726 NullTermIdx == ArrSize - 1)) { 727 Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); 728 return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), 729 Offset); 730 } 731 } 732 } 733 734 // strlen(x?"foo":"bars") --> x ? 3 : 4 735 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { 736 uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); 737 uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); 738 if (LenTrue && LenFalse) { 739 ORE.emit([&]() { 740 return OptimizationRemark("instcombine", "simplify-libcalls", CI) 741 << "folded strlen(select) to select of constants"; 742 }); 743 return B.CreateSelect(SI->getCondition(), 744 ConstantInt::get(CI->getType(), LenTrue - 1), 745 ConstantInt::get(CI->getType(), LenFalse - 1)); 746 } 747 } 748 749 return nullptr; 750 } 751 752 Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilderBase &B) { 753 if (Value *V = optimizeStringLength(CI, B, 8)) 754 return V; 755 annotateNonNullNoUndefBasedOnAccess(CI, 0); 756 return nullptr; 757 } 758 759 Value *LibCallSimplifier::optimizeStrNLen(CallInst *CI, IRBuilderBase &B) { 760 Value *Bound = CI->getArgOperand(1); 761 if (Value *V = optimizeStringLength(CI, B, 8, Bound)) 762 return V; 763 764 if (isKnownNonZero(Bound, DL)) 765 annotateNonNullNoUndefBasedOnAccess(CI, 0); 766 return nullptr; 767 } 768 769 Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilderBase &B) { 770 Module &M = *CI->getModule(); 771 unsigned WCharSize = TLI->getWCharSize(M) * 8; 772 // We cannot perform this optimization without wchar_size metadata. 773 if (WCharSize == 0) 774 return nullptr; 775 776 return optimizeStringLength(CI, B, WCharSize); 777 } 778 779 Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilderBase &B) { 780 StringRef S1, S2; 781 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 782 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 783 784 // strpbrk(s, "") -> nullptr 785 // strpbrk("", s) -> nullptr 786 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 787 return Constant::getNullValue(CI->getType()); 788 789 // Constant folding. 790 if (HasS1 && HasS2) { 791 size_t I = S1.find_first_of(S2); 792 if (I == StringRef::npos) // No match. 793 return Constant::getNullValue(CI->getType()); 794 795 return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), 796 "strpbrk"); 797 } 798 799 // strpbrk(s, "a") -> strchr(s, 'a') 800 if (HasS2 && S2.size() == 1) 801 return copyFlags(*CI, emitStrChr(CI->getArgOperand(0), S2[0], B, TLI)); 802 803 return nullptr; 804 } 805 806 Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilderBase &B) { 807 Value *EndPtr = CI->getArgOperand(1); 808 if (isa<ConstantPointerNull>(EndPtr)) { 809 // With a null EndPtr, this function won't capture the main argument. 810 // It would be readonly too, except that it still may write to errno. 811 CI->addParamAttr(0, Attribute::NoCapture); 812 } 813 814 return nullptr; 815 } 816 817 Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilderBase &B) { 818 StringRef S1, S2; 819 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 820 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 821 822 // strspn(s, "") -> 0 823 // strspn("", s) -> 0 824 if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) 825 return Constant::getNullValue(CI->getType()); 826 827 // Constant folding. 828 if (HasS1 && HasS2) { 829 size_t Pos = S1.find_first_not_of(S2); 830 if (Pos == StringRef::npos) 831 Pos = S1.size(); 832 return ConstantInt::get(CI->getType(), Pos); 833 } 834 835 return nullptr; 836 } 837 838 Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilderBase &B) { 839 StringRef S1, S2; 840 bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); 841 bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); 842 843 // strcspn("", s) -> 0 844 if (HasS1 && S1.empty()) 845 return Constant::getNullValue(CI->getType()); 846 847 // Constant folding. 848 if (HasS1 && HasS2) { 849 size_t Pos = S1.find_first_of(S2); 850 if (Pos == StringRef::npos) 851 Pos = S1.size(); 852 return ConstantInt::get(CI->getType(), Pos); 853 } 854 855 // strcspn(s, "") -> strlen(s) 856 if (HasS2 && S2.empty()) 857 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, DL, TLI)); 858 859 return nullptr; 860 } 861 862 Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilderBase &B) { 863 // fold strstr(x, x) -> x. 864 if (CI->getArgOperand(0) == CI->getArgOperand(1)) 865 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 866 867 // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 868 if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { 869 Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); 870 if (!StrLen) 871 return nullptr; 872 Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), 873 StrLen, B, DL, TLI); 874 if (!StrNCmp) 875 return nullptr; 876 for (User *U : llvm::make_early_inc_range(CI->users())) { 877 ICmpInst *Old = cast<ICmpInst>(U); 878 Value *Cmp = 879 B.CreateICmp(Old->getPredicate(), StrNCmp, 880 ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); 881 replaceAllUsesWith(Old, Cmp); 882 } 883 return CI; 884 } 885 886 // See if either input string is a constant string. 887 StringRef SearchStr, ToFindStr; 888 bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); 889 bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); 890 891 // fold strstr(x, "") -> x. 892 if (HasStr2 && ToFindStr.empty()) 893 return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); 894 895 // If both strings are known, constant fold it. 896 if (HasStr1 && HasStr2) { 897 size_t Offset = SearchStr.find(ToFindStr); 898 899 if (Offset == StringRef::npos) // strstr("foo", "bar") -> null 900 return Constant::getNullValue(CI->getType()); 901 902 // strstr("abcd", "bc") -> gep((char*)"abcd", 1) 903 Value *Result = castToCStr(CI->getArgOperand(0), B); 904 Result = 905 B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); 906 return B.CreateBitCast(Result, CI->getType()); 907 } 908 909 // fold strstr(x, "y") -> strchr(x, 'y'). 910 if (HasStr2 && ToFindStr.size() == 1) { 911 Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); 912 return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; 913 } 914 915 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 916 return nullptr; 917 } 918 919 Value *LibCallSimplifier::optimizeMemRChr(CallInst *CI, IRBuilderBase &B) { 920 Value *SrcStr = CI->getArgOperand(0); 921 Value *Size = CI->getArgOperand(2); 922 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 923 Value *CharVal = CI->getArgOperand(1); 924 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 925 Value *NullPtr = Constant::getNullValue(CI->getType()); 926 927 if (LenC) { 928 if (LenC->isZero()) 929 // Fold memrchr(x, y, 0) --> null. 930 return NullPtr; 931 932 if (LenC->isOne()) { 933 // Fold memrchr(x, y, 1) --> *x == y ? x : null for any x and y, 934 // constant or otherwise. 935 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memrchr.char0"); 936 // Slice off the character's high end bits. 937 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 938 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memrchr.char0cmp"); 939 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memrchr.sel"); 940 } 941 } 942 943 StringRef Str; 944 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 945 return nullptr; 946 947 uint64_t EndOff = UINT64_MAX; 948 if (LenC) { 949 EndOff = LenC->getZExtValue(); 950 if (Str.size() < EndOff) 951 // Punt out-of-bounds accesses to sanitizers and/or libc. 952 return nullptr; 953 } 954 955 if (ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal)) { 956 // Fold memrchr(S, C, N) for a constant C. 957 size_t Pos = Str.rfind(CharC->getZExtValue(), EndOff); 958 if (Pos == StringRef::npos) 959 // When the character is not in the source array fold the result 960 // to null regardless of Size. 961 return NullPtr; 962 963 if (LenC) 964 // Fold memrchr(s, c, N) --> s + Pos for constant N > Pos. 965 return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos)); 966 967 if (Str.find(CharC->getZExtValue(), Pos) == StringRef::npos) { 968 // When there is just a single occurrence of C in S, fold 969 // memrchr(s, c, N) --> N <= Pos ? null : s + Pos 970 // for nonconstant N. 971 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), 972 Pos), 973 "memrchr.cmp"); 974 Value *SrcPlus = B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), 975 "memrchr.ptr_plus"); 976 return B.CreateSelect(Cmp, NullPtr, SrcPlus, "memrchr.sel"); 977 } 978 } 979 980 // Truncate the string to search at most EndOff characters. 981 Str = Str.substr(0, EndOff); 982 if (Str.find_first_not_of(Str[0]) != StringRef::npos) 983 return nullptr; 984 985 // If the source array consists of all equal characters, then for any 986 // C and N (whether in bounds or not), fold memrchr(S, C, N) to 987 // N != 0 && *S == C ? S + N - 1 : null 988 Type *SizeTy = Size->getType(); 989 Type *Int8Ty = B.getInt8Ty(); 990 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 991 // Slice off the sought character's high end bits. 992 CharVal = B.CreateTrunc(CharVal, Int8Ty); 993 Value *CEqS0 = B.CreateICmpEQ(ConstantInt::get(Int8Ty, Str[0]), CharVal); 994 Value *And = B.CreateLogicalAnd(NNeZ, CEqS0); 995 Value *SizeM1 = B.CreateSub(Size, ConstantInt::get(SizeTy, 1)); 996 Value *SrcPlus = B.CreateGEP(Int8Ty, SrcStr, SizeM1, "memrchr.ptr_plus"); 997 return B.CreateSelect(And, SrcPlus, NullPtr, "memrchr.sel"); 998 } 999 1000 Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilderBase &B) { 1001 Value *SrcStr = CI->getArgOperand(0); 1002 Value *Size = CI->getArgOperand(2); 1003 if (isKnownNonZero(Size, DL)) 1004 annotateNonNullNoUndefBasedOnAccess(CI, 0); 1005 1006 Value *CharVal = CI->getArgOperand(1); 1007 ConstantInt *CharC = dyn_cast<ConstantInt>(CharVal); 1008 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1009 Value *NullPtr = Constant::getNullValue(CI->getType()); 1010 1011 // memchr(x, y, 0) -> null 1012 if (LenC) { 1013 if (LenC->isZero()) 1014 return NullPtr; 1015 1016 if (LenC->isOne()) { 1017 // Fold memchr(x, y, 1) --> *x == y ? x : null for any x and y, 1018 // constant or otherwise. 1019 Value *Val = B.CreateLoad(B.getInt8Ty(), SrcStr, "memchr.char0"); 1020 // Slice off the character's high end bits. 1021 CharVal = B.CreateTrunc(CharVal, B.getInt8Ty()); 1022 Value *Cmp = B.CreateICmpEQ(Val, CharVal, "memchr.char0cmp"); 1023 return B.CreateSelect(Cmp, SrcStr, NullPtr, "memchr.sel"); 1024 } 1025 } 1026 1027 StringRef Str; 1028 if (!getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) 1029 return nullptr; 1030 1031 if (CharC) { 1032 size_t Pos = Str.find(CharC->getZExtValue()); 1033 if (Pos == StringRef::npos) 1034 // When the character is not in the source array fold the result 1035 // to null regardless of Size. 1036 return NullPtr; 1037 1038 // Fold memchr(s, c, n) -> n <= Pos ? null : s + Pos 1039 // When the constant Size is less than or equal to the character 1040 // position also fold the result to null. 1041 Value *Cmp = B.CreateICmpULE(Size, ConstantInt::get(Size->getType(), Pos), 1042 "memchr.cmp"); 1043 Value *SrcPlus = 1044 B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(Pos), "memchr.ptr"); 1045 return B.CreateSelect(Cmp, NullPtr, SrcPlus); 1046 } 1047 1048 if (LenC) 1049 Str = substr(Str, LenC->getZExtValue()); 1050 1051 size_t Pos = Str.find_first_not_of(Str[0]); 1052 if (Pos == StringRef::npos 1053 || Str.find_first_not_of(Str[Pos], Pos) == StringRef::npos) { 1054 // If the source array consists of at most two consecutive sequences 1055 // of the same characters, then for any C and N (whether in bounds or 1056 // not), fold memchr(S, C, N) to 1057 // N != 0 && *S == C ? S : null 1058 // or for the two sequences to: 1059 // N != 0 && *S == C ? S : (N > Pos && S[Pos] == C ? S + Pos : null) 1060 // ^Sel2 ^Sel1 are denoted above. 1061 // The latter makes it also possible to fold strchr() calls with strings 1062 // of the same characters. 1063 Type *SizeTy = Size->getType(); 1064 Type *Int8Ty = B.getInt8Ty(); 1065 1066 // Slice off the sought character's high end bits. 1067 CharVal = B.CreateTrunc(CharVal, Int8Ty); 1068 1069 Value *Sel1 = NullPtr; 1070 if (Pos != StringRef::npos) { 1071 // Handle two consecutive sequences of the same characters. 1072 Value *PosVal = ConstantInt::get(SizeTy, Pos); 1073 Value *StrPos = ConstantInt::get(Int8Ty, Str[Pos]); 1074 Value *CEqSPos = B.CreateICmpEQ(CharVal, StrPos); 1075 Value *NGtPos = B.CreateICmp(ICmpInst::ICMP_UGT, Size, PosVal); 1076 Value *And = B.CreateAnd(CEqSPos, NGtPos); 1077 Value *SrcPlus = B.CreateInBoundsGEP(B.getInt8Ty(), SrcStr, PosVal); 1078 Sel1 = B.CreateSelect(And, SrcPlus, NullPtr, "memchr.sel1"); 1079 } 1080 1081 Value *Str0 = ConstantInt::get(Int8Ty, Str[0]); 1082 Value *CEqS0 = B.CreateICmpEQ(Str0, CharVal); 1083 Value *NNeZ = B.CreateICmpNE(Size, ConstantInt::get(SizeTy, 0)); 1084 Value *And = B.CreateAnd(NNeZ, CEqS0); 1085 return B.CreateSelect(And, SrcStr, Sel1, "memchr.sel2"); 1086 } 1087 1088 if (!LenC) 1089 // From now on we need a constant length and constant array. 1090 return nullptr; 1091 1092 // If the char is variable but the input str and length are not we can turn 1093 // this memchr call into a simple bit field test. Of course this only works 1094 // when the return value is only checked against null. 1095 // 1096 // It would be really nice to reuse switch lowering here but we can't change 1097 // the CFG at this point. 1098 // 1099 // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) 1100 // != 0 1101 // after bounds check. 1102 if (Str.empty() || !isOnlyUsedInZeroEqualityComparison(CI)) 1103 return nullptr; 1104 1105 unsigned char Max = 1106 *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), 1107 reinterpret_cast<const unsigned char *>(Str.end())); 1108 1109 // Make sure the bit field we're about to create fits in a register on the 1110 // target. 1111 // FIXME: On a 64 bit architecture this prevents us from using the 1112 // interesting range of alpha ascii chars. We could do better by emitting 1113 // two bitfields or shifting the range by 64 if no lower chars are used. 1114 if (!DL.fitsInLegalInteger(Max + 1)) 1115 return nullptr; 1116 1117 // For the bit field use a power-of-2 type with at least 8 bits to avoid 1118 // creating unnecessary illegal types. 1119 unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); 1120 1121 // Now build the bit field. 1122 APInt Bitfield(Width, 0); 1123 for (char C : Str) 1124 Bitfield.setBit((unsigned char)C); 1125 Value *BitfieldC = B.getInt(Bitfield); 1126 1127 // Adjust width of "C" to the bitfield width, then mask off the high bits. 1128 Value *C = B.CreateZExtOrTrunc(CharVal, BitfieldC->getType()); 1129 C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); 1130 1131 // First check that the bit field access is within bounds. 1132 Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), 1133 "memchr.bounds"); 1134 1135 // Create code that checks if the given bit is set in the field. 1136 Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); 1137 Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); 1138 1139 // Finally merge both checks and cast to pointer type. The inttoptr 1140 // implicitly zexts the i1 to intptr type. 1141 return B.CreateIntToPtr(B.CreateLogicalAnd(Bounds, Bits, "memchr"), 1142 CI->getType()); 1143 } 1144 1145 static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, 1146 uint64_t Len, IRBuilderBase &B, 1147 const DataLayout &DL) { 1148 if (Len == 0) // memcmp(s1,s2,0) -> 0 1149 return Constant::getNullValue(CI->getType()); 1150 1151 // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS 1152 if (Len == 1) { 1153 Value *LHSV = 1154 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), 1155 CI->getType(), "lhsv"); 1156 Value *RHSV = 1157 B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), 1158 CI->getType(), "rhsv"); 1159 return B.CreateSub(LHSV, RHSV, "chardiff"); 1160 } 1161 1162 // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 1163 // TODO: The case where both inputs are constants does not need to be limited 1164 // to legal integers or equality comparison. See block below this. 1165 if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { 1166 IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); 1167 unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); 1168 1169 // First, see if we can fold either argument to a constant. 1170 Value *LHSV = nullptr; 1171 if (auto *LHSC = dyn_cast<Constant>(LHS)) { 1172 LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); 1173 LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); 1174 } 1175 Value *RHSV = nullptr; 1176 if (auto *RHSC = dyn_cast<Constant>(RHS)) { 1177 RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); 1178 RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); 1179 } 1180 1181 // Don't generate unaligned loads. If either source is constant data, 1182 // alignment doesn't matter for that source because there is no load. 1183 if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && 1184 (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { 1185 if (!LHSV) { 1186 Type *LHSPtrTy = 1187 IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); 1188 LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); 1189 } 1190 if (!RHSV) { 1191 Type *RHSPtrTy = 1192 IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); 1193 RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); 1194 } 1195 return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); 1196 } 1197 } 1198 1199 // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). 1200 // TODO: This is limited to i8 arrays. 1201 StringRef LHSStr, RHSStr; 1202 if (getConstantStringInfo(LHS, LHSStr) && 1203 getConstantStringInfo(RHS, RHSStr)) { 1204 // Make sure we're not reading out-of-bounds memory. 1205 if (Len > LHSStr.size() || Len > RHSStr.size()) 1206 return nullptr; 1207 // Fold the memcmp and normalize the result. This way we get consistent 1208 // results across multiple platforms. 1209 uint64_t Ret = 0; 1210 int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); 1211 if (Cmp < 0) 1212 Ret = -1; 1213 else if (Cmp > 0) 1214 Ret = 1; 1215 return ConstantInt::get(CI->getType(), Ret); 1216 } 1217 1218 return nullptr; 1219 } 1220 1221 // Most simplifications for memcmp also apply to bcmp. 1222 Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, 1223 IRBuilderBase &B) { 1224 Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); 1225 Value *Size = CI->getArgOperand(2); 1226 1227 if (LHS == RHS) // memcmp(s,s,x) -> 0 1228 return Constant::getNullValue(CI->getType()); 1229 1230 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1231 // Handle constant lengths. 1232 ConstantInt *LenC = dyn_cast<ConstantInt>(Size); 1233 if (!LenC) 1234 return nullptr; 1235 1236 // memcmp(d,s,0) -> 0 1237 if (LenC->getZExtValue() == 0) 1238 return Constant::getNullValue(CI->getType()); 1239 1240 if (Value *Res = 1241 optimizeMemCmpConstantSize(CI, LHS, RHS, LenC->getZExtValue(), B, DL)) 1242 return Res; 1243 return nullptr; 1244 } 1245 1246 Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilderBase &B) { 1247 Module *M = CI->getModule(); 1248 if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) 1249 return V; 1250 1251 // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 1252 // bcmp can be more efficient than memcmp because it only has to know that 1253 // there is a difference, not how different one is to the other. 1254 if (isLibFuncEmittable(M, TLI, LibFunc_bcmp) && 1255 isOnlyUsedInZeroEqualityComparison(CI)) { 1256 Value *LHS = CI->getArgOperand(0); 1257 Value *RHS = CI->getArgOperand(1); 1258 Value *Size = CI->getArgOperand(2); 1259 return copyFlags(*CI, emitBCmp(LHS, RHS, Size, B, DL, TLI)); 1260 } 1261 1262 return nullptr; 1263 } 1264 1265 Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilderBase &B) { 1266 return optimizeMemCmpBCmpCommon(CI, B); 1267 } 1268 1269 Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilderBase &B) { 1270 Value *Size = CI->getArgOperand(2); 1271 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1272 if (isa<IntrinsicInst>(CI)) 1273 return nullptr; 1274 1275 // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) 1276 CallInst *NewCI = B.CreateMemCpy(CI->getArgOperand(0), Align(1), 1277 CI->getArgOperand(1), Align(1), Size); 1278 NewCI->setAttributes(CI->getAttributes()); 1279 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1280 copyFlags(*CI, NewCI); 1281 return CI->getArgOperand(0); 1282 } 1283 1284 Value *LibCallSimplifier::optimizeMemCCpy(CallInst *CI, IRBuilderBase &B) { 1285 Value *Dst = CI->getArgOperand(0); 1286 Value *Src = CI->getArgOperand(1); 1287 ConstantInt *StopChar = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 1288 ConstantInt *N = dyn_cast<ConstantInt>(CI->getArgOperand(3)); 1289 StringRef SrcStr; 1290 if (CI->use_empty() && Dst == Src) 1291 return Dst; 1292 // memccpy(d, s, c, 0) -> nullptr 1293 if (N) { 1294 if (N->isNullValue()) 1295 return Constant::getNullValue(CI->getType()); 1296 if (!getConstantStringInfo(Src, SrcStr, /*Offset=*/0, 1297 /*TrimAtNul=*/false) || 1298 !StopChar) 1299 return nullptr; 1300 } else { 1301 return nullptr; 1302 } 1303 1304 // Wrap arg 'c' of type int to char 1305 size_t Pos = SrcStr.find(StopChar->getSExtValue() & 0xFF); 1306 if (Pos == StringRef::npos) { 1307 if (N->getZExtValue() <= SrcStr.size()) { 1308 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), 1309 CI->getArgOperand(3))); 1310 return Constant::getNullValue(CI->getType()); 1311 } 1312 return nullptr; 1313 } 1314 1315 Value *NewN = 1316 ConstantInt::get(N->getType(), std::min(uint64_t(Pos + 1), N->getZExtValue())); 1317 // memccpy -> llvm.memcpy 1318 copyFlags(*CI, B.CreateMemCpy(Dst, Align(1), Src, Align(1), NewN)); 1319 return Pos + 1 <= N->getZExtValue() 1320 ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, NewN) 1321 : Constant::getNullValue(CI->getType()); 1322 } 1323 1324 Value *LibCallSimplifier::optimizeMemPCpy(CallInst *CI, IRBuilderBase &B) { 1325 Value *Dst = CI->getArgOperand(0); 1326 Value *N = CI->getArgOperand(2); 1327 // mempcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n), x + n 1328 CallInst *NewCI = 1329 B.CreateMemCpy(Dst, Align(1), CI->getArgOperand(1), Align(1), N); 1330 // Propagate attributes, but memcpy has no return value, so make sure that 1331 // any return attributes are compliant. 1332 // TODO: Attach return value attributes to the 1st operand to preserve them? 1333 NewCI->setAttributes(CI->getAttributes()); 1334 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1335 copyFlags(*CI, NewCI); 1336 return B.CreateInBoundsGEP(B.getInt8Ty(), Dst, N); 1337 } 1338 1339 Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilderBase &B) { 1340 Value *Size = CI->getArgOperand(2); 1341 annotateNonNullAndDereferenceable(CI, {0, 1}, Size, DL); 1342 if (isa<IntrinsicInst>(CI)) 1343 return nullptr; 1344 1345 // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) 1346 CallInst *NewCI = B.CreateMemMove(CI->getArgOperand(0), Align(1), 1347 CI->getArgOperand(1), Align(1), Size); 1348 NewCI->setAttributes(CI->getAttributes()); 1349 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1350 copyFlags(*CI, NewCI); 1351 return CI->getArgOperand(0); 1352 } 1353 1354 Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilderBase &B) { 1355 Value *Size = CI->getArgOperand(2); 1356 annotateNonNullAndDereferenceable(CI, 0, Size, DL); 1357 if (isa<IntrinsicInst>(CI)) 1358 return nullptr; 1359 1360 // memset(p, v, n) -> llvm.memset(align 1 p, v, n) 1361 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 1362 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, Size, Align(1)); 1363 NewCI->setAttributes(CI->getAttributes()); 1364 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 1365 copyFlags(*CI, NewCI); 1366 return CI->getArgOperand(0); 1367 } 1368 1369 Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilderBase &B) { 1370 if (isa<ConstantPointerNull>(CI->getArgOperand(0))) 1371 return copyFlags(*CI, emitMalloc(CI->getArgOperand(1), B, DL, TLI)); 1372 1373 return nullptr; 1374 } 1375 1376 //===----------------------------------------------------------------------===// 1377 // Math Library Optimizations 1378 //===----------------------------------------------------------------------===// 1379 1380 // Replace a libcall \p CI with a call to intrinsic \p IID 1381 static Value *replaceUnaryCall(CallInst *CI, IRBuilderBase &B, 1382 Intrinsic::ID IID) { 1383 // Propagate fast-math flags from the existing call to the new call. 1384 IRBuilderBase::FastMathFlagGuard Guard(B); 1385 B.setFastMathFlags(CI->getFastMathFlags()); 1386 1387 Module *M = CI->getModule(); 1388 Value *V = CI->getArgOperand(0); 1389 Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); 1390 CallInst *NewCall = B.CreateCall(F, V); 1391 NewCall->takeName(CI); 1392 return copyFlags(*CI, NewCall); 1393 } 1394 1395 /// Return a variant of Val with float type. 1396 /// Currently this works in two cases: If Val is an FPExtension of a float 1397 /// value to something bigger, simply return the operand. 1398 /// If Val is a ConstantFP but can be converted to a float ConstantFP without 1399 /// loss of precision do so. 1400 static Value *valueHasFloatPrecision(Value *Val) { 1401 if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { 1402 Value *Op = Cast->getOperand(0); 1403 if (Op->getType()->isFloatTy()) 1404 return Op; 1405 } 1406 if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { 1407 APFloat F = Const->getValueAPF(); 1408 bool losesInfo; 1409 (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 1410 &losesInfo); 1411 if (!losesInfo) 1412 return ConstantFP::get(Const->getContext(), F); 1413 } 1414 return nullptr; 1415 } 1416 1417 /// Shrink double -> float functions. 1418 static Value *optimizeDoubleFP(CallInst *CI, IRBuilderBase &B, 1419 bool isBinary, const TargetLibraryInfo *TLI, 1420 bool isPrecise = false) { 1421 Function *CalleeFn = CI->getCalledFunction(); 1422 if (!CI->getType()->isDoubleTy() || !CalleeFn) 1423 return nullptr; 1424 1425 // If not all the uses of the function are converted to float, then bail out. 1426 // This matters if the precision of the result is more important than the 1427 // precision of the arguments. 1428 if (isPrecise) 1429 for (User *U : CI->users()) { 1430 FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); 1431 if (!Cast || !Cast->getType()->isFloatTy()) 1432 return nullptr; 1433 } 1434 1435 // If this is something like 'g((double) float)', convert to 'gf(float)'. 1436 Value *V[2]; 1437 V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); 1438 V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; 1439 if (!V[0] || (isBinary && !V[1])) 1440 return nullptr; 1441 1442 // If call isn't an intrinsic, check that it isn't within a function with the 1443 // same name as the float version of this call, otherwise the result is an 1444 // infinite loop. For example, from MinGW-w64: 1445 // 1446 // float expf(float val) { return (float) exp((double) val); } 1447 StringRef CalleeName = CalleeFn->getName(); 1448 bool IsIntrinsic = CalleeFn->isIntrinsic(); 1449 if (!IsIntrinsic) { 1450 StringRef CallerName = CI->getFunction()->getName(); 1451 if (!CallerName.empty() && CallerName.back() == 'f' && 1452 CallerName.size() == (CalleeName.size() + 1) && 1453 CallerName.startswith(CalleeName)) 1454 return nullptr; 1455 } 1456 1457 // Propagate the math semantics from the current function to the new function. 1458 IRBuilderBase::FastMathFlagGuard Guard(B); 1459 B.setFastMathFlags(CI->getFastMathFlags()); 1460 1461 // g((double) float) -> (double) gf(float) 1462 Value *R; 1463 if (IsIntrinsic) { 1464 Module *M = CI->getModule(); 1465 Intrinsic::ID IID = CalleeFn->getIntrinsicID(); 1466 Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); 1467 R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); 1468 } else { 1469 AttributeList CalleeAttrs = CalleeFn->getAttributes(); 1470 R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], TLI, CalleeName, B, 1471 CalleeAttrs) 1472 : emitUnaryFloatFnCall(V[0], TLI, CalleeName, B, CalleeAttrs); 1473 } 1474 return B.CreateFPExt(R, B.getDoubleTy()); 1475 } 1476 1477 /// Shrink double -> float for unary functions. 1478 static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1479 const TargetLibraryInfo *TLI, 1480 bool isPrecise = false) { 1481 return optimizeDoubleFP(CI, B, false, TLI, isPrecise); 1482 } 1483 1484 /// Shrink double -> float for binary functions. 1485 static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilderBase &B, 1486 const TargetLibraryInfo *TLI, 1487 bool isPrecise = false) { 1488 return optimizeDoubleFP(CI, B, true, TLI, isPrecise); 1489 } 1490 1491 // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) 1492 Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilderBase &B) { 1493 if (!CI->isFast()) 1494 return nullptr; 1495 1496 // Propagate fast-math flags from the existing call to new instructions. 1497 IRBuilderBase::FastMathFlagGuard Guard(B); 1498 B.setFastMathFlags(CI->getFastMathFlags()); 1499 1500 Value *Real, *Imag; 1501 if (CI->arg_size() == 1) { 1502 Value *Op = CI->getArgOperand(0); 1503 assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); 1504 Real = B.CreateExtractValue(Op, 0, "real"); 1505 Imag = B.CreateExtractValue(Op, 1, "imag"); 1506 } else { 1507 assert(CI->arg_size() == 2 && "Unexpected signature for cabs!"); 1508 Real = CI->getArgOperand(0); 1509 Imag = CI->getArgOperand(1); 1510 } 1511 1512 Value *RealReal = B.CreateFMul(Real, Real); 1513 Value *ImagImag = B.CreateFMul(Imag, Imag); 1514 1515 Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, 1516 CI->getType()); 1517 return copyFlags( 1518 *CI, B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs")); 1519 } 1520 1521 static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, 1522 IRBuilderBase &B) { 1523 if (!isa<FPMathOperator>(Call)) 1524 return nullptr; 1525 1526 IRBuilderBase::FastMathFlagGuard Guard(B); 1527 B.setFastMathFlags(Call->getFastMathFlags()); 1528 1529 // TODO: Can this be shared to also handle LLVM intrinsics? 1530 Value *X; 1531 switch (Func) { 1532 case LibFunc_sin: 1533 case LibFunc_sinf: 1534 case LibFunc_sinl: 1535 case LibFunc_tan: 1536 case LibFunc_tanf: 1537 case LibFunc_tanl: 1538 // sin(-X) --> -sin(X) 1539 // tan(-X) --> -tan(X) 1540 if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) 1541 return B.CreateFNeg( 1542 copyFlags(*Call, B.CreateCall(Call->getCalledFunction(), X))); 1543 break; 1544 case LibFunc_cos: 1545 case LibFunc_cosf: 1546 case LibFunc_cosl: 1547 // cos(-X) --> cos(X) 1548 if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) 1549 return copyFlags(*Call, 1550 B.CreateCall(Call->getCalledFunction(), X, "cos")); 1551 break; 1552 default: 1553 break; 1554 } 1555 return nullptr; 1556 } 1557 1558 static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilderBase &B) { 1559 // Multiplications calculated using Addition Chains. 1560 // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html 1561 1562 assert(Exp != 0 && "Incorrect exponent 0 not handled"); 1563 1564 if (InnerChain[Exp]) 1565 return InnerChain[Exp]; 1566 1567 static const unsigned AddChain[33][2] = { 1568 {0, 0}, // Unused. 1569 {0, 0}, // Unused (base case = pow1). 1570 {1, 1}, // Unused (pre-computed). 1571 {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, 1572 {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, 1573 {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, 1574 {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, 1575 {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, 1576 }; 1577 1578 InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), 1579 getPow(InnerChain, AddChain[Exp][1], B)); 1580 return InnerChain[Exp]; 1581 } 1582 1583 // Return a properly extended integer (DstWidth bits wide) if the operation is 1584 // an itofp. 1585 static Value *getIntToFPVal(Value *I2F, IRBuilderBase &B, unsigned DstWidth) { 1586 if (isa<SIToFPInst>(I2F) || isa<UIToFPInst>(I2F)) { 1587 Value *Op = cast<Instruction>(I2F)->getOperand(0); 1588 // Make sure that the exponent fits inside an "int" of size DstWidth, 1589 // thus avoiding any range issues that FP has not. 1590 unsigned BitWidth = Op->getType()->getPrimitiveSizeInBits(); 1591 if (BitWidth < DstWidth || 1592 (BitWidth == DstWidth && isa<SIToFPInst>(I2F))) 1593 return isa<SIToFPInst>(I2F) ? B.CreateSExt(Op, B.getIntNTy(DstWidth)) 1594 : B.CreateZExt(Op, B.getIntNTy(DstWidth)); 1595 } 1596 1597 return nullptr; 1598 } 1599 1600 /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); 1601 /// ldexp(1.0, x) for pow(2.0, itofp(x)); exp2(n * x) for pow(2.0 ** n, x); 1602 /// exp10(x) for pow(10.0, x); exp2(log2(n) * x) for pow(n, x). 1603 Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilderBase &B) { 1604 Module *M = Pow->getModule(); 1605 Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1606 AttributeList Attrs; // Attributes are only meaningful on the original call 1607 Module *Mod = Pow->getModule(); 1608 Type *Ty = Pow->getType(); 1609 bool Ignored; 1610 1611 // Evaluate special cases related to a nested function as the base. 1612 1613 // pow(exp(x), y) -> exp(x * y) 1614 // pow(exp2(x), y) -> exp2(x * y) 1615 // If exp{,2}() is used only once, it is better to fold two transcendental 1616 // math functions into one. If used again, exp{,2}() would still have to be 1617 // called with the original argument, then keep both original transcendental 1618 // functions. However, this transformation is only safe with fully relaxed 1619 // math semantics, since, besides rounding differences, it changes overflow 1620 // and underflow behavior quite dramatically. For example: 1621 // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf 1622 // Whereas: 1623 // exp(1000 * 0.001) = exp(1) 1624 // TODO: Loosen the requirement for fully relaxed math semantics. 1625 // TODO: Handle exp10() when more targets have it available. 1626 CallInst *BaseFn = dyn_cast<CallInst>(Base); 1627 if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { 1628 LibFunc LibFn; 1629 1630 Function *CalleeFn = BaseFn->getCalledFunction(); 1631 if (CalleeFn && 1632 TLI->getLibFunc(CalleeFn->getName(), LibFn) && 1633 isLibFuncEmittable(M, TLI, LibFn)) { 1634 StringRef ExpName; 1635 Intrinsic::ID ID; 1636 Value *ExpFn; 1637 LibFunc LibFnFloat, LibFnDouble, LibFnLongDouble; 1638 1639 switch (LibFn) { 1640 default: 1641 return nullptr; 1642 case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: 1643 ExpName = TLI->getName(LibFunc_exp); 1644 ID = Intrinsic::exp; 1645 LibFnFloat = LibFunc_expf; 1646 LibFnDouble = LibFunc_exp; 1647 LibFnLongDouble = LibFunc_expl; 1648 break; 1649 case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: 1650 ExpName = TLI->getName(LibFunc_exp2); 1651 ID = Intrinsic::exp2; 1652 LibFnFloat = LibFunc_exp2f; 1653 LibFnDouble = LibFunc_exp2; 1654 LibFnLongDouble = LibFunc_exp2l; 1655 break; 1656 } 1657 1658 // Create new exp{,2}() with the product as its argument. 1659 Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); 1660 ExpFn = BaseFn->doesNotAccessMemory() 1661 ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), 1662 FMul, ExpName) 1663 : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, 1664 LibFnLongDouble, B, 1665 BaseFn->getAttributes()); 1666 1667 // Since the new exp{,2}() is different from the original one, dead code 1668 // elimination cannot be trusted to remove it, since it may have side 1669 // effects (e.g., errno). When the only consumer for the original 1670 // exp{,2}() is pow(), then it has to be explicitly erased. 1671 substituteInParent(BaseFn, ExpFn); 1672 return ExpFn; 1673 } 1674 } 1675 1676 // Evaluate special cases related to a constant base. 1677 1678 const APFloat *BaseF; 1679 if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) 1680 return nullptr; 1681 1682 // pow(2.0, itofp(x)) -> ldexp(1.0, x) 1683 if (match(Base, m_SpecificFP(2.0)) && 1684 (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo)) && 1685 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1686 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1687 return copyFlags(*Pow, 1688 emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), ExpoI, 1689 TLI, LibFunc_ldexp, LibFunc_ldexpf, 1690 LibFunc_ldexpl, B, Attrs)); 1691 } 1692 1693 // pow(2.0 ** n, x) -> exp2(n * x) 1694 if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { 1695 APFloat BaseR = APFloat(1.0); 1696 BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); 1697 BaseR = BaseR / *BaseF; 1698 bool IsInteger = BaseF->isInteger(), IsReciprocal = BaseR.isInteger(); 1699 const APFloat *NF = IsReciprocal ? &BaseR : BaseF; 1700 APSInt NI(64, false); 1701 if ((IsInteger || IsReciprocal) && 1702 NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) == 1703 APFloat::opOK && 1704 NI > 1 && NI.isPowerOf2()) { 1705 double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); 1706 Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); 1707 if (Pow->doesNotAccessMemory()) 1708 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1709 Mod, Intrinsic::exp2, Ty), 1710 FMul, "exp2")); 1711 else 1712 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1713 LibFunc_exp2f, 1714 LibFunc_exp2l, B, Attrs)); 1715 } 1716 } 1717 1718 // pow(10.0, x) -> exp10(x) 1719 // TODO: There is no exp10() intrinsic yet, but some day there shall be one. 1720 if (match(Base, m_SpecificFP(10.0)) && 1721 hasFloatFn(M, TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) 1722 return copyFlags(*Pow, emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, 1723 LibFunc_exp10f, LibFunc_exp10l, 1724 B, Attrs)); 1725 1726 // pow(x, y) -> exp2(log2(x) * y) 1727 if (Pow->hasApproxFunc() && Pow->hasNoNaNs() && BaseF->isFiniteNonZero() && 1728 !BaseF->isNegative()) { 1729 // pow(1, inf) is defined to be 1 but exp2(log2(1) * inf) evaluates to NaN. 1730 // Luckily optimizePow has already handled the x == 1 case. 1731 assert(!match(Base, m_FPOne()) && 1732 "pow(1.0, y) should have been simplified earlier!"); 1733 1734 Value *Log = nullptr; 1735 if (Ty->isFloatTy()) 1736 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToFloat())); 1737 else if (Ty->isDoubleTy()) 1738 Log = ConstantFP::get(Ty, std::log2(BaseF->convertToDouble())); 1739 1740 if (Log) { 1741 Value *FMul = B.CreateFMul(Log, Expo, "mul"); 1742 if (Pow->doesNotAccessMemory()) 1743 return copyFlags(*Pow, B.CreateCall(Intrinsic::getDeclaration( 1744 Mod, Intrinsic::exp2, Ty), 1745 FMul, "exp2")); 1746 else if (hasFloatFn(M, TLI, Ty, LibFunc_exp2, LibFunc_exp2f, 1747 LibFunc_exp2l)) 1748 return copyFlags(*Pow, emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, 1749 LibFunc_exp2f, 1750 LibFunc_exp2l, B, Attrs)); 1751 } 1752 } 1753 1754 return nullptr; 1755 } 1756 1757 static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, 1758 Module *M, IRBuilderBase &B, 1759 const TargetLibraryInfo *TLI) { 1760 // If errno is never set, then use the intrinsic for sqrt(). 1761 if (NoErrno) { 1762 Function *SqrtFn = 1763 Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); 1764 return B.CreateCall(SqrtFn, V, "sqrt"); 1765 } 1766 1767 // Otherwise, use the libcall for sqrt(). 1768 if (hasFloatFn(M, TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, 1769 LibFunc_sqrtl)) 1770 // TODO: We also should check that the target can in fact lower the sqrt() 1771 // libcall. We currently have no way to ask this question, so we ask if 1772 // the target has a sqrt() libcall, which is not exactly the same. 1773 return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, 1774 LibFunc_sqrtl, B, Attrs); 1775 1776 return nullptr; 1777 } 1778 1779 /// Use square root in place of pow(x, +/-0.5). 1780 Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilderBase &B) { 1781 Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); 1782 AttributeList Attrs; // Attributes are only meaningful on the original call 1783 Module *Mod = Pow->getModule(); 1784 Type *Ty = Pow->getType(); 1785 1786 const APFloat *ExpoF; 1787 if (!match(Expo, m_APFloat(ExpoF)) || 1788 (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) 1789 return nullptr; 1790 1791 // Converting pow(X, -0.5) to 1/sqrt(X) may introduce an extra rounding step, 1792 // so that requires fast-math-flags (afn or reassoc). 1793 if (ExpoF->isNegative() && (!Pow->hasApproxFunc() && !Pow->hasAllowReassoc())) 1794 return nullptr; 1795 1796 // If we have a pow() library call (accesses memory) and we can't guarantee 1797 // that the base is not an infinity, give up: 1798 // pow(-Inf, 0.5) is optionally required to have a result of +Inf (not setting 1799 // errno), but sqrt(-Inf) is required by various standards to set errno. 1800 if (!Pow->doesNotAccessMemory() && !Pow->hasNoInfs() && 1801 !isKnownNeverInfinity(Base, TLI)) 1802 return nullptr; 1803 1804 Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); 1805 if (!Sqrt) 1806 return nullptr; 1807 1808 // Handle signed zero base by expanding to fabs(sqrt(x)). 1809 if (!Pow->hasNoSignedZeros()) { 1810 Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); 1811 Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); 1812 } 1813 1814 Sqrt = copyFlags(*Pow, Sqrt); 1815 1816 // Handle non finite base by expanding to 1817 // (x == -infinity ? +infinity : sqrt(x)). 1818 if (!Pow->hasNoInfs()) { 1819 Value *PosInf = ConstantFP::getInfinity(Ty), 1820 *NegInf = ConstantFP::getInfinity(Ty, true); 1821 Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); 1822 Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); 1823 } 1824 1825 // If the exponent is negative, then get the reciprocal. 1826 if (ExpoF->isNegative()) 1827 Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); 1828 1829 return Sqrt; 1830 } 1831 1832 static Value *createPowWithIntegerExponent(Value *Base, Value *Expo, Module *M, 1833 IRBuilderBase &B) { 1834 Value *Args[] = {Base, Expo}; 1835 Type *Types[] = {Base->getType(), Expo->getType()}; 1836 Function *F = Intrinsic::getDeclaration(M, Intrinsic::powi, Types); 1837 return B.CreateCall(F, Args); 1838 } 1839 1840 Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilderBase &B) { 1841 Value *Base = Pow->getArgOperand(0); 1842 Value *Expo = Pow->getArgOperand(1); 1843 Function *Callee = Pow->getCalledFunction(); 1844 StringRef Name = Callee->getName(); 1845 Type *Ty = Pow->getType(); 1846 Module *M = Pow->getModule(); 1847 bool AllowApprox = Pow->hasApproxFunc(); 1848 bool Ignored; 1849 1850 // Propagate the math semantics from the call to any created instructions. 1851 IRBuilderBase::FastMathFlagGuard Guard(B); 1852 B.setFastMathFlags(Pow->getFastMathFlags()); 1853 // Evaluate special cases related to the base. 1854 1855 // pow(1.0, x) -> 1.0 1856 if (match(Base, m_FPOne())) 1857 return Base; 1858 1859 if (Value *Exp = replacePowWithExp(Pow, B)) 1860 return Exp; 1861 1862 // Evaluate special cases related to the exponent. 1863 1864 // pow(x, -1.0) -> 1.0 / x 1865 if (match(Expo, m_SpecificFP(-1.0))) 1866 return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); 1867 1868 // pow(x, +/-0.0) -> 1.0 1869 if (match(Expo, m_AnyZeroFP())) 1870 return ConstantFP::get(Ty, 1.0); 1871 1872 // pow(x, 1.0) -> x 1873 if (match(Expo, m_FPOne())) 1874 return Base; 1875 1876 // pow(x, 2.0) -> x * x 1877 if (match(Expo, m_SpecificFP(2.0))) 1878 return B.CreateFMul(Base, Base, "square"); 1879 1880 if (Value *Sqrt = replacePowWithSqrt(Pow, B)) 1881 return Sqrt; 1882 1883 // pow(x, n) -> x * x * x * ... 1884 const APFloat *ExpoF; 1885 if (AllowApprox && match(Expo, m_APFloat(ExpoF)) && 1886 !ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)) { 1887 // We limit to a max of 7 multiplications, thus the maximum exponent is 32. 1888 // If the exponent is an integer+0.5 we generate a call to sqrt and an 1889 // additional fmul. 1890 // TODO: This whole transformation should be backend specific (e.g. some 1891 // backends might prefer libcalls or the limit for the exponent might 1892 // be different) and it should also consider optimizing for size. 1893 APFloat LimF(ExpoF->getSemantics(), 33), 1894 ExpoA(abs(*ExpoF)); 1895 if (ExpoA < LimF) { 1896 // This transformation applies to integer or integer+0.5 exponents only. 1897 // For integer+0.5, we create a sqrt(Base) call. 1898 Value *Sqrt = nullptr; 1899 if (!ExpoA.isInteger()) { 1900 APFloat Expo2 = ExpoA; 1901 // To check if ExpoA is an integer + 0.5, we add it to itself. If there 1902 // is no floating point exception and the result is an integer, then 1903 // ExpoA == integer + 0.5 1904 if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) 1905 return nullptr; 1906 1907 if (!Expo2.isInteger()) 1908 return nullptr; 1909 1910 Sqrt = getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), 1911 Pow->doesNotAccessMemory(), M, B, TLI); 1912 if (!Sqrt) 1913 return nullptr; 1914 } 1915 1916 // We will memoize intermediate products of the Addition Chain. 1917 Value *InnerChain[33] = {nullptr}; 1918 InnerChain[1] = Base; 1919 InnerChain[2] = B.CreateFMul(Base, Base, "square"); 1920 1921 // We cannot readily convert a non-double type (like float) to a double. 1922 // So we first convert it to something which could be converted to double. 1923 ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); 1924 Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); 1925 1926 // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). 1927 if (Sqrt) 1928 FMul = B.CreateFMul(FMul, Sqrt); 1929 1930 // If the exponent is negative, then get the reciprocal. 1931 if (ExpoF->isNegative()) 1932 FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); 1933 1934 return FMul; 1935 } 1936 1937 APSInt IntExpo(TLI->getIntSize(), /*isUnsigned=*/false); 1938 // powf(x, n) -> powi(x, n) if n is a constant signed integer value 1939 if (ExpoF->isInteger() && 1940 ExpoF->convertToInteger(IntExpo, APFloat::rmTowardZero, &Ignored) == 1941 APFloat::opOK) { 1942 return copyFlags( 1943 *Pow, 1944 createPowWithIntegerExponent( 1945 Base, ConstantInt::get(B.getIntNTy(TLI->getIntSize()), IntExpo), 1946 M, B)); 1947 } 1948 } 1949 1950 // powf(x, itofp(y)) -> powi(x, y) 1951 if (AllowApprox && (isa<SIToFPInst>(Expo) || isa<UIToFPInst>(Expo))) { 1952 if (Value *ExpoI = getIntToFPVal(Expo, B, TLI->getIntSize())) 1953 return copyFlags(*Pow, createPowWithIntegerExponent(Base, ExpoI, M, B)); 1954 } 1955 1956 // Shrink pow() to powf() if the arguments are single precision, 1957 // unless the result is expected to be double precision. 1958 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_pow) && 1959 hasFloatVersion(M, Name)) { 1960 if (Value *Shrunk = optimizeBinaryDoubleFP(Pow, B, TLI, true)) 1961 return Shrunk; 1962 } 1963 1964 return nullptr; 1965 } 1966 1967 Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilderBase &B) { 1968 Module *M = CI->getModule(); 1969 Function *Callee = CI->getCalledFunction(); 1970 AttributeList Attrs; // Attributes are only meaningful on the original call 1971 StringRef Name = Callee->getName(); 1972 Value *Ret = nullptr; 1973 if (UnsafeFPShrink && Name == TLI->getName(LibFunc_exp2) && 1974 hasFloatVersion(M, Name)) 1975 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 1976 1977 Type *Ty = CI->getType(); 1978 Value *Op = CI->getArgOperand(0); 1979 1980 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= IntSize 1981 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < IntSize 1982 if ((isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op)) && 1983 hasFloatFn(M, TLI, Ty, LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl)) { 1984 if (Value *Exp = getIntToFPVal(Op, B, TLI->getIntSize())) 1985 return emitBinaryFloatFnCall(ConstantFP::get(Ty, 1.0), Exp, TLI, 1986 LibFunc_ldexp, LibFunc_ldexpf, LibFunc_ldexpl, 1987 B, Attrs); 1988 } 1989 1990 return Ret; 1991 } 1992 1993 Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilderBase &B) { 1994 Module *M = CI->getModule(); 1995 1996 // If we can shrink the call to a float function rather than a double 1997 // function, do that first. 1998 Function *Callee = CI->getCalledFunction(); 1999 StringRef Name = Callee->getName(); 2000 if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(M, Name)) 2001 if (Value *Ret = optimizeBinaryDoubleFP(CI, B, TLI)) 2002 return Ret; 2003 2004 // The LLVM intrinsics minnum/maxnum correspond to fmin/fmax. Canonicalize to 2005 // the intrinsics for improved optimization (for example, vectorization). 2006 // No-signed-zeros is implied by the definitions of fmax/fmin themselves. 2007 // From the C standard draft WG14/N1256: 2008 // "Ideally, fmax would be sensitive to the sign of zero, for example 2009 // fmax(-0.0, +0.0) would return +0; however, implementation in software 2010 // might be impractical." 2011 IRBuilderBase::FastMathFlagGuard Guard(B); 2012 FastMathFlags FMF = CI->getFastMathFlags(); 2013 FMF.setNoSignedZeros(); 2014 B.setFastMathFlags(FMF); 2015 2016 Intrinsic::ID IID = Callee->getName().startswith("fmin") ? Intrinsic::minnum 2017 : Intrinsic::maxnum; 2018 Function *F = Intrinsic::getDeclaration(CI->getModule(), IID, CI->getType()); 2019 return copyFlags( 2020 *CI, B.CreateCall(F, {CI->getArgOperand(0), CI->getArgOperand(1)})); 2021 } 2022 2023 Value *LibCallSimplifier::optimizeLog(CallInst *Log, IRBuilderBase &B) { 2024 Function *LogFn = Log->getCalledFunction(); 2025 AttributeList Attrs; // Attributes are only meaningful on the original call 2026 StringRef LogNm = LogFn->getName(); 2027 Intrinsic::ID LogID = LogFn->getIntrinsicID(); 2028 Module *Mod = Log->getModule(); 2029 Type *Ty = Log->getType(); 2030 Value *Ret = nullptr; 2031 2032 if (UnsafeFPShrink && hasFloatVersion(Mod, LogNm)) 2033 Ret = optimizeUnaryDoubleFP(Log, B, TLI, true); 2034 2035 // The earlier call must also be 'fast' in order to do these transforms. 2036 CallInst *Arg = dyn_cast<CallInst>(Log->getArgOperand(0)); 2037 if (!Log->isFast() || !Arg || !Arg->isFast() || !Arg->hasOneUse()) 2038 return Ret; 2039 2040 LibFunc LogLb, ExpLb, Exp2Lb, Exp10Lb, PowLb; 2041 2042 // This is only applicable to log(), log2(), log10(). 2043 if (TLI->getLibFunc(LogNm, LogLb)) 2044 switch (LogLb) { 2045 case LibFunc_logf: 2046 LogID = Intrinsic::log; 2047 ExpLb = LibFunc_expf; 2048 Exp2Lb = LibFunc_exp2f; 2049 Exp10Lb = LibFunc_exp10f; 2050 PowLb = LibFunc_powf; 2051 break; 2052 case LibFunc_log: 2053 LogID = Intrinsic::log; 2054 ExpLb = LibFunc_exp; 2055 Exp2Lb = LibFunc_exp2; 2056 Exp10Lb = LibFunc_exp10; 2057 PowLb = LibFunc_pow; 2058 break; 2059 case LibFunc_logl: 2060 LogID = Intrinsic::log; 2061 ExpLb = LibFunc_expl; 2062 Exp2Lb = LibFunc_exp2l; 2063 Exp10Lb = LibFunc_exp10l; 2064 PowLb = LibFunc_powl; 2065 break; 2066 case LibFunc_log2f: 2067 LogID = Intrinsic::log2; 2068 ExpLb = LibFunc_expf; 2069 Exp2Lb = LibFunc_exp2f; 2070 Exp10Lb = LibFunc_exp10f; 2071 PowLb = LibFunc_powf; 2072 break; 2073 case LibFunc_log2: 2074 LogID = Intrinsic::log2; 2075 ExpLb = LibFunc_exp; 2076 Exp2Lb = LibFunc_exp2; 2077 Exp10Lb = LibFunc_exp10; 2078 PowLb = LibFunc_pow; 2079 break; 2080 case LibFunc_log2l: 2081 LogID = Intrinsic::log2; 2082 ExpLb = LibFunc_expl; 2083 Exp2Lb = LibFunc_exp2l; 2084 Exp10Lb = LibFunc_exp10l; 2085 PowLb = LibFunc_powl; 2086 break; 2087 case LibFunc_log10f: 2088 LogID = Intrinsic::log10; 2089 ExpLb = LibFunc_expf; 2090 Exp2Lb = LibFunc_exp2f; 2091 Exp10Lb = LibFunc_exp10f; 2092 PowLb = LibFunc_powf; 2093 break; 2094 case LibFunc_log10: 2095 LogID = Intrinsic::log10; 2096 ExpLb = LibFunc_exp; 2097 Exp2Lb = LibFunc_exp2; 2098 Exp10Lb = LibFunc_exp10; 2099 PowLb = LibFunc_pow; 2100 break; 2101 case LibFunc_log10l: 2102 LogID = Intrinsic::log10; 2103 ExpLb = LibFunc_expl; 2104 Exp2Lb = LibFunc_exp2l; 2105 Exp10Lb = LibFunc_exp10l; 2106 PowLb = LibFunc_powl; 2107 break; 2108 default: 2109 return Ret; 2110 } 2111 else if (LogID == Intrinsic::log || LogID == Intrinsic::log2 || 2112 LogID == Intrinsic::log10) { 2113 if (Ty->getScalarType()->isFloatTy()) { 2114 ExpLb = LibFunc_expf; 2115 Exp2Lb = LibFunc_exp2f; 2116 Exp10Lb = LibFunc_exp10f; 2117 PowLb = LibFunc_powf; 2118 } else if (Ty->getScalarType()->isDoubleTy()) { 2119 ExpLb = LibFunc_exp; 2120 Exp2Lb = LibFunc_exp2; 2121 Exp10Lb = LibFunc_exp10; 2122 PowLb = LibFunc_pow; 2123 } else 2124 return Ret; 2125 } else 2126 return Ret; 2127 2128 IRBuilderBase::FastMathFlagGuard Guard(B); 2129 B.setFastMathFlags(FastMathFlags::getFast()); 2130 2131 Intrinsic::ID ArgID = Arg->getIntrinsicID(); 2132 LibFunc ArgLb = NotLibFunc; 2133 TLI->getLibFunc(*Arg, ArgLb); 2134 2135 // log(pow(x,y)) -> y*log(x) 2136 if (ArgLb == PowLb || ArgID == Intrinsic::pow) { 2137 Value *LogX = 2138 Log->doesNotAccessMemory() 2139 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2140 Arg->getOperand(0), "log") 2141 : emitUnaryFloatFnCall(Arg->getOperand(0), TLI, LogNm, B, Attrs); 2142 Value *MulY = B.CreateFMul(Arg->getArgOperand(1), LogX, "mul"); 2143 // Since pow() may have side effects, e.g. errno, 2144 // dead code elimination may not be trusted to remove it. 2145 substituteInParent(Arg, MulY); 2146 return MulY; 2147 } 2148 2149 // log(exp{,2,10}(y)) -> y*log({e,2,10}) 2150 // TODO: There is no exp10() intrinsic yet. 2151 if (ArgLb == ExpLb || ArgLb == Exp2Lb || ArgLb == Exp10Lb || 2152 ArgID == Intrinsic::exp || ArgID == Intrinsic::exp2) { 2153 Constant *Eul; 2154 if (ArgLb == ExpLb || ArgID == Intrinsic::exp) 2155 // FIXME: Add more precise value of e for long double. 2156 Eul = ConstantFP::get(Log->getType(), numbers::e); 2157 else if (ArgLb == Exp2Lb || ArgID == Intrinsic::exp2) 2158 Eul = ConstantFP::get(Log->getType(), 2.0); 2159 else 2160 Eul = ConstantFP::get(Log->getType(), 10.0); 2161 Value *LogE = Log->doesNotAccessMemory() 2162 ? B.CreateCall(Intrinsic::getDeclaration(Mod, LogID, Ty), 2163 Eul, "log") 2164 : emitUnaryFloatFnCall(Eul, TLI, LogNm, B, Attrs); 2165 Value *MulY = B.CreateFMul(Arg->getArgOperand(0), LogE, "mul"); 2166 // Since exp() may have side effects, e.g. errno, 2167 // dead code elimination may not be trusted to remove it. 2168 substituteInParent(Arg, MulY); 2169 return MulY; 2170 } 2171 2172 return Ret; 2173 } 2174 2175 Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilderBase &B) { 2176 Module *M = CI->getModule(); 2177 Function *Callee = CI->getCalledFunction(); 2178 Value *Ret = nullptr; 2179 // TODO: Once we have a way (other than checking for the existince of the 2180 // libcall) to tell whether our target can lower @llvm.sqrt, relax the 2181 // condition below. 2182 if (isLibFuncEmittable(M, TLI, LibFunc_sqrtf) && 2183 (Callee->getName() == "sqrt" || 2184 Callee->getIntrinsicID() == Intrinsic::sqrt)) 2185 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2186 2187 if (!CI->isFast()) 2188 return Ret; 2189 2190 Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); 2191 if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) 2192 return Ret; 2193 2194 // We're looking for a repeated factor in a multiplication tree, 2195 // so we can do this fold: sqrt(x * x) -> fabs(x); 2196 // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). 2197 Value *Op0 = I->getOperand(0); 2198 Value *Op1 = I->getOperand(1); 2199 Value *RepeatOp = nullptr; 2200 Value *OtherOp = nullptr; 2201 if (Op0 == Op1) { 2202 // Simple match: the operands of the multiply are identical. 2203 RepeatOp = Op0; 2204 } else { 2205 // Look for a more complicated pattern: one of the operands is itself 2206 // a multiply, so search for a common factor in that multiply. 2207 // Note: We don't bother looking any deeper than this first level or for 2208 // variations of this pattern because instcombine's visitFMUL and/or the 2209 // reassociation pass should give us this form. 2210 Value *OtherMul0, *OtherMul1; 2211 if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { 2212 // Pattern: sqrt((x * y) * z) 2213 if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { 2214 // Matched: sqrt((x * x) * z) 2215 RepeatOp = OtherMul0; 2216 OtherOp = Op1; 2217 } 2218 } 2219 } 2220 if (!RepeatOp) 2221 return Ret; 2222 2223 // Fast math flags for any created instructions should match the sqrt 2224 // and multiply. 2225 IRBuilderBase::FastMathFlagGuard Guard(B); 2226 B.setFastMathFlags(I->getFastMathFlags()); 2227 2228 // If we found a repeated factor, hoist it out of the square root and 2229 // replace it with the fabs of that factor. 2230 Type *ArgType = I->getType(); 2231 Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); 2232 Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); 2233 if (OtherOp) { 2234 // If we found a non-repeated factor, we still need to get its square 2235 // root. We then multiply that by the value that was simplified out 2236 // of the square root calculation. 2237 Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); 2238 Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); 2239 return copyFlags(*CI, B.CreateFMul(FabsCall, SqrtCall)); 2240 } 2241 return copyFlags(*CI, FabsCall); 2242 } 2243 2244 // TODO: Generalize to handle any trig function and its inverse. 2245 Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilderBase &B) { 2246 Module *M = CI->getModule(); 2247 Function *Callee = CI->getCalledFunction(); 2248 Value *Ret = nullptr; 2249 StringRef Name = Callee->getName(); 2250 if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(M, Name)) 2251 Ret = optimizeUnaryDoubleFP(CI, B, TLI, true); 2252 2253 Value *Op1 = CI->getArgOperand(0); 2254 auto *OpC = dyn_cast<CallInst>(Op1); 2255 if (!OpC) 2256 return Ret; 2257 2258 // Both calls must be 'fast' in order to remove them. 2259 if (!CI->isFast() || !OpC->isFast()) 2260 return Ret; 2261 2262 // tan(atan(x)) -> x 2263 // tanf(atanf(x)) -> x 2264 // tanl(atanl(x)) -> x 2265 LibFunc Func; 2266 Function *F = OpC->getCalledFunction(); 2267 if (F && TLI->getLibFunc(F->getName(), Func) && 2268 isLibFuncEmittable(M, TLI, Func) && 2269 ((Func == LibFunc_atan && Callee->getName() == "tan") || 2270 (Func == LibFunc_atanf && Callee->getName() == "tanf") || 2271 (Func == LibFunc_atanl && Callee->getName() == "tanl"))) 2272 Ret = OpC->getArgOperand(0); 2273 return Ret; 2274 } 2275 2276 static bool isTrigLibCall(CallInst *CI) { 2277 // We can only hope to do anything useful if we can ignore things like errno 2278 // and floating-point exceptions. 2279 // We already checked the prototype. 2280 return CI->hasFnAttr(Attribute::NoUnwind) && 2281 CI->hasFnAttr(Attribute::ReadNone); 2282 } 2283 2284 static bool insertSinCosCall(IRBuilderBase &B, Function *OrigCallee, Value *Arg, 2285 bool UseFloat, Value *&Sin, Value *&Cos, 2286 Value *&SinCos, const TargetLibraryInfo *TLI) { 2287 Module *M = OrigCallee->getParent(); 2288 Type *ArgTy = Arg->getType(); 2289 Type *ResTy; 2290 StringRef Name; 2291 2292 Triple T(OrigCallee->getParent()->getTargetTriple()); 2293 if (UseFloat) { 2294 Name = "__sincospif_stret"; 2295 2296 assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); 2297 // x86_64 can't use {float, float} since that would be returned in both 2298 // xmm0 and xmm1, which isn't what a real struct would do. 2299 ResTy = T.getArch() == Triple::x86_64 2300 ? static_cast<Type *>(FixedVectorType::get(ArgTy, 2)) 2301 : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); 2302 } else { 2303 Name = "__sincospi_stret"; 2304 ResTy = StructType::get(ArgTy, ArgTy); 2305 } 2306 2307 if (!isLibFuncEmittable(M, TLI, Name)) 2308 return false; 2309 LibFunc TheLibFunc; 2310 TLI->getLibFunc(Name, TheLibFunc); 2311 FunctionCallee Callee = getOrInsertLibFunc( 2312 M, *TLI, TheLibFunc, OrigCallee->getAttributes(), ResTy, ArgTy); 2313 2314 if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { 2315 // If the argument is an instruction, it must dominate all uses so put our 2316 // sincos call there. 2317 B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); 2318 } else { 2319 // Otherwise (e.g. for a constant) the beginning of the function is as 2320 // good a place as any. 2321 BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); 2322 B.SetInsertPoint(&EntryBB, EntryBB.begin()); 2323 } 2324 2325 SinCos = B.CreateCall(Callee, Arg, "sincospi"); 2326 2327 if (SinCos->getType()->isStructTy()) { 2328 Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); 2329 Cos = B.CreateExtractValue(SinCos, 1, "cospi"); 2330 } else { 2331 Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), 2332 "sinpi"); 2333 Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), 2334 "cospi"); 2335 } 2336 2337 return true; 2338 } 2339 2340 Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilderBase &B) { 2341 // Make sure the prototype is as expected, otherwise the rest of the 2342 // function is probably invalid and likely to abort. 2343 if (!isTrigLibCall(CI)) 2344 return nullptr; 2345 2346 Value *Arg = CI->getArgOperand(0); 2347 SmallVector<CallInst *, 1> SinCalls; 2348 SmallVector<CallInst *, 1> CosCalls; 2349 SmallVector<CallInst *, 1> SinCosCalls; 2350 2351 bool IsFloat = Arg->getType()->isFloatTy(); 2352 2353 // Look for all compatible sinpi, cospi and sincospi calls with the same 2354 // argument. If there are enough (in some sense) we can make the 2355 // substitution. 2356 Function *F = CI->getFunction(); 2357 for (User *U : Arg->users()) 2358 classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); 2359 2360 // It's only worthwhile if both sinpi and cospi are actually used. 2361 if (SinCalls.empty() || CosCalls.empty()) 2362 return nullptr; 2363 2364 Value *Sin, *Cos, *SinCos; 2365 if (!insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, 2366 SinCos, TLI)) 2367 return nullptr; 2368 2369 auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, 2370 Value *Res) { 2371 for (CallInst *C : Calls) 2372 replaceAllUsesWith(C, Res); 2373 }; 2374 2375 replaceTrigInsts(SinCalls, Sin); 2376 replaceTrigInsts(CosCalls, Cos); 2377 replaceTrigInsts(SinCosCalls, SinCos); 2378 2379 return nullptr; 2380 } 2381 2382 void LibCallSimplifier::classifyArgUse( 2383 Value *Val, Function *F, bool IsFloat, 2384 SmallVectorImpl<CallInst *> &SinCalls, 2385 SmallVectorImpl<CallInst *> &CosCalls, 2386 SmallVectorImpl<CallInst *> &SinCosCalls) { 2387 CallInst *CI = dyn_cast<CallInst>(Val); 2388 Module *M = CI->getModule(); 2389 2390 if (!CI || CI->use_empty()) 2391 return; 2392 2393 // Don't consider calls in other functions. 2394 if (CI->getFunction() != F) 2395 return; 2396 2397 Function *Callee = CI->getCalledFunction(); 2398 LibFunc Func; 2399 if (!Callee || !TLI->getLibFunc(*Callee, Func) || 2400 !isLibFuncEmittable(M, TLI, Func) || 2401 !isTrigLibCall(CI)) 2402 return; 2403 2404 if (IsFloat) { 2405 if (Func == LibFunc_sinpif) 2406 SinCalls.push_back(CI); 2407 else if (Func == LibFunc_cospif) 2408 CosCalls.push_back(CI); 2409 else if (Func == LibFunc_sincospif_stret) 2410 SinCosCalls.push_back(CI); 2411 } else { 2412 if (Func == LibFunc_sinpi) 2413 SinCalls.push_back(CI); 2414 else if (Func == LibFunc_cospi) 2415 CosCalls.push_back(CI); 2416 else if (Func == LibFunc_sincospi_stret) 2417 SinCosCalls.push_back(CI); 2418 } 2419 } 2420 2421 //===----------------------------------------------------------------------===// 2422 // Integer Library Call Optimizations 2423 //===----------------------------------------------------------------------===// 2424 2425 Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilderBase &B) { 2426 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 2427 Value *Op = CI->getArgOperand(0); 2428 Type *ArgType = Op->getType(); 2429 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2430 Intrinsic::cttz, ArgType); 2431 Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); 2432 V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); 2433 V = B.CreateIntCast(V, B.getInt32Ty(), false); 2434 2435 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); 2436 return B.CreateSelect(Cond, V, B.getInt32(0)); 2437 } 2438 2439 Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilderBase &B) { 2440 // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) 2441 Value *Op = CI->getArgOperand(0); 2442 Type *ArgType = Op->getType(); 2443 Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), 2444 Intrinsic::ctlz, ArgType); 2445 Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); 2446 V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), 2447 V); 2448 return B.CreateIntCast(V, CI->getType(), false); 2449 } 2450 2451 Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilderBase &B) { 2452 // abs(x) -> x <s 0 ? -x : x 2453 // The negation has 'nsw' because abs of INT_MIN is undefined. 2454 Value *X = CI->getArgOperand(0); 2455 Value *IsNeg = B.CreateIsNeg(X); 2456 Value *NegX = B.CreateNSWNeg(X, "neg"); 2457 return B.CreateSelect(IsNeg, NegX, X); 2458 } 2459 2460 Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilderBase &B) { 2461 // isdigit(c) -> (c-'0') <u 10 2462 Value *Op = CI->getArgOperand(0); 2463 Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); 2464 Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); 2465 return B.CreateZExt(Op, CI->getType()); 2466 } 2467 2468 Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilderBase &B) { 2469 // isascii(c) -> c <u 128 2470 Value *Op = CI->getArgOperand(0); 2471 Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); 2472 return B.CreateZExt(Op, CI->getType()); 2473 } 2474 2475 Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilderBase &B) { 2476 // toascii(c) -> c & 0x7f 2477 return B.CreateAnd(CI->getArgOperand(0), 2478 ConstantInt::get(CI->getType(), 0x7F)); 2479 } 2480 2481 Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilderBase &B) { 2482 StringRef Str; 2483 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2484 return nullptr; 2485 2486 return convertStrToNumber(CI, Str, 10); 2487 } 2488 2489 Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilderBase &B) { 2490 StringRef Str; 2491 if (!getConstantStringInfo(CI->getArgOperand(0), Str)) 2492 return nullptr; 2493 2494 if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) 2495 return nullptr; 2496 2497 if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { 2498 return convertStrToNumber(CI, Str, CInt->getSExtValue()); 2499 } 2500 2501 return nullptr; 2502 } 2503 2504 //===----------------------------------------------------------------------===// 2505 // Formatting and IO Library Call Optimizations 2506 //===----------------------------------------------------------------------===// 2507 2508 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); 2509 2510 Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilderBase &B, 2511 int StreamArg) { 2512 Function *Callee = CI->getCalledFunction(); 2513 // Error reporting calls should be cold, mark them as such. 2514 // This applies even to non-builtin calls: it is only a hint and applies to 2515 // functions that the frontend might not understand as builtins. 2516 2517 // This heuristic was suggested in: 2518 // Improving Static Branch Prediction in a Compiler 2519 // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu 2520 // Proceedings of PACT'98, Oct. 1998, IEEE 2521 if (!CI->hasFnAttr(Attribute::Cold) && 2522 isReportingError(Callee, CI, StreamArg)) { 2523 CI->addFnAttr(Attribute::Cold); 2524 } 2525 2526 return nullptr; 2527 } 2528 2529 static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { 2530 if (!Callee || !Callee->isDeclaration()) 2531 return false; 2532 2533 if (StreamArg < 0) 2534 return true; 2535 2536 // These functions might be considered cold, but only if their stream 2537 // argument is stderr. 2538 2539 if (StreamArg >= (int)CI->arg_size()) 2540 return false; 2541 LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); 2542 if (!LI) 2543 return false; 2544 GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); 2545 if (!GV || !GV->isDeclaration()) 2546 return false; 2547 return GV->getName() == "stderr"; 2548 } 2549 2550 Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilderBase &B) { 2551 // Check for a fixed format string. 2552 StringRef FormatStr; 2553 if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) 2554 return nullptr; 2555 2556 // Empty format string -> noop. 2557 if (FormatStr.empty()) // Tolerate printf's declared void. 2558 return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); 2559 2560 // Do not do any of the following transformations if the printf return value 2561 // is used, in general the printf return value is not compatible with either 2562 // putchar() or puts(). 2563 if (!CI->use_empty()) 2564 return nullptr; 2565 2566 // printf("x") -> putchar('x'), even for "%" and "%%". 2567 if (FormatStr.size() == 1 || FormatStr == "%%") 2568 return copyFlags(*CI, emitPutChar(B.getInt32(FormatStr[0]), B, TLI)); 2569 2570 // Try to remove call or emit putchar/puts. 2571 if (FormatStr == "%s" && CI->arg_size() > 1) { 2572 StringRef OperandStr; 2573 if (!getConstantStringInfo(CI->getOperand(1), OperandStr)) 2574 return nullptr; 2575 // printf("%s", "") --> NOP 2576 if (OperandStr.empty()) 2577 return (Value *)CI; 2578 // printf("%s", "a") --> putchar('a') 2579 if (OperandStr.size() == 1) 2580 return copyFlags(*CI, emitPutChar(B.getInt32(OperandStr[0]), B, TLI)); 2581 // printf("%s", str"\n") --> puts(str) 2582 if (OperandStr.back() == '\n') { 2583 OperandStr = OperandStr.drop_back(); 2584 Value *GV = B.CreateGlobalString(OperandStr, "str"); 2585 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2586 } 2587 return nullptr; 2588 } 2589 2590 // printf("foo\n") --> puts("foo") 2591 if (FormatStr.back() == '\n' && 2592 !FormatStr.contains('%')) { // No format characters. 2593 // Create a string literal with no \n on it. We expect the constant merge 2594 // pass to be run after this pass, to merge duplicate strings. 2595 FormatStr = FormatStr.drop_back(); 2596 Value *GV = B.CreateGlobalString(FormatStr, "str"); 2597 return copyFlags(*CI, emitPutS(GV, B, TLI)); 2598 } 2599 2600 // Optimize specific format strings. 2601 // printf("%c", chr) --> putchar(chr) 2602 if (FormatStr == "%c" && CI->arg_size() > 1 && 2603 CI->getArgOperand(1)->getType()->isIntegerTy()) 2604 return copyFlags(*CI, emitPutChar(CI->getArgOperand(1), B, TLI)); 2605 2606 // printf("%s\n", str) --> puts(str) 2607 if (FormatStr == "%s\n" && CI->arg_size() > 1 && 2608 CI->getArgOperand(1)->getType()->isPointerTy()) 2609 return copyFlags(*CI, emitPutS(CI->getArgOperand(1), B, TLI)); 2610 return nullptr; 2611 } 2612 2613 Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilderBase &B) { 2614 2615 Module *M = CI->getModule(); 2616 Function *Callee = CI->getCalledFunction(); 2617 FunctionType *FT = Callee->getFunctionType(); 2618 if (Value *V = optimizePrintFString(CI, B)) { 2619 return V; 2620 } 2621 2622 // printf(format, ...) -> iprintf(format, ...) if no floating point 2623 // arguments. 2624 if (isLibFuncEmittable(M, TLI, LibFunc_iprintf) && 2625 !callHasFloatingPointArgument(CI)) { 2626 FunctionCallee IPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_iprintf, FT, 2627 Callee->getAttributes()); 2628 CallInst *New = cast<CallInst>(CI->clone()); 2629 New->setCalledFunction(IPrintFFn); 2630 B.Insert(New); 2631 return New; 2632 } 2633 2634 // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point 2635 // arguments. 2636 if (isLibFuncEmittable(M, TLI, LibFunc_small_printf) && 2637 !callHasFP128Argument(CI)) { 2638 auto SmallPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_printf, FT, 2639 Callee->getAttributes()); 2640 CallInst *New = cast<CallInst>(CI->clone()); 2641 New->setCalledFunction(SmallPrintFFn); 2642 B.Insert(New); 2643 return New; 2644 } 2645 2646 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2647 return nullptr; 2648 } 2649 2650 Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, 2651 IRBuilderBase &B) { 2652 // Check for a fixed format string. 2653 StringRef FormatStr; 2654 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2655 return nullptr; 2656 2657 // If we just have a format string (nothing else crazy) transform it. 2658 Value *Dest = CI->getArgOperand(0); 2659 if (CI->arg_size() == 2) { 2660 // Make sure there's no % in the constant array. We could try to handle 2661 // %% -> % in the future if we cared. 2662 if (FormatStr.contains('%')) 2663 return nullptr; // we found a format specifier, bail out. 2664 2665 // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) 2666 B.CreateMemCpy( 2667 Dest, Align(1), CI->getArgOperand(1), Align(1), 2668 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2669 FormatStr.size() + 1)); // Copy the null byte. 2670 return ConstantInt::get(CI->getType(), FormatStr.size()); 2671 } 2672 2673 // The remaining optimizations require the format string to be "%s" or "%c" 2674 // and have an extra operand. 2675 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2676 return nullptr; 2677 2678 // Decode the second character of the format string. 2679 if (FormatStr[1] == 'c') { 2680 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2681 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2682 return nullptr; 2683 Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); 2684 Value *Ptr = castToCStr(Dest, B); 2685 B.CreateStore(V, Ptr); 2686 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2687 B.CreateStore(B.getInt8(0), Ptr); 2688 2689 return ConstantInt::get(CI->getType(), 1); 2690 } 2691 2692 if (FormatStr[1] == 's') { 2693 // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, 2694 // strlen(str)+1) 2695 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2696 return nullptr; 2697 2698 if (CI->use_empty()) 2699 // sprintf(dest, "%s", str) -> strcpy(dest, str) 2700 return copyFlags(*CI, emitStrCpy(Dest, CI->getArgOperand(2), B, TLI)); 2701 2702 uint64_t SrcLen = GetStringLength(CI->getArgOperand(2)); 2703 if (SrcLen) { 2704 B.CreateMemCpy( 2705 Dest, Align(1), CI->getArgOperand(2), Align(1), 2706 ConstantInt::get(DL.getIntPtrType(CI->getContext()), SrcLen)); 2707 // Returns total number of characters written without null-character. 2708 return ConstantInt::get(CI->getType(), SrcLen - 1); 2709 } else if (Value *V = emitStpCpy(Dest, CI->getArgOperand(2), B, TLI)) { 2710 // sprintf(dest, "%s", str) -> stpcpy(dest, str) - dest 2711 // Handle mismatched pointer types (goes away with typeless pointers?). 2712 V = B.CreatePointerCast(V, B.getInt8PtrTy()); 2713 Dest = B.CreatePointerCast(Dest, B.getInt8PtrTy()); 2714 Value *PtrDiff = B.CreatePtrDiff(B.getInt8Ty(), V, Dest); 2715 return B.CreateIntCast(PtrDiff, CI->getType(), false); 2716 } 2717 2718 bool OptForSize = CI->getFunction()->hasOptSize() || 2719 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2720 PGSOQueryType::IRPass); 2721 if (OptForSize) 2722 return nullptr; 2723 2724 Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); 2725 if (!Len) 2726 return nullptr; 2727 Value *IncLen = 2728 B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); 2729 B.CreateMemCpy(Dest, Align(1), CI->getArgOperand(2), Align(1), IncLen); 2730 2731 // The sprintf result is the unincremented number of bytes in the string. 2732 return B.CreateIntCast(Len, CI->getType(), false); 2733 } 2734 return nullptr; 2735 } 2736 2737 Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilderBase &B) { 2738 Module *M = CI->getModule(); 2739 Function *Callee = CI->getCalledFunction(); 2740 FunctionType *FT = Callee->getFunctionType(); 2741 if (Value *V = optimizeSPrintFString(CI, B)) { 2742 return V; 2743 } 2744 2745 // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating 2746 // point arguments. 2747 if (isLibFuncEmittable(M, TLI, LibFunc_siprintf) && 2748 !callHasFloatingPointArgument(CI)) { 2749 FunctionCallee SIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_siprintf, 2750 FT, Callee->getAttributes()); 2751 CallInst *New = cast<CallInst>(CI->clone()); 2752 New->setCalledFunction(SIPrintFFn); 2753 B.Insert(New); 2754 return New; 2755 } 2756 2757 // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit 2758 // floating point arguments. 2759 if (isLibFuncEmittable(M, TLI, LibFunc_small_sprintf) && 2760 !callHasFP128Argument(CI)) { 2761 auto SmallSPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_small_sprintf, FT, 2762 Callee->getAttributes()); 2763 CallInst *New = cast<CallInst>(CI->clone()); 2764 New->setCalledFunction(SmallSPrintFFn); 2765 B.Insert(New); 2766 return New; 2767 } 2768 2769 annotateNonNullNoUndefBasedOnAccess(CI, {0, 1}); 2770 return nullptr; 2771 } 2772 2773 Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, 2774 IRBuilderBase &B) { 2775 // Check for size 2776 ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2777 if (!Size) 2778 return nullptr; 2779 2780 uint64_t N = Size->getZExtValue(); 2781 // Check for a fixed format string. 2782 StringRef FormatStr; 2783 if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) 2784 return nullptr; 2785 2786 // If we just have a format string (nothing else crazy) transform it. 2787 if (CI->arg_size() == 3) { 2788 // Make sure there's no % in the constant array. We could try to handle 2789 // %% -> % in the future if we cared. 2790 if (FormatStr.contains('%')) 2791 return nullptr; // we found a format specifier, bail out. 2792 2793 if (N == 0) 2794 return ConstantInt::get(CI->getType(), FormatStr.size()); 2795 else if (N < FormatStr.size() + 1) 2796 return nullptr; 2797 2798 // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, 2799 // strlen(fmt)+1) 2800 copyFlags( 2801 *CI, 2802 B.CreateMemCpy( 2803 CI->getArgOperand(0), Align(1), CI->getArgOperand(2), Align(1), 2804 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2805 FormatStr.size() + 1))); // Copy the null byte. 2806 return ConstantInt::get(CI->getType(), FormatStr.size()); 2807 } 2808 2809 // The remaining optimizations require the format string to be "%s" or "%c" 2810 // and have an extra operand. 2811 if (FormatStr.size() == 2 && FormatStr[0] == '%' && CI->arg_size() == 4) { 2812 2813 // Decode the second character of the format string. 2814 if (FormatStr[1] == 'c') { 2815 if (N == 0) 2816 return ConstantInt::get(CI->getType(), 1); 2817 else if (N == 1) 2818 return nullptr; 2819 2820 // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 2821 if (!CI->getArgOperand(3)->getType()->isIntegerTy()) 2822 return nullptr; 2823 Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); 2824 Value *Ptr = castToCStr(CI->getArgOperand(0), B); 2825 B.CreateStore(V, Ptr); 2826 Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); 2827 B.CreateStore(B.getInt8(0), Ptr); 2828 2829 return ConstantInt::get(CI->getType(), 1); 2830 } 2831 2832 if (FormatStr[1] == 's') { 2833 // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) 2834 StringRef Str; 2835 if (!getConstantStringInfo(CI->getArgOperand(3), Str)) 2836 return nullptr; 2837 2838 if (N == 0) 2839 return ConstantInt::get(CI->getType(), Str.size()); 2840 else if (N < Str.size() + 1) 2841 return nullptr; 2842 2843 copyFlags( 2844 *CI, B.CreateMemCpy(CI->getArgOperand(0), Align(1), 2845 CI->getArgOperand(3), Align(1), 2846 ConstantInt::get(CI->getType(), Str.size() + 1))); 2847 2848 // The snprintf result is the unincremented number of bytes in the string. 2849 return ConstantInt::get(CI->getType(), Str.size()); 2850 } 2851 } 2852 return nullptr; 2853 } 2854 2855 Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilderBase &B) { 2856 if (Value *V = optimizeSnPrintFString(CI, B)) { 2857 return V; 2858 } 2859 2860 if (isKnownNonZero(CI->getOperand(1), DL)) 2861 annotateNonNullNoUndefBasedOnAccess(CI, 0); 2862 return nullptr; 2863 } 2864 2865 Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, 2866 IRBuilderBase &B) { 2867 optimizeErrorReporting(CI, B, 0); 2868 2869 // All the optimizations depend on the format string. 2870 StringRef FormatStr; 2871 if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) 2872 return nullptr; 2873 2874 // Do not do any of the following transformations if the fprintf return 2875 // value is used, in general the fprintf return value is not compatible 2876 // with fwrite(), fputc() or fputs(). 2877 if (!CI->use_empty()) 2878 return nullptr; 2879 2880 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) 2881 if (CI->arg_size() == 2) { 2882 // Could handle %% -> % if we cared. 2883 if (FormatStr.contains('%')) 2884 return nullptr; // We found a format specifier. 2885 2886 return copyFlags( 2887 *CI, emitFWrite(CI->getArgOperand(1), 2888 ConstantInt::get(DL.getIntPtrType(CI->getContext()), 2889 FormatStr.size()), 2890 CI->getArgOperand(0), B, DL, TLI)); 2891 } 2892 2893 // The remaining optimizations require the format string to be "%s" or "%c" 2894 // and have an extra operand. 2895 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->arg_size() < 3) 2896 return nullptr; 2897 2898 // Decode the second character of the format string. 2899 if (FormatStr[1] == 'c') { 2900 // fprintf(F, "%c", chr) --> fputc(chr, F) 2901 if (!CI->getArgOperand(2)->getType()->isIntegerTy()) 2902 return nullptr; 2903 return copyFlags( 2904 *CI, emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2905 } 2906 2907 if (FormatStr[1] == 's') { 2908 // fprintf(F, "%s", str) --> fputs(str, F) 2909 if (!CI->getArgOperand(2)->getType()->isPointerTy()) 2910 return nullptr; 2911 return copyFlags( 2912 *CI, emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI)); 2913 } 2914 return nullptr; 2915 } 2916 2917 Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilderBase &B) { 2918 Module *M = CI->getModule(); 2919 Function *Callee = CI->getCalledFunction(); 2920 FunctionType *FT = Callee->getFunctionType(); 2921 if (Value *V = optimizeFPrintFString(CI, B)) { 2922 return V; 2923 } 2924 2925 // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no 2926 // floating point arguments. 2927 if (isLibFuncEmittable(M, TLI, LibFunc_fiprintf) && 2928 !callHasFloatingPointArgument(CI)) { 2929 FunctionCallee FIPrintFFn = getOrInsertLibFunc(M, *TLI, LibFunc_fiprintf, 2930 FT, Callee->getAttributes()); 2931 CallInst *New = cast<CallInst>(CI->clone()); 2932 New->setCalledFunction(FIPrintFFn); 2933 B.Insert(New); 2934 return New; 2935 } 2936 2937 // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no 2938 // 128-bit floating point arguments. 2939 if (isLibFuncEmittable(M, TLI, LibFunc_small_fprintf) && 2940 !callHasFP128Argument(CI)) { 2941 auto SmallFPrintFFn = 2942 getOrInsertLibFunc(M, *TLI, LibFunc_small_fprintf, FT, 2943 Callee->getAttributes()); 2944 CallInst *New = cast<CallInst>(CI->clone()); 2945 New->setCalledFunction(SmallFPrintFFn); 2946 B.Insert(New); 2947 return New; 2948 } 2949 2950 return nullptr; 2951 } 2952 2953 Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilderBase &B) { 2954 optimizeErrorReporting(CI, B, 3); 2955 2956 // Get the element size and count. 2957 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); 2958 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); 2959 if (SizeC && CountC) { 2960 uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); 2961 2962 // If this is writing zero records, remove the call (it's a noop). 2963 if (Bytes == 0) 2964 return ConstantInt::get(CI->getType(), 0); 2965 2966 // If this is writing one byte, turn it into fputc. 2967 // This optimisation is only valid, if the return value is unused. 2968 if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) 2969 Value *Char = B.CreateLoad(B.getInt8Ty(), 2970 castToCStr(CI->getArgOperand(0), B), "char"); 2971 Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); 2972 return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; 2973 } 2974 } 2975 2976 return nullptr; 2977 } 2978 2979 Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilderBase &B) { 2980 optimizeErrorReporting(CI, B, 1); 2981 2982 // Don't rewrite fputs to fwrite when optimising for size because fwrite 2983 // requires more arguments and thus extra MOVs are required. 2984 bool OptForSize = CI->getFunction()->hasOptSize() || 2985 llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI, 2986 PGSOQueryType::IRPass); 2987 if (OptForSize) 2988 return nullptr; 2989 2990 // We can't optimize if return value is used. 2991 if (!CI->use_empty()) 2992 return nullptr; 2993 2994 // fputs(s,F) --> fwrite(s,strlen(s),1,F) 2995 uint64_t Len = GetStringLength(CI->getArgOperand(0)); 2996 if (!Len) 2997 return nullptr; 2998 2999 // Known to have no uses (see above). 3000 return copyFlags( 3001 *CI, 3002 emitFWrite(CI->getArgOperand(0), 3003 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), 3004 CI->getArgOperand(1), B, DL, TLI)); 3005 } 3006 3007 Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilderBase &B) { 3008 annotateNonNullNoUndefBasedOnAccess(CI, 0); 3009 if (!CI->use_empty()) 3010 return nullptr; 3011 3012 // Check for a constant string. 3013 // puts("") -> putchar('\n') 3014 StringRef Str; 3015 if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) 3016 return copyFlags(*CI, emitPutChar(B.getInt32('\n'), B, TLI)); 3017 3018 return nullptr; 3019 } 3020 3021 Value *LibCallSimplifier::optimizeBCopy(CallInst *CI, IRBuilderBase &B) { 3022 // bcopy(src, dst, n) -> llvm.memmove(dst, src, n) 3023 return copyFlags(*CI, B.CreateMemMove(CI->getArgOperand(1), Align(1), 3024 CI->getArgOperand(0), Align(1), 3025 CI->getArgOperand(2))); 3026 } 3027 3028 bool LibCallSimplifier::hasFloatVersion(const Module *M, StringRef FuncName) { 3029 SmallString<20> FloatFuncName = FuncName; 3030 FloatFuncName += 'f'; 3031 return isLibFuncEmittable(M, TLI, FloatFuncName); 3032 } 3033 3034 Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, 3035 IRBuilderBase &Builder) { 3036 Module *M = CI->getModule(); 3037 LibFunc Func; 3038 Function *Callee = CI->getCalledFunction(); 3039 // Check for string/memory library functions. 3040 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3041 // Make sure we never change the calling convention. 3042 assert( 3043 (ignoreCallingConv(Func) || 3044 TargetLibraryInfoImpl::isCallingConvCCompatible(CI)) && 3045 "Optimizing string/memory libcall would change the calling convention"); 3046 switch (Func) { 3047 case LibFunc_strcat: 3048 return optimizeStrCat(CI, Builder); 3049 case LibFunc_strncat: 3050 return optimizeStrNCat(CI, Builder); 3051 case LibFunc_strchr: 3052 return optimizeStrChr(CI, Builder); 3053 case LibFunc_strrchr: 3054 return optimizeStrRChr(CI, Builder); 3055 case LibFunc_strcmp: 3056 return optimizeStrCmp(CI, Builder); 3057 case LibFunc_strncmp: 3058 return optimizeStrNCmp(CI, Builder); 3059 case LibFunc_strcpy: 3060 return optimizeStrCpy(CI, Builder); 3061 case LibFunc_stpcpy: 3062 return optimizeStpCpy(CI, Builder); 3063 case LibFunc_strncpy: 3064 return optimizeStrNCpy(CI, Builder); 3065 case LibFunc_strlen: 3066 return optimizeStrLen(CI, Builder); 3067 case LibFunc_strnlen: 3068 return optimizeStrNLen(CI, Builder); 3069 case LibFunc_strpbrk: 3070 return optimizeStrPBrk(CI, Builder); 3071 case LibFunc_strndup: 3072 return optimizeStrNDup(CI, Builder); 3073 case LibFunc_strtol: 3074 case LibFunc_strtod: 3075 case LibFunc_strtof: 3076 case LibFunc_strtoul: 3077 case LibFunc_strtoll: 3078 case LibFunc_strtold: 3079 case LibFunc_strtoull: 3080 return optimizeStrTo(CI, Builder); 3081 case LibFunc_strspn: 3082 return optimizeStrSpn(CI, Builder); 3083 case LibFunc_strcspn: 3084 return optimizeStrCSpn(CI, Builder); 3085 case LibFunc_strstr: 3086 return optimizeStrStr(CI, Builder); 3087 case LibFunc_memchr: 3088 return optimizeMemChr(CI, Builder); 3089 case LibFunc_memrchr: 3090 return optimizeMemRChr(CI, Builder); 3091 case LibFunc_bcmp: 3092 return optimizeBCmp(CI, Builder); 3093 case LibFunc_memcmp: 3094 return optimizeMemCmp(CI, Builder); 3095 case LibFunc_memcpy: 3096 return optimizeMemCpy(CI, Builder); 3097 case LibFunc_memccpy: 3098 return optimizeMemCCpy(CI, Builder); 3099 case LibFunc_mempcpy: 3100 return optimizeMemPCpy(CI, Builder); 3101 case LibFunc_memmove: 3102 return optimizeMemMove(CI, Builder); 3103 case LibFunc_memset: 3104 return optimizeMemSet(CI, Builder); 3105 case LibFunc_realloc: 3106 return optimizeRealloc(CI, Builder); 3107 case LibFunc_wcslen: 3108 return optimizeWcslen(CI, Builder); 3109 case LibFunc_bcopy: 3110 return optimizeBCopy(CI, Builder); 3111 default: 3112 break; 3113 } 3114 } 3115 return nullptr; 3116 } 3117 3118 Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, 3119 LibFunc Func, 3120 IRBuilderBase &Builder) { 3121 const Module *M = CI->getModule(); 3122 3123 // Don't optimize calls that require strict floating point semantics. 3124 if (CI->isStrictFP()) 3125 return nullptr; 3126 3127 if (Value *V = optimizeTrigReflections(CI, Func, Builder)) 3128 return V; 3129 3130 switch (Func) { 3131 case LibFunc_sinpif: 3132 case LibFunc_sinpi: 3133 case LibFunc_cospif: 3134 case LibFunc_cospi: 3135 return optimizeSinCosPi(CI, Builder); 3136 case LibFunc_powf: 3137 case LibFunc_pow: 3138 case LibFunc_powl: 3139 return optimizePow(CI, Builder); 3140 case LibFunc_exp2l: 3141 case LibFunc_exp2: 3142 case LibFunc_exp2f: 3143 return optimizeExp2(CI, Builder); 3144 case LibFunc_fabsf: 3145 case LibFunc_fabs: 3146 case LibFunc_fabsl: 3147 return replaceUnaryCall(CI, Builder, Intrinsic::fabs); 3148 case LibFunc_sqrtf: 3149 case LibFunc_sqrt: 3150 case LibFunc_sqrtl: 3151 return optimizeSqrt(CI, Builder); 3152 case LibFunc_logf: 3153 case LibFunc_log: 3154 case LibFunc_logl: 3155 case LibFunc_log10f: 3156 case LibFunc_log10: 3157 case LibFunc_log10l: 3158 case LibFunc_log1pf: 3159 case LibFunc_log1p: 3160 case LibFunc_log1pl: 3161 case LibFunc_log2f: 3162 case LibFunc_log2: 3163 case LibFunc_log2l: 3164 case LibFunc_logbf: 3165 case LibFunc_logb: 3166 case LibFunc_logbl: 3167 return optimizeLog(CI, Builder); 3168 case LibFunc_tan: 3169 case LibFunc_tanf: 3170 case LibFunc_tanl: 3171 return optimizeTan(CI, Builder); 3172 case LibFunc_ceil: 3173 return replaceUnaryCall(CI, Builder, Intrinsic::ceil); 3174 case LibFunc_floor: 3175 return replaceUnaryCall(CI, Builder, Intrinsic::floor); 3176 case LibFunc_round: 3177 return replaceUnaryCall(CI, Builder, Intrinsic::round); 3178 case LibFunc_roundeven: 3179 return replaceUnaryCall(CI, Builder, Intrinsic::roundeven); 3180 case LibFunc_nearbyint: 3181 return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); 3182 case LibFunc_rint: 3183 return replaceUnaryCall(CI, Builder, Intrinsic::rint); 3184 case LibFunc_trunc: 3185 return replaceUnaryCall(CI, Builder, Intrinsic::trunc); 3186 case LibFunc_acos: 3187 case LibFunc_acosh: 3188 case LibFunc_asin: 3189 case LibFunc_asinh: 3190 case LibFunc_atan: 3191 case LibFunc_atanh: 3192 case LibFunc_cbrt: 3193 case LibFunc_cosh: 3194 case LibFunc_exp: 3195 case LibFunc_exp10: 3196 case LibFunc_expm1: 3197 case LibFunc_cos: 3198 case LibFunc_sin: 3199 case LibFunc_sinh: 3200 case LibFunc_tanh: 3201 if (UnsafeFPShrink && hasFloatVersion(M, CI->getCalledFunction()->getName())) 3202 return optimizeUnaryDoubleFP(CI, Builder, TLI, true); 3203 return nullptr; 3204 case LibFunc_copysign: 3205 if (hasFloatVersion(M, CI->getCalledFunction()->getName())) 3206 return optimizeBinaryDoubleFP(CI, Builder, TLI); 3207 return nullptr; 3208 case LibFunc_fminf: 3209 case LibFunc_fmin: 3210 case LibFunc_fminl: 3211 case LibFunc_fmaxf: 3212 case LibFunc_fmax: 3213 case LibFunc_fmaxl: 3214 return optimizeFMinFMax(CI, Builder); 3215 case LibFunc_cabs: 3216 case LibFunc_cabsf: 3217 case LibFunc_cabsl: 3218 return optimizeCAbs(CI, Builder); 3219 default: 3220 return nullptr; 3221 } 3222 } 3223 3224 Value *LibCallSimplifier::optimizeCall(CallInst *CI, IRBuilderBase &Builder) { 3225 Module *M = CI->getModule(); 3226 assert(!CI->isMustTailCall() && "These transforms aren't musttail safe."); 3227 3228 // TODO: Split out the code below that operates on FP calls so that 3229 // we can all non-FP calls with the StrictFP attribute to be 3230 // optimized. 3231 if (CI->isNoBuiltin()) 3232 return nullptr; 3233 3234 LibFunc Func; 3235 Function *Callee = CI->getCalledFunction(); 3236 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3237 3238 SmallVector<OperandBundleDef, 2> OpBundles; 3239 CI->getOperandBundlesAsDefs(OpBundles); 3240 3241 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3242 Builder.setDefaultOperandBundles(OpBundles); 3243 3244 // Command-line parameter overrides instruction attribute. 3245 // This can't be moved to optimizeFloatingPointLibCall() because it may be 3246 // used by the intrinsic optimizations. 3247 if (EnableUnsafeFPShrink.getNumOccurrences() > 0) 3248 UnsafeFPShrink = EnableUnsafeFPShrink; 3249 else if (isa<FPMathOperator>(CI) && CI->isFast()) 3250 UnsafeFPShrink = true; 3251 3252 // First, check for intrinsics. 3253 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { 3254 if (!IsCallingConvC) 3255 return nullptr; 3256 // The FP intrinsics have corresponding constrained versions so we don't 3257 // need to check for the StrictFP attribute here. 3258 switch (II->getIntrinsicID()) { 3259 case Intrinsic::pow: 3260 return optimizePow(CI, Builder); 3261 case Intrinsic::exp2: 3262 return optimizeExp2(CI, Builder); 3263 case Intrinsic::log: 3264 case Intrinsic::log2: 3265 case Intrinsic::log10: 3266 return optimizeLog(CI, Builder); 3267 case Intrinsic::sqrt: 3268 return optimizeSqrt(CI, Builder); 3269 case Intrinsic::memset: 3270 return optimizeMemSet(CI, Builder); 3271 case Intrinsic::memcpy: 3272 return optimizeMemCpy(CI, Builder); 3273 case Intrinsic::memmove: 3274 return optimizeMemMove(CI, Builder); 3275 default: 3276 return nullptr; 3277 } 3278 } 3279 3280 // Also try to simplify calls to fortified library functions. 3281 if (Value *SimplifiedFortifiedCI = 3282 FortifiedSimplifier.optimizeCall(CI, Builder)) { 3283 // Try to further simplify the result. 3284 CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); 3285 if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { 3286 // Ensure that SimplifiedCI's uses are complete, since some calls have 3287 // their uses analyzed. 3288 replaceAllUsesWith(CI, SimplifiedCI); 3289 3290 // Set insertion point to SimplifiedCI to guarantee we reach all uses 3291 // we might replace later on. 3292 IRBuilderBase::InsertPointGuard Guard(Builder); 3293 Builder.SetInsertPoint(SimplifiedCI); 3294 if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, Builder)) { 3295 // If we were able to further simplify, remove the now redundant call. 3296 substituteInParent(SimplifiedCI, V); 3297 return V; 3298 } 3299 } 3300 return SimplifiedFortifiedCI; 3301 } 3302 3303 // Then check for known library functions. 3304 if (TLI->getLibFunc(*Callee, Func) && isLibFuncEmittable(M, TLI, Func)) { 3305 // We never change the calling convention. 3306 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3307 return nullptr; 3308 if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) 3309 return V; 3310 if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) 3311 return V; 3312 switch (Func) { 3313 case LibFunc_ffs: 3314 case LibFunc_ffsl: 3315 case LibFunc_ffsll: 3316 return optimizeFFS(CI, Builder); 3317 case LibFunc_fls: 3318 case LibFunc_flsl: 3319 case LibFunc_flsll: 3320 return optimizeFls(CI, Builder); 3321 case LibFunc_abs: 3322 case LibFunc_labs: 3323 case LibFunc_llabs: 3324 return optimizeAbs(CI, Builder); 3325 case LibFunc_isdigit: 3326 return optimizeIsDigit(CI, Builder); 3327 case LibFunc_isascii: 3328 return optimizeIsAscii(CI, Builder); 3329 case LibFunc_toascii: 3330 return optimizeToAscii(CI, Builder); 3331 case LibFunc_atoi: 3332 case LibFunc_atol: 3333 case LibFunc_atoll: 3334 return optimizeAtoi(CI, Builder); 3335 case LibFunc_strtol: 3336 case LibFunc_strtoll: 3337 return optimizeStrtol(CI, Builder); 3338 case LibFunc_printf: 3339 return optimizePrintF(CI, Builder); 3340 case LibFunc_sprintf: 3341 return optimizeSPrintF(CI, Builder); 3342 case LibFunc_snprintf: 3343 return optimizeSnPrintF(CI, Builder); 3344 case LibFunc_fprintf: 3345 return optimizeFPrintF(CI, Builder); 3346 case LibFunc_fwrite: 3347 return optimizeFWrite(CI, Builder); 3348 case LibFunc_fputs: 3349 return optimizeFPuts(CI, Builder); 3350 case LibFunc_puts: 3351 return optimizePuts(CI, Builder); 3352 case LibFunc_perror: 3353 return optimizeErrorReporting(CI, Builder); 3354 case LibFunc_vfprintf: 3355 case LibFunc_fiprintf: 3356 return optimizeErrorReporting(CI, Builder, 0); 3357 default: 3358 return nullptr; 3359 } 3360 } 3361 return nullptr; 3362 } 3363 3364 LibCallSimplifier::LibCallSimplifier( 3365 const DataLayout &DL, const TargetLibraryInfo *TLI, 3366 OptimizationRemarkEmitter &ORE, 3367 BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, 3368 function_ref<void(Instruction *, Value *)> Replacer, 3369 function_ref<void(Instruction *)> Eraser) 3370 : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), 3371 Replacer(Replacer), Eraser(Eraser) {} 3372 3373 void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { 3374 // Indirect through the replacer used in this instance. 3375 Replacer(I, With); 3376 } 3377 3378 void LibCallSimplifier::eraseFromParent(Instruction *I) { 3379 Eraser(I); 3380 } 3381 3382 // TODO: 3383 // Additional cases that we need to add to this file: 3384 // 3385 // cbrt: 3386 // * cbrt(expN(X)) -> expN(x/3) 3387 // * cbrt(sqrt(x)) -> pow(x,1/6) 3388 // * cbrt(cbrt(x)) -> pow(x,1/9) 3389 // 3390 // exp, expf, expl: 3391 // * exp(log(x)) -> x 3392 // 3393 // log, logf, logl: 3394 // * log(exp(x)) -> x 3395 // * log(exp(y)) -> y*log(e) 3396 // * log(exp10(y)) -> y*log(10) 3397 // * log(sqrt(x)) -> 0.5*log(x) 3398 // 3399 // pow, powf, powl: 3400 // * pow(sqrt(x),y) -> pow(x,y*0.5) 3401 // * pow(pow(x,y),z)-> pow(x,y*z) 3402 // 3403 // signbit: 3404 // * signbit(cnst) -> cnst' 3405 // * signbit(nncst) -> 0 (if pstv is a non-negative constant) 3406 // 3407 // sqrt, sqrtf, sqrtl: 3408 // * sqrt(expN(x)) -> expN(x*0.5) 3409 // * sqrt(Nroot(x)) -> pow(x,1/(2*N)) 3410 // * sqrt(pow(x,y)) -> pow(|x|,y*0.5) 3411 // 3412 3413 //===----------------------------------------------------------------------===// 3414 // Fortified Library Call Optimizations 3415 //===----------------------------------------------------------------------===// 3416 3417 bool 3418 FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, 3419 unsigned ObjSizeOp, 3420 Optional<unsigned> SizeOp, 3421 Optional<unsigned> StrOp, 3422 Optional<unsigned> FlagOp) { 3423 // If this function takes a flag argument, the implementation may use it to 3424 // perform extra checks. Don't fold into the non-checking variant. 3425 if (FlagOp) { 3426 ConstantInt *Flag = dyn_cast<ConstantInt>(CI->getArgOperand(*FlagOp)); 3427 if (!Flag || !Flag->isZero()) 3428 return false; 3429 } 3430 3431 if (SizeOp && CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(*SizeOp)) 3432 return true; 3433 3434 if (ConstantInt *ObjSizeCI = 3435 dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { 3436 if (ObjSizeCI->isMinusOne()) 3437 return true; 3438 // If the object size wasn't -1 (unknown), bail out if we were asked to. 3439 if (OnlyLowerUnknownSize) 3440 return false; 3441 if (StrOp) { 3442 uint64_t Len = GetStringLength(CI->getArgOperand(*StrOp)); 3443 // If the length is 0 we don't know how long it is and so we can't 3444 // remove the check. 3445 if (Len) 3446 annotateDereferenceableBytes(CI, *StrOp, Len); 3447 else 3448 return false; 3449 return ObjSizeCI->getZExtValue() >= Len; 3450 } 3451 3452 if (SizeOp) { 3453 if (ConstantInt *SizeCI = 3454 dyn_cast<ConstantInt>(CI->getArgOperand(*SizeOp))) 3455 return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); 3456 } 3457 } 3458 return false; 3459 } 3460 3461 Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, 3462 IRBuilderBase &B) { 3463 if (isFortifiedCallFoldable(CI, 3, 2)) { 3464 CallInst *NewCI = 3465 B.CreateMemCpy(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3466 Align(1), CI->getArgOperand(2)); 3467 NewCI->setAttributes(CI->getAttributes()); 3468 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3469 copyFlags(*CI, NewCI); 3470 return CI->getArgOperand(0); 3471 } 3472 return nullptr; 3473 } 3474 3475 Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, 3476 IRBuilderBase &B) { 3477 if (isFortifiedCallFoldable(CI, 3, 2)) { 3478 CallInst *NewCI = 3479 B.CreateMemMove(CI->getArgOperand(0), Align(1), CI->getArgOperand(1), 3480 Align(1), CI->getArgOperand(2)); 3481 NewCI->setAttributes(CI->getAttributes()); 3482 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3483 copyFlags(*CI, NewCI); 3484 return CI->getArgOperand(0); 3485 } 3486 return nullptr; 3487 } 3488 3489 Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, 3490 IRBuilderBase &B) { 3491 if (isFortifiedCallFoldable(CI, 3, 2)) { 3492 Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); 3493 CallInst *NewCI = B.CreateMemSet(CI->getArgOperand(0), Val, 3494 CI->getArgOperand(2), Align(1)); 3495 NewCI->setAttributes(CI->getAttributes()); 3496 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3497 copyFlags(*CI, NewCI); 3498 return CI->getArgOperand(0); 3499 } 3500 return nullptr; 3501 } 3502 3503 Value *FortifiedLibCallSimplifier::optimizeMemPCpyChk(CallInst *CI, 3504 IRBuilderBase &B) { 3505 const DataLayout &DL = CI->getModule()->getDataLayout(); 3506 if (isFortifiedCallFoldable(CI, 3, 2)) 3507 if (Value *Call = emitMemPCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3508 CI->getArgOperand(2), B, DL, TLI)) { 3509 CallInst *NewCI = cast<CallInst>(Call); 3510 NewCI->setAttributes(CI->getAttributes()); 3511 NewCI->removeRetAttrs(AttributeFuncs::typeIncompatible(NewCI->getType())); 3512 return copyFlags(*CI, NewCI); 3513 } 3514 return nullptr; 3515 } 3516 3517 Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, 3518 IRBuilderBase &B, 3519 LibFunc Func) { 3520 const DataLayout &DL = CI->getModule()->getDataLayout(); 3521 Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), 3522 *ObjSize = CI->getArgOperand(2); 3523 3524 // __stpcpy_chk(x,x,...) -> x+strlen(x) 3525 if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { 3526 Value *StrLen = emitStrLen(Src, B, DL, TLI); 3527 return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; 3528 } 3529 3530 // If a) we don't have any length information, or b) we know this will 3531 // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our 3532 // st[rp]cpy_chk call which may fail at runtime if the size is too long. 3533 // TODO: It might be nice to get a maximum length out of the possible 3534 // string lengths for varying. 3535 if (isFortifiedCallFoldable(CI, 2, None, 1)) { 3536 if (Func == LibFunc_strcpy_chk) 3537 return copyFlags(*CI, emitStrCpy(Dst, Src, B, TLI)); 3538 else 3539 return copyFlags(*CI, emitStpCpy(Dst, Src, B, TLI)); 3540 } 3541 3542 if (OnlyLowerUnknownSize) 3543 return nullptr; 3544 3545 // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. 3546 uint64_t Len = GetStringLength(Src); 3547 if (Len) 3548 annotateDereferenceableBytes(CI, 1, Len); 3549 else 3550 return nullptr; 3551 3552 // FIXME: There is really no guarantee that sizeof(size_t) is equal to 3553 // sizeof(int*) for every target. So the assumption used here to derive the 3554 // SizeTBits based on the size of an integer pointer in address space zero 3555 // isn't always valid. 3556 Type *SizeTTy = DL.getIntPtrType(CI->getContext(), /*AddressSpace=*/0); 3557 Value *LenV = ConstantInt::get(SizeTTy, Len); 3558 Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); 3559 // If the function was an __stpcpy_chk, and we were able to fold it into 3560 // a __memcpy_chk, we still need to return the correct end pointer. 3561 if (Ret && Func == LibFunc_stpcpy_chk) 3562 return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); 3563 return copyFlags(*CI, cast<CallInst>(Ret)); 3564 } 3565 3566 Value *FortifiedLibCallSimplifier::optimizeStrLenChk(CallInst *CI, 3567 IRBuilderBase &B) { 3568 if (isFortifiedCallFoldable(CI, 1, None, 0)) 3569 return copyFlags(*CI, emitStrLen(CI->getArgOperand(0), B, 3570 CI->getModule()->getDataLayout(), TLI)); 3571 return nullptr; 3572 } 3573 3574 Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, 3575 IRBuilderBase &B, 3576 LibFunc Func) { 3577 if (isFortifiedCallFoldable(CI, 3, 2)) { 3578 if (Func == LibFunc_strncpy_chk) 3579 return copyFlags(*CI, 3580 emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3581 CI->getArgOperand(2), B, TLI)); 3582 else 3583 return copyFlags(*CI, 3584 emitStpNCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3585 CI->getArgOperand(2), B, TLI)); 3586 } 3587 3588 return nullptr; 3589 } 3590 3591 Value *FortifiedLibCallSimplifier::optimizeMemCCpyChk(CallInst *CI, 3592 IRBuilderBase &B) { 3593 if (isFortifiedCallFoldable(CI, 4, 3)) 3594 return copyFlags( 3595 *CI, emitMemCCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3596 CI->getArgOperand(2), CI->getArgOperand(3), B, TLI)); 3597 3598 return nullptr; 3599 } 3600 3601 Value *FortifiedLibCallSimplifier::optimizeSNPrintfChk(CallInst *CI, 3602 IRBuilderBase &B) { 3603 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) { 3604 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 5)); 3605 return copyFlags(*CI, 3606 emitSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3607 CI->getArgOperand(4), VariadicArgs, B, TLI)); 3608 } 3609 3610 return nullptr; 3611 } 3612 3613 Value *FortifiedLibCallSimplifier::optimizeSPrintfChk(CallInst *CI, 3614 IRBuilderBase &B) { 3615 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) { 3616 SmallVector<Value *, 8> VariadicArgs(drop_begin(CI->args(), 4)); 3617 return copyFlags(*CI, 3618 emitSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3619 VariadicArgs, B, TLI)); 3620 } 3621 3622 return nullptr; 3623 } 3624 3625 Value *FortifiedLibCallSimplifier::optimizeStrCatChk(CallInst *CI, 3626 IRBuilderBase &B) { 3627 if (isFortifiedCallFoldable(CI, 2)) 3628 return copyFlags( 3629 *CI, emitStrCat(CI->getArgOperand(0), CI->getArgOperand(1), B, TLI)); 3630 3631 return nullptr; 3632 } 3633 3634 Value *FortifiedLibCallSimplifier::optimizeStrLCat(CallInst *CI, 3635 IRBuilderBase &B) { 3636 if (isFortifiedCallFoldable(CI, 3)) 3637 return copyFlags(*CI, 3638 emitStrLCat(CI->getArgOperand(0), CI->getArgOperand(1), 3639 CI->getArgOperand(2), B, TLI)); 3640 3641 return nullptr; 3642 } 3643 3644 Value *FortifiedLibCallSimplifier::optimizeStrNCatChk(CallInst *CI, 3645 IRBuilderBase &B) { 3646 if (isFortifiedCallFoldable(CI, 3)) 3647 return copyFlags(*CI, 3648 emitStrNCat(CI->getArgOperand(0), CI->getArgOperand(1), 3649 CI->getArgOperand(2), B, TLI)); 3650 3651 return nullptr; 3652 } 3653 3654 Value *FortifiedLibCallSimplifier::optimizeStrLCpyChk(CallInst *CI, 3655 IRBuilderBase &B) { 3656 if (isFortifiedCallFoldable(CI, 3)) 3657 return copyFlags(*CI, 3658 emitStrLCpy(CI->getArgOperand(0), CI->getArgOperand(1), 3659 CI->getArgOperand(2), B, TLI)); 3660 3661 return nullptr; 3662 } 3663 3664 Value *FortifiedLibCallSimplifier::optimizeVSNPrintfChk(CallInst *CI, 3665 IRBuilderBase &B) { 3666 if (isFortifiedCallFoldable(CI, 3, 1, None, 2)) 3667 return copyFlags( 3668 *CI, emitVSNPrintf(CI->getArgOperand(0), CI->getArgOperand(1), 3669 CI->getArgOperand(4), CI->getArgOperand(5), B, TLI)); 3670 3671 return nullptr; 3672 } 3673 3674 Value *FortifiedLibCallSimplifier::optimizeVSPrintfChk(CallInst *CI, 3675 IRBuilderBase &B) { 3676 if (isFortifiedCallFoldable(CI, 2, None, None, 1)) 3677 return copyFlags(*CI, 3678 emitVSPrintf(CI->getArgOperand(0), CI->getArgOperand(3), 3679 CI->getArgOperand(4), B, TLI)); 3680 3681 return nullptr; 3682 } 3683 3684 Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI, 3685 IRBuilderBase &Builder) { 3686 // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. 3687 // Some clang users checked for _chk libcall availability using: 3688 // __has_builtin(__builtin___memcpy_chk) 3689 // When compiling with -fno-builtin, this is always true. 3690 // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we 3691 // end up with fortified libcalls, which isn't acceptable in a freestanding 3692 // environment which only provides their non-fortified counterparts. 3693 // 3694 // Until we change clang and/or teach external users to check for availability 3695 // differently, disregard the "nobuiltin" attribute and TLI::has. 3696 // 3697 // PR23093. 3698 3699 LibFunc Func; 3700 Function *Callee = CI->getCalledFunction(); 3701 bool IsCallingConvC = TargetLibraryInfoImpl::isCallingConvCCompatible(CI); 3702 3703 SmallVector<OperandBundleDef, 2> OpBundles; 3704 CI->getOperandBundlesAsDefs(OpBundles); 3705 3706 IRBuilderBase::OperandBundlesGuard Guard(Builder); 3707 Builder.setDefaultOperandBundles(OpBundles); 3708 3709 // First, check that this is a known library functions and that the prototype 3710 // is correct. 3711 if (!TLI->getLibFunc(*Callee, Func)) 3712 return nullptr; 3713 3714 // We never change the calling convention. 3715 if (!ignoreCallingConv(Func) && !IsCallingConvC) 3716 return nullptr; 3717 3718 switch (Func) { 3719 case LibFunc_memcpy_chk: 3720 return optimizeMemCpyChk(CI, Builder); 3721 case LibFunc_mempcpy_chk: 3722 return optimizeMemPCpyChk(CI, Builder); 3723 case LibFunc_memmove_chk: 3724 return optimizeMemMoveChk(CI, Builder); 3725 case LibFunc_memset_chk: 3726 return optimizeMemSetChk(CI, Builder); 3727 case LibFunc_stpcpy_chk: 3728 case LibFunc_strcpy_chk: 3729 return optimizeStrpCpyChk(CI, Builder, Func); 3730 case LibFunc_strlen_chk: 3731 return optimizeStrLenChk(CI, Builder); 3732 case LibFunc_stpncpy_chk: 3733 case LibFunc_strncpy_chk: 3734 return optimizeStrpNCpyChk(CI, Builder, Func); 3735 case LibFunc_memccpy_chk: 3736 return optimizeMemCCpyChk(CI, Builder); 3737 case LibFunc_snprintf_chk: 3738 return optimizeSNPrintfChk(CI, Builder); 3739 case LibFunc_sprintf_chk: 3740 return optimizeSPrintfChk(CI, Builder); 3741 case LibFunc_strcat_chk: 3742 return optimizeStrCatChk(CI, Builder); 3743 case LibFunc_strlcat_chk: 3744 return optimizeStrLCat(CI, Builder); 3745 case LibFunc_strncat_chk: 3746 return optimizeStrNCatChk(CI, Builder); 3747 case LibFunc_strlcpy_chk: 3748 return optimizeStrLCpyChk(CI, Builder); 3749 case LibFunc_vsnprintf_chk: 3750 return optimizeVSNPrintfChk(CI, Builder); 3751 case LibFunc_vsprintf_chk: 3752 return optimizeVSPrintfChk(CI, Builder); 3753 default: 3754 break; 3755 } 3756 return nullptr; 3757 } 3758 3759 FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( 3760 const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) 3761 : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} 3762